HST 102: Paper 7 Formal essay, due in class on the day of the debate No late papers will be accepted. Answer the following inquiry in a typed (and stapled) 2 page essay in the five-paragraph format. Present and describe three of your arguments that you will use to defend your position concerning eugenics. Each argument must be unique (don’t describe the same argument twice from a different angle). Each argument must include at least one quotation from the texts to support your position (a minimum of 3 total). You may discuss your positions and arguments with other people on your side (but not your opponents); however, each student must write their own essay in their own words. Do not copy sentences or paragraphs from another student’s paper, this is plagiarism and will result in a failing grade for the assignment. HST 102: Debate 4 Eugenics For or Against? Basics of the debate: The term ‘Eugenics’ was derived from two Greek words and literally means ‘good genes’. Eugenics is the social philosophy or practice of engineering society based on genes, or promoting the reproduction of good genes while reducing (or prohibiting) the reproduction of bad genes. Your group will argue either for or against the adoption of eugenic policies in your society. Key Terms: Eugenics – The study of or belief in the possibility of improving the qualities of the human species or a human population, especially by such means as discouraging reproduction by persons having genetic defects or presumed to have inheritable undesirable traits (negative eugenics) or encouraging reproduction by persons presumed to have inheritable desirable traits (positive eugenics). Darwinism – The Darwinian theory that species originate by descent, with variation, from parent forms, through the natural selection of those individuals best adapted for the reproductive success of their kind. Social Darwinism – A 19th-century theory, inspired by Darwinism, by which the social order is accounted as the product of natural selection of those persons best suited to existing living conditions. Mendelian Inheritance – Theory proposed by Gregor Johann Mendal in 1865 that became the first theory of genetic inheritance derived from experiments with peas. Birth Control – Any means to artificially prevent biological conception. Euthanasia – A policy of ending the life of an individual for their betterment (for example, because of excessive pain, brain dead, etc.) or society’s benefit. Genocide – A policy of murdering all members of a specific group of people who share a common characteristic. Deductive Logic – Deriving a specific conclusion based on a set of general definitions. Inductive Logic – Deriving a general conclusion based on a number of specific examples. Brief Historical Background: Eugenics was first proposed by Francis Galton in his 1883 work, Inquiries into Human Faculty and its Development. Galton was a cousin of Charles Darwin and an early supporter of Darwin’s theories of natural selection and evolution. Galton defined eugenics as the study of all agencies under human control which can improve or impair the racial quality of future generations. Galton’s work utilized a number of other scientific pursuits at the time including the study of heredity, genes, chromosomes, evolution, social Darwinism, zoology, birth control, sociology, psychology, chemistry, atomic theory and electrodynamics. The number of significant scientific advances was accelerating throughout the 19th century altering what science was and what its role in society could and should be. Galton’s work had a significant influence throughout all areas of society, from scientific communities to politics, culture and literature. A number of organizations were created to explore the science of eugenics and its possible applications to society. Ultimately, eugenics became a means by which to improve society through policies based on scientific study. Most of these policies related to reproductive practices within a society, specifically who could or should not reproduce. Throughout the late 1800s and early 1900s a number of policies were enacted at various levels throughout Europe and the United States aimed at controlling procreation. Some specific policies included compulsory sterilization laws (usually concerning criminals and the mentally ill) as well as banning interracial marriages to prevent ‘cross-racial’ breeding. In the United States a number of individuals and foundations supported the exploration of eugenics as a means to positively influence society, including: the Rockefeller Foundation, the Carnegie Institution, the Race Betterment Foundation of Battle Creek, MI, the Eugenics Record Office, the American Breeders Association, the Euthanasia Society of America; and individuals such as Charles Davenport, Madison Grant, Alexander Graham Bell, Irving Fisher, John D. Rockefeller, Margaret Sanger, Marie Stopes, David Starr Jordan, Vernon Kellogg, H. G. Wells (though he later changed sides) Winston Churchill, George Bernard Shaw, John Maynard Keynes, Supreme Court Justice Oliver Wendell Holmes and Presidents Woodrow Wilson, Herbert Hoover and Theodore Roosevelt. Some early critics of eugenics included: Dr. John Haycroft, Halliday Sutherland, Lancelot Hogben, Franz Boaz, Lester Ward, G. K. Chesterton, J. B. S. Haldane, and R. A. Fisher. In 1911 the Carnegie Institute recommended constructing gas chambers around the country to euthanize certain elements of the American population (primarily the poor and criminals) considered to be harmful to the future of society as a possible eugenic solution. President Woodrow Wilson signed the first Sterilization Act in US history. In the 1920s and 30s, 30 states passed various eugenics laws, some of which were overturned by the Supreme Court. Eugenics of various forms was a founding principle of the Progressive Party, strongly supported by the first progressive president Theodore Roosevelt, and would continue to play an important part in influencing progressive policies into at least the 1940s. Many American individuals and societies supported German research on eugenics that would eventually be used to develop and justify the policies utilized by the NAZI party against minority groups including Jews, Africans, gypsies and others that ultimately led to programs of genocide and the holocaust. Following WWII and worldwide exposure of the holocaust eugenics generally fell out of favor among the public, though various lesser forms of eugenics are still advocated for today by such individuals as Dottie Lamm, Geoffrey Miller, Justice Ruth Bader Ginsberg, John Glad and Richard Dawson. Eugenics still influences many modern debates including: capital punishment, over-population, global warming, medicine (disease control and genetic disorders), birth control, abortion, artificial insemination, evolution, social engineering, and education. Key Points to discuss during the debate: • Individual rights vs. collective rights • The pros and cons of genetically engineering society • The practicality of genetically engineering society • Methods used to determine ‘good traits’ and ‘bad traits’ • Who determines which people are ‘fit’ or ‘unfit’ for future society • The role of science in society • Methods used to derive scientific conclusions • Ability of scientists to determine the future hereditary conditions of individuals • The value/accuracy of scientific conclusions • The role of the government to implement eugenic policies • Some possible eugenic political policies or laws • The ways these policies may be used effectively or abused • The relationship between eugenics and individual rights • The role of ethics in science and eugenics Strategies: 1. Use this guide to help you (particularly the key points). 2. Read all of the texts. 3. If needed, read secondary analysis concerning eugenics. 4. Identify key quotations as you read each text. Perhaps make a list of them to print out and/or group quotes by topic or point. 5. Develop multiple arguments to defend your position. 6. Prioritize your arguments from most persuasive to least persuasive and from most evidence to least evidence. 7. Anticipate the arguments of your opponents and develop counter-arguments for them. 8. Anticipate counter-arguments to your own arguments and develop responses to them.

HST 102: Paper 7 Formal essay, due in class on the day of the debate No late papers will be accepted. Answer the following inquiry in a typed (and stapled) 2 page essay in the five-paragraph format. Present and describe three of your arguments that you will use to defend your position concerning eugenics. Each argument must be unique (don’t describe the same argument twice from a different angle). Each argument must include at least one quotation from the texts to support your position (a minimum of 3 total). You may discuss your positions and arguments with other people on your side (but not your opponents); however, each student must write their own essay in their own words. Do not copy sentences or paragraphs from another student’s paper, this is plagiarism and will result in a failing grade for the assignment. HST 102: Debate 4 Eugenics For or Against? Basics of the debate: The term ‘Eugenics’ was derived from two Greek words and literally means ‘good genes’. Eugenics is the social philosophy or practice of engineering society based on genes, or promoting the reproduction of good genes while reducing (or prohibiting) the reproduction of bad genes. Your group will argue either for or against the adoption of eugenic policies in your society. Key Terms: Eugenics – The study of or belief in the possibility of improving the qualities of the human species or a human population, especially by such means as discouraging reproduction by persons having genetic defects or presumed to have inheritable undesirable traits (negative eugenics) or encouraging reproduction by persons presumed to have inheritable desirable traits (positive eugenics). Darwinism – The Darwinian theory that species originate by descent, with variation, from parent forms, through the natural selection of those individuals best adapted for the reproductive success of their kind. Social Darwinism – A 19th-century theory, inspired by Darwinism, by which the social order is accounted as the product of natural selection of those persons best suited to existing living conditions. Mendelian Inheritance – Theory proposed by Gregor Johann Mendal in 1865 that became the first theory of genetic inheritance derived from experiments with peas. Birth Control – Any means to artificially prevent biological conception. Euthanasia – A policy of ending the life of an individual for their betterment (for example, because of excessive pain, brain dead, etc.) or society’s benefit. Genocide – A policy of murdering all members of a specific group of people who share a common characteristic. Deductive Logic – Deriving a specific conclusion based on a set of general definitions. Inductive Logic – Deriving a general conclusion based on a number of specific examples. Brief Historical Background: Eugenics was first proposed by Francis Galton in his 1883 work, Inquiries into Human Faculty and its Development. Galton was a cousin of Charles Darwin and an early supporter of Darwin’s theories of natural selection and evolution. Galton defined eugenics as the study of all agencies under human control which can improve or impair the racial quality of future generations. Galton’s work utilized a number of other scientific pursuits at the time including the study of heredity, genes, chromosomes, evolution, social Darwinism, zoology, birth control, sociology, psychology, chemistry, atomic theory and electrodynamics. The number of significant scientific advances was accelerating throughout the 19th century altering what science was and what its role in society could and should be. Galton’s work had a significant influence throughout all areas of society, from scientific communities to politics, culture and literature. A number of organizations were created to explore the science of eugenics and its possible applications to society. Ultimately, eugenics became a means by which to improve society through policies based on scientific study. Most of these policies related to reproductive practices within a society, specifically who could or should not reproduce. Throughout the late 1800s and early 1900s a number of policies were enacted at various levels throughout Europe and the United States aimed at controlling procreation. Some specific policies included compulsory sterilization laws (usually concerning criminals and the mentally ill) as well as banning interracial marriages to prevent ‘cross-racial’ breeding. In the United States a number of individuals and foundations supported the exploration of eugenics as a means to positively influence society, including: the Rockefeller Foundation, the Carnegie Institution, the Race Betterment Foundation of Battle Creek, MI, the Eugenics Record Office, the American Breeders Association, the Euthanasia Society of America; and individuals such as Charles Davenport, Madison Grant, Alexander Graham Bell, Irving Fisher, John D. Rockefeller, Margaret Sanger, Marie Stopes, David Starr Jordan, Vernon Kellogg, H. G. Wells (though he later changed sides) Winston Churchill, George Bernard Shaw, John Maynard Keynes, Supreme Court Justice Oliver Wendell Holmes and Presidents Woodrow Wilson, Herbert Hoover and Theodore Roosevelt. Some early critics of eugenics included: Dr. John Haycroft, Halliday Sutherland, Lancelot Hogben, Franz Boaz, Lester Ward, G. K. Chesterton, J. B. S. Haldane, and R. A. Fisher. In 1911 the Carnegie Institute recommended constructing gas chambers around the country to euthanize certain elements of the American population (primarily the poor and criminals) considered to be harmful to the future of society as a possible eugenic solution. President Woodrow Wilson signed the first Sterilization Act in US history. In the 1920s and 30s, 30 states passed various eugenics laws, some of which were overturned by the Supreme Court. Eugenics of various forms was a founding principle of the Progressive Party, strongly supported by the first progressive president Theodore Roosevelt, and would continue to play an important part in influencing progressive policies into at least the 1940s. Many American individuals and societies supported German research on eugenics that would eventually be used to develop and justify the policies utilized by the NAZI party against minority groups including Jews, Africans, gypsies and others that ultimately led to programs of genocide and the holocaust. Following WWII and worldwide exposure of the holocaust eugenics generally fell out of favor among the public, though various lesser forms of eugenics are still advocated for today by such individuals as Dottie Lamm, Geoffrey Miller, Justice Ruth Bader Ginsberg, John Glad and Richard Dawson. Eugenics still influences many modern debates including: capital punishment, over-population, global warming, medicine (disease control and genetic disorders), birth control, abortion, artificial insemination, evolution, social engineering, and education. Key Points to discuss during the debate: • Individual rights vs. collective rights • The pros and cons of genetically engineering society • The practicality of genetically engineering society • Methods used to determine ‘good traits’ and ‘bad traits’ • Who determines which people are ‘fit’ or ‘unfit’ for future society • The role of science in society • Methods used to derive scientific conclusions • Ability of scientists to determine the future hereditary conditions of individuals • The value/accuracy of scientific conclusions • The role of the government to implement eugenic policies • Some possible eugenic political policies or laws • The ways these policies may be used effectively or abused • The relationship between eugenics and individual rights • The role of ethics in science and eugenics Strategies: 1. Use this guide to help you (particularly the key points). 2. Read all of the texts. 3. If needed, read secondary analysis concerning eugenics. 4. Identify key quotations as you read each text. Perhaps make a list of them to print out and/or group quotes by topic or point. 5. Develop multiple arguments to defend your position. 6. Prioritize your arguments from most persuasive to least persuasive and from most evidence to least evidence. 7. Anticipate the arguments of your opponents and develop counter-arguments for them. 8. Anticipate counter-arguments to your own arguments and develop responses to them.

Assignment 3 Due: 11:59pm on Friday, February 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Problem 2.68 As a science project, you drop a watermelon off the top of the Empire State Building, 320 m above the sidewalk. It so happens that Superman flies by at the instant you release the watermelon. Superman is headed straight down with a speed of 36.0 . Part A How fast is the watermelon going when it passes Superman? Express your answer with the appropriate units. ANSWER: Correct Problem 2.63 A motorist is driving at when she sees that a traffic light ahead has just turned red. She knows that this light stays red for , and she wants to reach the light just as it turns green again. It takes her to step on the brakes and begin slowing. Part A What is her speed as she reaches the light at the instant it turns green? Express your answer with the appropriate units. ANSWER: m/s 72.0 ms 20 m/s 200 m 15 s 1.0 s 5.71 ms Correct Conceptual Question 4.1 Part A At this instant, is the particle in the figurespeeding up, slowing down, or traveling at constant speed? ANSWER: Correct Part B Is this particle curving to the right, curving to the left, or traveling straight? Speeding up Slowing down Traveling at constant speed ANSWER: Correct Conceptual Question 4.2 Part A At this instant, is the particle in the following figure speeding up, slowing down, or traveling at constant speed? ANSWER: Curving to the right Curving to the left Traveling straight Correct Part B Is this particle curving upward, curving downward, or traveling straight? ANSWER: Correct Problem 4.8 A particle’s trajectory is described by and , where is in s. Part A What is the particle’s speed at ? ANSWER: The particle is speeding up. The particle is slowing down. The particle is traveling at constant speed. The particle is curving upward. The particle is curving downward. The particle is traveling straight. x = ( 1 −2 ) m 2 t3 t2 y = ( 1 −2t) m 2 t2 t t = 0 s v = 2 m/s Correct Part B What is the particle’s speed at ? Express your answer using two significant figures. ANSWER: Correct Part C What is the particle’s direction of motion, measured as an angle from the x-axis, at ? Express your answer using two significant figures. ANSWER: Correct Part D What is the particle’s direction of motion, measured as an angle from the x-axis, at ? Express your answer using two significant figures. ANSWER: t = 5.0s v = 18 m/s t = 0 s  = -90  counterclockwise from the +x axis. t = 5.0s  = 9.7  counterclockwise from the +x axis. Correct Problem 4.9 A rocket-powered hockey puck moves on a horizontal frictionless table. The figure shows the graph of and the figure shows the graph of , the x- and y-components of the puck’s velocity, respectively. The puck starts at the origin. Part A In which direction is the puck moving at = 3 ? Give your answer as an angle from the x-axis. Express your answer using two significant figures. ANSWER: Correct Part B vx vy t s = 51   above the x-axis How far from the origin is the puck at 5 ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 4.13 A rifle is aimed horizontally at a target 51.0 away. The bullet hits the target 1.50 below the aim point. You may want to review ( pages 91 – 95) . For help with math skills, you may want to review: Quadratic Equations Part A What was the bullet’s flight time? Express your answer with the appropriate units. Hint 1. How to approach the problem Start by drawing a picture of the bullet’s trajectory, including where it leaves the gun and where it hits the target. You can assume that the gun was held parallel to the ground. Label the distances given in the problem. Choose an x-y coordinate system, making sure to label the origin. It is conventional to have x in the horizontal direction and y in the vertical direction. What is the y coordinate when the bullet leaves the gun? What is the y coordinate when it hits the target? What is the initial velocity in the y direction? What is the acceleration in the y direction? What is the equation that describes the motion in the vertical y direction as a function of time? Can you use the equation for to determine the time of flight? Why was it not necessary to include the motion in the x direction? s s = 180 cm m cm y(t) y(t) ANSWER: Correct Part B What was the bullet’s speed as it left the barrel? Express your answer with the appropriate units. Hint 1. How to approach the problem In the coordinate system introduced in Part A, what are the x coordinates when the bullet leaves the gun and when it hits the target? Is there any acceleration in the x direction? What is the equation that describes the motion in the horizontal x direction as a function of time? Can you use the equation for to determine the initial velocity? ANSWER: Correct Introduction to Projectile Motion Learning Goal: To understand the basic concepts of projectile motion. Projectile motion may seem rather complex at first. However, by breaking it down into components, you will find that it is really no different than the one-dimensional motions that you have already studied. One of the most often used techniques in physics is to divide two- and three-dimensional quantities into components. For instance, in projectile motion, a particle has some initial velocity . In general, this velocity can point in any direction on the xy plane and can have any magnitude. To make a problem more managable, it is common to break up such a quantity into its x component and its y component . 5.53×10−2 s x(t) x(t) 922 ms v vx vy Consider a particle with initial velocity that has magnitude 12.0 and is directed 60.0 above the negative x axis. Part A What is the x component of ? Express your answer in meters per second. ANSWER: Correct Part B What is the y component of ? Express your answer in meters per second. ANSWER: Correct Breaking up the velocities into components is particularly useful when the components do not affect each other. Eventually, you will learn about situations in which the components of velocity do affect one another, but for now you will only be looking at problems where they do not. So, if there is acceleration in the x direction but not in the y direction, then the x component of the velocity will change, but the y component of the velocity will not. Part C Look at this applet. The motion diagram for a projectile is displayed, as are the motion diagrams for each component. The x-component motion diagram is what you would get if you shined a spotlight down on the particle as it moved and recorded the motion of its shadow. Similarly, if you shined a spotlight to the left and recorded the particle’s shadow, you would get the motion diagram for its y component. How would you describe the two motion diagrams for the components? ANSWER: v m/s degrees vx v vx = -6.00 m/s vy v vy = 10.4 m/s Correct As you can see, the two components of the motion obey their own independent kinematic laws. For the vertical component, there is an acceleration downward with magnitude . Thus, you can calculate the vertical position of the particle at any time using the standard kinematic equation . Similarly, there is no acceleration in the horizontal direction, so the horizontal position of the particle is given by the standard kinematic equation . Now, consider this applet. Two balls are simultaneously dropped from a height of 5.0 . Part D How long does it take for the balls to reach the ground? Use 10 for the magnitude of the acceleration due to gravity. Express your answer in seconds to two significant figures. Hint 1. How to approach the problem The balls are released from rest at a height of 5.0 at time . Using these numbers and basic kinematics, you can determine the amount of time it takes for the balls to reach the ground. ANSWER: Correct This situation, which you have dealt with before (motion under the constant acceleration of gravity), is actually a special case of projectile motion. Think of this as projectile motion where the horizontal component of the initial velocity is zero. Both the vertical and horizontal components exhibit motion with constant nonzero acceleration. The vertical component exhibits motion with constant nonzero acceleration, whereas the horizontal component exhibits constant-velocity motion. The vertical component exhibits constant-velocity motion, whereas the horizontal component exhibits motion with constant nonzero acceleration. Both the vertical and horizontal components exhibit motion with constant velocity. g = 10 m/s2 y = y0 + v0 t + (1/2)at2 x = x0 + v0 t m tg m/s2 m t = 0 s tg = 1.0 s Part E Imagine the ball on the left is given a nonzero initial speed in the horizontal direction, while the ball on the right continues to fall with zero initial velocity. What horizontal speed must the ball on the left start with so that it hits the ground at the same position as the ball on the right? Remember that the two balls are released, starting a horizontal distance of 3.0 apart. Express your answer in meters per second to two significant figures. Hint 1. How to approach the problem Recall from Part B that the horizontal component of velocity does not change during projectile motion. Therefore, you need to find the horizontal component of velocity such that, in a time , the ball will move horizontally 3.0 . You can assume that its initial x coordinate is . ANSWER: Correct You can adjust the horizontal speeds in this applet. Notice that regardless of what horizontal speeds you give to the balls, they continue to move vertically in the same way (i.e., they are at the same y coordinate at the same time). Problem 4.12 A ball thrown horizontally at 27 travels a horizontal distance of 49 before hitting the ground. Part A From what height was the ball thrown? Express your answer using two significant figures with the appropriate units. ANSWER: vx m vx tg = 1.0 s m x0 = 0.0 m vx = 3.0 m/s m/s m h = 16 m Correct Enhanced EOC: Problem 4.20 The figure shows the angular-velocity-versus-time graph for a particle moving in a circle. You may want to review ( page ) . For help with math skills, you may want to review: The Definite Integral Part A How many revolutions does the object make during the first 3.5 ? Express your answer using two significant figures. You did not open hints for this part. ANSWER: s n = Incorrect; Try Again Problem 4.26 To withstand “g-forces” of up to 10 g’s, caused by suddenly pulling out of a steep dive, fighter jet pilots train on a “human centrifuge.” 10 g’s is an acceleration of . Part A If the length of the centrifuge arm is 10.0 , at what speed is the rider moving when she experiences 10 g’s? Express your answer with the appropriate units. ANSWER: Correct Problem 4.28 Your roommate is working on his bicycle and has the bike upside down. He spins the 60.0 -diameter wheel, and you notice that a pebble stuck in the tread goes by three times every second. Part A What is the pebble’s speed? Express your answer with the appropriate units. ANSWER: Correct 98 m/s2 m 31.3 ms cm 5.65 ms Part B What is the pebble’s acceleration? Express your answer with the appropriate units. ANSWER: Correct Enhanced EOC: Problem 4.43 On the Apollo 14 mission to the moon, astronaut Alan Shepard hit a golf ball with a 6 iron. The acceleration due to gravity on the moon is 1/6 of its value on earth. Suppose he hits the ball with a speed of 13 at an angle 50 above the horizontal. You may want to review ( pages 90 – 95) . For help with math skills, you may want to review: Quadratic Equations Part A How much farther did the ball travel on the moon than it would have on earth? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Start by drawing a picture of the path of the golf ball, showing its starting and ending points. Choose a coordinate system, and label the origin. It is conventional to let x be the horizontal direction and y the vertical direction. What is the initial velocity in the x and y directions? What is the acceleration in the x and y directions on the moon and on the earth? What are the equations for and as a function of time, and , respectively? What is the y coordinate when the golf ball hits the ground? Can you use this information to determine the time of flight on the moon and on the earth? 107 m s2 m/s  x y x(t) y(t) Once you have the time of flight, how can you use the equation to determine the total distance traveled? Compare the distance traveled on the moon to the distance traveled on the earth . ANSWER: Correct Part B For how much more time was the ball in flight? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the equation describing as a function of time? What is the initial x component of the ball’s velocity? How are the initial x component of the ball’s velocity and the distance traveled related to the time of flight? What is the difference between the time of flight on the moon and on earth? ANSWER: Correct Problem 4.42 In the Olympic shotput event, an athlete throws the shot with an initial speed of 12 at a 40.0 angle from the horizontal. The shot leaves her hand at a height of 1.8 above the ground. x(t) L = 85 m x(t) x t = 10 s m/s  m Part A How far does the shot travel? Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part B Repeat the calculation of part (a) for angles of 42.5 , 45.0 , and 47.5 . Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part C Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part D x = 16.36 m    x(42.5 ) = 16.39 m x(45.0 ) = 16.31 m Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part E At what angle of release does she throw the farthest? ANSWER: Correct Problem 4.44 A ball is thrown toward a cliff of height with a speed of 32 and an angle of 60 above horizontal. It lands on the edge of the cliff 3.2 later. Part A How high is the cliff? Express your answer to two significant figures and include the appropriate units. ANSWER: x(47.5 ) = 16.13 m 40.0 42.5 45.0 47.5 h m/s  s h = 39 m Answer Requested Part B What was the maximum height of the ball? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the ball’s impact speed? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 4.58 A typical laboratory centrifuge rotates at 3600 . Test tubes have to be placed into a centrifuge very carefully because of the very large accelerations. Part A What is the acceleration at the end of a test tube that is 10 from the axis of rotation? Express your answer with the appropriate units. hmax = 39 m v = 16 ms rpm cm ANSWER: Correct Part B For comparison, what is the magnitude of the acceleration a test tube would experience if dropped from a height of 1.0 and stopped in a 1.7-ms-long encounter with a hard floor? Express your answer with the appropriate units. ANSWER: Correct Problem 4.62 Communications satellites are placed in a circular orbit where they stay directly over a fixed point on the equator as the earth rotates. These are called geosynchronous orbits. The radius of the earth is , and the altitude of a geosynchronous orbit is ( 22000 miles). Part A What is the speed of a satellite in a geosynchronous orbit? Express your answer with the appropriate units. ANSWER: Correct a = 1.42×104 m s2 m a = 2610 m s2 6.37 × 106m 3.58 × 107m  v = 3070 ms Part B What is the magnitude of the acceleration of a satellite in a geosynchronous orbit? Express your answer with the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 89.5%. You received 103.82 out of a possible total of 116 points. a = 0.223 m s2

Assignment 3 Due: 11:59pm on Friday, February 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Problem 2.68 As a science project, you drop a watermelon off the top of the Empire State Building, 320 m above the sidewalk. It so happens that Superman flies by at the instant you release the watermelon. Superman is headed straight down with a speed of 36.0 . Part A How fast is the watermelon going when it passes Superman? Express your answer with the appropriate units. ANSWER: Correct Problem 2.63 A motorist is driving at when she sees that a traffic light ahead has just turned red. She knows that this light stays red for , and she wants to reach the light just as it turns green again. It takes her to step on the brakes and begin slowing. Part A What is her speed as she reaches the light at the instant it turns green? Express your answer with the appropriate units. ANSWER: m/s 72.0 ms 20 m/s 200 m 15 s 1.0 s 5.71 ms Correct Conceptual Question 4.1 Part A At this instant, is the particle in the figurespeeding up, slowing down, or traveling at constant speed? ANSWER: Correct Part B Is this particle curving to the right, curving to the left, or traveling straight? Speeding up Slowing down Traveling at constant speed ANSWER: Correct Conceptual Question 4.2 Part A At this instant, is the particle in the following figure speeding up, slowing down, or traveling at constant speed? ANSWER: Curving to the right Curving to the left Traveling straight Correct Part B Is this particle curving upward, curving downward, or traveling straight? ANSWER: Correct Problem 4.8 A particle’s trajectory is described by and , where is in s. Part A What is the particle’s speed at ? ANSWER: The particle is speeding up. The particle is slowing down. The particle is traveling at constant speed. The particle is curving upward. The particle is curving downward. The particle is traveling straight. x = ( 1 −2 ) m 2 t3 t2 y = ( 1 −2t) m 2 t2 t t = 0 s v = 2 m/s Correct Part B What is the particle’s speed at ? Express your answer using two significant figures. ANSWER: Correct Part C What is the particle’s direction of motion, measured as an angle from the x-axis, at ? Express your answer using two significant figures. ANSWER: Correct Part D What is the particle’s direction of motion, measured as an angle from the x-axis, at ? Express your answer using two significant figures. ANSWER: t = 5.0s v = 18 m/s t = 0 s  = -90  counterclockwise from the +x axis. t = 5.0s  = 9.7  counterclockwise from the +x axis. Correct Problem 4.9 A rocket-powered hockey puck moves on a horizontal frictionless table. The figure shows the graph of and the figure shows the graph of , the x- and y-components of the puck’s velocity, respectively. The puck starts at the origin. Part A In which direction is the puck moving at = 3 ? Give your answer as an angle from the x-axis. Express your answer using two significant figures. ANSWER: Correct Part B vx vy t s = 51   above the x-axis How far from the origin is the puck at 5 ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 4.13 A rifle is aimed horizontally at a target 51.0 away. The bullet hits the target 1.50 below the aim point. You may want to review ( pages 91 – 95) . For help with math skills, you may want to review: Quadratic Equations Part A What was the bullet’s flight time? Express your answer with the appropriate units. Hint 1. How to approach the problem Start by drawing a picture of the bullet’s trajectory, including where it leaves the gun and where it hits the target. You can assume that the gun was held parallel to the ground. Label the distances given in the problem. Choose an x-y coordinate system, making sure to label the origin. It is conventional to have x in the horizontal direction and y in the vertical direction. What is the y coordinate when the bullet leaves the gun? What is the y coordinate when it hits the target? What is the initial velocity in the y direction? What is the acceleration in the y direction? What is the equation that describes the motion in the vertical y direction as a function of time? Can you use the equation for to determine the time of flight? Why was it not necessary to include the motion in the x direction? s s = 180 cm m cm y(t) y(t) ANSWER: Correct Part B What was the bullet’s speed as it left the barrel? Express your answer with the appropriate units. Hint 1. How to approach the problem In the coordinate system introduced in Part A, what are the x coordinates when the bullet leaves the gun and when it hits the target? Is there any acceleration in the x direction? What is the equation that describes the motion in the horizontal x direction as a function of time? Can you use the equation for to determine the initial velocity? ANSWER: Correct Introduction to Projectile Motion Learning Goal: To understand the basic concepts of projectile motion. Projectile motion may seem rather complex at first. However, by breaking it down into components, you will find that it is really no different than the one-dimensional motions that you have already studied. One of the most often used techniques in physics is to divide two- and three-dimensional quantities into components. For instance, in projectile motion, a particle has some initial velocity . In general, this velocity can point in any direction on the xy plane and can have any magnitude. To make a problem more managable, it is common to break up such a quantity into its x component and its y component . 5.53×10−2 s x(t) x(t) 922 ms v vx vy Consider a particle with initial velocity that has magnitude 12.0 and is directed 60.0 above the negative x axis. Part A What is the x component of ? Express your answer in meters per second. ANSWER: Correct Part B What is the y component of ? Express your answer in meters per second. ANSWER: Correct Breaking up the velocities into components is particularly useful when the components do not affect each other. Eventually, you will learn about situations in which the components of velocity do affect one another, but for now you will only be looking at problems where they do not. So, if there is acceleration in the x direction but not in the y direction, then the x component of the velocity will change, but the y component of the velocity will not. Part C Look at this applet. The motion diagram for a projectile is displayed, as are the motion diagrams for each component. The x-component motion diagram is what you would get if you shined a spotlight down on the particle as it moved and recorded the motion of its shadow. Similarly, if you shined a spotlight to the left and recorded the particle’s shadow, you would get the motion diagram for its y component. How would you describe the two motion diagrams for the components? ANSWER: v m/s degrees vx v vx = -6.00 m/s vy v vy = 10.4 m/s Correct As you can see, the two components of the motion obey their own independent kinematic laws. For the vertical component, there is an acceleration downward with magnitude . Thus, you can calculate the vertical position of the particle at any time using the standard kinematic equation . Similarly, there is no acceleration in the horizontal direction, so the horizontal position of the particle is given by the standard kinematic equation . Now, consider this applet. Two balls are simultaneously dropped from a height of 5.0 . Part D How long does it take for the balls to reach the ground? Use 10 for the magnitude of the acceleration due to gravity. Express your answer in seconds to two significant figures. Hint 1. How to approach the problem The balls are released from rest at a height of 5.0 at time . Using these numbers and basic kinematics, you can determine the amount of time it takes for the balls to reach the ground. ANSWER: Correct This situation, which you have dealt with before (motion under the constant acceleration of gravity), is actually a special case of projectile motion. Think of this as projectile motion where the horizontal component of the initial velocity is zero. Both the vertical and horizontal components exhibit motion with constant nonzero acceleration. The vertical component exhibits motion with constant nonzero acceleration, whereas the horizontal component exhibits constant-velocity motion. The vertical component exhibits constant-velocity motion, whereas the horizontal component exhibits motion with constant nonzero acceleration. Both the vertical and horizontal components exhibit motion with constant velocity. g = 10 m/s2 y = y0 + v0 t + (1/2)at2 x = x0 + v0 t m tg m/s2 m t = 0 s tg = 1.0 s Part E Imagine the ball on the left is given a nonzero initial speed in the horizontal direction, while the ball on the right continues to fall with zero initial velocity. What horizontal speed must the ball on the left start with so that it hits the ground at the same position as the ball on the right? Remember that the two balls are released, starting a horizontal distance of 3.0 apart. Express your answer in meters per second to two significant figures. Hint 1. How to approach the problem Recall from Part B that the horizontal component of velocity does not change during projectile motion. Therefore, you need to find the horizontal component of velocity such that, in a time , the ball will move horizontally 3.0 . You can assume that its initial x coordinate is . ANSWER: Correct You can adjust the horizontal speeds in this applet. Notice that regardless of what horizontal speeds you give to the balls, they continue to move vertically in the same way (i.e., they are at the same y coordinate at the same time). Problem 4.12 A ball thrown horizontally at 27 travels a horizontal distance of 49 before hitting the ground. Part A From what height was the ball thrown? Express your answer using two significant figures with the appropriate units. ANSWER: vx m vx tg = 1.0 s m x0 = 0.0 m vx = 3.0 m/s m/s m h = 16 m Correct Enhanced EOC: Problem 4.20 The figure shows the angular-velocity-versus-time graph for a particle moving in a circle. You may want to review ( page ) . For help with math skills, you may want to review: The Definite Integral Part A How many revolutions does the object make during the first 3.5 ? Express your answer using two significant figures. You did not open hints for this part. ANSWER: s n = Incorrect; Try Again Problem 4.26 To withstand “g-forces” of up to 10 g’s, caused by suddenly pulling out of a steep dive, fighter jet pilots train on a “human centrifuge.” 10 g’s is an acceleration of . Part A If the length of the centrifuge arm is 10.0 , at what speed is the rider moving when she experiences 10 g’s? Express your answer with the appropriate units. ANSWER: Correct Problem 4.28 Your roommate is working on his bicycle and has the bike upside down. He spins the 60.0 -diameter wheel, and you notice that a pebble stuck in the tread goes by three times every second. Part A What is the pebble’s speed? Express your answer with the appropriate units. ANSWER: Correct 98 m/s2 m 31.3 ms cm 5.65 ms Part B What is the pebble’s acceleration? Express your answer with the appropriate units. ANSWER: Correct Enhanced EOC: Problem 4.43 On the Apollo 14 mission to the moon, astronaut Alan Shepard hit a golf ball with a 6 iron. The acceleration due to gravity on the moon is 1/6 of its value on earth. Suppose he hits the ball with a speed of 13 at an angle 50 above the horizontal. You may want to review ( pages 90 – 95) . For help with math skills, you may want to review: Quadratic Equations Part A How much farther did the ball travel on the moon than it would have on earth? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Start by drawing a picture of the path of the golf ball, showing its starting and ending points. Choose a coordinate system, and label the origin. It is conventional to let x be the horizontal direction and y the vertical direction. What is the initial velocity in the x and y directions? What is the acceleration in the x and y directions on the moon and on the earth? What are the equations for and as a function of time, and , respectively? What is the y coordinate when the golf ball hits the ground? Can you use this information to determine the time of flight on the moon and on the earth? 107 m s2 m/s  x y x(t) y(t) Once you have the time of flight, how can you use the equation to determine the total distance traveled? Compare the distance traveled on the moon to the distance traveled on the earth . ANSWER: Correct Part B For how much more time was the ball in flight? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the equation describing as a function of time? What is the initial x component of the ball’s velocity? How are the initial x component of the ball’s velocity and the distance traveled related to the time of flight? What is the difference between the time of flight on the moon and on earth? ANSWER: Correct Problem 4.42 In the Olympic shotput event, an athlete throws the shot with an initial speed of 12 at a 40.0 angle from the horizontal. The shot leaves her hand at a height of 1.8 above the ground. x(t) L = 85 m x(t) x t = 10 s m/s  m Part A How far does the shot travel? Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part B Repeat the calculation of part (a) for angles of 42.5 , 45.0 , and 47.5 . Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part C Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part D x = 16.36 m    x(42.5 ) = 16.39 m x(45.0 ) = 16.31 m Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part E At what angle of release does she throw the farthest? ANSWER: Correct Problem 4.44 A ball is thrown toward a cliff of height with a speed of 32 and an angle of 60 above horizontal. It lands on the edge of the cliff 3.2 later. Part A How high is the cliff? Express your answer to two significant figures and include the appropriate units. ANSWER: x(47.5 ) = 16.13 m 40.0 42.5 45.0 47.5 h m/s  s h = 39 m Answer Requested Part B What was the maximum height of the ball? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the ball’s impact speed? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 4.58 A typical laboratory centrifuge rotates at 3600 . Test tubes have to be placed into a centrifuge very carefully because of the very large accelerations. Part A What is the acceleration at the end of a test tube that is 10 from the axis of rotation? Express your answer with the appropriate units. hmax = 39 m v = 16 ms rpm cm ANSWER: Correct Part B For comparison, what is the magnitude of the acceleration a test tube would experience if dropped from a height of 1.0 and stopped in a 1.7-ms-long encounter with a hard floor? Express your answer with the appropriate units. ANSWER: Correct Problem 4.62 Communications satellites are placed in a circular orbit where they stay directly over a fixed point on the equator as the earth rotates. These are called geosynchronous orbits. The radius of the earth is , and the altitude of a geosynchronous orbit is ( 22000 miles). Part A What is the speed of a satellite in a geosynchronous orbit? Express your answer with the appropriate units. ANSWER: Correct a = 1.42×104 m s2 m a = 2610 m s2 6.37 × 106m 3.58 × 107m  v = 3070 ms Part B What is the magnitude of the acceleration of a satellite in a geosynchronous orbit? Express your answer with the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 89.5%. You received 103.82 out of a possible total of 116 points. a = 0.223 m s2

please email info@checkyourstudy.com
Advertising and Critical Analysis For this essay you will examine a selection of commercials. This essay will require that you engage in some in-depth examination of 3-4 commercials. This “close viewing” of the commercials should lead you to a thesis that answers a question such as “Who do the advertisers think that I am?” or “What do these commercials say about us?” You need to do more than simply list some commercials and summarize them – although it is important that you summarize the commercials so that the reader can “see” them. A strong essay will look deeper into the commercial and its product – it will go beyond what is simply stated and instead examine the tangible elements of the commercial as well as what is underlying or unspoken in the advertisement. While writing this, here are some things to consider: • Besides the actual product, what else is the ad selling or promoting? • What human instinct, desire, or shortcoming is the ad playing to? • What is used to make the sale and turn consumers into customers (humor, sex, youth, etc.)? • How do these ads work in conjunction with the show during which they are aired? • Who do you think this ad is aimed at (audience)? • Although only a short commercial, what do you think these advertisements say about American culture or the American people? Helpful hints: • Choose commercials from specific sectors or ones that deal with similar ideas (i.e. alcohol, trucks, military, disabilities, etc.). Doing this will help you come up with a tight focus and hold to your thesis throughout the essay. • This essay needs to be 5 – 6 pages of polished and delightfully insightful prose. In addition your paper needs to exhibit all the standard formatting and fonts. This essay also requires a Works Cited page carefully listing any sources referenced, including the commercials being discussed.

Advertising and Critical Analysis For this essay you will examine a selection of commercials. This essay will require that you engage in some in-depth examination of 3-4 commercials. This “close viewing” of the commercials should lead you to a thesis that answers a question such as “Who do the advertisers think that I am?” or “What do these commercials say about us?” You need to do more than simply list some commercials and summarize them – although it is important that you summarize the commercials so that the reader can “see” them. A strong essay will look deeper into the commercial and its product – it will go beyond what is simply stated and instead examine the tangible elements of the commercial as well as what is underlying or unspoken in the advertisement. While writing this, here are some things to consider: • Besides the actual product, what else is the ad selling or promoting? • What human instinct, desire, or shortcoming is the ad playing to? • What is used to make the sale and turn consumers into customers (humor, sex, youth, etc.)? • How do these ads work in conjunction with the show during which they are aired? • Who do you think this ad is aimed at (audience)? • Although only a short commercial, what do you think these advertisements say about American culture or the American people? Helpful hints: • Choose commercials from specific sectors or ones that deal with similar ideas (i.e. alcohol, trucks, military, disabilities, etc.). Doing this will help you come up with a tight focus and hold to your thesis throughout the essay. • This essay needs to be 5 – 6 pages of polished and delightfully insightful prose. In addition your paper needs to exhibit all the standard formatting and fonts. This essay also requires a Works Cited page carefully listing any sources referenced, including the commercials being discussed.

checkyourstudy.com Whatsapp +919911743277
Sex, Gender, and Popular Culture Spring 2015 Look through popular magazines, and see if you can find advertisements that objectify women in order to sell a product. Alternately, you may use an advertisement on television (but make sure to provide a link to the ad so I can see it!). Study these images then write a paper about objectification that deals with all or some of the following: • What effect(s), if any, do you think the objectification of women’s bodies has on our culture? • Jean Kilbourne states “turning a human being into a thing is almost always the first step toward justifying violence against that person.” What do you think she means by this? Do you agree with her reasoning? Why or why not? • Some people would argue that depicting a woman’s body as an object is a form of art. What is your opinion of this point of view? Explain your reasoning. • Why do you think that women are objectified more often than men are? • How does sexualization and objectification play out differently across racial lines? • Kilbourne explains that the consequences of being objectified are different – and more serious – for women than for men. Do you agree? How is the world different for women than it is for men? How do objectified images of women interact with those in our culture differently from the way images of men do? Why is it important to look at images in the context of the culture? • What is the difference between sexual objectification and sexual subjectification? (Ros Gill ) • How do ads construct violent white masculinity and how does that vision of masculinity hurt both men and women? Throughout your written analysis, be sure to make clear and specific reference to the images you selected, and please submit these images with your paper. Make sure you engage with and reference to at least 4 of the following authors: Kilbourne, Bordo, Hunter & Soto, Rose, Durham, Gill, Katz, Schuchardt, Ono and Buescher. Guidelines:  Keep your content focused on structural, systemic, institutional factors rather than the individual: BE ANALYTICAL NOT ANECDOTAL.  Avoid using the first person or including personal stories/reactions. You must make sure to actively engage with your readings: these essays need to be informed and framed by the theoretical material you have been reading this semester.  Keep within the 4-6 page limit; use 12-point font, double spacing and 1-inch margins.  Use formal writing conventions (introduction/thesis statement, body, conclusion) and correct grammar. Resources may be cited within the text of your paper, i.e. (Walters, 2013).

Sex, Gender, and Popular Culture Spring 2015 Look through popular magazines, and see if you can find advertisements that objectify women in order to sell a product. Alternately, you may use an advertisement on television (but make sure to provide a link to the ad so I can see it!). Study these images then write a paper about objectification that deals with all or some of the following: • What effect(s), if any, do you think the objectification of women’s bodies has on our culture? • Jean Kilbourne states “turning a human being into a thing is almost always the first step toward justifying violence against that person.” What do you think she means by this? Do you agree with her reasoning? Why or why not? • Some people would argue that depicting a woman’s body as an object is a form of art. What is your opinion of this point of view? Explain your reasoning. • Why do you think that women are objectified more often than men are? • How does sexualization and objectification play out differently across racial lines? • Kilbourne explains that the consequences of being objectified are different – and more serious – for women than for men. Do you agree? How is the world different for women than it is for men? How do objectified images of women interact with those in our culture differently from the way images of men do? Why is it important to look at images in the context of the culture? • What is the difference between sexual objectification and sexual subjectification? (Ros Gill ) • How do ads construct violent white masculinity and how does that vision of masculinity hurt both men and women? Throughout your written analysis, be sure to make clear and specific reference to the images you selected, and please submit these images with your paper. Make sure you engage with and reference to at least 4 of the following authors: Kilbourne, Bordo, Hunter & Soto, Rose, Durham, Gill, Katz, Schuchardt, Ono and Buescher. Guidelines:  Keep your content focused on structural, systemic, institutional factors rather than the individual: BE ANALYTICAL NOT ANECDOTAL.  Avoid using the first person or including personal stories/reactions. You must make sure to actively engage with your readings: these essays need to be informed and framed by the theoretical material you have been reading this semester.  Keep within the 4-6 page limit; use 12-point font, double spacing and 1-inch margins.  Use formal writing conventions (introduction/thesis statement, body, conclusion) and correct grammar. Resources may be cited within the text of your paper, i.e. (Walters, 2013).

The objectification of women has been a very controversial topic … Read More...
5. Provide a brief discussion with supporting evidence to the following inquiry: With the responsibility of overseeing career development processes, how does management equip employees with skills that impact their performance in an efficient and effective manner?

5. Provide a brief discussion with supporting evidence to the following inquiry: With the responsibility of overseeing career development processes, how does management equip employees with skills that impact their performance in an efficient and effective manner?

Career development can facilitate we attain superior contentment and accomplishment. … Read More...