EGR 140 Scientific Programming Assignment # 7 Spring 2017 Use MATLAB to solve each problem by writing script files; copy and paste the script file AND the results in the Command Window and/or plot in the Figure Window to a WORD document that has your name and section in the headers of each page and the page number in each footer. Edit the output to remove extra lines and empty spaces. The script files SHOULD have comments for easy readability; take a print out of the Word file and staple before submission. Due by 3 PM on April 11, 2017. Write a used-defined function that calculates the average and the standard deviation of a list of numbers. Use the function to calculate the average and the standard deviation of the following list of grades: 80 75 91 60 79 89 65 80 95 50 81 Note: The average x_ave (or mean) of a given set of n number x_1,x_2,…..,x_n is given by: x_ave=(x_1+x_2+x_3+⋯+x_n)/n The standard deviation is given by: σ=√((∑_(i=1)^(i=n)▒(x_i-x_ave )^2 )/(n-1)) DO not use built-in functions to calculate the mean and the standard deviation. Write a user-defined function that arranges the digits of a given (positive) number in a row vector in the same order as they appear in the number; the function should also arrange the digits in the decimal part in a different vector. For example, if the number is 2645.12, the vectors should be [2 6 4 5] and [1 2]. The whole number can be from 0 to 10 digits long and the decimal part 0 to 6. Check the validity of the function using a few numbers of your choice. A fenced enclosure consists of a rectangle of length L and width 2R, and a semicircle of radius R, as shown in Figure. The enclosure is to be built to have an area A of 1600 ft2. The cost of the fence is $40 per foot for the curved portion, and $30 per foot for the straight sides. Determine the values of R and L required to minimize the total cost of the fence and the minimum cost using calculus approach. A water tank consists of a cylindrical part of radius r and height h, and a hemispherical top. The tank is to be constructed to hold 500 meter3 of fluid when filled. The cost to construct the cylindrical part of the tank is $300 per square meter of the surface area; the hemispherical part costs $400 per square meter. Determine the radius that results in the least cost and compute the corresponding height and the cost using graphical approach. Verify your results using the calculus approach. A ceramic tile has the design shown in the figure. The shaded area is painted black and the rest of the tile is white. The border line between the red and the white areas follows the equation: y=Asin(x) Determine A such that the area of the white and black colors will be the same.

EGR 140 Scientific Programming Assignment # 7 Spring 2017 Use MATLAB to solve each problem by writing script files; copy and paste the script file AND the results in the Command Window and/or plot in the Figure Window to a WORD document that has your name and section in the headers of each page and the page number in each footer. Edit the output to remove extra lines and empty spaces. The script files SHOULD have comments for easy readability; take a print out of the Word file and staple before submission. Due by 3 PM on April 11, 2017. Write a used-defined function that calculates the average and the standard deviation of a list of numbers. Use the function to calculate the average and the standard deviation of the following list of grades: 80 75 91 60 79 89 65 80 95 50 81 Note: The average x_ave (or mean) of a given set of n number x_1,x_2,…..,x_n is given by: x_ave=(x_1+x_2+x_3+⋯+x_n)/n The standard deviation is given by: σ=√((∑_(i=1)^(i=n)▒(x_i-x_ave )^2 )/(n-1)) DO not use built-in functions to calculate the mean and the standard deviation. Write a user-defined function that arranges the digits of a given (positive) number in a row vector in the same order as they appear in the number; the function should also arrange the digits in the decimal part in a different vector. For example, if the number is 2645.12, the vectors should be [2 6 4 5] and [1 2]. The whole number can be from 0 to 10 digits long and the decimal part 0 to 6. Check the validity of the function using a few numbers of your choice. A fenced enclosure consists of a rectangle of length L and width 2R, and a semicircle of radius R, as shown in Figure. The enclosure is to be built to have an area A of 1600 ft2. The cost of the fence is $40 per foot for the curved portion, and $30 per foot for the straight sides. Determine the values of R and L required to minimize the total cost of the fence and the minimum cost using calculus approach. A water tank consists of a cylindrical part of radius r and height h, and a hemispherical top. The tank is to be constructed to hold 500 meter3 of fluid when filled. The cost to construct the cylindrical part of the tank is $300 per square meter of the surface area; the hemispherical part costs $400 per square meter. Determine the radius that results in the least cost and compute the corresponding height and the cost using graphical approach. Verify your results using the calculus approach. A ceramic tile has the design shown in the figure. The shaded area is painted black and the rest of the tile is white. The border line between the red and the white areas follows the equation: y=Asin(x) Determine A such that the area of the white and black colors will be the same.

checkyourstudy.com Whatsapp +919891515290
For this assignment, you will compose a letter designed to recruit students to join and support the agenda of one of three nonexistent student organizations that, were they to exist, would likely be very unpopular. The student organization for which you will be recruiting is determined by your last name: The first letter of your last name is… Your student organization assignment is… A – F The SETS Collective: SETS (Skip the Elevator, Take the Stairs) is dedicated to energy conservation on campus, particularly by eliminating elevator usage by pedestrians in any buildings on the UT-Austin campus. G – N O – Z Your recruiting letter must include eight (8) different persuasive strategies. Each strategy must be used in the service of encouraging students to join the organization and/or endorse its cause. In addition to your recruiting letter, you will also submit a commentary describing the different strategies you used in the recruiting letter. In this course, we utilize the TurnItIn tool. This service helps educators prevent plagiarism by detecting unoriginal content in student papers. In addition to acting as a plagiarism deterrent, it also has features designed to aid in educating students about plagiarism and importance of proper attribution of any borrowed content. For more information, please visit http://turnitin.com/. Below are a series of requirements for the paper assignment. Failure to satisfy these requirements will result in substantial point penalties. Also, failure to abide by the academic honesty policy described in the syllabus and maintained by the CMS department, the Moody College of Communication, and/or The University of Texas will result in a grade of F on the assignment and referral to the Dean of Students. Assignment Requirements • You must portray yourself as a recruiting officer (or Secretary of Recruitment) – not the President, VP, etc. – of the organization described in your letter. As a recruiting officer, you are not authorized to offer any rewards or bribes (gifts in the form of sports tickets, free meals, etc.) to people as an incentive to join the organization, nor are you allowed to make up fictional incentives (e.g., OBC students will enjoy an opportunity to participate in international conferences). Your letter should focus exclusively on the merits of joining the organization based on commitment to its cause. • Assume that organization has just been formed – i.e., do not portray it as having existed prior to the Spring of 2017. • You may also assume that there are currently only three members of the organization, the president, vice-president, and yourself (the Secretary of Recruitment). You CANNOT claim that there are “many members.” • You must use the following format for the recruiting letter AND the commentary: 12-point Times New Roman font, single-spaced (NOT double-spaced) on 8.5 X 11-inch white paper with 1-inch margins on all sides. • The recruiting letter must be no shorter than 2 nor longer than 3 pages; the commentary must be no longer than 2 pages. • Your recruiting letter must include only 8 (eight) DIFFERENT strategies discussed in the lectures and/or readings. You may use any principle/theory we have discussed EXCEPT for balance theory (which is too obvious) or deception (which isn’t persuasion per se). • Your commentary must identify the name OR what you did for of each strategy (e.g., Door In Face or Foot In The Door) used in your letter and describe the specific purpose(s) the strategy was used to achieve. At a minimum, your description of each strategy should consist of at least two complete sentences (16 sentences total). • Each strategy explanation in your commentary should be bulleted or numbered for easy identification • You may not lie under any circumstances. Lies include falsifications and/or distortions of the truth about the student organization (e.g., SURF is endorsed by the Fellowship of Christian Athletes). Also, you may not offer recruits bribes in any form (tickets, discounts, free food, cash, etc.) as an incentive for joining the organization. • Your completed assignment (recruiting letter + commentary) must be turned in on April 13th (a Thursday) at or before 9:30 a.m. Grading Rubric We will use the following rubric to evaluate and grade your letter + commentary. Assignment Component Possible Points Obtained Points Format, Spelling, Grammar, Coherence Are the letter and commentary written in the proper format? Do they consist of grammatical, coherent English sentences? Has the assignment been spell-checked? 4 Strategy 1 Example/Commentary Is the example an acceptable instance of the strategy? Is it different from the other strategies used? Is the strategy correctly identified and adequately explained in the commentary? 2 Strategy 2 Example/Commentary 2 Strategy 3 Example/Commentary 2 Strategy 4 Example/Commentary 2 Strategy 5 Example/Commentary 2 Strategy 6 Example/ Commentary 2 Strategy 7 Example/ Commentary 2 Strategy 8 Example/ Commentary 2 Lies/Deception/Bribes (-3 pts per instance) -3 (per instance) Total Score 20 Cannot use strategy of Balance Theory, Lie Write a persuasive essay and a commentary Commentary is about 8 strategies in letter • 8 bullets separate from the letter “foot-in-the-door” – “door-in-the-face” (rejection then retreat) o 1. Make a large (but reasonable) request to target  World you lend me $50? o 2. After request is rejected, make a smaller request  Well then, could you lend me $10? o Creating a “big” favor out of thin air! “low-balling” • An advantage is offered that induces a favorable purchase decision. Then, sometime after the decision has been made, but before the bargain is sealed, the original purchase buyer is deftly removed. 1.) Loss framing: Loss aversion 2.) Restriction: scarcity 3.) Positive self-feeling: Principle commitment 4.) Identification: Social Proof 5.) “Using Rhymes” is what you would write instead of Stroop effect: Fluency 6.) Virtual ownership: Endowment effect 7.) That’s not all: reciprocity 8.) Flattery: Likability 9.) Expertise strategy: Authority principle 10.) Inducing dissonance reduction: Norm of consistency 11.) Conformity concession: social proof 12.) Association similarity: Liking & Association principle Strategies – Use 8 (Cannot use Balance Theory or deception) Strategy Principle Sources/Notes Door in the Face Reciprocity 9/16 lecture Foot in the Door Consistency Norm 9/30 lecture That’s not all Reciprocity 9/16 lecture Flattery Likability Could someone give an example for Flattery?! I’m a little stuck… “Providing a statistic” Social Proof? why is this yellow? What principle is this? How did you use this as a strategy?? plz help AUTHORITY it depends how you use it ID-ing yourself as a student Likability <in cialdini chapter 5 they are talked about as 2 different things, so if you can argue it your way,Cialdini can support it what is the strategy for this? Perceptual Contrast What is this for? Low-Balling Might be considered lying. Soft-Sell Humor appeal did anyone use this?? Anyone??? What principle is this? Hard-sell ???????? Seek-and-Hide Fear Appeal ???? What principle does this fall under???? Pump and Dump social proof 10/9 lecture Bait-and-switch this kind of seems like deception, can we use it? Moral Appeal Commitment Rebecca’s Lecture 10/2 Voluntary instead of Mandatory Consistency Norm 9/30 lecture herd mentality social proof 10/14 lecture Loss framing Loss Aversion Endowment Effect this is a principle FYI Mere ownership Scarcity Dissonance Reduction Positive/negative self feelings Commitment to gain compliance Rebecca’s Lecture Principles Name STRATEGIES/Ideas Source/Notes Reciprocity That’s not all! Likability/Association Flattery, agreeing with said person, state similar social standings, “work with” them, show evidence of “good things” likeability/association ppt Consistency/Commitment Foot in the door, positive self-feelings, moral appeal, Social Proof/Conformity norm works when someone is uncertain about the right thing to do, and when the person they are watching is similar to them. Provide target with “evidence” that compliance is a common/frequent response among desired social group “we made other people happy, we’ll make you happy too” Priming the pump (tip jar example) Pump and dump (Scam, could be considered deception) Conformity and social proff ppt Authority Wearing a uniform, Titles, books, diplomas, awards, success, using a spokesperson, Scarcity/Supply and demand “Only a certain number of students allowed in” “only for college students” “Exclusive except to X” “Only a certain number of seats” Scarcity ppt Psychological Reactance Restricting access, censoring something, implying scarcity, Scarcity ppt Attractiveness Similarity Mentioning you are a student Perceptual Contrast Loss aversion gain or loss framing Scarcity ppt Balance Theory We aren’t allowed to use this Judgement Heuristic Price = product quality Use of long unfamilar words = intelligence fluency = trustworthinesss Fluency ppt Availability Heuristic Can you think of one example (out of ten) (for us) vs Can you think of then for the competitor - here’s our ten. Fluency ppt

For this assignment, you will compose a letter designed to recruit students to join and support the agenda of one of three nonexistent student organizations that, were they to exist, would likely be very unpopular. The student organization for which you will be recruiting is determined by your last name: The first letter of your last name is… Your student organization assignment is… A – F The SETS Collective: SETS (Skip the Elevator, Take the Stairs) is dedicated to energy conservation on campus, particularly by eliminating elevator usage by pedestrians in any buildings on the UT-Austin campus. G – N O – Z Your recruiting letter must include eight (8) different persuasive strategies. Each strategy must be used in the service of encouraging students to join the organization and/or endorse its cause. In addition to your recruiting letter, you will also submit a commentary describing the different strategies you used in the recruiting letter. In this course, we utilize the TurnItIn tool. This service helps educators prevent plagiarism by detecting unoriginal content in student papers. In addition to acting as a plagiarism deterrent, it also has features designed to aid in educating students about plagiarism and importance of proper attribution of any borrowed content. For more information, please visit http://turnitin.com/. Below are a series of requirements for the paper assignment. Failure to satisfy these requirements will result in substantial point penalties. Also, failure to abide by the academic honesty policy described in the syllabus and maintained by the CMS department, the Moody College of Communication, and/or The University of Texas will result in a grade of F on the assignment and referral to the Dean of Students. Assignment Requirements • You must portray yourself as a recruiting officer (or Secretary of Recruitment) – not the President, VP, etc. – of the organization described in your letter. As a recruiting officer, you are not authorized to offer any rewards or bribes (gifts in the form of sports tickets, free meals, etc.) to people as an incentive to join the organization, nor are you allowed to make up fictional incentives (e.g., OBC students will enjoy an opportunity to participate in international conferences). Your letter should focus exclusively on the merits of joining the organization based on commitment to its cause. • Assume that organization has just been formed – i.e., do not portray it as having existed prior to the Spring of 2017. • You may also assume that there are currently only three members of the organization, the president, vice-president, and yourself (the Secretary of Recruitment). You CANNOT claim that there are “many members.” • You must use the following format for the recruiting letter AND the commentary: 12-point Times New Roman font, single-spaced (NOT double-spaced) on 8.5 X 11-inch white paper with 1-inch margins on all sides. • The recruiting letter must be no shorter than 2 nor longer than 3 pages; the commentary must be no longer than 2 pages. • Your recruiting letter must include only 8 (eight) DIFFERENT strategies discussed in the lectures and/or readings. You may use any principle/theory we have discussed EXCEPT for balance theory (which is too obvious) or deception (which isn’t persuasion per se). • Your commentary must identify the name OR what you did for of each strategy (e.g., Door In Face or Foot In The Door) used in your letter and describe the specific purpose(s) the strategy was used to achieve. At a minimum, your description of each strategy should consist of at least two complete sentences (16 sentences total). • Each strategy explanation in your commentary should be bulleted or numbered for easy identification • You may not lie under any circumstances. Lies include falsifications and/or distortions of the truth about the student organization (e.g., SURF is endorsed by the Fellowship of Christian Athletes). Also, you may not offer recruits bribes in any form (tickets, discounts, free food, cash, etc.) as an incentive for joining the organization. • Your completed assignment (recruiting letter + commentary) must be turned in on April 13th (a Thursday) at or before 9:30 a.m. Grading Rubric We will use the following rubric to evaluate and grade your letter + commentary. Assignment Component Possible Points Obtained Points Format, Spelling, Grammar, Coherence Are the letter and commentary written in the proper format? Do they consist of grammatical, coherent English sentences? Has the assignment been spell-checked? 4 Strategy 1 Example/Commentary Is the example an acceptable instance of the strategy? Is it different from the other strategies used? Is the strategy correctly identified and adequately explained in the commentary? 2 Strategy 2 Example/Commentary 2 Strategy 3 Example/Commentary 2 Strategy 4 Example/Commentary 2 Strategy 5 Example/Commentary 2 Strategy 6 Example/ Commentary 2 Strategy 7 Example/ Commentary 2 Strategy 8 Example/ Commentary 2 Lies/Deception/Bribes (-3 pts per instance) -3 (per instance) Total Score 20 Cannot use strategy of Balance Theory, Lie Write a persuasive essay and a commentary Commentary is about 8 strategies in letter • 8 bullets separate from the letter “foot-in-the-door” – “door-in-the-face” (rejection then retreat) o 1. Make a large (but reasonable) request to target  World you lend me $50? o 2. After request is rejected, make a smaller request  Well then, could you lend me $10? o Creating a “big” favor out of thin air! “low-balling” • An advantage is offered that induces a favorable purchase decision. Then, sometime after the decision has been made, but before the bargain is sealed, the original purchase buyer is deftly removed. 1.) Loss framing: Loss aversion 2.) Restriction: scarcity 3.) Positive self-feeling: Principle commitment 4.) Identification: Social Proof 5.) “Using Rhymes” is what you would write instead of Stroop effect: Fluency 6.) Virtual ownership: Endowment effect 7.) That’s not all: reciprocity 8.) Flattery: Likability 9.) Expertise strategy: Authority principle 10.) Inducing dissonance reduction: Norm of consistency 11.) Conformity concession: social proof 12.) Association similarity: Liking & Association principle Strategies – Use 8 (Cannot use Balance Theory or deception) Strategy Principle Sources/Notes Door in the Face Reciprocity 9/16 lecture Foot in the Door Consistency Norm 9/30 lecture That’s not all Reciprocity 9/16 lecture Flattery Likability Could someone give an example for Flattery?! I’m a little stuck… “Providing a statistic” Social Proof? why is this yellow? What principle is this? How did you use this as a strategy?? plz help AUTHORITY it depends how you use it ID-ing yourself as a student Likability

checkyourstudy.com Whatsapp +919911743277
For All the Tea in China Answer these questions in clear English prose and turn in on Friday April 14, 2017. Make sure that you give answers that show that you have read the book. As usual, I would suggest that you see the tutor or that you go to the writing center before you turn in your work. 1. Did you read the book, and what was your view of it? [5 points] 2. Describe the problems in getting the plants from China and India, and the solution that made for the arrival of live plants. [ 10 points] 3. What plant produces opium, who sold it to the Chinese and how did opium usage affect the Chinese empire? [15 points] 4. Write a biography of Robert Fortune, include his career, Chinese experience and role for the British East India company ( about 2 pages) [20 points] 5. What did you learn about China and its culture during this period? [20 points] 6. What was the importance of tea to the English economy, society and technology and globalization . [20 points]

For All the Tea in China Answer these questions in clear English prose and turn in on Friday April 14, 2017. Make sure that you give answers that show that you have read the book. As usual, I would suggest that you see the tutor or that you go to the writing center before you turn in your work. 1. Did you read the book, and what was your view of it? [5 points] 2. Describe the problems in getting the plants from China and India, and the solution that made for the arrival of live plants. [ 10 points] 3. What plant produces opium, who sold it to the Chinese and how did opium usage affect the Chinese empire? [15 points] 4. Write a biography of Robert Fortune, include his career, Chinese experience and role for the British East India company ( about 2 pages) [20 points] 5. What did you learn about China and its culture during this period? [20 points] 6. What was the importance of tea to the English economy, society and technology and globalization . [20 points]

checkyourstudy.com Whatsapp +919911743277
1 IN2009: Language Processors Coursework Part 3: The Interpreter Introduction This is the 3rd and final part of the coursework. In the second part of the coursework you created a parser for the Moopl grammar which, given a syntactically correct Moopl program as input, builds an AST representation of the program. In Part 3 you will develop an interpreter which executes Moopl programs by visiting their AST representations. For this part of the coursework we provide functional code (with limitations, see below) for parsing, building a symbol table, type checking and variable allocation. Marks This part of the coursework is worth 12 of the 30 coursework marks for the Language Processors module. This part of the coursework is marked out of 12. Submission deadline This part of the coursework should be handed in before 5pm on Sunday 9th April 2017. In line with school policy, late submissions will be awarded no marks. Return & Feedback Marks and feedback will be available as soon as possible, certainly on or before Wed 3rd May 2017. Plagiarism If you copy the work of others (either that of fellow students or of a third party), with or without their permission, you will score no marks and further disciplinary action will be taken against you. Group working You will be working in the same groups as for the previous parts of the coursework except where group changes have already been approved. Submission: Submit a zip archive (not a rar file) of all your source code (the src folder of your project). We do not want the other parts of your NetBeans project, only the source code. Note 1: Submissions which do not compile will get zero marks. Note 2: You must not change the names or types of any of the existing packages, classes or public methods. 2 Getting started Download either moopl-interp.zip or moopl-interp.tgz from Moodle and extract all files. Key contents to be aware of: • A fully implemented Moopl parser (also implements a parser for the interpreter command language; see below). • A partially implemented Moopl type checker. • Test harnesses for the type checker and interpreter. • A directory of a few example Moopl programs (see Testing below). • Folder interp containing prototype interpreter code. The type-checker is only partially implemented but a more complete implementation will be provided following Session 6. That version is still not fully complete because it doesn’t support inheritance. Part d) below asks you to remove this restriction. The VarAllocator visitor in the interp package uses a simple implementation which only works for methods in which all parameter and local variable names are different. Part e) below asks you to remove this restriction. The three parts below should be attempted in sequence. When you have completed one part you should make a back-up copy of the work and keep it safe, in case you break it in your attempt at the next part. Be sure to test old functionality as well as new (regression testing). We will not assess multiple versions so, if your attempt at part d) or e) breaks previously working code, you may gain a better mark by submitting the earlier version for assessment. c) [8 marks] The Basic Interpreter: complete the implementation of the Interpreter visitor in the interp package. d) [2 marks] Inheritance: extend the type-checker, variable allocator and interpreter to support inheritance. e) [2 marks] Variable Allocation: extend the variable allocator to fully support blockstructure and lexical scoping, removing the requirement that all parameter and local variable names are different. Aim to minimise the number of local variable slots allocated in a stack frame. Note: variable and parameter names declared at the same scope level are still required to be different from each other (a method cannot have two different parameters called x, for example) and this is enforced by the existing typechecking code. But variables declared in different blocks (even when nested) can have the same name. Exceptions Your interpreter will only ever be run on Moopl code which is type-correct (and free from uninitialised local variables). But it is still possible that the Moopl code contains logical errors which may cause runtime errors (such as null-reference or array-bound errors). Your interpreter should throw a MooplRunTimeException with an appropriate error message in these cases. The only kind of exception your interpreter should ever throw is a MooplRunTimeException. 3 Testing The examples folder does not contain a comprehensive test-suite. You need to invent and run your own tests. The document Moopl compared with Java gives a concise summary of how Moopl programs are supposed to behave. You can (and should) also compare the behaviour of your interpreter with that of the online tool: https://smcse.city.ac.uk/student/sj353/langproc/Moopl.html (Note: the online tool checks for uninitialised local variables. Your implementation is not expected to do this.) To test your work, run the top-level Interpret harness, providing the name of a Moopl source file as a command-line argument. When run on a type-correct Moopl source file, Interpret will pretty-print the Moopl program then display a command prompt (>) at which you can enter one of the following commands: :quit This will quit the interpreter. :call main() This will call the top-level proc main, interpreted in the context defined by the Moopl program. (Any top-level proc can be called this way). :eval Exp ; This will evaluate expression Exp, interpreted in the context defined by the Moopl program, and print the result. Note the required terminating semi-colon. Testing your Expression visitors To unit-test your Exp visit methods, run the top-level Interpret harness on a complete Moopl program (though it can be trivial) and use the :eval command. For example, to test your visit methods for the Boolean-literals (ExpTrue and ExpFalse), you would enter the commands > :eval true ; > :eval false ; which should output 1 and 0, respectively. For the most basic cases, the Moopl program is essentially irrelevant (a single top-level proc with empty body may be sufficient). For other cases you will need to write programs containing class definitions (in order, for example, to test object creation and method call). Testing your Statement visitors To unit-test your Stm visit methods, write very simple Moopl programs, each with a top-level proc main() containing just a few lines of code. Run the top-level Interpret harness on these simple programs and enter the command > :call main() You will find a few examples to get you started in the folder examples/unittests. As for the Exp tests, simple cases can be tested using Moopl programs with just a main proc but for the more complex tests you will need to write Moopl programs containing class definitions. 4 Grading criteria Solutions will be graded according to their functional correctness, and the elegance of their implementation. Below are criteria that guide the award of marks. 70 – 100 [1st class] Work that meets all the requirements in full, constructed and presented to a professional standard. Showing evidence of independent reading, thinking and analysis. 60 – 69 [2:1] Work that makes a good attempt to address the requirements, realising all to some extent and most well. Well-structured and well presented. 50 – 59 [2:2] Work that attempts to address requirements realising all to some extent and some well but perhaps also including irrelevant or underdeveloped material. Structure and presentation may not always be clear. 40 – 49 [3rd class] Work that attempts to address the requirements but only realises them to some extent and may not include important elements or be completely accurate. Structure and presentation may lack clarity. 0 – 39 [fail] Unsatisfactory work that does not adequately address the requirements. Structure and presentation may be confused or incoherent.

1 IN2009: Language Processors Coursework Part 3: The Interpreter Introduction This is the 3rd and final part of the coursework. In the second part of the coursework you created a parser for the Moopl grammar which, given a syntactically correct Moopl program as input, builds an AST representation of the program. In Part 3 you will develop an interpreter which executes Moopl programs by visiting their AST representations. For this part of the coursework we provide functional code (with limitations, see below) for parsing, building a symbol table, type checking and variable allocation. Marks This part of the coursework is worth 12 of the 30 coursework marks for the Language Processors module. This part of the coursework is marked out of 12. Submission deadline This part of the coursework should be handed in before 5pm on Sunday 9th April 2017. In line with school policy, late submissions will be awarded no marks. Return & Feedback Marks and feedback will be available as soon as possible, certainly on or before Wed 3rd May 2017. Plagiarism If you copy the work of others (either that of fellow students or of a third party), with or without their permission, you will score no marks and further disciplinary action will be taken against you. Group working You will be working in the same groups as for the previous parts of the coursework except where group changes have already been approved. Submission: Submit a zip archive (not a rar file) of all your source code (the src folder of your project). We do not want the other parts of your NetBeans project, only the source code. Note 1: Submissions which do not compile will get zero marks. Note 2: You must not change the names or types of any of the existing packages, classes or public methods. 2 Getting started Download either moopl-interp.zip or moopl-interp.tgz from Moodle and extract all files. Key contents to be aware of: • A fully implemented Moopl parser (also implements a parser for the interpreter command language; see below). • A partially implemented Moopl type checker. • Test harnesses for the type checker and interpreter. • A directory of a few example Moopl programs (see Testing below). • Folder interp containing prototype interpreter code. The type-checker is only partially implemented but a more complete implementation will be provided following Session 6. That version is still not fully complete because it doesn’t support inheritance. Part d) below asks you to remove this restriction. The VarAllocator visitor in the interp package uses a simple implementation which only works for methods in which all parameter and local variable names are different. Part e) below asks you to remove this restriction. The three parts below should be attempted in sequence. When you have completed one part you should make a back-up copy of the work and keep it safe, in case you break it in your attempt at the next part. Be sure to test old functionality as well as new (regression testing). We will not assess multiple versions so, if your attempt at part d) or e) breaks previously working code, you may gain a better mark by submitting the earlier version for assessment. c) [8 marks] The Basic Interpreter: complete the implementation of the Interpreter visitor in the interp package. d) [2 marks] Inheritance: extend the type-checker, variable allocator and interpreter to support inheritance. e) [2 marks] Variable Allocation: extend the variable allocator to fully support blockstructure and lexical scoping, removing the requirement that all parameter and local variable names are different. Aim to minimise the number of local variable slots allocated in a stack frame. Note: variable and parameter names declared at the same scope level are still required to be different from each other (a method cannot have two different parameters called x, for example) and this is enforced by the existing typechecking code. But variables declared in different blocks (even when nested) can have the same name. Exceptions Your interpreter will only ever be run on Moopl code which is type-correct (and free from uninitialised local variables). But it is still possible that the Moopl code contains logical errors which may cause runtime errors (such as null-reference or array-bound errors). Your interpreter should throw a MooplRunTimeException with an appropriate error message in these cases. The only kind of exception your interpreter should ever throw is a MooplRunTimeException. 3 Testing The examples folder does not contain a comprehensive test-suite. You need to invent and run your own tests. The document Moopl compared with Java gives a concise summary of how Moopl programs are supposed to behave. You can (and should) also compare the behaviour of your interpreter with that of the online tool: https://smcse.city.ac.uk/student/sj353/langproc/Moopl.html (Note: the online tool checks for uninitialised local variables. Your implementation is not expected to do this.) To test your work, run the top-level Interpret harness, providing the name of a Moopl source file as a command-line argument. When run on a type-correct Moopl source file, Interpret will pretty-print the Moopl program then display a command prompt (>) at which you can enter one of the following commands: :quit This will quit the interpreter. :call main() This will call the top-level proc main, interpreted in the context defined by the Moopl program. (Any top-level proc can be called this way). :eval Exp ; This will evaluate expression Exp, interpreted in the context defined by the Moopl program, and print the result. Note the required terminating semi-colon. Testing your Expression visitors To unit-test your Exp visit methods, run the top-level Interpret harness on a complete Moopl program (though it can be trivial) and use the :eval command. For example, to test your visit methods for the Boolean-literals (ExpTrue and ExpFalse), you would enter the commands > :eval true ; > :eval false ; which should output 1 and 0, respectively. For the most basic cases, the Moopl program is essentially irrelevant (a single top-level proc with empty body may be sufficient). For other cases you will need to write programs containing class definitions (in order, for example, to test object creation and method call). Testing your Statement visitors To unit-test your Stm visit methods, write very simple Moopl programs, each with a top-level proc main() containing just a few lines of code. Run the top-level Interpret harness on these simple programs and enter the command > :call main() You will find a few examples to get you started in the folder examples/unittests. As for the Exp tests, simple cases can be tested using Moopl programs with just a main proc but for the more complex tests you will need to write Moopl programs containing class definitions. 4 Grading criteria Solutions will be graded according to their functional correctness, and the elegance of their implementation. Below are criteria that guide the award of marks. 70 – 100 [1st class] Work that meets all the requirements in full, constructed and presented to a professional standard. Showing evidence of independent reading, thinking and analysis. 60 – 69 [2:1] Work that makes a good attempt to address the requirements, realising all to some extent and most well. Well-structured and well presented. 50 – 59 [2:2] Work that attempts to address requirements realising all to some extent and some well but perhaps also including irrelevant or underdeveloped material. Structure and presentation may not always be clear. 40 – 49 [3rd class] Work that attempts to address the requirements but only realises them to some extent and may not include important elements or be completely accurate. Structure and presentation may lack clarity. 0 – 39 [fail] Unsatisfactory work that does not adequately address the requirements. Structure and presentation may be confused or incoherent.

checkyourstudy.com Whatsapp +919911743277
Engineering Risk Management Special topic: Beer Game Copyright Old Dominion University, 2017 All rights reserved Revised Class Schedule Lac-Megantic Case Study Part 1: Timeline of events Part 2: Timeline + causal chain of events Part 3: Instructions Evaluate your causal-chain (network) Which are the root causes? Which events have the most causes? What are the relationship of the causes? Which causes have the most influence? Part 4: Instructions Consider these recommendations from TSB Which nodes in your causal chain will be addressed by which of these recommendations? Recap How would you summarize the steps in conducting post-event analysis of an accident? Beer Game Case Study The beer game was developed at MIT in the 1960s. It is an experiential learning business simulation game created by a group of professors at MIT Sloan School of Management in early 1960s to demonstrate a number of key principles of supply chain management. The game is played by teams of four players, often in heated competition, and takes at least one hour to complete.  Beer Game Case Study Beer Game Case Study A truck driver delivers beer once each week to the retailer. Then the retailer places an order with the trucker who returns the order to the wholesaler. There’s a four week lag between ordering and receiving the beer. The retailer and wholesaler do not communicate directly. The retailer sells hundreds of products and the wholesaler distributes many products to a large number of customers. Beer Game Case Study The Retailer Week 1: Lover’s Beer is not very popular but the retailer sells four cases per week on average. Because the lead time is four weeks, the retailer attempts to keep twelve cases in the store by ordering four cases each Monday when the trucker makes a delivery. Week 2: The retailer’s sales of Lover’s beer doubles to eight cases, so on Monday, he orders 8 cases. Week 3: The retailer sells 8 cases. The trucker delivers four cases. To be safe, the retailer decides to order 12 cases of Lover’s beer. Week 4: The retailer learns from some of his younger customers that a music video appearing on TV shows a group singing “I’ll take on last sip of Lover’s beer and run into the sun.” The retailer assumes that this explains the increased demand for the product. The trucker delivers 5 cases. The retailer is nearly sold out, so he orders 16 cases. Beer Game Case Study The Retailer Week 5: The retailer sells the last case, but receives 7 cases. All 7 cases are sold by the end of the week. So again on Monday the retailer orders 16 cases. Week 6: Customers are looking for Lover’s beer. Some put their names on a list to be called when the beer comes in. The trucker delivers only 6 cases and all are sold by the weekend. The retailer orders another 16 cases. Week 7: The trucker delivers 7 cases. The retailer is frustrated, but orders another 16 cases. Week 8: The trucker delivers 5 cases and tells the retailer the beer is backlogged. The retailer is really getting irritated with the wholesaler, but orders 24 cases. Beer Game Case Study The Wholesaler The wholesaler distributes many brands of beer to a large number of retailers, but he is the only distributor of Lover’s beer. The wholesaler orders 4 truckloads from the brewery truck driver each week and receives the beer after a 4 week lag. The wholesaler’s policy is to keep 12 truckloads in inventory on a continuous basis. Week 6: By week 6 the wholesaler is out of Lover’s beer and responds by ordering 30 truckloads from the brewery. Week 8: By the 8th week most stores are ordering 3 or 4 times more Lovers’ beer than their regular amounts. Week 9: The wholesaler orders more Lover’s beer, but gets only 6 truckloads. Week 10: Only 8 truckloads are delivered, so the wholesaler orders 40. Week 11: Only 12 truckloads are received, and there are 77 truckloads in backlog, so the wholesaler orders 40 more truckloads. Beer Game Case Study The Wholesaler Week 12: The wholesaler orders 60 more truckloads of Lover’s beer. It appears that the beer is becoming more popular from week to week. Week 13: There is still a huge backlog. Weeks 14-15: The wholesaler receives larger shipments from the brewery, but orders from retailers begin to drop off. Week 16: The trucker delivers 55 truckloads from the brewery, but the wholesaler gets zero orders from retailers. So he stops ordering from the brewery. Week 17: The wholesaler receives another 60 truckloads. Retailers order zero. The wholesaler orders zero. The brewery keeps sending beer. Beer Game Case Study The Brewery The brewery is small but has a reputation for producing high quality beer. Lover’s beer is only one of several products produced at the brewery. Week 6: New orders come in for 40 gross. It takes two weeks to brew the beer. Week 14: Orders continue to come in and the brewery has not been able to catch up on the backlogged orders. The marketing manager begins to wonder how much bonus he will get for increasing sales so dramatically. Week 16: The brewery catches up on the backlog, but orders begin to drop off. Week 18: By week 18 there are no new orders for Lover’s beer. Week 19: The brewery has 100 gross of Lover’s beer in stock, but no orders. So the brewery stops producing Lover’s beer. Weeks 20-23. No orders. Beer Game Case Study At this point all the players blame each other for the excess inventory. Conversations with wholesale and retailer reveal an inventory of 93 cases at the retailer and 220 truckloads at the wholesaler. The marketing manager figures it will take the wholesaler a year to sell the Lover’s beer he has in stock. The retailers must be the problem. The retailer explains that demand increased from 4 cases per week to 8 cases. The wholesaler and marketing manager think demand mushroomed after that, and then fell off, but the retailer explains that didn’t happen. Demand stayed at 8 cases per week. Since he didn’t get the beer he ordered, he kept ordering more in an attempt to keep up with the demand. The marketing manager plans his resignation. Homework 4 Read the case and answer 1+6 questions. 0th What should go right? 1st What can go wrong? 2nd What are the causes and consequences? 3rd What is the likelihood of occurrence? 4rd What can be done to detect, control, and manage them? 5th What are the alternatives? 6th What are the effects beyond this particular time? Homework 4 In 500 words or less, summarize lessons learned in this beer game as it relates to supply chain risk management. Apply one of the tools (CCA, HAZOP, FMEA, etc.) to the case. Work individually and submit before Monday midnight (Feb. 20th). No class on Monday (Feb. 20th).

Engineering Risk Management Special topic: Beer Game Copyright Old Dominion University, 2017 All rights reserved Revised Class Schedule Lac-Megantic Case Study Part 1: Timeline of events Part 2: Timeline + causal chain of events Part 3: Instructions Evaluate your causal-chain (network) Which are the root causes? Which events have the most causes? What are the relationship of the causes? Which causes have the most influence? Part 4: Instructions Consider these recommendations from TSB Which nodes in your causal chain will be addressed by which of these recommendations? Recap How would you summarize the steps in conducting post-event analysis of an accident? Beer Game Case Study The beer game was developed at MIT in the 1960s. It is an experiential learning business simulation game created by a group of professors at MIT Sloan School of Management in early 1960s to demonstrate a number of key principles of supply chain management. The game is played by teams of four players, often in heated competition, and takes at least one hour to complete.  Beer Game Case Study Beer Game Case Study A truck driver delivers beer once each week to the retailer. Then the retailer places an order with the trucker who returns the order to the wholesaler. There’s a four week lag between ordering and receiving the beer. The retailer and wholesaler do not communicate directly. The retailer sells hundreds of products and the wholesaler distributes many products to a large number of customers. Beer Game Case Study The Retailer Week 1: Lover’s Beer is not very popular but the retailer sells four cases per week on average. Because the lead time is four weeks, the retailer attempts to keep twelve cases in the store by ordering four cases each Monday when the trucker makes a delivery. Week 2: The retailer’s sales of Lover’s beer doubles to eight cases, so on Monday, he orders 8 cases. Week 3: The retailer sells 8 cases. The trucker delivers four cases. To be safe, the retailer decides to order 12 cases of Lover’s beer. Week 4: The retailer learns from some of his younger customers that a music video appearing on TV shows a group singing “I’ll take on last sip of Lover’s beer and run into the sun.” The retailer assumes that this explains the increased demand for the product. The trucker delivers 5 cases. The retailer is nearly sold out, so he orders 16 cases. Beer Game Case Study The Retailer Week 5: The retailer sells the last case, but receives 7 cases. All 7 cases are sold by the end of the week. So again on Monday the retailer orders 16 cases. Week 6: Customers are looking for Lover’s beer. Some put their names on a list to be called when the beer comes in. The trucker delivers only 6 cases and all are sold by the weekend. The retailer orders another 16 cases. Week 7: The trucker delivers 7 cases. The retailer is frustrated, but orders another 16 cases. Week 8: The trucker delivers 5 cases and tells the retailer the beer is backlogged. The retailer is really getting irritated with the wholesaler, but orders 24 cases. Beer Game Case Study The Wholesaler The wholesaler distributes many brands of beer to a large number of retailers, but he is the only distributor of Lover’s beer. The wholesaler orders 4 truckloads from the brewery truck driver each week and receives the beer after a 4 week lag. The wholesaler’s policy is to keep 12 truckloads in inventory on a continuous basis. Week 6: By week 6 the wholesaler is out of Lover’s beer and responds by ordering 30 truckloads from the brewery. Week 8: By the 8th week most stores are ordering 3 or 4 times more Lovers’ beer than their regular amounts. Week 9: The wholesaler orders more Lover’s beer, but gets only 6 truckloads. Week 10: Only 8 truckloads are delivered, so the wholesaler orders 40. Week 11: Only 12 truckloads are received, and there are 77 truckloads in backlog, so the wholesaler orders 40 more truckloads. Beer Game Case Study The Wholesaler Week 12: The wholesaler orders 60 more truckloads of Lover’s beer. It appears that the beer is becoming more popular from week to week. Week 13: There is still a huge backlog. Weeks 14-15: The wholesaler receives larger shipments from the brewery, but orders from retailers begin to drop off. Week 16: The trucker delivers 55 truckloads from the brewery, but the wholesaler gets zero orders from retailers. So he stops ordering from the brewery. Week 17: The wholesaler receives another 60 truckloads. Retailers order zero. The wholesaler orders zero. The brewery keeps sending beer. Beer Game Case Study The Brewery The brewery is small but has a reputation for producing high quality beer. Lover’s beer is only one of several products produced at the brewery. Week 6: New orders come in for 40 gross. It takes two weeks to brew the beer. Week 14: Orders continue to come in and the brewery has not been able to catch up on the backlogged orders. The marketing manager begins to wonder how much bonus he will get for increasing sales so dramatically. Week 16: The brewery catches up on the backlog, but orders begin to drop off. Week 18: By week 18 there are no new orders for Lover’s beer. Week 19: The brewery has 100 gross of Lover’s beer in stock, but no orders. So the brewery stops producing Lover’s beer. Weeks 20-23. No orders. Beer Game Case Study At this point all the players blame each other for the excess inventory. Conversations with wholesale and retailer reveal an inventory of 93 cases at the retailer and 220 truckloads at the wholesaler. The marketing manager figures it will take the wholesaler a year to sell the Lover’s beer he has in stock. The retailers must be the problem. The retailer explains that demand increased from 4 cases per week to 8 cases. The wholesaler and marketing manager think demand mushroomed after that, and then fell off, but the retailer explains that didn’t happen. Demand stayed at 8 cases per week. Since he didn’t get the beer he ordered, he kept ordering more in an attempt to keep up with the demand. The marketing manager plans his resignation. Homework 4 Read the case and answer 1+6 questions. 0th What should go right? 1st What can go wrong? 2nd What are the causes and consequences? 3rd What is the likelihood of occurrence? 4rd What can be done to detect, control, and manage them? 5th What are the alternatives? 6th What are the effects beyond this particular time? Homework 4 In 500 words or less, summarize lessons learned in this beer game as it relates to supply chain risk management. Apply one of the tools (CCA, HAZOP, FMEA, etc.) to the case. Work individually and submit before Monday midnight (Feb. 20th). No class on Monday (Feb. 20th).

checkyourstudy.com Whatsapp +919911743277
MATH 248 SPRIN 2017 – LABORATORY ASSIGNMENT 5 – Sochacki DUE: Monday April 3, 2017 POINTS: 50 You are to write a Matlab script that will solve an arbitrary tri-diagonal matrix system of equations using Gaussian elimination. Your program should determine if a unique solution exists and if it does give an approximation to this unique solution. You MUST use the computer with formatted output in a nice layout. Guidelines: (1) First you should do a neat one-three page (8.5 x 11) write up showing how to solve a tri-diagonal system of equations and do an operation count to determine the solution. (2) Your program should print the answer as a column in a nice format. (3) You should make sure your code can minimize round-off errors. (4) As usual, the professional quality of your scripts and write up is part of your evaluation. (5) You can do the following bonus problems for 2 points each. (i) Give the determinant of the matrix defining the SLE (ii) Give the inverse of the matrix defining the SLE

MATH 248 SPRIN 2017 – LABORATORY ASSIGNMENT 5 – Sochacki DUE: Monday April 3, 2017 POINTS: 50 You are to write a Matlab script that will solve an arbitrary tri-diagonal matrix system of equations using Gaussian elimination. Your program should determine if a unique solution exists and if it does give an approximation to this unique solution. You MUST use the computer with formatted output in a nice layout. Guidelines: (1) First you should do a neat one-three page (8.5 x 11) write up showing how to solve a tri-diagonal system of equations and do an operation count to determine the solution. (2) Your program should print the answer as a column in a nice format. (3) You should make sure your code can minimize round-off errors. (4) As usual, the professional quality of your scripts and write up is part of your evaluation. (5) You can do the following bonus problems for 2 points each. (i) Give the determinant of the matrix defining the SLE (ii) Give the inverse of the matrix defining the SLE

checkyourstudy.com Whatsapp +919911743277
Biomedical Signal and Image Processing (4800_420_001) Assigned on September 12th, 2017 Assignment 4 – Noise and Correlation 1. If a signal is measured as 2.5 V and the noise is 28 mV (28 × 10−3 V), what is the SNR in dB? 2. A single sinusoidal signal is found with some noise. If the RMS value of the noise is 0.5 V and the SNR is 10 dB, what is the RMS amplitude of the sinusoid? 3. The file signal_noise.mat contains a variable x that consists of a 1.0-V peak sinusoidal signal buried in noise. What is the SNR for this signal and noise? Assume that the noise RMS is much greater than the signal RMS. Note: “signal_noise.mat” and other files used in these assignments can be downloaded from the content area of Brightspace, within the “Data Files for Exercises” folder. These files can be opened in Matlab by copying into the active folder and double-clicking on the file or using the Matlab load command using the format: load(‘signal_noise.mat’). To discover the variables within the files use the Matlab who command. 4. An 8-bit ADC converter that has an input range of ±5 V is used to convert a signal that ranges between ±2 V. What is the SNR of the input if the input noise equals the quantization noise of the converter? Hint: Refer to Equation below to find the quantization noise: 5. The file filter1.mat contains the spectrum of a fourth-order lowpass filter as variable x in dB. The file also contains the corresponding frequencies of x in variable freq. Plot the spectrum of this filter both as dB versus log frequency and as linear amplitude versus linear frequency. The frequency axis should range between 10 and 400 Hz in both plots. Hint: Use Equation below to convert: Biomedical Signal and Image Processing (4800_420_001) Assigned on September 12th, 2017 6. Generate one cycle of the square wave similar to the one shown below in a 500-point MATLAB array. Determine the RMS value of this waveform. [Hint: When you take the square of the data array, be sure to use a period before the up arrow so that MATLAB does the squaring point-by-point (i.e., x.^2).]. 7. A resistor produces 10 μV noise (i.e., 10 × 10−6 V noise) when the room temperature is 310 K and the bandwidth is 1 kHz (i.e., 1000 Hz). What current noise would be produced by this resistor? 8. A 3-ma current flows through both a diode (i.e., a semiconductor) and a 20,000-Ω (i.e., 20-kΩ) resistor. What is the net current noise, in? Assume a bandwidth of 1 kHz (i.e., 1 × 103 Hz). Which of the two components is responsible for producing the most noise? 9. Determine if the two signals, x and y, in file correl1.mat are correlated by checking the angle between them. 10. Modify the approach used in Practice Problem 3 to find the angle between short signals: Do not attempt to plot these vectors as it would require a 6-dimensional plot!

Biomedical Signal and Image Processing (4800_420_001) Assigned on September 12th, 2017 Assignment 4 – Noise and Correlation 1. If a signal is measured as 2.5 V and the noise is 28 mV (28 × 10−3 V), what is the SNR in dB? 2. A single sinusoidal signal is found with some noise. If the RMS value of the noise is 0.5 V and the SNR is 10 dB, what is the RMS amplitude of the sinusoid? 3. The file signal_noise.mat contains a variable x that consists of a 1.0-V peak sinusoidal signal buried in noise. What is the SNR for this signal and noise? Assume that the noise RMS is much greater than the signal RMS. Note: “signal_noise.mat” and other files used in these assignments can be downloaded from the content area of Brightspace, within the “Data Files for Exercises” folder. These files can be opened in Matlab by copying into the active folder and double-clicking on the file or using the Matlab load command using the format: load(‘signal_noise.mat’). To discover the variables within the files use the Matlab who command. 4. An 8-bit ADC converter that has an input range of ±5 V is used to convert a signal that ranges between ±2 V. What is the SNR of the input if the input noise equals the quantization noise of the converter? Hint: Refer to Equation below to find the quantization noise: 5. The file filter1.mat contains the spectrum of a fourth-order lowpass filter as variable x in dB. The file also contains the corresponding frequencies of x in variable freq. Plot the spectrum of this filter both as dB versus log frequency and as linear amplitude versus linear frequency. The frequency axis should range between 10 and 400 Hz in both plots. Hint: Use Equation below to convert: Biomedical Signal and Image Processing (4800_420_001) Assigned on September 12th, 2017 6. Generate one cycle of the square wave similar to the one shown below in a 500-point MATLAB array. Determine the RMS value of this waveform. [Hint: When you take the square of the data array, be sure to use a period before the up arrow so that MATLAB does the squaring point-by-point (i.e., x.^2).]. 7. A resistor produces 10 μV noise (i.e., 10 × 10−6 V noise) when the room temperature is 310 K and the bandwidth is 1 kHz (i.e., 1000 Hz). What current noise would be produced by this resistor? 8. A 3-ma current flows through both a diode (i.e., a semiconductor) and a 20,000-Ω (i.e., 20-kΩ) resistor. What is the net current noise, in? Assume a bandwidth of 1 kHz (i.e., 1 × 103 Hz). Which of the two components is responsible for producing the most noise? 9. Determine if the two signals, x and y, in file correl1.mat are correlated by checking the angle between them. 10. Modify the approach used in Practice Problem 3 to find the angle between short signals: Do not attempt to plot these vectors as it would require a 6-dimensional plot!

Whatsapp +919911743277  
CHM114: Exam #2 CHM 114, S2015 Exam #2, Version C 16 March 2015 Instructor: O. Graudejus Points: 100 Print Name Sign Name Student I.D. # 1. You are responsible for the information on this page. Please read it carefully. 2. Code your name and 10 digit affiliate identification number on the separate scantron answer sheet. Use only a #2 pencil 3. If you enter your ASU ID incorrectly on the scantron, a 3 point penalty will be assessed. 4. Do all calculations on the exam pages. Do not make any unnecessary marks on the answer sheet. 5. This exam consists of 25 multiple choice questions worth 4 points each and a periodic table. Make sure you have them all. 6. Choose the best answer to each of the questions and answer it on the computer-graded answer sheet. Read all responses before making a selection. 7. Read the directions carefully for each problem. 8. Avoid even casual glances at other students’ exams. 9. Stop writing and hand in your scantron answer sheet and your test promptly when instructed. LATE EXAMS MAY HAVE POINTS DEDUCTED. 10. You will have 50 minutes to complete the exam. 11. If you leave early, please do so quietly. 12. Work the easiest problems first. 13. A periodic table is attached as the last page to this exam. 14. Answers will be posted online this afternoon. Potentially useful information: K = ºC + 273.15 RH=2.18·10-18 J R=8.314 J·K-1·mol-1 1Å=10-10 m c=3·108 m/s Ephoton=h·n=h·c/l h=6.626·10-34 Js Avogadro’s Number = 6.022 × 1023 particles/mole DH°rxn =  n DHf° (products) –  n DHf° (reactants) ) 1 1 ( 2 2 f i H n n DE = R − \ -2- CHM114: Exam #2 1) Which one of the following is an incorrect orbital notation? A) 2s B) 2p C) 3f D) 3d E) 4s 2) The energy of a photon that has a frequency of 8.21 1015s 1 − × is __________ J. A) 8.08 10 50 − × B) 1.99 10 25 − × C) 5.44 10 18 − × D) 1.24×1049 E) 1.26 10 19 − × 3) The ground state electron configuration of Ga is __________. A) 1s22s23s23p64s23d104p1 B) 1s22s22p63s23p64s24d104p1 C) 1s22s22p63s23p64s23d104p1 D) 1s22s22p63s23p64s23d104d1 E) [Ar]4s23d11 4) Of the bonds N–N, N=N, and NN, the N-N bond is __________. A) strongest/shortest B) weakest/longest C) strongest/longest D) weakest/shortest E) intermediate in both strength and length 5) Of the atoms below, __________ is the most electronegative. A) Br B) O C) Cl D) N E) F 6) Of the following, __________ cannot accommodate more than an octet of electrons. A) P B) O C) S D) Cl E) I -3- CHM 114: Exam #2 7) Which electron configuration represents a violation of Hund’s Rule? A) B) C) D) E) 8) A tin atom has 50 electrons. Electrons in the _____ subshell experience the highest effective nuclear charge. A) 1s B) 3p C) 3d D) 5s E) 5p 9) In ionic compounds, the lattice energy_____ as the magnitude of the ion charges _____ and the radii _____. A) increases, decrease, increase B) increases, increase, increase C) decreases, increase, increase D) increases, increase, decrease E) increases, decrease, decrease 10) Which of the following ionic compounds has the highest lattice energy? A) LiF B) MgO C) CsF D) CsI E) LiI -4- CHM 114: Exam #2 11) For which one of the following reactions is the value of H°rxn equal to Hf° for the product? A) 2 C (s, graphite) + 2 H2 (g)  C2H4 (g) B) N2 (g) + O2 (g)  2 NO (g) C) 2 H2 (g) + O2 (g)  2 H2O (l) D) 2 H2 (g) + O2 (g)  2 H2O (g) E) all of the above 12) Given the data in the table below, H rxn D ° for the reaction 3 2 3 PCl (g) + 3HCl(g)®3Cl (g) + PH (g) is __________ kJ. A) -570.37 B) -385.77 C) 570.37 D) 385.77 E) The f DH° of 2 Cl (g) is needed for the calculation. 13) Given the following reactions (1) 2 2 2NO® N +O H = -180 kJ (2) 2 2 2NO+O ®2NO H = -112 kJ the enthalpy of the reaction of nitrogen with oxygen to produce nitrogen dioxide 2 2 2 N + 2O ®2NO is __________ kJ. A) 68 B) -68 C) -292 D) 292 E) -146 14) Of the following transitions in the Bohr hydrogen atom, the __________ transition results in the absorption of the lowest-energy photon. A) n = 1  n = 6 B) n = 6  n = 1 C) n = 6  n = 5 D) n = 3  n = 6 E) n = 1  n = 4 -5- CHM 114: Exam #2 15) Which equation correctly represents the electron affinity of calcium? A) Ca (g)  Ca+ (g) + e- B) Ca (g)  Ca- (g) + e- C) Ca (g) + e-  Ca- (g) D) Ca- (g)  Ca (g) + e- E) Ca+ (g) + e-  Ca (g) 16) Which of the following does not have eight valence electrons? A) Ca+ B) Rb+ C) Xe D) Br− E) All of the above have eight valence electrons. 17) The specific heat of liquid bromine is 0.226 J/g · K. The molar heat capacity (in J/mol-K) of liquid bromine is __________. A) 707 B) 36.1 C) 18.1 D) 9.05 E) 0.226 18) Given the electronegativities below, which covalent single bond is least polar? Element: H C N O F Electronegativity: 2.1 2.5 3.0 3.5 4.0 A) C-H B) C-F C) O-H D) O-C E) F-H 19) The bond length in an HCl molecule is 1.27 Å and the measured dipole moment is 1.08 D. What is the magnitude (in units of e) of the negative charge on Cl in HCl? (1 debye = 3.34 10 30 coulomb-meters − × ; e=1.6 10 19 coulombs − × ) A) 1.6 10 19 − × B) 0.057 C) 0.18 D) 1 E) 0.22 -6- CHM 114: Exam #2 20) The F-B-F bond angle in the BF3 molecule is approximately __________. A) 90° B) 109.5° C) 120° D) 180° E) 60° 21) Which isoelectronic series is correctly arranged in order of increasing radius? A) K+ < Ca2+ < Ar < Cl- B) Cl- < Ar < K+ < Ca2+ C) Ca2+ < Ar < K+ < Cl- D) Ca2+ < K+ < Ar < Cl- E) Ca2+ < K+ < Cl- < Ar 22) What is the electron configuration for the Fe2+ ion? A) [Ar]4s03d6 B) [Ar]4s23d4 C) [Ar]4s03d8 D) [Ar]4s23d8 E) [Ar]4s63d2 23) The formal charge on carbon in the Lewis structure of the NCS - ion is __________: A) -1 B) +1 C) +2 D) 0 E) +3 -7- CHM 114: Exam #2 24) Using the table of bond dissociation energies, the H for the following gas-phase reaction is __________ kJ. A) 291 B) 2017 C) -57 D) -356 E) -291 25) According to VSEPR theory, if there are six electron domains in the valence shell of an atom, they will be arranged in a(n) __________ geometry. A) octahedral B) linear C) tetrahedral D) trigonal planar E) trigonal bipyramidal -8- CHM 114: Exam #2

CHM114: Exam #2 CHM 114, S2015 Exam #2, Version C 16 March 2015 Instructor: O. Graudejus Points: 100 Print Name Sign Name Student I.D. # 1. You are responsible for the information on this page. Please read it carefully. 2. Code your name and 10 digit affiliate identification number on the separate scantron answer sheet. Use only a #2 pencil 3. If you enter your ASU ID incorrectly on the scantron, a 3 point penalty will be assessed. 4. Do all calculations on the exam pages. Do not make any unnecessary marks on the answer sheet. 5. This exam consists of 25 multiple choice questions worth 4 points each and a periodic table. Make sure you have them all. 6. Choose the best answer to each of the questions and answer it on the computer-graded answer sheet. Read all responses before making a selection. 7. Read the directions carefully for each problem. 8. Avoid even casual glances at other students’ exams. 9. Stop writing and hand in your scantron answer sheet and your test promptly when instructed. LATE EXAMS MAY HAVE POINTS DEDUCTED. 10. You will have 50 minutes to complete the exam. 11. If you leave early, please do so quietly. 12. Work the easiest problems first. 13. A periodic table is attached as the last page to this exam. 14. Answers will be posted online this afternoon. Potentially useful information: K = ºC + 273.15 RH=2.18·10-18 J R=8.314 J·K-1·mol-1 1Å=10-10 m c=3·108 m/s Ephoton=h·n=h·c/l h=6.626·10-34 Js Avogadro’s Number = 6.022 × 1023 particles/mole DH°rxn =  n DHf° (products) –  n DHf° (reactants) ) 1 1 ( 2 2 f i H n n DE = R − \ -2- CHM114: Exam #2 1) Which one of the following is an incorrect orbital notation? A) 2s B) 2p C) 3f D) 3d E) 4s 2) The energy of a photon that has a frequency of 8.21 1015s 1 − × is __________ J. A) 8.08 10 50 − × B) 1.99 10 25 − × C) 5.44 10 18 − × D) 1.24×1049 E) 1.26 10 19 − × 3) The ground state electron configuration of Ga is __________. A) 1s22s23s23p64s23d104p1 B) 1s22s22p63s23p64s24d104p1 C) 1s22s22p63s23p64s23d104p1 D) 1s22s22p63s23p64s23d104d1 E) [Ar]4s23d11 4) Of the bonds N–N, N=N, and NN, the N-N bond is __________. A) strongest/shortest B) weakest/longest C) strongest/longest D) weakest/shortest E) intermediate in both strength and length 5) Of the atoms below, __________ is the most electronegative. A) Br B) O C) Cl D) N E) F 6) Of the following, __________ cannot accommodate more than an octet of electrons. A) P B) O C) S D) Cl E) I -3- CHM 114: Exam #2 7) Which electron configuration represents a violation of Hund’s Rule? A) B) C) D) E) 8) A tin atom has 50 electrons. Electrons in the _____ subshell experience the highest effective nuclear charge. A) 1s B) 3p C) 3d D) 5s E) 5p 9) In ionic compounds, the lattice energy_____ as the magnitude of the ion charges _____ and the radii _____. A) increases, decrease, increase B) increases, increase, increase C) decreases, increase, increase D) increases, increase, decrease E) increases, decrease, decrease 10) Which of the following ionic compounds has the highest lattice energy? A) LiF B) MgO C) CsF D) CsI E) LiI -4- CHM 114: Exam #2 11) For which one of the following reactions is the value of H°rxn equal to Hf° for the product? A) 2 C (s, graphite) + 2 H2 (g)  C2H4 (g) B) N2 (g) + O2 (g)  2 NO (g) C) 2 H2 (g) + O2 (g)  2 H2O (l) D) 2 H2 (g) + O2 (g)  2 H2O (g) E) all of the above 12) Given the data in the table below, H rxn D ° for the reaction 3 2 3 PCl (g) + 3HCl(g)®3Cl (g) + PH (g) is __________ kJ. A) -570.37 B) -385.77 C) 570.37 D) 385.77 E) The f DH° of 2 Cl (g) is needed for the calculation. 13) Given the following reactions (1) 2 2 2NO® N +O H = -180 kJ (2) 2 2 2NO+O ®2NO H = -112 kJ the enthalpy of the reaction of nitrogen with oxygen to produce nitrogen dioxide 2 2 2 N + 2O ®2NO is __________ kJ. A) 68 B) -68 C) -292 D) 292 E) -146 14) Of the following transitions in the Bohr hydrogen atom, the __________ transition results in the absorption of the lowest-energy photon. A) n = 1  n = 6 B) n = 6  n = 1 C) n = 6  n = 5 D) n = 3  n = 6 E) n = 1  n = 4 -5- CHM 114: Exam #2 15) Which equation correctly represents the electron affinity of calcium? A) Ca (g)  Ca+ (g) + e- B) Ca (g)  Ca- (g) + e- C) Ca (g) + e-  Ca- (g) D) Ca- (g)  Ca (g) + e- E) Ca+ (g) + e-  Ca (g) 16) Which of the following does not have eight valence electrons? A) Ca+ B) Rb+ C) Xe D) Br− E) All of the above have eight valence electrons. 17) The specific heat of liquid bromine is 0.226 J/g · K. The molar heat capacity (in J/mol-K) of liquid bromine is __________. A) 707 B) 36.1 C) 18.1 D) 9.05 E) 0.226 18) Given the electronegativities below, which covalent single bond is least polar? Element: H C N O F Electronegativity: 2.1 2.5 3.0 3.5 4.0 A) C-H B) C-F C) O-H D) O-C E) F-H 19) The bond length in an HCl molecule is 1.27 Å and the measured dipole moment is 1.08 D. What is the magnitude (in units of e) of the negative charge on Cl in HCl? (1 debye = 3.34 10 30 coulomb-meters − × ; e=1.6 10 19 coulombs − × ) A) 1.6 10 19 − × B) 0.057 C) 0.18 D) 1 E) 0.22 -6- CHM 114: Exam #2 20) The F-B-F bond angle in the BF3 molecule is approximately __________. A) 90° B) 109.5° C) 120° D) 180° E) 60° 21) Which isoelectronic series is correctly arranged in order of increasing radius? A) K+ < Ca2+ < Ar < Cl- B) Cl- < Ar < K+ < Ca2+ C) Ca2+ < Ar < K+ < Cl- D) Ca2+ < K+ < Ar < Cl- E) Ca2+ < K+ < Cl- < Ar 22) What is the electron configuration for the Fe2+ ion? A) [Ar]4s03d6 B) [Ar]4s23d4 C) [Ar]4s03d8 D) [Ar]4s23d8 E) [Ar]4s63d2 23) The formal charge on carbon in the Lewis structure of the NCS - ion is __________: A) -1 B) +1 C) +2 D) 0 E) +3 -7- CHM 114: Exam #2 24) Using the table of bond dissociation energies, the H for the following gas-phase reaction is __________ kJ. A) 291 B) 2017 C) -57 D) -356 E) -291 25) According to VSEPR theory, if there are six electron domains in the valence shell of an atom, they will be arranged in a(n) __________ geometry. A) octahedral B) linear C) tetrahedral D) trigonal planar E) trigonal bipyramidal -8- CHM 114: Exam #2

Cutter Enterprises purchased equipment for $72,000 on January 1, 2016. The equipment is expected to have a five-year life and a residual value of $6,000. Using the double-declining balance method, depreciation for 2017 would be:

Cutter Enterprises purchased equipment for $72,000 on January 1, 2016. The equipment is expected to have a five-year life and a residual value of $6,000. Using the double-declining balance method, depreciation for 2017 would be:

Question 38   Cutter Enterprises purchased equipment for $72,000 on … Read More...