The interest rates are currently 2% at most banks in Australia (ANZ, 2015). Deposit money into bank and collect interest is the safest way to invest the excess money. However, the return is not high though the risk is small. Property investment is considered as high risk investment (Pickering, 2015). Recent years have witnessed its booming in return and average return is 9.8% over Australia (Yardney, 2014). Share market is also known as a risky area. As stated by Reeves (2014), there are too many factors that could influence the market’s performance such as global wage stagnation, optimism turning over, Euro-zone deflation and so on. Compared with these three market, the portfolio in this question provided a good return with tolerable risks. The return is average 8% while the risk is 1.02% which is considered as low compared to high risk markets. The coefficient of variation is also very low which shows that the portfolio is considered as a low risk investment while considered its returns. Therefore, this portfolio is worth investment. The yield to maturity rate should be less than 12% because the bond has a value more than its par value. We know the bond present value is derived by discounting the future cash flow that generated by the bond to its present value. So if the yield to maturity rate has a lower value, the bond will have a higher present value. If we take 12% as the yield to maturity we will find the bond value should equal to its par value Based on the formulae, we can calculate the bond value if we know the interest, par value and the yield to maturity. As the question indicated, the required return is 14% and it is paid semi-annually, so the yield to maturity for half year is 7%. The interest rate for the bond is 6% and is also paid semi-annually. So the half year interest should be 3% of par value. The period of the bond should be 8 as it is paid semi-annually. Therefore, the bond value should be 3 X 5.9713 + 100 X 0.5820 = 76.1 The bond value should be \$76.1 This is a discount bond as its value is lower than its par value. The reason that it becomes a discount bond is it provides a lower interest than the market can give. In a similar risk bonds market, the interest rate is 14% while this bond can only provide 6%. So, the bond is trading at a discount price. The free cash flow growth rate is zero. Then, we take assumption that the free cash flow will be constant in the future since 2016.

## The interest rates are currently 2% at most banks in Australia (ANZ, 2015). Deposit money into bank and collect interest is the safest way to invest the excess money. However, the return is not high though the risk is small. Property investment is considered as high risk investment (Pickering, 2015). Recent years have witnessed its booming in return and average return is 9.8% over Australia (Yardney, 2014). Share market is also known as a risky area. As stated by Reeves (2014), there are too many factors that could influence the market’s performance such as global wage stagnation, optimism turning over, Euro-zone deflation and so on. Compared with these three market, the portfolio in this question provided a good return with tolerable risks. The return is average 8% while the risk is 1.02% which is considered as low compared to high risk markets. The coefficient of variation is also very low which shows that the portfolio is considered as a low risk investment while considered its returns. Therefore, this portfolio is worth investment. The yield to maturity rate should be less than 12% because the bond has a value more than its par value. We know the bond present value is derived by discounting the future cash flow that generated by the bond to its present value. So if the yield to maturity rate has a lower value, the bond will have a higher present value. If we take 12% as the yield to maturity we will find the bond value should equal to its par value Based on the formulae, we can calculate the bond value if we know the interest, par value and the yield to maturity. As the question indicated, the required return is 14% and it is paid semi-annually, so the yield to maturity for half year is 7%. The interest rate for the bond is 6% and is also paid semi-annually. So the half year interest should be 3% of par value. The period of the bond should be 8 as it is paid semi-annually. Therefore, the bond value should be 3 X 5.9713 + 100 X 0.5820 = 76.1 The bond value should be \$76.1 This is a discount bond as its value is lower than its par value. The reason that it becomes a discount bond is it provides a lower interest than the market can give. In a similar risk bonds market, the interest rate is 14% while this bond can only provide 6%. So, the bond is trading at a discount price. The free cash flow growth rate is zero. Then, we take assumption that the free cash flow will be constant in the future since 2016.

No expert has answered this question yet. You can browse … Read More...
Individual case study Due date: 1:00pm AEST, Thursday, Week 11 All students are to submit electronically – max file size is 2Mb. ASSESSMENT Weighting: 35% Length: No set length 2 I…Assignment 2 SPECIFICATIONS CIS8011_Digital Innovation Assignment 2 (30%) (1500 words maximum) This assignment continues from the first assignment and your task is to write a report on the following a…1 CSE2DES/CSE5DES – Assignment 1 Due Date: 10 am Monday 22nd September 2014 Assessment: This assignment 1 is worth 15% of the final mark for CSE2DES/CSE5DES. This is an individual assignment. Copying,…All questions are from the textbook: Fatseas, Victor & Williams, John, Cost Management (2013) 3rd edition, McGraw HillMLC 703: PRINCIPLES OF INCOME TAX LAW INSTRUCTIONS Please note that the following will not form part of the word count: ? References, including statute and cases; ? Diagrams; ? Tables; ? Calculations….WRITTEN ESSAY Outline This assessment has been written to develop your understanding of Human Resource Management, assessing learning outcomes a, b, c, h and i: “The external environmental (e.g. econo…Subject: INTERNATIONAL MARKETING B01ITMK208 Assessment item 2: International Marketing Analysis Weighting: 30% Due: Week 10. A daily penalty of 5% will be applied to late assignments. Task: You are a …B01ITMK208 INTERNATIONAL MANAGEMENT ASSIGNMENT INSTRUCTIONS KEY INFORMATION Maximum Length: 2500 words Due: Week 8. Note that late submission will attract a penalty. Weighting: 30% Instructions: Read …Subject: Advertising Management BO1ADMG207 Assessment item 2: IMC Report Weighting: 30% Due: Week 8. A daily penalty of 5% will be applied to late assignments. Task: You are the Australian-based Marke…Attached are two Memos, please have a lookgetEconomics topic Assignment 2 Value: 40% Due date: 01-Sep-2014 Return date: 22-Sep-2014 Length: about 1500-2000 words each Submission method options Alternative submission method Task Analytical essays…Accounting for Business Decisions –HI5001 Trimester 2 2014 The assignment allows students to exhibit their knowledge and understanding of the subject matter of Accounting. The students will use the sk…HOLMES INSTITUTE FACULTY OF HIGHER EDUCATION HI6007 SPSS Assignment 02 Due Friday 4pm week 11 WORTH 30% The data set you need to do the assignment can be found on Blackboard in the folder “Assignments…Assignmnet of Economic Assignment (Written report): 25% 1. Organize yourselves into groups. Each group is to have Four or Five members. 2. Groups need to choose a topic from the list of topics provide…2. Rio Tinto Annual Report Financial Analysis [10 marks] Consider the sources below and answer the following questions. Source 1: Rio Tinto Annual Report 2012 (see report uploaded on the portal) Sourc…Quantitative Methods for Business Business Statistics Assignment – Semester, 2 2014 Total Marks: 60, Worth: 20% of final assessment This assignment requires a considerable amount of computer work and …BUACC 2613 Management Accounting 1 Semester 2, 2014 Assignment Contribution to overall assessment: 25% Due date: 26/09/2014 • This assignment has two parts: o Part 1

## Individual case study Due date: 1:00pm AEST, Thursday, Week 11 All students are to submit electronically – max file size is 2Mb. ASSESSMENT Weighting: 35% Length: No set length 2 I…Assignment 2 SPECIFICATIONS CIS8011_Digital Innovation Assignment 2 (30%) (1500 words maximum) This assignment continues from the first assignment and your task is to write a report on the following a…1 CSE2DES/CSE5DES – Assignment 1 Due Date: 10 am Monday 22nd September 2014 Assessment: This assignment 1 is worth 15% of the final mark for CSE2DES/CSE5DES. This is an individual assignment. Copying,…All questions are from the textbook: Fatseas, Victor & Williams, John, Cost Management (2013) 3rd edition, McGraw HillMLC 703: PRINCIPLES OF INCOME TAX LAW INSTRUCTIONS Please note that the following will not form part of the word count: ? References, including statute and cases; ? Diagrams; ? Tables; ? Calculations….WRITTEN ESSAY Outline This assessment has been written to develop your understanding of Human Resource Management, assessing learning outcomes a, b, c, h and i: “The external environmental (e.g. econo…Subject: INTERNATIONAL MARKETING B01ITMK208 Assessment item 2: International Marketing Analysis Weighting: 30% Due: Week 10. A daily penalty of 5% will be applied to late assignments. Task: You are a …B01ITMK208 INTERNATIONAL MANAGEMENT ASSIGNMENT INSTRUCTIONS KEY INFORMATION Maximum Length: 2500 words Due: Week 8. Note that late submission will attract a penalty. Weighting: 30% Instructions: Read …Subject: Advertising Management BO1ADMG207 Assessment item 2: IMC Report Weighting: 30% Due: Week 8. A daily penalty of 5% will be applied to late assignments. Task: You are the Australian-based Marke…Attached are two Memos, please have a lookgetEconomics topic Assignment 2 Value: 40% Due date: 01-Sep-2014 Return date: 22-Sep-2014 Length: about 1500-2000 words each Submission method options Alternative submission method Task Analytical essays…Accounting for Business Decisions –HI5001 Trimester 2 2014 The assignment allows students to exhibit their knowledge and understanding of the subject matter of Accounting. The students will use the sk…HOLMES INSTITUTE FACULTY OF HIGHER EDUCATION HI6007 SPSS Assignment 02 Due Friday 4pm week 11 WORTH 30% The data set you need to do the assignment can be found on Blackboard in the folder “Assignments…Assignmnet of Economic Assignment (Written report): 25% 1. Organize yourselves into groups. Each group is to have Four or Five members. 2. Groups need to choose a topic from the list of topics provide…2. Rio Tinto Annual Report Financial Analysis [10 marks] Consider the sources below and answer the following questions. Source 1: Rio Tinto Annual Report 2012 (see report uploaded on the portal) Sourc…Quantitative Methods for Business Business Statistics Assignment – Semester, 2 2014 Total Marks: 60, Worth: 20% of final assessment This assignment requires a considerable amount of computer work and …BUACC 2613 Management Accounting 1 Semester 2, 2014 Assignment Contribution to overall assessment: 25% Due date: 26/09/2014 • This assignment has two parts: o Part 1

info@checkyourstudy.com
A sample of 2 H gas (12.28 g) occupies 100.0 L at 400.0 K and 2.00 atm. A sample weighing 9.49 g occupies __________ L at 353 K and 2.00 atm. A) 109 B) 54.7 C) 147 D) 68.2 E) 77.3

## A sample of 2 H gas (12.28 g) occupies 100.0 L at 400.0 K and 2.00 atm. A sample weighing 9.49 g occupies __________ L at 353 K and 2.00 atm. A) 109 B) 54.7 C) 147 D) 68.2 E) 77.3

D) 68.2
1. The reaction time of a driver to visual stimulus is normally distributed with a mean of 0.2 seconds and a standard deviation of 0.1 seconds. 1‐1. (2 points) What is the probability that a reaction requires more than 0.5 seconds? 1‐2. (2 points) What is the probability that a reaction requires between 0.4 and 0.5 seconds? 1‐3. (2 points) What is the reaction time that is exceeded 95% of the time? 2. Spherical Uniform Distribution (Google! You do not have to explain why): 2‐1. (2 points) How can we pick a set of random points uniformly distributed on the unit circle x12 + x 2=1? 2‐2. (2 points) How can we pick a set of random points uniformly distributed on the 4‐dimensional unit 2 2 2 2 2 sphere x1 + x2 + x3 + x4 + x5 =1? 3. The random variable X has a binomial distribution with n = 19 and p = 0.4. Determine the following probabilities. (You may use computer. But, you have to show the formula.) 3‐1. (2 points) P(X ≤ 12) 3‐2. (2 points) P(X ≥ 18) 3‐3. (2 points) P(13 ≤ X < 15) 4. (2 points) Show the mean and the variance of the triangular distribution with lower limit a, upper limit b and mode c, where a < b and a ≤ c ≤ b. (You must show why.) 5. (2 points) An electronic office product contains 5000 electronic components. Assume that the probability that each component operates without failure during the useful life of the product is 0.999, and assume that the components fail independently. Approximate the probability that 10 or more of the original 5000 components fail during the useful life of the product. 6. Consider the following system made up of functional components in parallel and series. C2 0.80 C1 0.90 C4 0.95 C3 0.85 6‐1. (2 points) What is the probability that the system operates? 6‐2. (2 points) What is the probability that the system fails due to the components in series? Assume parallel components do not fail. 6‐3. (2 points) What is the probability that the system fails due to the components in parallel? Assume series components do not fail. 6‐4. (2 points) Compute and compare the probabilities that the system fails when the probability that component C1 functions is improved to a value of 0.95 and when the probability that component C2 functions is improved to a value of 0.85. Which improvement increases the system reliability more? 7. (2 points) Suppose that the joint distribution of X and Y has probability density function f(x, y) = 0.25xy for 0 < x < 2 and 0 < y < 2. Compute V(2X + 3Y). (Show all your work.)

## 1. The reaction time of a driver to visual stimulus is normally distributed with a mean of 0.2 seconds and a standard deviation of 0.1 seconds. 1‐1. (2 points) What is the probability that a reaction requires more than 0.5 seconds? 1‐2. (2 points) What is the probability that a reaction requires between 0.4 and 0.5 seconds? 1‐3. (2 points) What is the reaction time that is exceeded 95% of the time? 2. Spherical Uniform Distribution (Google! You do not have to explain why): 2‐1. (2 points) How can we pick a set of random points uniformly distributed on the unit circle x12 + x 2=1? 2‐2. (2 points) How can we pick a set of random points uniformly distributed on the 4‐dimensional unit 2 2 2 2 2 sphere x1 + x2 + x3 + x4 + x5 =1? 3. The random variable X has a binomial distribution with n = 19 and p = 0.4. Determine the following probabilities. (You may use computer. But, you have to show the formula.) 3‐1. (2 points) P(X ≤ 12) 3‐2. (2 points) P(X ≥ 18) 3‐3. (2 points) P(13 ≤ X < 15) 4. (2 points) Show the mean and the variance of the triangular distribution with lower limit a, upper limit b and mode c, where a < b and a ≤ c ≤ b. (You must show why.) 5. (2 points) An electronic office product contains 5000 electronic components. Assume that the probability that each component operates without failure during the useful life of the product is 0.999, and assume that the components fail independently. Approximate the probability that 10 or more of the original 5000 components fail during the useful life of the product. 6. Consider the following system made up of functional components in parallel and series. C2 0.80 C1 0.90 C4 0.95 C3 0.85 6‐1. (2 points) What is the probability that the system operates? 6‐2. (2 points) What is the probability that the system fails due to the components in series? Assume parallel components do not fail. 6‐3. (2 points) What is the probability that the system fails due to the components in parallel? Assume series components do not fail. 6‐4. (2 points) Compute and compare the probabilities that the system fails when the probability that component C1 functions is improved to a value of 0.95 and when the probability that component C2 functions is improved to a value of 0.85. Which improvement increases the system reliability more? 7. (2 points) Suppose that the joint distribution of X and Y has probability density function f(x, y) = 0.25xy for 0 < x < 2 and 0 < y < 2. Compute V(2X + 3Y). (Show all your work.)

info@checkyourstudy.com Whatsapp +919711743277
Ch 2 Questions that might be on the test. If you cannot answer them, check your class notes or the textbook. 1. A mineral is a naturally occurring substance formed through geological processes that has: a) a characteristic chemical composition, b) a highly ordered atomic structure c) specific physical properties d) all of the above 2. There are currently more than ______ known minerals, according to the International Mineralogical Association, a) 40 b) 400 c) 4000 d) 40 000 3. Some minerals, like quartz, mica or feldspar are: a) rare b) common c) valuable d) priceless 4. Rocks from which minerals are mined for economic purposes are referred to as: a) gangue b) tailings c) ores d) granite 5. Electrons, which have a _____ charge, a size which is so small as to be currently unmeasurable, and which are the least massive of the three types of basic particles. a) positive b) negative c) neutral 6. Both protons and neutrons are themselves now thought to be composed of even more elementary particles called: a) quarks b) quakes c) parsons d) megans 7. In processes which change the number of protons in a nucleus, the atom becomes an atom of a different chemical: a) isotope b) compound c) element d) planet 8. Atoms which have either a deficit or a surplus of electrons are called: a) elements b) isotopes c) ions d) molecules 9. In the Bohr model of the atom, electrons can only orbit the nucleus in particular circular orbits with fixed angular momentum and energy, their distances from the nucleus being proportional to their respective energies. They can only make _____ leaps between the fixed energy levels. a) tiny b) quantum c) gradual 10. It is impossible to simultaneously derive precise values for both the position and momentum of a particle for any given point in time; this became known as the ______ principle. a) Bohr b) Einstein c) uncertainty d) quantum 11. The modern model of the atom describes the positions of electrons in an atom in terms of: a) quantum levels b) orbital paths c) probabilities d) GPS 12. Isotopes of an element have nuclei with the same number of protons (the same atomic number) but different numbers of: a) electrons b) neutrons c) ions d) photons 13. In helium-3 (or 3He), how many protons are present? a) 1 b) 2 c) 3 d) 4 14. In helium-3 (or 3He), how many neutrons are present? a) 1 b) 2 c) 3 d) 4 15. The relative abundance of an isotope is strongly correlated with its tendency toward nuclear _____, short-lived nuclides quickly go away, while their long-lived counterparts endure. a) fission b) fusion c) decay d) bombardment 16. The isotopic composition of elements is different on different planets. a) True b) False 17. As a general rule, the fewer electrons in an atom’s valence shell, the ____ reactive it is. Lithium, sodium, and potassium have one electron in their outer shells. a) more b) less 18. Every atom is much more stable, or less reactive, with a ____ valence shell. a) partly full b) completely full 19. A positively-charged ion, which has fewer electrons than protons, is known as a: a) anion b) cation c) fermion d) bation 20. Bonds vary widely in their strength. Generally covalent and ionic bonds are often described as “strong”, whereas ______ bonds are generally considered to be “weak”. a) van der Waals b) Faradays c) van Neumans 21. This bonding involves sharing of electrons in which the positively charged nuclei of two or more atoms simultaneously attract the negatively charged electrons that are being shared a) ionic b) covalent c) van der Waals d) metallic 22. This bond results from electrostatic attraction between atoms: a) ionic b) covalent c) van der Waals d) metallic 23. A sea of delocalized electrons causes this bonding: a) ionic b) covalent c) van der Waals d) metallic 24. The chemical composition of minerals may vary between end members of a mineral system. For example the ______ feldspars comprise a continuous series from sodiumrich albite to calcium-rich anorthite. a) plagioclase b) orthoclase c) alkaline d) acidic 25. Crystal structure is based on ____ internal atomic arrangement. a) irregular b) regular c) random d) curvilinear 26. Pyrite and marcasite are both _______, but their arrangement of atoms differs. a) iron sulfide b) lead sulfide c) copper silfide d) silver sulfide 27. The carbon atoms in ______ are arranged into sheets which can slide easily past each other, while the carbon atoms in diamond form a strong, interlocking three-dimensional network. a) sapphire b) graphite c) aluminum d) carbonate 28. TGCFAOQTCD a) Crystal habit b) Hardness scale c) Luster scale 29. Dull to metallic, submetallic, adamantine, vitreous, pearly, resinous, or silky. a) Crystal habit b) Hardness scale c) Luster scale d) Heft scale 30. The color of the powder a mineral leaves after rubbing it on unglazed porcelain. a) color b) streak c) lustre d) iridescense 31. Describes the way a mineral may split apart along various planes. a) fracture b) streak c) lustre d) cleavage 32. In modern physics, the position of electrons about a nucleus are defined in terms of: a) probabilities b) circles c) ellipses d) chromodomes 33. The symbol H+ suggests a: a) hydrogen atom b) hydrogen isotope c) hydrogen cation d) hydrogen anion 34. The tabulated atomic mass of natural carbon is not exactly 12 because carbon in nature always has multiple ________ present. a) electrons b) isotopes c) quarks d) protons 35. This type of bonding due to delocalized electrons leads to malleability, ductility, and high melting points: a) covalent b) ionic c) van der Waals d) metallic 36. The mineral ___________ is 3 on Mohs Scale whereas the mineral ___________ is 9. a) calcite, corundum b) corundum, calcite c) caliche, calcite d) chalcedony, quartz 37. In hand specimens, geologists identify most minerals based on: a) physical properties b) chemical analyses c) xray diffraction 38. This type of chemical bonding is the weakest but occurs in all substances. a) covalent b) ionic c) metallic d) none of the above 39. Quartz, feldspar, mica, chlorite, kaolin, calcite, epidote, olivine, augite, hornblende, magnetite, hematite, limonite: these minerals are: a) common in rocks b) occasionally found c) rare d) extremely rare 40. Characteristics of a mineral do NOT include: a) naturally occurring b) characteristic chemical formula c) crystalline d) organic e) all of the above 41. The chemical composition of a particular mineral may vary between end members. For example, the common mineral plagioclase feldspar varies from being _______-rich to being _________-rich. a) sodium, calcium b) potassium, sodium c) iron, magnesium d) carbon, oxygen 42. Sharing of electrons typifies the __________ bond whereas electrostatic attraction typifies the _______ bond. a) ionic, covalent b) ionic, triclinic c) covalent, ionic d) triclinic, covalent 43. If number of protons does not equal the number of electrons, the atom is a(n) : a) isotope b) ion c) quark d) simplex e) google 44. Atoms generally consist of: a) electrons b) protons c) neutrons d) all of the above 45. Not counting rare minerals, about how many mineral species are at least occasionally encountered in rocks? a) 20 b) 200 c) 2000 46. Carbon is atomic number 6. Carbon-13 has _______ protons and _______ neutrons. a) thirteen, six b) six, seven c) twelve, twenty-five d) twelve, twelve 47. Which of these particles are not nucleons? a) electrons b) neutrons c) protons 48. A mineral with visibly recognizable crystals is said to have good crystal habit; otherwise the mineral is said to be: a) massive b) granular c) compact d) any of the above 49. In chemical bonding, two atoms become linked by moving or sharing __________. a) neutrons b) protons c) electrons 50. The name of an element is determined by the number of ______ present in the ______ of an atom. a) electrons, nucleus b) neutrons, nucleus c) protons, nucleus d) protons, electron cloud e) neutrons, electron cloud 51. Generally ________ and ____________ bonds are strong whereas the ______________ bond is weak. a) covalent, ionic, van der Waals b) van der Waals, covalent, ionic c) ionic, van der Waals, covalent 52. Which of the following are held together by chemical bonds? a) molecules b) crystals c) diatomic gases 53. An ion with fewer electrons than protons is called an ______ and it carries a _________ electric charge. a) cation, positive b) anion, negative c) cation, negative d) anion, positive 54. Two or more minerals may have the same _________ composition but different _______ structure. These are called polymorphs. a) crystal, chemical b) chemical, crystal 55. Industrial minerals are: a) gem quality b) commercially valuable c) tailings d) worthless 56. All minerals are crystalline. If the crystals are too small to see, they can be detected by: a) x-ray diffraction b) cosmic rays c) sound waves d) odor 57. If two atomes have the same number of protons but different numbers of neutrons, the atoms are _______ of the same _________. a) elements, mineral b) atoms, isotope c) elements, isotope d) isotopes, element 58. Modern physics recognizes that electrons show both particle and ______ behavior. a) wave b) emotional c) thermal d) revolting 59. Sodium and potassium have one ______ electron in their outer shells and are extremely ________. a) valence, stable b) inverted, reactive c) valence, reactive d) contaminated, inactive 60. The luster of _______ would be described as ________. a) glass, vitreous b) diamond, dull c) pyrite, silky d) graphite, resinous 61. The minerals ________ and __________ are polymorphs of carbon. a) diamond, graphite b) calcite, silicate c) bonite, bronzite 62. In the ______ atom based on _______ physics, electrons were restricted to circular orbits of fixed energy levels. a) Bohr , quantum b) Rutherford, classical c) Bohr, classical d) Rutherford, quantum 63. Virtually all elements other than ______ and _______ were formed in stars and supernovae long after the Big Bang. a) hydrogen, helium b) carbon, phosphorus c) carbon, oxygen d) silica, carbon 64. Physicist Werner _________ developed the ___________ principle which means that it is impossible to know exactly the position and momentum of a particle. a) Heisenberg, certainty b) Heisenberg, uncertainty c) Bohr, uncertainty d) Bohr, certainty

## Ch 2 Questions that might be on the test. If you cannot answer them, check your class notes or the textbook. 1. A mineral is a naturally occurring substance formed through geological processes that has: a) a characteristic chemical composition, b) a highly ordered atomic structure c) specific physical properties d) all of the above 2. There are currently more than ______ known minerals, according to the International Mineralogical Association, a) 40 b) 400 c) 4000 d) 40 000 3. Some minerals, like quartz, mica or feldspar are: a) rare b) common c) valuable d) priceless 4. Rocks from which minerals are mined for economic purposes are referred to as: a) gangue b) tailings c) ores d) granite 5. Electrons, which have a _____ charge, a size which is so small as to be currently unmeasurable, and which are the least massive of the three types of basic particles. a) positive b) negative c) neutral 6. Both protons and neutrons are themselves now thought to be composed of even more elementary particles called: a) quarks b) quakes c) parsons d) megans 7. In processes which change the number of protons in a nucleus, the atom becomes an atom of a different chemical: a) isotope b) compound c) element d) planet 8. Atoms which have either a deficit or a surplus of electrons are called: a) elements b) isotopes c) ions d) molecules 9. In the Bohr model of the atom, electrons can only orbit the nucleus in particular circular orbits with fixed angular momentum and energy, their distances from the nucleus being proportional to their respective energies. They can only make _____ leaps between the fixed energy levels. a) tiny b) quantum c) gradual 10. It is impossible to simultaneously derive precise values for both the position and momentum of a particle for any given point in time; this became known as the ______ principle. a) Bohr b) Einstein c) uncertainty d) quantum 11. The modern model of the atom describes the positions of electrons in an atom in terms of: a) quantum levels b) orbital paths c) probabilities d) GPS 12. Isotopes of an element have nuclei with the same number of protons (the same atomic number) but different numbers of: a) electrons b) neutrons c) ions d) photons 13. In helium-3 (or 3He), how many protons are present? a) 1 b) 2 c) 3 d) 4 14. In helium-3 (or 3He), how many neutrons are present? a) 1 b) 2 c) 3 d) 4 15. The relative abundance of an isotope is strongly correlated with its tendency toward nuclear _____, short-lived nuclides quickly go away, while their long-lived counterparts endure. a) fission b) fusion c) decay d) bombardment 16. The isotopic composition of elements is different on different planets. a) True b) False 17. As a general rule, the fewer electrons in an atom’s valence shell, the ____ reactive it is. Lithium, sodium, and potassium have one electron in their outer shells. a) more b) less 18. Every atom is much more stable, or less reactive, with a ____ valence shell. a) partly full b) completely full 19. A positively-charged ion, which has fewer electrons than protons, is known as a: a) anion b) cation c) fermion d) bation 20. Bonds vary widely in their strength. Generally covalent and ionic bonds are often described as “strong”, whereas ______ bonds are generally considered to be “weak”. a) van der Waals b) Faradays c) van Neumans 21. This bonding involves sharing of electrons in which the positively charged nuclei of two or more atoms simultaneously attract the negatively charged electrons that are being shared a) ionic b) covalent c) van der Waals d) metallic 22. This bond results from electrostatic attraction between atoms: a) ionic b) covalent c) van der Waals d) metallic 23. A sea of delocalized electrons causes this bonding: a) ionic b) covalent c) van der Waals d) metallic 24. The chemical composition of minerals may vary between end members of a mineral system. For example the ______ feldspars comprise a continuous series from sodiumrich albite to calcium-rich anorthite. a) plagioclase b) orthoclase c) alkaline d) acidic 25. Crystal structure is based on ____ internal atomic arrangement. a) irregular b) regular c) random d) curvilinear 26. Pyrite and marcasite are both _______, but their arrangement of atoms differs. a) iron sulfide b) lead sulfide c) copper silfide d) silver sulfide 27. The carbon atoms in ______ are arranged into sheets which can slide easily past each other, while the carbon atoms in diamond form a strong, interlocking three-dimensional network. a) sapphire b) graphite c) aluminum d) carbonate 28. TGCFAOQTCD a) Crystal habit b) Hardness scale c) Luster scale 29. Dull to metallic, submetallic, adamantine, vitreous, pearly, resinous, or silky. a) Crystal habit b) Hardness scale c) Luster scale d) Heft scale 30. The color of the powder a mineral leaves after rubbing it on unglazed porcelain. a) color b) streak c) lustre d) iridescense 31. Describes the way a mineral may split apart along various planes. a) fracture b) streak c) lustre d) cleavage 32. In modern physics, the position of electrons about a nucleus are defined in terms of: a) probabilities b) circles c) ellipses d) chromodomes 33. The symbol H+ suggests a: a) hydrogen atom b) hydrogen isotope c) hydrogen cation d) hydrogen anion 34. The tabulated atomic mass of natural carbon is not exactly 12 because carbon in nature always has multiple ________ present. a) electrons b) isotopes c) quarks d) protons 35. This type of bonding due to delocalized electrons leads to malleability, ductility, and high melting points: a) covalent b) ionic c) van der Waals d) metallic 36. The mineral ___________ is 3 on Mohs Scale whereas the mineral ___________ is 9. a) calcite, corundum b) corundum, calcite c) caliche, calcite d) chalcedony, quartz 37. In hand specimens, geologists identify most minerals based on: a) physical properties b) chemical analyses c) xray diffraction 38. This type of chemical bonding is the weakest but occurs in all substances. a) covalent b) ionic c) metallic d) none of the above 39. Quartz, feldspar, mica, chlorite, kaolin, calcite, epidote, olivine, augite, hornblende, magnetite, hematite, limonite: these minerals are: a) common in rocks b) occasionally found c) rare d) extremely rare 40. Characteristics of a mineral do NOT include: a) naturally occurring b) characteristic chemical formula c) crystalline d) organic e) all of the above 41. The chemical composition of a particular mineral may vary between end members. For example, the common mineral plagioclase feldspar varies from being _______-rich to being _________-rich. a) sodium, calcium b) potassium, sodium c) iron, magnesium d) carbon, oxygen 42. Sharing of electrons typifies the __________ bond whereas electrostatic attraction typifies the _______ bond. a) ionic, covalent b) ionic, triclinic c) covalent, ionic d) triclinic, covalent 43. If number of protons does not equal the number of electrons, the atom is a(n) : a) isotope b) ion c) quark d) simplex e) google 44. Atoms generally consist of: a) electrons b) protons c) neutrons d) all of the above 45. Not counting rare minerals, about how many mineral species are at least occasionally encountered in rocks? a) 20 b) 200 c) 2000 46. Carbon is atomic number 6. Carbon-13 has _______ protons and _______ neutrons. a) thirteen, six b) six, seven c) twelve, twenty-five d) twelve, twelve 47. Which of these particles are not nucleons? a) electrons b) neutrons c) protons 48. A mineral with visibly recognizable crystals is said to have good crystal habit; otherwise the mineral is said to be: a) massive b) granular c) compact d) any of the above 49. In chemical bonding, two atoms become linked by moving or sharing __________. a) neutrons b) protons c) electrons 50. The name of an element is determined by the number of ______ present in the ______ of an atom. a) electrons, nucleus b) neutrons, nucleus c) protons, nucleus d) protons, electron cloud e) neutrons, electron cloud 51. Generally ________ and ____________ bonds are strong whereas the ______________ bond is weak. a) covalent, ionic, van der Waals b) van der Waals, covalent, ionic c) ionic, van der Waals, covalent 52. Which of the following are held together by chemical bonds? a) molecules b) crystals c) diatomic gases 53. An ion with fewer electrons than protons is called an ______ and it carries a _________ electric charge. a) cation, positive b) anion, negative c) cation, negative d) anion, positive 54. Two or more minerals may have the same _________ composition but different _______ structure. These are called polymorphs. a) crystal, chemical b) chemical, crystal 55. Industrial minerals are: a) gem quality b) commercially valuable c) tailings d) worthless 56. All minerals are crystalline. If the crystals are too small to see, they can be detected by: a) x-ray diffraction b) cosmic rays c) sound waves d) odor 57. If two atomes have the same number of protons but different numbers of neutrons, the atoms are _______ of the same _________. a) elements, mineral b) atoms, isotope c) elements, isotope d) isotopes, element 58. Modern physics recognizes that electrons show both particle and ______ behavior. a) wave b) emotional c) thermal d) revolting 59. Sodium and potassium have one ______ electron in their outer shells and are extremely ________. a) valence, stable b) inverted, reactive c) valence, reactive d) contaminated, inactive 60. The luster of _______ would be described as ________. a) glass, vitreous b) diamond, dull c) pyrite, silky d) graphite, resinous 61. The minerals ________ and __________ are polymorphs of carbon. a) diamond, graphite b) calcite, silicate c) bonite, bronzite 62. In the ______ atom based on _______ physics, electrons were restricted to circular orbits of fixed energy levels. a) Bohr , quantum b) Rutherford, classical c) Bohr, classical d) Rutherford, quantum 63. Virtually all elements other than ______ and _______ were formed in stars and supernovae long after the Big Bang. a) hydrogen, helium b) carbon, phosphorus c) carbon, oxygen d) silica, carbon 64. Physicist Werner _________ developed the ___________ principle which means that it is impossible to know exactly the position and momentum of a particle. a) Heisenberg, certainty b) Heisenberg, uncertainty c) Bohr, uncertainty d) Bohr, certainty

info@checkyourstudy.com