PHSX 220 Homework 12 D2L – Due Thursday April 13 – 5:00 pm Exam 3 MC Review Problem 1: A 1.0-kg with a velocity of 2.0m/s perpendicular towards a wall rebounds from the wall at 1.5m/s perpendicularlly away from the wall. The change in the momentum of the ball is: A. zero B. 0.5 N s away from wall C. 0.5 N s toward wall D. 3.5 N s away from wall E. 3.5 N s toward wall Problem 2: A 64 kg man stands on a frictionless surface with a 0.10 kg stone at his feet. Both the man and the person are initially at rest. He kicks the stone with his foot so that his end velocity is 0.0017m/s in the forward direction. The velocity of the stone is now: A. 1.1m/s forward B. 1.1m/s backward C. 0.0017m/s forward D. 0.0017m/s backward E. none of these Problem 3: A 2-kg cart, traveling on a rctionless surface with a speed of 3m/s, collides with a stationary 4-kg cart. The carts then stick together. Calculate the magnitude of the impulse exerted by one cart on the other: A. 0 B. 4N s C. 6N s D. 9N s E. 12N s Problem 4: A disc has an initial angular velocity of 18 radians per second. It has a constant angular acceleration of 2.0 radians per second every second and is slowing at rst. How much time elapses before its angular velocity is 18 rad/s in the direction opposite to its initial angular velocity? A. 3.0 s B. 6.0 s C. 9.0 s D. 18 s E. 36 s Problem 5: Three point masses of M, 2M, and 3M, are fastened to a massless rod of length L as shown. The rotational inertia about the rotational axis shown is: A. (ML2=2) B. (ML2) C. (3ML2)=2 D. (6ML2) E. (3ML2)=4 Problem 6: A board is allowed to pivot about its center. A 5-N force is applied 2m from the pivot and another 5-N force is applied 4m from the pivot. These forces are applied at the angles shown in the gure. The magnitude of the net torque about the pivot is: A. 0 Nm B. 5 Nm C. 8.7 Nm D. 15 Nm E. 26 Nm Problem 7: A solid disk (r=0.03 m) and a rotational inertia of 4:5×103kgm2 hangs from the ceiling. A string passes over it with a 2.0-kg block and a 4.0-kg block hanging on either end of the string and does not slip as the system starts to move. When the speed of the 4 kg block is 2.0m/s the kinetic energy of the pulley is: A. 0.15 J B. 0.30 J C. 1.0J D. 10 J E. 20 J Problem 8: A merry go round (r= 3.0m, I =600 kgm2) is initially spinning with an angular velocity of 0.80 radians per second when a 20 kg point mass moves from the center to the rim. Calculate the nal angular velocity of the system: A. 0.62 rad/s B. 0.73 rad/s C. 0.80 rad/s D. 0.89 rad/s E. 1.1 rad/s

PHSX 220 Homework 12 D2L – Due Thursday April 13 – 5:00 pm Exam 3 MC Review Problem 1: A 1.0-kg with a velocity of 2.0m/s perpendicular towards a wall rebounds from the wall at 1.5m/s perpendicularlly away from the wall. The change in the momentum of the ball is: A. zero B. 0.5 N s away from wall C. 0.5 N s toward wall D. 3.5 N s away from wall E. 3.5 N s toward wall Problem 2: A 64 kg man stands on a frictionless surface with a 0.10 kg stone at his feet. Both the man and the person are initially at rest. He kicks the stone with his foot so that his end velocity is 0.0017m/s in the forward direction. The velocity of the stone is now: A. 1.1m/s forward B. 1.1m/s backward C. 0.0017m/s forward D. 0.0017m/s backward E. none of these Problem 3: A 2-kg cart, traveling on a rctionless surface with a speed of 3m/s, collides with a stationary 4-kg cart. The carts then stick together. Calculate the magnitude of the impulse exerted by one cart on the other: A. 0 B. 4N s C. 6N s D. 9N s E. 12N s Problem 4: A disc has an initial angular velocity of 18 radians per second. It has a constant angular acceleration of 2.0 radians per second every second and is slowing at rst. How much time elapses before its angular velocity is 18 rad/s in the direction opposite to its initial angular velocity? A. 3.0 s B. 6.0 s C. 9.0 s D. 18 s E. 36 s Problem 5: Three point masses of M, 2M, and 3M, are fastened to a massless rod of length L as shown. The rotational inertia about the rotational axis shown is: A. (ML2=2) B. (ML2) C. (3ML2)=2 D. (6ML2) E. (3ML2)=4 Problem 6: A board is allowed to pivot about its center. A 5-N force is applied 2m from the pivot and another 5-N force is applied 4m from the pivot. These forces are applied at the angles shown in the gure. The magnitude of the net torque about the pivot is: A. 0 Nm B. 5 Nm C. 8.7 Nm D. 15 Nm E. 26 Nm Problem 7: A solid disk (r=0.03 m) and a rotational inertia of 4:5×103kgm2 hangs from the ceiling. A string passes over it with a 2.0-kg block and a 4.0-kg block hanging on either end of the string and does not slip as the system starts to move. When the speed of the 4 kg block is 2.0m/s the kinetic energy of the pulley is: A. 0.15 J B. 0.30 J C. 1.0J D. 10 J E. 20 J Problem 8: A merry go round (r= 3.0m, I =600 kgm2) is initially spinning with an angular velocity of 0.80 radians per second when a 20 kg point mass moves from the center to the rim. Calculate the nal angular velocity of the system: A. 0.62 rad/s B. 0.73 rad/s C. 0.80 rad/s D. 0.89 rad/s E. 1.1 rad/s

This content is for CheckYourstudy.com Members members only.Kindly register or Login to see content or contact +1 909 666-5988. Log InRegister