4. In the introduction to the Punctuation Made Simple website, what analogy is used to explain the way punctuation works? What, exactly, about punctuation does this analogy illustrate?

4. In the introduction to the Punctuation Made Simple website, what analogy is used to explain the way punctuation works? What, exactly, about punctuation does this analogy illustrate?

As equivalence, consider of the traffic signs that administer the … Read More...
AUCS 340: Ethics in the Professions Homework Assignment: International and US Health Care Systems The following homework assignment will help you to discover some of the differences between the administration of health care in the United States and internationally. This is a research based assignment; remember the use of Wikipedia.com is not an acceptable reference site for this course. You must include a references cited page for this assignment; correctly formatted APA or MLA references are acceptable (simply stating s web address is NOT a complete reference). The answers should be presented in paragraph formation. Staple all pages together for presentation. The first question refers to a country other than the United States of America 1) Socialized Medicine – provide a definition of the term socialized medicine and discuss a country that currently has a socialized medicine system to cover all citizens; this discussion should include the types of services offered to the citizens of this country. When was this system first implemented in this country? What is the name of this country’s health insurance plan? Compare the ranking for the life expectancy for this country to that of the United States. Which is higher? Why? Compare the cost of financing healthcare in this country to the United States in comparison to the amount of annual funding in dollars and the percentage of gross domestic product spent on health care for each country. What rank does this country have in comparison to the United States for overall health of its citizens? (This portion of the assignment should be approximately one page in length and graphic data is acceptable to support some answers, however, graphic information should only be used to explain your written explanation not as the answer to the question.) Bonus: Is this country’s system currently financially stable? Why or why not? The following questions refer to the delivery of healthcare in the United States of America, as it was organized prior to the implementation of the Affordable Care Act (ACA). The ACA is currently being phased into coverage. It is estimated that the answers to the following questions will result in an additional two to three pages of written text in addition to the page for question number one. 2) Medicare – when was it enacted? Who does it cover? Who was President when Medicare was originally passed? What do the specific portions Part A, Part B and Part D cover? When was Part D enacted? Who was President when Part D was enacted? Is the Medicare system currently financially stable? Why or why not. Compare the average life expectancy for males and females when Medicare was originally passed and the average life expectancy of males and females as of 2010; more recent data is acceptable. Bonus: What does Part C cover and when was it enacted? 3) Health Maintenance Organization (HMO) – Define the term health maintenance organization. When did this type of health insurance plan become popular in the United States? How does this type of system provide medical care to the people enrolled? This answer should discuss in network versus out of network coverage. 4) Medicaid- when was it enacted? Who does it cover? Who was President when this insurance plan was enacted? Are the coverage benefits the same state to state? Why or why not? Is the system currently financially stable? Why or why not. What effect does passage of the ACA project to have on enrollment in the Medicaid system? Why? 5) Organ Transplants – What is the mechanism for placement of a patient’s name on the organ transplant list? What is the current length of time a patient must wait for a heart transplant? Explain at least one reason why transplants are considered an ethical issue. How are transplants financed? Give at least one example of how much any type of organ transplant would cost. 6) Health Insurance/Information Portability and Accountability Act (HIPAA) – When was it enacted? Who was President when this legislation as passed? What is the scope of this legislative for the medical community and the general community? (Hint: There are actually two reasons for HIPAA legislation; make sure to state both in your response) 7) Death with Dignity Act – what year was the Oregon Death with Dignity Act passed? What ethical issue is covered by the Death with Dignity Act? List the factors that must be met for a patient to use the Death with Dignity Act. List two additional states that have enacted Death with Dignity Acts and when was the legislation passed in these states? 8) Hospice – what is hospice care? When was it developed? What country was most instrumental in the development of hospice care? Do health insurance plans in the United States cover hospice care? What types of services are covered for hospice care? Grading: 1) Accuracy and completeness of responses = 60% of grade 2) Correct use of sentence structure, spelling and grammar = 30% of grade 3) Appropriate use of references and citations = 10% of grade Simply stating a web page is not an appropriate reference This assignment is due on the date published in the course syllabus.

AUCS 340: Ethics in the Professions Homework Assignment: International and US Health Care Systems The following homework assignment will help you to discover some of the differences between the administration of health care in the United States and internationally. This is a research based assignment; remember the use of Wikipedia.com is not an acceptable reference site for this course. You must include a references cited page for this assignment; correctly formatted APA or MLA references are acceptable (simply stating s web address is NOT a complete reference). The answers should be presented in paragraph formation. Staple all pages together for presentation. The first question refers to a country other than the United States of America 1) Socialized Medicine – provide a definition of the term socialized medicine and discuss a country that currently has a socialized medicine system to cover all citizens; this discussion should include the types of services offered to the citizens of this country. When was this system first implemented in this country? What is the name of this country’s health insurance plan? Compare the ranking for the life expectancy for this country to that of the United States. Which is higher? Why? Compare the cost of financing healthcare in this country to the United States in comparison to the amount of annual funding in dollars and the percentage of gross domestic product spent on health care for each country. What rank does this country have in comparison to the United States for overall health of its citizens? (This portion of the assignment should be approximately one page in length and graphic data is acceptable to support some answers, however, graphic information should only be used to explain your written explanation not as the answer to the question.) Bonus: Is this country’s system currently financially stable? Why or why not? The following questions refer to the delivery of healthcare in the United States of America, as it was organized prior to the implementation of the Affordable Care Act (ACA). The ACA is currently being phased into coverage. It is estimated that the answers to the following questions will result in an additional two to three pages of written text in addition to the page for question number one. 2) Medicare – when was it enacted? Who does it cover? Who was President when Medicare was originally passed? What do the specific portions Part A, Part B and Part D cover? When was Part D enacted? Who was President when Part D was enacted? Is the Medicare system currently financially stable? Why or why not. Compare the average life expectancy for males and females when Medicare was originally passed and the average life expectancy of males and females as of 2010; more recent data is acceptable. Bonus: What does Part C cover and when was it enacted? 3) Health Maintenance Organization (HMO) – Define the term health maintenance organization. When did this type of health insurance plan become popular in the United States? How does this type of system provide medical care to the people enrolled? This answer should discuss in network versus out of network coverage. 4) Medicaid- when was it enacted? Who does it cover? Who was President when this insurance plan was enacted? Are the coverage benefits the same state to state? Why or why not? Is the system currently financially stable? Why or why not. What effect does passage of the ACA project to have on enrollment in the Medicaid system? Why? 5) Organ Transplants – What is the mechanism for placement of a patient’s name on the organ transplant list? What is the current length of time a patient must wait for a heart transplant? Explain at least one reason why transplants are considered an ethical issue. How are transplants financed? Give at least one example of how much any type of organ transplant would cost. 6) Health Insurance/Information Portability and Accountability Act (HIPAA) – When was it enacted? Who was President when this legislation as passed? What is the scope of this legislative for the medical community and the general community? (Hint: There are actually two reasons for HIPAA legislation; make sure to state both in your response) 7) Death with Dignity Act – what year was the Oregon Death with Dignity Act passed? What ethical issue is covered by the Death with Dignity Act? List the factors that must be met for a patient to use the Death with Dignity Act. List two additional states that have enacted Death with Dignity Acts and when was the legislation passed in these states? 8) Hospice – what is hospice care? When was it developed? What country was most instrumental in the development of hospice care? Do health insurance plans in the United States cover hospice care? What types of services are covered for hospice care? Grading: 1) Accuracy and completeness of responses = 60% of grade 2) Correct use of sentence structure, spelling and grammar = 30% of grade 3) Appropriate use of references and citations = 10% of grade Simply stating a web page is not an appropriate reference This assignment is due on the date published in the course syllabus.

1 ACTIVITY PURPOSE The purpose of this activity is to give you practice preparing a four-week work schedule. PROCESS Follow the steps listed below to prepare a schedule. 1. Read the Information Sheet: Scheduling Employees. 2. The pay week for this medical record service runs Sunday – Saturday. The pay period is two pay weeks. Each full-time employee cannot work more than 40 hours per pay week, or 80 hours per pay period. Each part-time employee works 20 hours per pay week – 40 hours per pay period. 3. The first Friday of the four – week period is a holiday. 4. The medical record service has 24 hour coverage, seven days a week. All full-time employees work a five day pay week, eight hours per day, with rotating weekend coverage. Part-time employees work four hours Monday – Friday, except for their rotation weekend. On those days they work an eight hour shift. Remember to adjust their time accordingly. 5. The Assistant Director and all supervisors, except the Tumor Registry Supervisor, should be scheduled for rotating weekend coverage. 2 6. All employees, except the Tumor Registry employees, should be scheduled on a rotating basis for weekend coverage. 7. For weekend and holiday coverage, there needs to be at least two clerks and one transcriptionist on days and evenings, one clerk and one transcriptionist at night. 8. The Department Director has scheduled a two – week vacation for the first two full weeks of the four – week schedule. 9. Employees who work holidays must take the holiday time within the pay period in which the holiday occurs. 10.Use the following marks on the schedule: X – work eight hours V – vacation H – holiday D – day off 4 – hours for part-time employees 3 PERSONNEL OF HUFFMAN MEMORIAL MEDICAL RECORD DEPARTMENT DAYS (7:00 A.M. – 3:30 P.M.) Director Diane Lucas Assistant Director JoAnn DeWitt Coding 1 Supervisor – Nina Long 3 Coding/PAS Clerks – Cheryl Newman Pam Rogers Janet Bennett Transcription 1 Supervisor – 6 Transcribers – Jessica DuBois Eileen Andrews Iris Williams Diane Henderson Vivian Thomas Lois Fisher Emma Daily Filing/Retrieval 1 Supervisor – 4 Clerks – 1 Part-time Clerk – Bill James Darlene Cook Janice Stivers Larry Patterson Don Williamson Susan Evanston Tumor Registry 1 Supervisor – 1 Clerk – 1 Part-time Clerk – Mabel Smith Pauline Erskine Suzanne Chapman EVENING (3:00 P.M. – 11:00 P.M.) Transcription 1 Part-time – Beth Richman Filing/Retrieval 1 Supervisor – 2 Clerks – 1 Part-time Clerk – Daniel Johnson Harry Skinner Matthew Scott Anne Madison NIGHTS (11:00 P.M. – 7:00 A.M.) Transcription 3 Transcribers – Louise Wilson Jane Matters Nancy Lipman Filing/Retrieval 2 Clerks – Lily Jamison Helen Benson 4 INFORMATION SHEET SCHEDULING EMPLOYEES In addition to the planning, organizing and controlling of a medical record service, managers must accurately plan the work pattern for employees. This plan must insure that all duties are adequately covered, all shifts have sufficient numbers of people to perform duties, and employees are given appropriate days off. Scheduling encompasses both short term and long term plans. Short term scheduling involves planning work on a daily and/or weekly basis. Long term scheduling generally covers a four – to six – week time period, as well as yearly planning for holidays. In larger health care facilities with the medical record service providing 24 hour service, seven days a week, advanced planning is a requisite to a smooth operation. In smaller facilities with shorter hours of service, the schedule is less complex. The number of employees needed for weekend work for those facilities open on weekends is totally dependent upon the weekend workload. A volume of seventy (70) to ninety (90) discharges per day generally requires two (2) medical record clerks to process those discharges, as well as to perform the other daily responsibilities of the medical record service. It is also advisable to schedule a supervisor during the weekend in the event that any problems arise which a clerk might not be able to handle (i.e. medico-legal questions, irate patients or physicians). If you work in a department that has an active work 5 measurement program, valuable scheduling information can be obtained from the data reported. In planning for holidays, it is important to remember to: 1. obtain employee preferences for which holidays they might choose to work; 2. keep track of who has worked which holidays; 3. if a holiday occurs on a Friday or a Monday and the employee must work on the holiday, try to give them a Friday or Monday off to compensate. It is important for you to be fair in terms of assigning employees weekend work and scheduling Holidays. Everyone should share the responsibility equally. If you have all supervisors work one weekend per month, then that schedule should be followed. If you have clerks working every other weekend, then that pattern should be followed consistently. When preparing a schedule it is best to put in all the “givens” first. For example, if you have vacations scheduled for the four weeks you’re preparing, then those should be marked in first. Also included in this category would be employees who do not work weekends (i.e. personnel in the Tumor Registry). Once all work times have been scheduled, you must be certain that an employee receives two (2) days off for every seven (7) days. If an employee works more than forty (40) hours in one (1) week, the facility must pat time-an-a-half for all hours over forty. Some facilities are experimenting with a variety of scheduling techniques: flex time and the four-day work week. Both techniques have been 6 heavily debated. The final questions regarding these nontraditional alternatives end up being: 1. Are your employees willing to try it? 2. Are you ready to handle the extra planning these alternatives may warrant? 3. Do you have the necessary resources, including equipment, to accommodate a nontraditional scheduling alternative? 4. Will administrator of the facility support your proposal? Once you have established answers to those questions you are ready to embark on a new technique of scheduling. Scheduling employees can be one of the most challenging tasks that a manager faces. Whether you elect to try one of the nontraditional alternatives or use the five-day work week, the manager must: 1. be fair; 2. apply all guidelines to every employee consistently 3. utilize all available data to arrive at appropriate numbers for weekend and holiday staffing requirements; and 4. maximize the utilization of equipment and resources.

1 ACTIVITY PURPOSE The purpose of this activity is to give you practice preparing a four-week work schedule. PROCESS Follow the steps listed below to prepare a schedule. 1. Read the Information Sheet: Scheduling Employees. 2. The pay week for this medical record service runs Sunday – Saturday. The pay period is two pay weeks. Each full-time employee cannot work more than 40 hours per pay week, or 80 hours per pay period. Each part-time employee works 20 hours per pay week – 40 hours per pay period. 3. The first Friday of the four – week period is a holiday. 4. The medical record service has 24 hour coverage, seven days a week. All full-time employees work a five day pay week, eight hours per day, with rotating weekend coverage. Part-time employees work four hours Monday – Friday, except for their rotation weekend. On those days they work an eight hour shift. Remember to adjust their time accordingly. 5. The Assistant Director and all supervisors, except the Tumor Registry Supervisor, should be scheduled for rotating weekend coverage. 2 6. All employees, except the Tumor Registry employees, should be scheduled on a rotating basis for weekend coverage. 7. For weekend and holiday coverage, there needs to be at least two clerks and one transcriptionist on days and evenings, one clerk and one transcriptionist at night. 8. The Department Director has scheduled a two – week vacation for the first two full weeks of the four – week schedule. 9. Employees who work holidays must take the holiday time within the pay period in which the holiday occurs. 10.Use the following marks on the schedule: X – work eight hours V – vacation H – holiday D – day off 4 – hours for part-time employees 3 PERSONNEL OF HUFFMAN MEMORIAL MEDICAL RECORD DEPARTMENT DAYS (7:00 A.M. – 3:30 P.M.) Director Diane Lucas Assistant Director JoAnn DeWitt Coding 1 Supervisor – Nina Long 3 Coding/PAS Clerks – Cheryl Newman Pam Rogers Janet Bennett Transcription 1 Supervisor – 6 Transcribers – Jessica DuBois Eileen Andrews Iris Williams Diane Henderson Vivian Thomas Lois Fisher Emma Daily Filing/Retrieval 1 Supervisor – 4 Clerks – 1 Part-time Clerk – Bill James Darlene Cook Janice Stivers Larry Patterson Don Williamson Susan Evanston Tumor Registry 1 Supervisor – 1 Clerk – 1 Part-time Clerk – Mabel Smith Pauline Erskine Suzanne Chapman EVENING (3:00 P.M. – 11:00 P.M.) Transcription 1 Part-time – Beth Richman Filing/Retrieval 1 Supervisor – 2 Clerks – 1 Part-time Clerk – Daniel Johnson Harry Skinner Matthew Scott Anne Madison NIGHTS (11:00 P.M. – 7:00 A.M.) Transcription 3 Transcribers – Louise Wilson Jane Matters Nancy Lipman Filing/Retrieval 2 Clerks – Lily Jamison Helen Benson 4 INFORMATION SHEET SCHEDULING EMPLOYEES In addition to the planning, organizing and controlling of a medical record service, managers must accurately plan the work pattern for employees. This plan must insure that all duties are adequately covered, all shifts have sufficient numbers of people to perform duties, and employees are given appropriate days off. Scheduling encompasses both short term and long term plans. Short term scheduling involves planning work on a daily and/or weekly basis. Long term scheduling generally covers a four – to six – week time period, as well as yearly planning for holidays. In larger health care facilities with the medical record service providing 24 hour service, seven days a week, advanced planning is a requisite to a smooth operation. In smaller facilities with shorter hours of service, the schedule is less complex. The number of employees needed for weekend work for those facilities open on weekends is totally dependent upon the weekend workload. A volume of seventy (70) to ninety (90) discharges per day generally requires two (2) medical record clerks to process those discharges, as well as to perform the other daily responsibilities of the medical record service. It is also advisable to schedule a supervisor during the weekend in the event that any problems arise which a clerk might not be able to handle (i.e. medico-legal questions, irate patients or physicians). If you work in a department that has an active work 5 measurement program, valuable scheduling information can be obtained from the data reported. In planning for holidays, it is important to remember to: 1. obtain employee preferences for which holidays they might choose to work; 2. keep track of who has worked which holidays; 3. if a holiday occurs on a Friday or a Monday and the employee must work on the holiday, try to give them a Friday or Monday off to compensate. It is important for you to be fair in terms of assigning employees weekend work and scheduling Holidays. Everyone should share the responsibility equally. If you have all supervisors work one weekend per month, then that schedule should be followed. If you have clerks working every other weekend, then that pattern should be followed consistently. When preparing a schedule it is best to put in all the “givens” first. For example, if you have vacations scheduled for the four weeks you’re preparing, then those should be marked in first. Also included in this category would be employees who do not work weekends (i.e. personnel in the Tumor Registry). Once all work times have been scheduled, you must be certain that an employee receives two (2) days off for every seven (7) days. If an employee works more than forty (40) hours in one (1) week, the facility must pat time-an-a-half for all hours over forty. Some facilities are experimenting with a variety of scheduling techniques: flex time and the four-day work week. Both techniques have been 6 heavily debated. The final questions regarding these nontraditional alternatives end up being: 1. Are your employees willing to try it? 2. Are you ready to handle the extra planning these alternatives may warrant? 3. Do you have the necessary resources, including equipment, to accommodate a nontraditional scheduling alternative? 4. Will administrator of the facility support your proposal? Once you have established answers to those questions you are ready to embark on a new technique of scheduling. Scheduling employees can be one of the most challenging tasks that a manager faces. Whether you elect to try one of the nontraditional alternatives or use the five-day work week, the manager must: 1. be fair; 2. apply all guidelines to every employee consistently 3. utilize all available data to arrive at appropriate numbers for weekend and holiday staffing requirements; and 4. maximize the utilization of equipment and resources.

Learning Objectives This part begins with what are probably the basic questions for a designer of a computing sytem’s human interface: • How should the functionality of the system be described and presented to the user? • How can the design of the interface help the user to understand and successfully use the system? Learning Goals At the conclusion of this module you will be able to: • define the user’s movement among the displays that make up the system; • the addition of visual and spatial cues to the information organization; and • methods of structuring and presenting the interface. Introduction This module deals with the development and utilization of a system. We all have systems for doing things. For instance, we may have a system for handling routine situations around the house that makes sense only to us. Or, we may be oriented toward systems that have a more widespread understanding such as personal finance or how to fill out our IRS forms. When humans use a system, whether natural or man-made, they do so based on their understanding of that system. A totally accurate understanding of a system is not a necessary condition for effective use of that system. Key Terms Systems, User Model, Model, Metaphor, Concept Modeling The Development of Human Systems I. The organization of knowledge about a phenomenon or system constitutes the human’s conceptual model of that system. Information gained from experience with a system contributes to the model, and the model in turn provides a reference or guide for future experience with the system. A. (Reinstein and Hersh, 1984) – a set of concepts a person gradually acquires to explain the behavior of a system. …. That enables that person to understand and interact with the system. 1. For the user, the important thing about a model is its ability to predict: when confronted with unfamiliar or incompletely understood situations, the user relies on their model, their conceptual understanding of the system, to make educated guesses about how to proceed. If the user’s model accurately reflects the effects of the system, then he will be more successful in learning and using the system, and likely will perceive the system as easy to use. 2. Because the model can server this important role in design of helping to create an understandable and predictable system, the creation of the user’s conceptual model should be the first task of system development. One of the more important examples of the use of conceptual model, the XEROX Star office automation system (whose design greatly influenced Apple’s Lisa and Macintosh systems), started with thirty man-years of design work on the user interface before either the hardware or the system software was designed (Smith, Irby, Kimball, Verplank and Harselm, 1982). 3. The conceptual model does not have to be an accurate representation of how the system actually functions. Indeed, it can be quite different from reality, and in most if not all circumstances for systems as complex as computers, should be. 4. The model may be a myth or metaphor, that explains the system: it “suggests that the computer is like something with which the user is already familiar” (Rubinstein and Hersh, 1984, p. 43), or provides a simple explanation of the system which can be used to predict the system’s behavior. 5. ….the conceptual models people form are based on their interactions with an environment … “people who have different roles within an environment … will form different conceptual systems of those environments. 6. People whose essential interaction with an environment is to create it will almost inevitably have an understanding and conceptualization of it which is different from those whose major interaction with it is to use it” Action Assignment Based on the readings for this module, please identify a personal “system” with which you act and perform within. This should be from personal experience and one that assists in providing a model for organization, understanding and problem solving.

Learning Objectives This part begins with what are probably the basic questions for a designer of a computing sytem’s human interface: • How should the functionality of the system be described and presented to the user? • How can the design of the interface help the user to understand and successfully use the system? Learning Goals At the conclusion of this module you will be able to: • define the user’s movement among the displays that make up the system; • the addition of visual and spatial cues to the information organization; and • methods of structuring and presenting the interface. Introduction This module deals with the development and utilization of a system. We all have systems for doing things. For instance, we may have a system for handling routine situations around the house that makes sense only to us. Or, we may be oriented toward systems that have a more widespread understanding such as personal finance or how to fill out our IRS forms. When humans use a system, whether natural or man-made, they do so based on their understanding of that system. A totally accurate understanding of a system is not a necessary condition for effective use of that system. Key Terms Systems, User Model, Model, Metaphor, Concept Modeling The Development of Human Systems I. The organization of knowledge about a phenomenon or system constitutes the human’s conceptual model of that system. Information gained from experience with a system contributes to the model, and the model in turn provides a reference or guide for future experience with the system. A. (Reinstein and Hersh, 1984) – a set of concepts a person gradually acquires to explain the behavior of a system. …. That enables that person to understand and interact with the system. 1. For the user, the important thing about a model is its ability to predict: when confronted with unfamiliar or incompletely understood situations, the user relies on their model, their conceptual understanding of the system, to make educated guesses about how to proceed. If the user’s model accurately reflects the effects of the system, then he will be more successful in learning and using the system, and likely will perceive the system as easy to use. 2. Because the model can server this important role in design of helping to create an understandable and predictable system, the creation of the user’s conceptual model should be the first task of system development. One of the more important examples of the use of conceptual model, the XEROX Star office automation system (whose design greatly influenced Apple’s Lisa and Macintosh systems), started with thirty man-years of design work on the user interface before either the hardware or the system software was designed (Smith, Irby, Kimball, Verplank and Harselm, 1982). 3. The conceptual model does not have to be an accurate representation of how the system actually functions. Indeed, it can be quite different from reality, and in most if not all circumstances for systems as complex as computers, should be. 4. The model may be a myth or metaphor, that explains the system: it “suggests that the computer is like something with which the user is already familiar” (Rubinstein and Hersh, 1984, p. 43), or provides a simple explanation of the system which can be used to predict the system’s behavior. 5. ….the conceptual models people form are based on their interactions with an environment … “people who have different roles within an environment … will form different conceptual systems of those environments. 6. People whose essential interaction with an environment is to create it will almost inevitably have an understanding and conceptualization of it which is different from those whose major interaction with it is to use it” Action Assignment Based on the readings for this module, please identify a personal “system” with which you act and perform within. This should be from personal experience and one that assists in providing a model for organization, understanding and problem solving.

CHM114: Exam #3 CHM 114 Exam #3 Practice Exam (Chapters 9.1-9.4, 9.6, 10, 11.1-11.6, 13.1-13.5) Instructor: O. Graudejus Points: 100 Print Name Sign Name Student I.D. # 1. You are responsible for the information on this page. Please read it carefully. 2. If you enter your ASU ID incorrectly on the scantron, a 3 point penalty will be assessed. 3. Code your name and 10 digit affiliate identification number on the separate scantron answer sheet. Use only a #2 pencil 4. Do all calculations on the exam pages. Do not make any unnecessary marks on the answer sheet. 5. This exam consists of 25 multiple choice questions worth 4 points each and a periodic table. Make sure you have them all. 6. Choose the best answer to each of the questions and answer it on the computer-graded answer sheet. Read all responses before making a selection. 7. Read the directions carefully for each problem. 8. Avoid even casual glances at other students’ exams. 9. Stop writing and hand in your scantron answer sheet and your test promptly when instructed. LATE EXAMS MAY HAVE POINTS DEDUCTED. 10. You will have 50 minutes to complete the exam. 11. If you leave early, please do so quietly. 12. Work the easiest problems first. 13. A periodic table is attached as the last page to this exam. 14. Answers will be posted online this afternoon. Potentially useful information: K = ºC + 273.15 PV=nRT R=8.314 J·K-1·mol-1 DE = q + w 760 torr = 1 atm = 101325 Pa = 1.013 bar Avogadro’s Number = 6.022 × 1023 particles/mole q = (Sp. Heat) × m × DT (Specific Heatwater = 4.184 J/g°C) 1 2 2 3 2 ( is a constant) KE mv KE RT R = = M RT u 3 = \ -2- CHM 114: Exam #3 1) Of the following molecules, only __________ is polar. A) CCl4 B) BCl3 C) NCl3 D) BeCl2 E) Cl2 2) The molecular geometry of the CHF3 molecule is __________, and the molecule is __________. A) trigonal pyramidal, polar B) tetrahedral, nonpolar C) seesaw, nonpolar D) tetrahedral, polar E) seesaw, polar 3) The electron-domain geometry of __________ is tetrahedral. A) 4 CBr B) 3 PH C) 2 2 CCl Br D) 4 XeF E) all of the above except 4 XeF 4) Of the following substances, only __________ has London dispersion forces as its only intermolecular force. A) H2O B) CCl4 C) HF D) CH3COOH E) PH3 5) The principal reason for the extremely low solubility of NaCl in benzene (C6H6) is the __________. A) strong solvent-solvent interactions B) hydrogen bonding in C6H6 C) strength of the covalent bond in NaCl D) weak solvation (interaction) of Na+ and Cl- by C6H6 E) increased disorder due to mixing of solute and solvent -3- CHM 114: Exam #3 6) There are __________  and __________  bonds in the H −C º C−H molecule. A) 3 and 2 B) 3 and 4 C) 4 and 3 D) 2 and 3 E) 5 and 0 7) A sample of a gas (5.0 mol) at 1.0 atm is expanded at constant temperature from 10 L to 15 L. The final pressure is __________ atm. A) 1.5 B) 7.5 C) 0.67 D) 3.3 E) 15 8) A mixture of He and Ne at a total pressure of 0.95 atm is found to contain 0.32 mol of He and 0.56 mol of Ne. The partial pressure of Ne is __________ atm. A) 1.7 B) 1.5 C) 0.60 D) 0.35 E) 1.0 9) Automobile air bags use the decomposition of sodium azide as their source of gas for rapid inflation: 3 2 2NaN (s)®2Na (s) + 3N (g) . What mass (g) of 3 NaN is required to provide 40.0 L of 2 N at 25.0 °C and 763 torr? A) 1.64 B) 1.09 C) 160 D) 71.1  10) The reaction of 50 mL of 2 Cl gas with 50 mL of 4 CH gas via the equation: 2 4 3 Cl (g) + CH (g)®HCl (g) + CH Cl (g) will produce a total of __________ mL of products if pressure and temperature are kept constant. A) 100 B) 50 C) 200 D) 150 E) 250 -4- CHM 114: Exam #3 11) The density of 2 N O at 1.53 atm and 45.2 °C is __________ g/L. A) 18.2 B) 1.76 C) 0.388 D) 9.99 E) 2.58 12) A gas at a pressure of 325 torr exerts a force of __________ N on an area of 2 5.5 m . A)1.8×103 B) 59 C) 5 2.4×10 D) 0.018 E) 2.4 13) According to kinetic-molecular theory, in which of the following gases will the root-mean-square speed of the molecules be the highest at 200 °C? A) HCl B) 2 Cl C) 2 H O D) 6 SF E) None. The molecules of all gases have the same root-mean-square speed at any given temperature. 14) A real gas will behave most like an ideal gas under conditions of __________. A) high temperature and high pressure B) high temperature and low pressure C) low temperature and high pressure D) low temperature and low pressure E) STP 15) Elemental iodine (I2) is a solid at room temperature. What is the major attractive force that exists among different I2 molecules in the solid? A) London dispersion forces B) dipole-dipole rejections C) ionic-dipole interactions D) covalent-ionic interactions E) dipole-dipole attractions -5- CHM 114: Exam #3 16) The heat of fusion of water is 6.01 kJ/mol. The heat capacity of liquid water is 75.3 Jmol-1K-1. The conversion of 50.0 g of ice at 0.00 °C to liquid water at 22.0 °C requires __________ kJ of heat. A) 3.8×102 B) 21.3 C) 17.2 D) 0.469 E) Insufficient data are given. 17) Of the following substances, __________ has the highest boiling point. A) 2 H O B) 2 CO C) 4 CH D) Kr E) SF4 18) Which statements about viscosity are true? (i) Viscosity increases as temperature decreases. (ii) Viscosity increases as molecular weight increases. (iii) Viscosity increases as intermolecular forces increase. A) (i) only B) (ii) and (iii) C) (i) and (iii) D) none E) all 19) Based on molecular mass and dipole moment of the five compounds in the table below, which should have the highest boiling point? A) 3 2 3 CH CH CH B) 3 3 CH OCH C) 3 CH Cl D) 3 CH CHO E) 3 CH CN -6- CHM 114: Exam #3 20) On the phase diagram shown above, the coordinates of point __________ correspond to the critical temperature and pressure. A) A B) B C) C D) D E) E 21) The vapor pressure of pure ethanol at 60 °C is 0.459 atm. Raoult’s Law predicts that a solution prepared by dissolving 10.0 mmol naphthalene (nonvolatile) in 90.0 mmol ethanol will have a vapor pressure of _______ atm. A) 0.498 B) 0.413 C) 0.790 D) 0.367 E) 0.0918 Of the following, a 0.1 M aqueous solution of __________ will have the highest freezing point. A) NaCl B) Al(NO3)3 C) K2CrO4 D) Na2SO4 E) sucrose (a sugar) 23) What is the freezing point (°C) of a solution prepared by dissolving 11.3 g of Ca(NO3)2 (formula weight = 164 g/mol) in 115 g of water? The molal freezing point depression constant for water is 1.86 °C/m. A) -3.34 B) -1.11 C) 3.34 D) 1.11 E) 0.00 -7- CHM 114: Exam #3 24) The phase changes B  C and D  E are not associated with temperature increases because the heat energy is used up to __________. A) break intermolecular bonds B) break intramolecular bonds C) rearrange atoms within molecules D) increase the velocity of molecules E) increase the density of the sample 25) Ammonium nitrate (NH4NO3) dissolves readily in water even though the dissolution is endothermic by 26.4 kJ/mol. The solution process is spontaneous because __________. A) the vapor pressure of the water decreases upon addition of the solute B) the ammonium and the nitrate ion both contain nitrogen C) of the decrease in enthalpy upon addition of the solute D) of the increase in enthalpy upon dissolution of this strong electrolyte E) of the increase in disorder (entropy) upon dissolution of this strong electrolyte    -8- CHM 114: Exam #3

CHM114: Exam #3 CHM 114 Exam #3 Practice Exam (Chapters 9.1-9.4, 9.6, 10, 11.1-11.6, 13.1-13.5) Instructor: O. Graudejus Points: 100 Print Name Sign Name Student I.D. # 1. You are responsible for the information on this page. Please read it carefully. 2. If you enter your ASU ID incorrectly on the scantron, a 3 point penalty will be assessed. 3. Code your name and 10 digit affiliate identification number on the separate scantron answer sheet. Use only a #2 pencil 4. Do all calculations on the exam pages. Do not make any unnecessary marks on the answer sheet. 5. This exam consists of 25 multiple choice questions worth 4 points each and a periodic table. Make sure you have them all. 6. Choose the best answer to each of the questions and answer it on the computer-graded answer sheet. Read all responses before making a selection. 7. Read the directions carefully for each problem. 8. Avoid even casual glances at other students’ exams. 9. Stop writing and hand in your scantron answer sheet and your test promptly when instructed. LATE EXAMS MAY HAVE POINTS DEDUCTED. 10. You will have 50 minutes to complete the exam. 11. If you leave early, please do so quietly. 12. Work the easiest problems first. 13. A periodic table is attached as the last page to this exam. 14. Answers will be posted online this afternoon. Potentially useful information: K = ºC + 273.15 PV=nRT R=8.314 J·K-1·mol-1 DE = q + w 760 torr = 1 atm = 101325 Pa = 1.013 bar Avogadro’s Number = 6.022 × 1023 particles/mole q = (Sp. Heat) × m × DT (Specific Heatwater = 4.184 J/g°C) 1 2 2 3 2 ( is a constant) KE mv KE RT R = = M RT u 3 = \ -2- CHM 114: Exam #3 1) Of the following molecules, only __________ is polar. A) CCl4 B) BCl3 C) NCl3 D) BeCl2 E) Cl2 2) The molecular geometry of the CHF3 molecule is __________, and the molecule is __________. A) trigonal pyramidal, polar B) tetrahedral, nonpolar C) seesaw, nonpolar D) tetrahedral, polar E) seesaw, polar 3) The electron-domain geometry of __________ is tetrahedral. A) 4 CBr B) 3 PH C) 2 2 CCl Br D) 4 XeF E) all of the above except 4 XeF 4) Of the following substances, only __________ has London dispersion forces as its only intermolecular force. A) H2O B) CCl4 C) HF D) CH3COOH E) PH3 5) The principal reason for the extremely low solubility of NaCl in benzene (C6H6) is the __________. A) strong solvent-solvent interactions B) hydrogen bonding in C6H6 C) strength of the covalent bond in NaCl D) weak solvation (interaction) of Na+ and Cl- by C6H6 E) increased disorder due to mixing of solute and solvent -3- CHM 114: Exam #3 6) There are __________  and __________  bonds in the H −C º C−H molecule. A) 3 and 2 B) 3 and 4 C) 4 and 3 D) 2 and 3 E) 5 and 0 7) A sample of a gas (5.0 mol) at 1.0 atm is expanded at constant temperature from 10 L to 15 L. The final pressure is __________ atm. A) 1.5 B) 7.5 C) 0.67 D) 3.3 E) 15 8) A mixture of He and Ne at a total pressure of 0.95 atm is found to contain 0.32 mol of He and 0.56 mol of Ne. The partial pressure of Ne is __________ atm. A) 1.7 B) 1.5 C) 0.60 D) 0.35 E) 1.0 9) Automobile air bags use the decomposition of sodium azide as their source of gas for rapid inflation: 3 2 2NaN (s)®2Na (s) + 3N (g) . What mass (g) of 3 NaN is required to provide 40.0 L of 2 N at 25.0 °C and 763 torr? A) 1.64 B) 1.09 C) 160 D) 71.1  10) The reaction of 50 mL of 2 Cl gas with 50 mL of 4 CH gas via the equation: 2 4 3 Cl (g) + CH (g)®HCl (g) + CH Cl (g) will produce a total of __________ mL of products if pressure and temperature are kept constant. A) 100 B) 50 C) 200 D) 150 E) 250 -4- CHM 114: Exam #3 11) The density of 2 N O at 1.53 atm and 45.2 °C is __________ g/L. A) 18.2 B) 1.76 C) 0.388 D) 9.99 E) 2.58 12) A gas at a pressure of 325 torr exerts a force of __________ N on an area of 2 5.5 m . A)1.8×103 B) 59 C) 5 2.4×10 D) 0.018 E) 2.4 13) According to kinetic-molecular theory, in which of the following gases will the root-mean-square speed of the molecules be the highest at 200 °C? A) HCl B) 2 Cl C) 2 H O D) 6 SF E) None. The molecules of all gases have the same root-mean-square speed at any given temperature. 14) A real gas will behave most like an ideal gas under conditions of __________. A) high temperature and high pressure B) high temperature and low pressure C) low temperature and high pressure D) low temperature and low pressure E) STP 15) Elemental iodine (I2) is a solid at room temperature. What is the major attractive force that exists among different I2 molecules in the solid? A) London dispersion forces B) dipole-dipole rejections C) ionic-dipole interactions D) covalent-ionic interactions E) dipole-dipole attractions -5- CHM 114: Exam #3 16) The heat of fusion of water is 6.01 kJ/mol. The heat capacity of liquid water is 75.3 Jmol-1K-1. The conversion of 50.0 g of ice at 0.00 °C to liquid water at 22.0 °C requires __________ kJ of heat. A) 3.8×102 B) 21.3 C) 17.2 D) 0.469 E) Insufficient data are given. 17) Of the following substances, __________ has the highest boiling point. A) 2 H O B) 2 CO C) 4 CH D) Kr E) SF4 18) Which statements about viscosity are true? (i) Viscosity increases as temperature decreases. (ii) Viscosity increases as molecular weight increases. (iii) Viscosity increases as intermolecular forces increase. A) (i) only B) (ii) and (iii) C) (i) and (iii) D) none E) all 19) Based on molecular mass and dipole moment of the five compounds in the table below, which should have the highest boiling point? A) 3 2 3 CH CH CH B) 3 3 CH OCH C) 3 CH Cl D) 3 CH CHO E) 3 CH CN -6- CHM 114: Exam #3 20) On the phase diagram shown above, the coordinates of point __________ correspond to the critical temperature and pressure. A) A B) B C) C D) D E) E 21) The vapor pressure of pure ethanol at 60 °C is 0.459 atm. Raoult’s Law predicts that a solution prepared by dissolving 10.0 mmol naphthalene (nonvolatile) in 90.0 mmol ethanol will have a vapor pressure of _______ atm. A) 0.498 B) 0.413 C) 0.790 D) 0.367 E) 0.0918 Of the following, a 0.1 M aqueous solution of __________ will have the highest freezing point. A) NaCl B) Al(NO3)3 C) K2CrO4 D) Na2SO4 E) sucrose (a sugar) 23) What is the freezing point (°C) of a solution prepared by dissolving 11.3 g of Ca(NO3)2 (formula weight = 164 g/mol) in 115 g of water? The molal freezing point depression constant for water is 1.86 °C/m. A) -3.34 B) -1.11 C) 3.34 D) 1.11 E) 0.00 -7- CHM 114: Exam #3 24) The phase changes B  C and D  E are not associated with temperature increases because the heat energy is used up to __________. A) break intermolecular bonds B) break intramolecular bonds C) rearrange atoms within molecules D) increase the velocity of molecules E) increase the density of the sample 25) Ammonium nitrate (NH4NO3) dissolves readily in water even though the dissolution is endothermic by 26.4 kJ/mol. The solution process is spontaneous because __________. A) the vapor pressure of the water decreases upon addition of the solute B) the ammonium and the nitrate ion both contain nitrogen C) of the decrease in enthalpy upon addition of the solute D) of the increase in enthalpy upon dissolution of this strong electrolyte E) of the increase in disorder (entropy) upon dissolution of this strong electrolyte    -8- CHM 114: Exam #3

Page 1 of 2 Name ________________________ ENGR350-01 Learning Exercise 7: Problem 1 [3 points]: For the circuit below, we want to solve for Vc(t). Assume that for t < 0, switch S1 has been closed long enough for Vc(t) to reach a constant value. The switch S1 opens at t=0. Note that the steady state model for a capacitor is an open circuit (since ?????=?). 1a) Find Vc just before t=0 and also for t. 1b) Find τ for t>0 (after the switch opens). 1c) Find Vc(t) mathematically and graph it for the first 50 milliseconds after the switch opens. Make the graph big enough to clearly show the natural response and steady state response. Page 2 of 2 Problem 2 [7 points]: For the circuit below, we want to calculate iL(t). For t<0, you can assume the voltage source has been at +5V for a long time prior to t=0. At t=0, the voltage source drops to -5V and stays. Note that the steady state model for an inductor is a wire (since ?????=?). 2a) Find the value of iL(t) just prior to t=0. 2b) Find the value of iL(t) for t. 2c) Find the time constant τ. 2d) Write the mathematical expression describing iL(t) for t>0. 2e) Based on 2d, find VL(t) for t>0. 2f) Use nodal analysis to find the differential equation governing iL(t) for this circuit, with circuit values (such as R1, R2, L, V1) in addition to iL(t) and ?????. 2g) In this circuit, R2 is actually modeling the resistive loss within a non-ideal inductor. Calculate the point in time when the power dissipated in R2 is minimum. Hint: first think about the point in time that (iL)2 is minimum, since P=i2R for a resistor. +5 Volts -5 Volts V1

Page 1 of 2 Name ________________________ ENGR350-01 Learning Exercise 7: Problem 1 [3 points]: For the circuit below, we want to solve for Vc(t). Assume that for t < 0, switch S1 has been closed long enough for Vc(t) to reach a constant value. The switch S1 opens at t=0. Note that the steady state model for a capacitor is an open circuit (since ?????=?). 1a) Find Vc just before t=0 and also for t. 1b) Find τ for t>0 (after the switch opens). 1c) Find Vc(t) mathematically and graph it for the first 50 milliseconds after the switch opens. Make the graph big enough to clearly show the natural response and steady state response. Page 2 of 2 Problem 2 [7 points]: For the circuit below, we want to calculate iL(t). For t<0, you can assume the voltage source has been at +5V for a long time prior to t=0. At t=0, the voltage source drops to -5V and stays. Note that the steady state model for an inductor is a wire (since ?????=?). 2a) Find the value of iL(t) just prior to t=0. 2b) Find the value of iL(t) for t. 2c) Find the time constant τ. 2d) Write the mathematical expression describing iL(t) for t>0. 2e) Based on 2d, find VL(t) for t>0. 2f) Use nodal analysis to find the differential equation governing iL(t) for this circuit, with circuit values (such as R1, R2, L, V1) in addition to iL(t) and ?????. 2g) In this circuit, R2 is actually modeling the resistive loss within a non-ideal inductor. Calculate the point in time when the power dissipated in R2 is minimum. Hint: first think about the point in time that (iL)2 is minimum, since P=i2R for a resistor. +5 Volts -5 Volts V1

info@checkyourstudy.com Whatsapp +919911743277
For Day 12 and 13 Homework Cover Sheet Name:_________________________________________________ 1. Read Pages from 184-226, or watch the videos listed below  Properties of Subtraction http://www.youtube.com/watch?v=W9PEgpFyAYg (15 min)  Subtraction Algorithm http://www.youtube.com/watch?v=azaR-4ySSwQ (9 min) Visualizing Subtraction http://www.youtube.com/watch?v=PwQGc_1p0jQ (8 min)  Subtraction http://www.youtube.com/watch?v=E7Cj8QnEmNo (12 min)  Subtraction of Rational Expressions http://www.youtube.com/watch?v=Vuvmrq54b4w (8 min)  Prime factors and multiples of expressions http://www.youtube.com/watch?v=wy7pm8wjm_8 (8 min)  Multiples http://www.youtube.com/watch?v=f3ZdozzChjQ (9 min)  Least Common Multiples http://www.youtube.com/watch?v=wJCWNcytyXE (15 min)  Adding Rational Expressions Using LCM http://www.youtube.com/watch?v=O0V6hbTE-2s (12 min) 2. Attempt problems from workbook pages 51-66 Summary of the lectures you watched. List any parts of the video lecture (if there are any) that were unclear or you had trouble understanding. Please be specific and do not just say “All of it”. Questions you had difficulty with or felt stuck on- ALEKS Topics Mastered Word problem with powers of ten Combining like terms: Advanced Combining like terms: Integer coefficients Distributive property: Integer coefficients Elapsed time Estimating a decimal sum or difference Integer subtraction: Problem type 1 Integer subtraction: Problem type 2 Integer subtraction: Problem type 3 Multiplication involving binomials and trinomials in two variables Multiplying a univariate polynomial by a monomial with a negative coefficient Multiplying binomials with negative coefficients Signed decimal addition and subtraction Signed decimal addition and subtraction with 3 numbers Signed fraction addition or subtraction: Basic Simplifying a sum or difference of multivariate polynomials Simplifying a sum or difference of three univariate polynomials Simplifying a sum or difference of two univariate polynomials Subtracting a 1-digit number from a 2-digit number Subtraction and regrouping with zeros Subtraction with borrowing Subtraction with multiple regrouping steps Subtraction without borrowing Word problem with addition or subtraction of whole numbers Adding or subtracting complex numbers

For Day 12 and 13 Homework Cover Sheet Name:_________________________________________________ 1. Read Pages from 184-226, or watch the videos listed below  Properties of Subtraction http://www.youtube.com/watch?v=W9PEgpFyAYg (15 min)  Subtraction Algorithm http://www.youtube.com/watch?v=azaR-4ySSwQ (9 min) Visualizing Subtraction http://www.youtube.com/watch?v=PwQGc_1p0jQ (8 min)  Subtraction http://www.youtube.com/watch?v=E7Cj8QnEmNo (12 min)  Subtraction of Rational Expressions http://www.youtube.com/watch?v=Vuvmrq54b4w (8 min)  Prime factors and multiples of expressions http://www.youtube.com/watch?v=wy7pm8wjm_8 (8 min)  Multiples http://www.youtube.com/watch?v=f3ZdozzChjQ (9 min)  Least Common Multiples http://www.youtube.com/watch?v=wJCWNcytyXE (15 min)  Adding Rational Expressions Using LCM http://www.youtube.com/watch?v=O0V6hbTE-2s (12 min) 2. Attempt problems from workbook pages 51-66 Summary of the lectures you watched. List any parts of the video lecture (if there are any) that were unclear or you had trouble understanding. Please be specific and do not just say “All of it”. Questions you had difficulty with or felt stuck on- ALEKS Topics Mastered Word problem with powers of ten Combining like terms: Advanced Combining like terms: Integer coefficients Distributive property: Integer coefficients Elapsed time Estimating a decimal sum or difference Integer subtraction: Problem type 1 Integer subtraction: Problem type 2 Integer subtraction: Problem type 3 Multiplication involving binomials and trinomials in two variables Multiplying a univariate polynomial by a monomial with a negative coefficient Multiplying binomials with negative coefficients Signed decimal addition and subtraction Signed decimal addition and subtraction with 3 numbers Signed fraction addition or subtraction: Basic Simplifying a sum or difference of multivariate polynomials Simplifying a sum or difference of three univariate polynomials Simplifying a sum or difference of two univariate polynomials Subtracting a 1-digit number from a 2-digit number Subtraction and regrouping with zeros Subtraction with borrowing Subtraction with multiple regrouping steps Subtraction without borrowing Word problem with addition or subtraction of whole numbers Adding or subtracting complex numbers

No expert has answered this question yet. You can browse … Read More...
The first task : Seminar Topic 6 – Operation Information Systems Investigate teleworking and how teleworkers operate. From your findings identify the types of operations information systems that would be required to support and administer this type of operation within an organization

The first task : Seminar Topic 6 – Operation Information Systems Investigate teleworking and how teleworkers operate. From your findings identify the types of operations information systems that would be required to support and administer this type of operation within an organization

Now a day’s individuals and organizations uses information technology (IT) … Read More...
Que 1: true of false a) Both silicon and germanium atoms have four valances electrons b) When forward-biased , a diode has a very high resistance c) A zener diode is designed to operate in the forward-bias region and has higher reverse breakdown voltage level than regular diode Write the word or phrase that best completes each statement or answers the questions: d) In semiconductor, in addition to the electron flow, there is also another kind of charge flow referred as………………. e) A silicon diode in placed in series with 2kΩresistor and a 14 V dc power supply. The current ID is: i) 6.65 mA ii) 2.2 mA iii)7.5 mA iv) 14 mA f) The series resistor that limits the forward current length through a silicon diode to 8 mA if the power supply voltage is 9.5V is : i) 1.1 kΩ ii) 2.2 kΩ iii) 9.5 mA iv) 4.7 mA FIGURE g) Determine the diode current IZ for the circuit of figure 1-2: assume VZ = 3.9 V i) 8.1 mA ii) 3.55 mA iii) 24.5 mA iv) 13.64 mA h) Determine the current through a 20 mA yellow LED when the power supply voltage is 15 V the series resistor is 2k ohm and the diode is put in backward. Assume VLED = 2V i) 20 mA ii) 0 mA iii) 10 mA iv) 6.5 mA Write the word or phrase that best completes each statement or answers the questions: i) Zener diode is a p-n junction diode that is desgined for specifc…………………voltage j) ………………………….is the process by which impurity atoms are introduced to the instrisic semiconductor in order to alter the balance between holes and electrons. 1) The average value of s full-wave rectifier with a peak vaue of 17V ia 108V 2) If the frequency of input signal of the full wave reflector is 60Hz, the output frequency is 120Hz 3) The cathode of a zener diode, when conducting is:y i) at 0.7V ii) more positive than anode iii) more negative than anode iv) -0.7V 4) A given transformer with turn ratio 12:1has an input of 115V at 60Hzthe paek output voltage v0 (p) is i) 9.58 V ii) 6.78V iii) 11.5 V iv) 13.55 V FIGURE 2-1 5) The output voltage of V0(DC)for the full wave rectifier of figure 2-1 is i) 18.07 V ii) 12.78 V iii) 8.3 V iv) 5.74 V FIGURE 2-2 6) The voltage V2(P) for the full-wavr bridge rectifier of figure 2-2 is i) 17.37 V ii)1 6.67 V iii) 12.78 V iv) 18.07 V 7) Assume the current I0(DC) in figure is 100mA and C= 2400µF .the ripple voltage vr (p-p) i) 694mV ii) 424 mV iii) 121 V iv) 347 V Use figure 2-3 for questions below: Assume that RS = 75, RL = 160 FIGURE 2-3 8) The output voltage V0 is i) 7.5 V ii) 10 V iii) 8.5 V iv) 12 V Write the word or phrase that best completes each statement or answers the questions: 9) The magnitude of the peak-to-peak ripple voltage vr (p-p) is directly proportional to the output …………………. 10) The ripple voltage at the filter section vr (p-p) can be reduced by increasing the value

Que 1: true of false a) Both silicon and germanium atoms have four valances electrons b) When forward-biased , a diode has a very high resistance c) A zener diode is designed to operate in the forward-bias region and has higher reverse breakdown voltage level than regular diode Write the word or phrase that best completes each statement or answers the questions: d) In semiconductor, in addition to the electron flow, there is also another kind of charge flow referred as………………. e) A silicon diode in placed in series with 2kΩresistor and a 14 V dc power supply. The current ID is: i) 6.65 mA ii) 2.2 mA iii)7.5 mA iv) 14 mA f) The series resistor that limits the forward current length through a silicon diode to 8 mA if the power supply voltage is 9.5V is : i) 1.1 kΩ ii) 2.2 kΩ iii) 9.5 mA iv) 4.7 mA FIGURE g) Determine the diode current IZ for the circuit of figure 1-2: assume VZ = 3.9 V i) 8.1 mA ii) 3.55 mA iii) 24.5 mA iv) 13.64 mA h) Determine the current through a 20 mA yellow LED when the power supply voltage is 15 V the series resistor is 2k ohm and the diode is put in backward. Assume VLED = 2V i) 20 mA ii) 0 mA iii) 10 mA iv) 6.5 mA Write the word or phrase that best completes each statement or answers the questions: i) Zener diode is a p-n junction diode that is desgined for specifc…………………voltage j) ………………………….is the process by which impurity atoms are introduced to the instrisic semiconductor in order to alter the balance between holes and electrons. 1) The average value of s full-wave rectifier with a peak vaue of 17V ia 108V 2) If the frequency of input signal of the full wave reflector is 60Hz, the output frequency is 120Hz 3) The cathode of a zener diode, when conducting is:y i) at 0.7V ii) more positive than anode iii) more negative than anode iv) -0.7V 4) A given transformer with turn ratio 12:1has an input of 115V at 60Hzthe paek output voltage v0 (p) is i) 9.58 V ii) 6.78V iii) 11.5 V iv) 13.55 V FIGURE 2-1 5) The output voltage of V0(DC)for the full wave rectifier of figure 2-1 is i) 18.07 V ii) 12.78 V iii) 8.3 V iv) 5.74 V FIGURE 2-2 6) The voltage V2(P) for the full-wavr bridge rectifier of figure 2-2 is i) 17.37 V ii)1 6.67 V iii) 12.78 V iv) 18.07 V 7) Assume the current I0(DC) in figure is 100mA and C= 2400µF .the ripple voltage vr (p-p) i) 694mV ii) 424 mV iii) 121 V iv) 347 V Use figure 2-3 for questions below: Assume that RS = 75, RL = 160 FIGURE 2-3 8) The output voltage V0 is i) 7.5 V ii) 10 V iii) 8.5 V iv) 12 V Write the word or phrase that best completes each statement or answers the questions: 9) The magnitude of the peak-to-peak ripple voltage vr (p-p) is directly proportional to the output …………………. 10) The ripple voltage at the filter section vr (p-p) can be reduced by increasing the value