You have had the unique opportunity to develop a career plan in this academic program. By determining career goals and objectives, you should have become insightful and capable of assessing your current skills and abilities and their respective usefulness in attaining that ideal position. According to your plan, what training and education may be required before advancement is possible with respect to your future plans? What is the biggest obstacle you face in search of success?

You have had the unique opportunity to develop a career plan in this academic program. By determining career goals and objectives, you should have become insightful and capable of assessing your current skills and abilities and their respective usefulness in attaining that ideal position. According to your plan, what training and education may be required before advancement is possible with respect to your future plans? What is the biggest obstacle you face in search of success?

We can’t escape from the reality that if we wish … Read More...
EXPERIMENT 6 FET CHARACTERISTIC CURVES ________________________________________ Bring a diskette to save your data. ________________________________________ OBJECT: The objective of this lab is to investigate the DC characteristics and operation of a field effect transistor (FET). The FET recommended to be used in this lab is 2N5486 n-channel FET. • Gathering data for the DC characteristics ________________________________________ APPARATUS: Dual DC Power Supply, Voltmeter, and 1k resistors, 2N5486 N-Channel FET. ________________________________________ THEORY: A JFET (Junction Field Effect Transistor) is a three terminal device (drain, source, and gate) similar to the BJT. The difference between them is that the JFET is a voltage controlled constant current device, whereas BJT is a current controlled current source device. Whereas for BJT the relationship between an output parameter, iC, and an input parameter, iB, is given by a constant , the relationship in JFET between an output parameter, iD, and an input parameter, vGS, is more complex. PROCEDURE: Measuring ID versus VDS (Output Characteristics) 1. Build the circuit shown below. 2. Obtain the output characteristics i.e. ID versus VDS. a. Set VGS = 0. Vary the voltage across drain (VDS) from 0 to 8 V with steps of 1 V and measure the corresponding drain current (ID). b. Repeat the procedure for different values of VGS. (0V, -0.5V, -1V, -1.5V, -2V, -2.5V, -3.0V, -3.5V, -4.0V). 3. Record the values in Table 1 and plot the graph ID vs. VGS. VGS 0 -0.5 -1.0 -1.5` -2.0 -2.5 -3.0 -3.5 -4.0 VDS ID ID ID ID ID ID ID ID ID 0 0 0.002mA 0.002mA 0.002mA 0.002mA 0.002mA 0.002mA 0.002mA 0mA 1 0 0.7 mA 0.7 mA 0.66 mA 0.6 mA 0.6 mA 0.5 0.1mA 0mA 2 0 1.5 mA 1.3 mA 1.3mA 1.2 mA 1.1 mA 0.7 0.1mA 0mA 3 0 2.1 mA 2.6 mA 1.9 mA 1.8 mA 1.5 mA 0.8 mA 0.1mA 0mA 4 0 2.7 mA 2.6 mA 2.5 mA 2.4 mA 1.7 mA 0.8 mA 0.1mA 0mA 5 0 3.4 mA 3.3 mA 3.1 mA 2.8 mA 1.8 mA 0.9 mA 0.1mA 0mA 6 0 4.1 mA 3.4 mA 3.7 mA 3.2 mA 1.9 mA 0.9 mA 0.1mA 0mA 7 0 4.7 mA 4.5 mA 4.2 mA 3.4 mA 1.9 mA 0.9 mA 0.1mA 0mA 8 0 5.3 mA 5.1 mA 6.6 mA 3.5 mA 2.0 mA 0.9 mA 0.1mA 0mA Table 1. vds=0:8; id=[0 6.2e-3 9.7e-3 11.3e-3 11.9e-3 12.2e-3 12.3e-3 12.3e-3 12.32e-3]; plot(vds,id);grid on;hold on id2=[0 5.23e-3 8.05e-3 9.15e-3 9.57e-3 9.77e-3 9.88e-3 9.9e-3 9.92e-3]; plot(vds,id2);grid on;hold on id3=[0 4.29e-3 6.41e-3 7.17e-3 7.46e-3 7.60e-3 7.67e-3 7.73e-3 7.76e-3]; plot(vds,id3);grid on;hold on ________________________________________ Measuring ID versus VGS (Transconductance Characteristics) 1. For the same circuit, obtain the transconductance characteristics. i.e. ID versus VGS. a. Set a particular value of voltage for VDS, i.e. 5V. Start with a gate voltage VGS of 0 V, and measure the corresponding drain current (ID). b. Then decrease VGS in steps of 0.5 V until VGS is -4V. c. At each step record the drain current. VDS = 5 V VGS ID 0 3.42 mA -0.5 3.36 mA -1.00 3.27 mA -1.50 3.12 mA -2.00 2.79 mA -2.50 1.84 mA -3.00 0.71 mA -3.50 0.11 mA -4.00 0 mA Table 2. 2. Plot the graph with ID versus VGS using Excel, MATLAB, or some other program. Discussion Questions—Make sure you answer the following questions in your discussion. Use all of the data obtained to answer the following questions: 1. Discuss the output and transconductance curves obtained in lab? Are they what you expected? 2. Are the output characteristics spaced evenly? Should they be? 3. What are the applications of a JFET?

EXPERIMENT 6 FET CHARACTERISTIC CURVES ________________________________________ Bring a diskette to save your data. ________________________________________ OBJECT: The objective of this lab is to investigate the DC characteristics and operation of a field effect transistor (FET). The FET recommended to be used in this lab is 2N5486 n-channel FET. • Gathering data for the DC characteristics ________________________________________ APPARATUS: Dual DC Power Supply, Voltmeter, and 1k resistors, 2N5486 N-Channel FET. ________________________________________ THEORY: A JFET (Junction Field Effect Transistor) is a three terminal device (drain, source, and gate) similar to the BJT. The difference between them is that the JFET is a voltage controlled constant current device, whereas BJT is a current controlled current source device. Whereas for BJT the relationship between an output parameter, iC, and an input parameter, iB, is given by a constant , the relationship in JFET between an output parameter, iD, and an input parameter, vGS, is more complex. PROCEDURE: Measuring ID versus VDS (Output Characteristics) 1. Build the circuit shown below. 2. Obtain the output characteristics i.e. ID versus VDS. a. Set VGS = 0. Vary the voltage across drain (VDS) from 0 to 8 V with steps of 1 V and measure the corresponding drain current (ID). b. Repeat the procedure for different values of VGS. (0V, -0.5V, -1V, -1.5V, -2V, -2.5V, -3.0V, -3.5V, -4.0V). 3. Record the values in Table 1 and plot the graph ID vs. VGS. VGS 0 -0.5 -1.0 -1.5` -2.0 -2.5 -3.0 -3.5 -4.0 VDS ID ID ID ID ID ID ID ID ID 0 0 0.002mA 0.002mA 0.002mA 0.002mA 0.002mA 0.002mA 0.002mA 0mA 1 0 0.7 mA 0.7 mA 0.66 mA 0.6 mA 0.6 mA 0.5 0.1mA 0mA 2 0 1.5 mA 1.3 mA 1.3mA 1.2 mA 1.1 mA 0.7 0.1mA 0mA 3 0 2.1 mA 2.6 mA 1.9 mA 1.8 mA 1.5 mA 0.8 mA 0.1mA 0mA 4 0 2.7 mA 2.6 mA 2.5 mA 2.4 mA 1.7 mA 0.8 mA 0.1mA 0mA 5 0 3.4 mA 3.3 mA 3.1 mA 2.8 mA 1.8 mA 0.9 mA 0.1mA 0mA 6 0 4.1 mA 3.4 mA 3.7 mA 3.2 mA 1.9 mA 0.9 mA 0.1mA 0mA 7 0 4.7 mA 4.5 mA 4.2 mA 3.4 mA 1.9 mA 0.9 mA 0.1mA 0mA 8 0 5.3 mA 5.1 mA 6.6 mA 3.5 mA 2.0 mA 0.9 mA 0.1mA 0mA Table 1. vds=0:8; id=[0 6.2e-3 9.7e-3 11.3e-3 11.9e-3 12.2e-3 12.3e-3 12.3e-3 12.32e-3]; plot(vds,id);grid on;hold on id2=[0 5.23e-3 8.05e-3 9.15e-3 9.57e-3 9.77e-3 9.88e-3 9.9e-3 9.92e-3]; plot(vds,id2);grid on;hold on id3=[0 4.29e-3 6.41e-3 7.17e-3 7.46e-3 7.60e-3 7.67e-3 7.73e-3 7.76e-3]; plot(vds,id3);grid on;hold on ________________________________________ Measuring ID versus VGS (Transconductance Characteristics) 1. For the same circuit, obtain the transconductance characteristics. i.e. ID versus VGS. a. Set a particular value of voltage for VDS, i.e. 5V. Start with a gate voltage VGS of 0 V, and measure the corresponding drain current (ID). b. Then decrease VGS in steps of 0.5 V until VGS is -4V. c. At each step record the drain current. VDS = 5 V VGS ID 0 3.42 mA -0.5 3.36 mA -1.00 3.27 mA -1.50 3.12 mA -2.00 2.79 mA -2.50 1.84 mA -3.00 0.71 mA -3.50 0.11 mA -4.00 0 mA Table 2. 2. Plot the graph with ID versus VGS using Excel, MATLAB, or some other program. Discussion Questions—Make sure you answer the following questions in your discussion. Use all of the data obtained to answer the following questions: 1. Discuss the output and transconductance curves obtained in lab? Are they what you expected? 2. Are the output characteristics spaced evenly? Should they be? 3. What are the applications of a JFET?

No expert has answered this question yet. You can browse … Read More...
compare and contrast between to France and Greece, on the basis of their economic, employment, population, communications, and transportation

compare and contrast between to France and Greece, on the basis of their economic, employment, population, communications, and transportation

No expert has answered this question yet. You can browse … Read More...
1 Before-class Preparation: Project Management Use the following questions to guide your reading and preparation for the iRAT/tRAT quiz. 1. Pre-lecture reading: Read the Textbook Chapter 7 from page 59 to page 63 “Step 3: Plan and manage the project”. 1) What is the three-part basic sequence of project management activities? 2) Fill in the blanks. During the “Plan” activity, a schedule shows will work on issues and materials will be applied to task? 3) Fill in the blank. During the “Assess” activity, periodic help keep team and customers informed of the state of the project. 2. Pre-lecture reading: Read the handout “Project Management – Creating a Project Schedule”. 1) What are the three aspects that need to be addressed when planning a project? 2) What are the two ways of presenting a WBS? Are task dependencies considered when creating a WBS? 3) In a network diagram, why do some tasks have to be completed in a specific order? What is the predecessor(s) of a task? 4) In a Gantt chart, what information can be derived from the “bar” for each task? What about the arrows? 5) What is a critical path? How to determine the total duration of a project? In order to reduce the project duration, should tasks on the critical path get additional resources or tasks not on the critical path? 3. Pre-lecture homework: answer all questions above. First copy each question then write down the answer. Submit the homework to Blackboard and also bring in the completed homework to the RAT quiz to use as a cheat sheet.

1 Before-class Preparation: Project Management Use the following questions to guide your reading and preparation for the iRAT/tRAT quiz. 1. Pre-lecture reading: Read the Textbook Chapter 7 from page 59 to page 63 “Step 3: Plan and manage the project”. 1) What is the three-part basic sequence of project management activities? 2) Fill in the blanks. During the “Plan” activity, a schedule shows will work on issues and materials will be applied to task? 3) Fill in the blank. During the “Assess” activity, periodic help keep team and customers informed of the state of the project. 2. Pre-lecture reading: Read the handout “Project Management – Creating a Project Schedule”. 1) What are the three aspects that need to be addressed when planning a project? 2) What are the two ways of presenting a WBS? Are task dependencies considered when creating a WBS? 3) In a network diagram, why do some tasks have to be completed in a specific order? What is the predecessor(s) of a task? 4) In a Gantt chart, what information can be derived from the “bar” for each task? What about the arrows? 5) What is a critical path? How to determine the total duration of a project? In order to reduce the project duration, should tasks on the critical path get additional resources or tasks not on the critical path? 3. Pre-lecture homework: answer all questions above. First copy each question then write down the answer. Submit the homework to Blackboard and also bring in the completed homework to the RAT quiz to use as a cheat sheet.

5. Provide a brief discussion with supporting evidence to the following inquiry: With the responsibility of overseeing career development processes, how does management equip employees with skills that impact their performance in an efficient and effective manner?

5. Provide a brief discussion with supporting evidence to the following inquiry: With the responsibility of overseeing career development processes, how does management equip employees with skills that impact their performance in an efficient and effective manner?

Career development can facilitate we attain superior contentment and accomplishment. … Read More...
1. (2 marks total) a. Multiply 109 x 309 b. Divide 1988 by 16 exactly 2. (4 marks total) a. Write 2/11 as a decimal to 2 decimal places b. Calculate 35% of 62 c. Add 103/4 to 92/3 d. Subtract 79.04 from 115.225 giving your answer correct to 2 decimal places 3. Circle the fractions in the list which are equivalent to 0.80 (2 marks) 2/7 32/40 8/10 8/20 8/25 9/24 36/45 40/50 4. Write the numerical value of: 3-3 (2 marks total) 5. Simplify z + 67 = 3z + 33 (1 mark total) 6. Solve to 1 decimal place 3y – 34 = 2y + 89 (1 mark total) 7. Solve the following equations to 2 decimal places (3 marks total) a. 37x + 1 = 35 b. 27 – a = 7.45 c. 3(y + 2) = 14 8. A 7-sided polygon is called a Heptagon. (3 marks total) a. What is the total of a Heptagon’s interior angles? b. If the Heptagon is regular (all angles the same), calculate the size of each interior angle to 2 decimal places. 9. Calculate the size of angle a and angle b. (2 mark total) 10. How many centilitres are there in 1.25 litres? (1 mark total) 11. The diagram below shows a stone carving with a hole on it; determine its volume (not including hole), if its thickness is 8 cm. Give your answer in cm3 to 2 decimal points. Assume π = 3.14 (6 marks total) 12. The diagram below shows a piece of alloy plate with a hole in it made from aluminium, copper and magnesium with a mass ratio of 35:3:2. Calculate the following to 2 decimal places. All measurements are in cm. (7 marks total) a. Using the formula A = 1/2(a+b)h calculate the height of the shape below. b. The volume of the solid part (not including the hole) of the shape below to 3 decimal places if it was 0.25cm thick. c. The mass of each material if the total mass of the plate is 62 kg. 10 cm Hole dia = 3 cm Cross sectional area of solid (not including hole) = 28.935 cm2 8 cm 13. A 66kg boy is running at 3 m/s. Calculate his Kinetic Energy using the formula KE = 1/2mv2 (2 marks total) 14. A rocket has a mass of 2,000 kg. What is its acceleration if the forces of its engines are 50kN? Show working out to receive full marks. (1 marks total) 250,000,000 m/s² 25 m/s² 25,000 m/s² 15. In the diagram below a force of 125N (F1) is applied to a lever 20cm (D1) away from the fulcrum, (4 marks total) Fulcrum (a) How far away in metres would a force of 5N (F2) need to be to balance the load? (b) How much force (F2) would need to be applied 0.7m away to balance the same load (F1)? 16. For the circuit shown in the diagram below, calculate: (3 mark total) a. The total circuit resistance. b. The value of the current I. c. Calculate the voltage of the battery cell if the current was 3amp and the resistors stayed the same. 17. In the diagram of a hydraulic system, the area of piston A is 8cm2 and the area of piston B is 48cm2. (2 mark total) If the Force IN is 16 N, calculate the force OUT. 18. Plot the graph 2y = x3 – 4 using a value range for x from 0 to 3 (3 marks total) 14 12 10 8 6 4 2 0 -2 Choosing appropriate scale (1 mark) Accurately plotting y values (1 mark) X 0 1 2 3 Y Accurately plotting line of best fit. (1 mark) SPARE PAPER

1. (2 marks total) a. Multiply 109 x 309 b. Divide 1988 by 16 exactly 2. (4 marks total) a. Write 2/11 as a decimal to 2 decimal places b. Calculate 35% of 62 c. Add 103/4 to 92/3 d. Subtract 79.04 from 115.225 giving your answer correct to 2 decimal places 3. Circle the fractions in the list which are equivalent to 0.80 (2 marks) 2/7 32/40 8/10 8/20 8/25 9/24 36/45 40/50 4. Write the numerical value of: 3-3 (2 marks total) 5. Simplify z + 67 = 3z + 33 (1 mark total) 6. Solve to 1 decimal place 3y – 34 = 2y + 89 (1 mark total) 7. Solve the following equations to 2 decimal places (3 marks total) a. 37x + 1 = 35 b. 27 – a = 7.45 c. 3(y + 2) = 14 8. A 7-sided polygon is called a Heptagon. (3 marks total) a. What is the total of a Heptagon’s interior angles? b. If the Heptagon is regular (all angles the same), calculate the size of each interior angle to 2 decimal places. 9. Calculate the size of angle a and angle b. (2 mark total) 10. How many centilitres are there in 1.25 litres? (1 mark total) 11. The diagram below shows a stone carving with a hole on it; determine its volume (not including hole), if its thickness is 8 cm. Give your answer in cm3 to 2 decimal points. Assume π = 3.14 (6 marks total) 12. The diagram below shows a piece of alloy plate with a hole in it made from aluminium, copper and magnesium with a mass ratio of 35:3:2. Calculate the following to 2 decimal places. All measurements are in cm. (7 marks total) a. Using the formula A = 1/2(a+b)h calculate the height of the shape below. b. The volume of the solid part (not including the hole) of the shape below to 3 decimal places if it was 0.25cm thick. c. The mass of each material if the total mass of the plate is 62 kg. 10 cm Hole dia = 3 cm Cross sectional area of solid (not including hole) = 28.935 cm2 8 cm 13. A 66kg boy is running at 3 m/s. Calculate his Kinetic Energy using the formula KE = 1/2mv2 (2 marks total) 14. A rocket has a mass of 2,000 kg. What is its acceleration if the forces of its engines are 50kN? Show working out to receive full marks. (1 marks total) 250,000,000 m/s² 25 m/s² 25,000 m/s² 15. In the diagram below a force of 125N (F1) is applied to a lever 20cm (D1) away from the fulcrum, (4 marks total) Fulcrum (a) How far away in metres would a force of 5N (F2) need to be to balance the load? (b) How much force (F2) would need to be applied 0.7m away to balance the same load (F1)? 16. For the circuit shown in the diagram below, calculate: (3 mark total) a. The total circuit resistance. b. The value of the current I. c. Calculate the voltage of the battery cell if the current was 3amp and the resistors stayed the same. 17. In the diagram of a hydraulic system, the area of piston A is 8cm2 and the area of piston B is 48cm2. (2 mark total) If the Force IN is 16 N, calculate the force OUT. 18. Plot the graph 2y = x3 – 4 using a value range for x from 0 to 3 (3 marks total) 14 12 10 8 6 4 2 0 -2 Choosing appropriate scale (1 mark) Accurately plotting y values (1 mark) X 0 1 2 3 Y Accurately plotting line of best fit. (1 mark) SPARE PAPER

No expert has answered this question yet. You can browse … Read More...