A transformer has 300 turns in the primary coil and 50 turns in the secondary coil. If the RMS voltage in the primary is coil is 120 volts, find the power lost in the 20 Ohm resistor. 1) 0.5 watts 2) 1watts 3) 5 watts 4) 10 watts 5) 20 watts.

## A transformer has 300 turns in the primary coil and 50 turns in the secondary coil. If the RMS voltage in the primary is coil is 120 volts, find the power lost in the 20 Ohm resistor. 1) 0.5 watts 2) 1watts 3) 5 watts 4) 10 watts 5) 20 watts.

On January 1, 2014, Rowley Company purchased a truck that cost \$22,000. The truck had an expected useful life of 5 years and a \$4,000 salvage value. The amount of depreciation expense recognized in 2014 assuming that Rowley uses the double declining balance method is:

## On January 1, 2014, Rowley Company purchased a truck that cost \$22,000. The truck had an expected useful life of 5 years and a \$4,000 salvage value. The amount of depreciation expense recognized in 2014 assuming that Rowley uses the double declining balance method is:

Question 39   On January 1, 2014, Rowley Company purchased … Read More...
1 CEE 240 / MIE 210 Statics NAME: [Final] Exam #3 Version A — 100 points (120 minutes) SHOW YOUR WORK USING THE COURSE PROBLEM SOLVING GUIDELINES! CALCULATORS ONLY – NO OTHER REFERENCES! 1. (25 points) An underwater instrument is modeled as shown in the figure. Determine the coordinates of the centroid of this composite volume. Note: the mass center of a sphere = 4 π r3/3. No FBD is required for this problem. 2 2. (25 points) Determine the range of weights W for which the 100-lb block is in equilibrium. All wheels and pulleys have negligible friction. 3 3. (25 points) Determine the force in each member of the loaded truss. 4 4. (25 points) The 480-lb V-8 engine is supported on an engine stand and rotated 90o from its upright position so that its center of gravity G is in the position shown. Determine the vertical reaction at each roller of the stand. Neglect the weight of the stand itself. 5 BONUS. (5 points) The cargo box of the food-delivery truck for aircraft servicing has a loaded mass m and is elevated by the application of a torque M on the lower end of the link which is hinged to the truck frame. The horizontal slots allow the linkage to unfold as the cargo box is elevated. Express M as a function of h.

## 1 CEE 240 / MIE 210 Statics NAME: [Final] Exam #3 Version A — 100 points (120 minutes) SHOW YOUR WORK USING THE COURSE PROBLEM SOLVING GUIDELINES! CALCULATORS ONLY – NO OTHER REFERENCES! 1. (25 points) An underwater instrument is modeled as shown in the figure. Determine the coordinates of the centroid of this composite volume. Note: the mass center of a sphere = 4 π r3/3. No FBD is required for this problem. 2 2. (25 points) Determine the range of weights W for which the 100-lb block is in equilibrium. All wheels and pulleys have negligible friction. 3 3. (25 points) Determine the force in each member of the loaded truss. 4 4. (25 points) The 480-lb V-8 engine is supported on an engine stand and rotated 90o from its upright position so that its center of gravity G is in the position shown. Determine the vertical reaction at each roller of the stand. Neglect the weight of the stand itself. 5 BONUS. (5 points) The cargo box of the food-delivery truck for aircraft servicing has a loaded mass m and is elevated by the application of a torque M on the lower end of the link which is hinged to the truck frame. The horizontal slots allow the linkage to unfold as the cargo box is elevated. Express M as a function of h.

info@checkyourstudy.com

info@checkyourstudy.com Whatsapp +919911743277
Homework #8  Consider the veracity or falsehood of each of the following statements. For bonus, argue for those that you believe are true while providing a counterexample for those that you believe are false.  If the first and third rows of A are equal, then det A 0.  If P is a projection, then uCP if and only if Pu  u.  If P is a projection, and detP  0, then P  I .  If A has determinant 10, then 1 A has determinant 1 10 .  If B is invertible, 1 1 det(A B ) det A (detB) .  If P is a projection, and R  2P I , then 2 R  I .  If P is a projection, and P  I , then detP  0 .  Short Computations. All of the following do not involve long computations:  Suppose 1 2 1 5 1 8 A                  and 1 9 2 4 3 1 A                   . Compute 7 13 19 A         .  Compute               0 8 7 1 0 2 3 4 5 3 0 9 2 0 0 0 3 0 0 0 1 9 3 2 0 det .  Use Cramer’s Rule to find 5 x (hint: you do not need your calculator). 1 2 3 4 5 5x 2x 8x x 3x 13 1 3 3x 5x 0 1 3 5 3x 3x 3x 9 1 2 3 5 3x 2x x 2x 7 1 3 x 4x 0 Let A 1 2 3 4 1 3 4 6 2 5 13 15 4 10 15 31 . Given is that det A  61. Do the following:  1 1 2 4 2 3 5 10 3 4 13 15 4 6 15 31 det  det2A  1 3 4 6 2 4 6 8 2 5 13 15 4 10 15 31 det  1 3 4 6 2 5 13 15 4 10 15 31 1 2 3 4 det  Consider the matrix A  0 1 0 0 0 0 1 0 0 0 0 1 1 2 2 1           . Use row (or column) expansion to compute det(xI A) .  The matrix 4 1 1 2 1 1 1 4 1 1 2 1 1 1 4 1 1 2 2 1 1 4 1 1 1 2 1 1 4 1 1 1 2 1 1 4 1 6 P is the projection matrix for the column space of matrix A. This matrix A is also known to be of full rank. Answer the following, giving reasons for your answers.  Find a transparent basis and the dimension for the column space of P.  Find a basis and the dimension for the column space of A .  What size is the matrix A ?  Find a transparent basis and the dimension for the null space of P.  Find a transparent basis and the dimension for the row space of P.  Find a basis and the dimension for the null space of A.  For which of the following b can you find a solution to the system Ax b ? This does not mean you should find a solution, only whether one could or not. 10 17 19 14 10 17 19 14 13 10 17 19 14 13 23 1 1 1 1 1 1 .  It is known that certain vector u is a solution to the system Ax c . Give all solutions to Ax c .  It is also known that 1 2 3 4 5 6 Ax does not have a solution. How would you change the constant vector so that there would be a solution? Extra Problems.  Fill in the blank with the best possible expression to complete the sentence truthfully. Only that one will be counted correct. 1. matrix with two equal columns will have zero determinant. 1 2 3 Some Every No 2. If A is invertible, then A commute with its inverse. 1 2 3 must always can will not 3. If A is 6  9 , then the columns of A be linearly independent. While in AT , the columns be linearly independent. 1 2 3 can have to cannot 4. Let A be square, and suppose Ax  0 has a nontrivial solution. Then detA equal 0. 1 2 3 may cannot must 5. Let A and B be 3 3. Then det (AB) equal det(A)det(B) . 1 2 3 could must couldn’t 6. Let A be square and suppose detA  0. Then have an inverse 1 2 3 will not may must always 7. Let A and B be 2  2 . Then det (A B) equal det(A)  det(B) . 1 2 3 could must could not 8. exist a 6  6 matrix all of whose entries are whole numbers and its determinant is 2 5 . 1 2 3 There does There does not There might Bonus: Consider the matrix 0 0 1 0 2 0 n 0 . Give its determinant as a function of n.

## Homework #8  Consider the veracity or falsehood of each of the following statements. For bonus, argue for those that you believe are true while providing a counterexample for those that you believe are false.  If the first and third rows of A are equal, then det A 0.  If P is a projection, then uCP if and only if Pu  u.  If P is a projection, and detP  0, then P  I .  If A has determinant 10, then 1 A has determinant 1 10 .  If B is invertible, 1 1 det(A B ) det A (detB) .  If P is a projection, and R  2P I , then 2 R  I .  If P is a projection, and P  I , then detP  0 .  Short Computations. All of the following do not involve long computations:  Suppose 1 2 1 5 1 8 A                  and 1 9 2 4 3 1 A                   . Compute 7 13 19 A         .  Compute               0 8 7 1 0 2 3 4 5 3 0 9 2 0 0 0 3 0 0 0 1 9 3 2 0 det .  Use Cramer’s Rule to find 5 x (hint: you do not need your calculator). 1 2 3 4 5 5x 2x 8x x 3x 13 1 3 3x 5x 0 1 3 5 3x 3x 3x 9 1 2 3 5 3x 2x x 2x 7 1 3 x 4x 0 Let A 1 2 3 4 1 3 4 6 2 5 13 15 4 10 15 31 . Given is that det A  61. Do the following:  1 1 2 4 2 3 5 10 3 4 13 15 4 6 15 31 det  det2A  1 3 4 6 2 4 6 8 2 5 13 15 4 10 15 31 det  1 3 4 6 2 5 13 15 4 10 15 31 1 2 3 4 det  Consider the matrix A  0 1 0 0 0 0 1 0 0 0 0 1 1 2 2 1           . Use row (or column) expansion to compute det(xI A) .  The matrix 4 1 1 2 1 1 1 4 1 1 2 1 1 1 4 1 1 2 2 1 1 4 1 1 1 2 1 1 4 1 1 1 2 1 1 4 1 6 P is the projection matrix for the column space of matrix A. This matrix A is also known to be of full rank. Answer the following, giving reasons for your answers.  Find a transparent basis and the dimension for the column space of P.  Find a basis and the dimension for the column space of A .  What size is the matrix A ?  Find a transparent basis and the dimension for the null space of P.  Find a transparent basis and the dimension for the row space of P.  Find a basis and the dimension for the null space of A.  For which of the following b can you find a solution to the system Ax b ? This does not mean you should find a solution, only whether one could or not. 10 17 19 14 10 17 19 14 13 10 17 19 14 13 23 1 1 1 1 1 1 .  It is known that certain vector u is a solution to the system Ax c . Give all solutions to Ax c .  It is also known that 1 2 3 4 5 6 Ax does not have a solution. How would you change the constant vector so that there would be a solution? Extra Problems.  Fill in the blank with the best possible expression to complete the sentence truthfully. Only that one will be counted correct. 1. matrix with two equal columns will have zero determinant. 1 2 3 Some Every No 2. If A is invertible, then A commute with its inverse. 1 2 3 must always can will not 3. If A is 6  9 , then the columns of A be linearly independent. While in AT , the columns be linearly independent. 1 2 3 can have to cannot 4. Let A be square, and suppose Ax  0 has a nontrivial solution. Then detA equal 0. 1 2 3 may cannot must 5. Let A and B be 3 3. Then det (AB) equal det(A)det(B) . 1 2 3 could must couldn’t 6. Let A be square and suppose detA  0. Then have an inverse 1 2 3 will not may must always 7. Let A and B be 2  2 . Then det (A B) equal det(A)  det(B) . 1 2 3 could must could not 8. exist a 6  6 matrix all of whose entries are whole numbers and its determinant is 2 5 . 1 2 3 There does There does not There might Bonus: Consider the matrix 0 0 1 0 2 0 n 0 . Give its determinant as a function of n.

info@checkyourstudy.com Whatsapp +919911743277