Correspondence #2 Assignment – Favorable Response to Direct Inquiry Due Tuesday, October 1,2015 — To be provided in class that day or emailed to Facts and Instructions You assist the operations manager at a manufacturing company, and one of your jobs is to ensure that you always have enough staff to maintain your production schedule. In the last week, you’ve heard from several of your supervisors that your newer employees, as well as some of the more experienced ones, are asking about how to request vacation time during the summer. They want to know • when they can take vacation, • how soon they need to let you know, • where they can go to use the online vacation leave forms (which are new since last summer when employees had to print forms and fill them out), and • how they can check online to see how much vacation they’ve accrued (also new since last summer when they had to contact their supervisors directly). Summer is a slow time for your company except for the first two weeks in June, the last week in July, and the first week in August. No one is allowed to take vacation during these weeks. You likely do not want a significant portion of your employees gone all at once either. Creating realistic details as needed, write a response to these employees explaining the vacation request policy and process. You may wish to review an actual handbook (UALR’s?!) detailing vacation/annual leave policies.

Correspondence #2 Assignment – Favorable Response to Direct Inquiry Due Tuesday, October 1,2015 — To be provided in class that day or emailed to Facts and Instructions You assist the operations manager at a manufacturing company, and one of your jobs is to ensure that you always have enough staff to maintain your production schedule. In the last week, you’ve heard from several of your supervisors that your newer employees, as well as some of the more experienced ones, are asking about how to request vacation time during the summer. They want to know • when they can take vacation, • how soon they need to let you know, • where they can go to use the online vacation leave forms (which are new since last summer when employees had to print forms and fill them out), and • how they can check online to see how much vacation they’ve accrued (also new since last summer when they had to contact their supervisors directly). Summer is a slow time for your company except for the first two weeks in June, the last week in July, and the first week in August. No one is allowed to take vacation during these weeks. You likely do not want a significant portion of your employees gone all at once either. Creating realistic details as needed, write a response to these employees explaining the vacation request policy and process. You may wish to review an actual handbook (UALR’s?!) detailing vacation/annual leave policies.

Assignment 11 Due: 11:59pm on Wednesday, April 30, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 13.2 The gravitational force of a star on orbiting planet 1 is . Planet 2, which is twice as massive as planet 1 and orbits at twice the distance from the star, experiences gravitational force . Part A What is the ratio ? ANSWER: Correct Conceptual Question 13.3 A 1500 satellite and a 2200 satellite follow exactly the same orbit around the earth. Part A What is the ratio of the force on the first satellite to that on the second satellite? ANSWER: Correct F1 F2 F1 F2 = 2 F1 F2 kg kg F1 F2 = 0.682 F1 F2 Part B What is the ratio of the acceleration of the first satellite to that of the second satellite? ANSWER: Correct Problem 13.2 The centers of a 15.0 lead ball and a 90.0 lead ball are separated by 9.00 . Part A What gravitational force does each exert on the other? Express your answer with the appropriate units. ANSWER: Correct Part B What is the ratio of this gravitational force to the weight of the 90.0 ball? ANSWER: a1 a2 = 1 a1 a2 kg g cm 1.11×10−8 N g 1.26×10−8 Correct Problem 13.6 The space shuttle orbits 310 above the surface of the earth. Part A What is the gravitational force on a 7.5 sphere inside the space shuttle? Express your answer with the appropriate units. ANSWER: Correct ± A Satellite in Orbit A satellite used in a cellular telephone network has a mass of 2310 and is in a circular orbit at a height of 650 above the surface of the earth. Part A What is the gravitational force on the satellite? Take the gravitational constant to be = 6.67×10−11 , the mass of the earth to be = 5.97×1024 , and the radius of the Earth to be = 6.38×106 . Express your answer in newtons. Hint 1. How to approach the problem Use the equation for the law of gravitation to calculate the force on the satellite. Be careful about the units when performing the calculations. km kg Fe on s = 67.0 N kg km Fgrav G N m2/kg2 me kg re m Hint 2. Law of gravitation According to Newton’s law of gravitation, , where is the gravitational constant, and are the masses of the two objects, and is the distance between the centers of mass of the two objects. Hint 3. Calculate the distance between the centers of mass What is the distance from the center of mass of the satellite to the center of mass of the earth? Express your answer in meters. ANSWER: ANSWER: Correct Part B What fraction is this of the satellite’s weight at the surface of the earth? Take the free-fall acceleration at the surface of the earth to be = 9.80 . Hint 1. How to approach the problem All you need to do is to take the ratio of the gravitational force on the satellite to the weight of the satellite at ground level. There are two ways to do this, depending on how you define the force of gravity at the surface of the earth. ANSWER: F = Gm1m2/r2 G m1 m2 r r = 7.03×10r 6 m = 1.86×10Fgrav 4 N g m/s2 0.824 Correct Although it is easy to find the weight of the satellite using the constant acceleration due to gravity, it is instructional to consider the weight calculated using the law of gravitation: . Dividing the gravitational force on the satellite by , we find that the ratio of the forces due to the earth’s gravity is simply the square of the ratio of the earth’s radius to the sum of the earth’s radius and the height of the orbit of the satellite above the earth, . This will also be the fraction of the weight of, say, an astronaut in an orbit at the same altitude. Notice that an astronaut’s weight is never zero. When people speak of “weightlessness” in space, what they really mean is “free fall.” Problem 13.8 Part A What is the free-fall acceleration at the surface of the moon? Express your answer with the appropriate units. ANSWER: Correct Part B What is the free-fall acceleration at the surface of the Jupiter? Express your answer with the appropriate units. ANSWER: Correct w = G m/ me r2e Fgrav = Gmem/(re + h)2 w [re/(re + h)]2 gmoon = 1.62 m s2 gJupiter = 25.9 m s2 Enhanced EOC: Problem 13.14 A rocket is launched straight up from the earth’s surface at a speed of 1.90×104 . You may want to review ( pages 362 – 365) . For help with math skills, you may want to review: Mathematical Expressions Involving Squares Part A What is its speed when it is very far away from the earth? Express your answer with the appropriate units. Hint 1. How to approach the problem What is conserved in this problem? What is the rocket’s initial kinetic energy in terms of its unknown mass, ? What is the rocket’s initial gravitational potential energy in terms of its unknown mass, ? When the rocket is very far away from the Earth, what is its gravitational potential energy? Using conservation of energy, what is the rocket’s kinetic energy when it is very far away from the Earth? Therefore, what is the rocket’s velocity when it is very far away from the Earth? ANSWER: Correct Problem 13.13 Part A m/s m m 1.54×104 ms What is the escape speed from Venus? Express your answer with the appropriate units. ANSWER: Correct Problem 13.17 The asteroid belt circles the sun between the orbits of Mars and Jupiter. One asteroid has a period of 4.2 earth years. Part A What is the asteroid’s orbital radius? Express your answer with the appropriate units. ANSWER: Correct Part B What is the asteroid’s orbital speed? Express your answer with the appropriate units. ANSWER: vescape = 10.4 km s = 3.89×1011 R m = 1.85×104 v ms Correct Problem 13.32 Part A At what height above the earth is the acceleration due to gravity 15.0% of its value at the surface? Express your answer with the appropriate units. ANSWER: Correct Part B What is the speed of a satellite orbiting at that height? Express your answer with the appropriate units. ANSWER: Correct Problem 13.36 Two meteoroids are heading for earth. Their speeds as they cross the moon’s orbit are 2 . 1.01×107 m 4920 ms km/s Part A The first meteoroid is heading straight for earth. What is its speed of impact? Express your answer with the appropriate units. ANSWER: Correct Part B The second misses the earth by 5500 . What is its speed at its closest point? Express your answer with the appropriate units. ANSWER: Incorrect; Try Again Problem 14.2 An air-track glider attached to a spring oscillates between the 11.0 mark and the 67.0 mark on the track. The glider completes 11.0 oscillations in 32.0 . Part A What is the period of the oscillations? Express your answer with the appropriate units. v1 = 11.3 km s km v2 = cm cm s ANSWER: Correct Part B What is the frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part C What is the angular frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part D What is the amplitude? Express your answer with the appropriate units. 2.91 s 0.344 Hz 2.16 rad s ANSWER: Correct Part E What is the maximum speed of the glider? Express your answer with the appropriate units. ANSWER: Correct Good Vibes: Introduction to Oscillations Learning Goal: To learn the basic terminology and relationships among the main characteristics of simple harmonic motion. Motion that repeats itself over and over is called periodic motion. There are many examples of periodic motion: the earth revolving around the sun, an elastic ball bouncing up and down, or a block attached to a spring oscillating back and forth. The last example differs from the first two, in that it represents a special kind of periodic motion called simple harmonic motion. The conditions that lead to simple harmonic motion are as follows: There must be a position of stable equilibrium. There must be a restoring force acting on the oscillating object. The direction of this force must always point toward the equilibrium, and its magnitude must be directly proportional to the magnitude of the object’s displacement from its equilibrium position. Mathematically, the restoring force is given by , where is the displacement from equilibrium and is a constant that depends on the properties of the oscillating system. The resistive forces in the system must be reasonably small. In this problem, we will introduce some of the basic quantities that describe oscillations and the relationships among them. Consider a block of mass attached to a spring with force constant , as shown in the figure. The spring can be either stretched or compressed. The block slides on a frictionless horizontal surface, as shown. When the spring is relaxed, the block is located at . If the 28.0 cm 60.5 cms F  F = −kx x k m k x = 0 block is pulled to the right a distance and then released, will be the amplitude of the resulting oscillations. Assume that the mechanical energy of the block-spring system remains unchanged in the subsequent motion of the block. Part A After the block is released from , it will ANSWER: Correct As the block begins its motion to the left, it accelerates. Although the restoring force decreases as the block approaches equilibrium, it still pulls the block to the left, so by the time the equilibrium position is reached, the block has gained some speed. It will, therefore, pass the equilibrium position and keep moving, compressing the spring. The spring will now be pushing the block to the right, and the block will slow down, temporarily coming to rest at . After is reached, the block will begin its motion to the right, pushed by the spring. The block will pass the equilibrium position and continue until it reaches , completing one cycle of motion. The motion will then repeat; if, as we’ve assumed, there is no friction, the motion will repeat indefinitely. The time it takes the block to complete one cycle is called the period. Usually, the period is denoted and is measured in seconds. The frequency, denoted , is the number of cycles that are completed per unit of time: . In SI units, is measured in inverse seconds, or hertz ( ). A A x = A remain at rest. move to the left until it reaches equilibrium and stop there. move to the left until it reaches and stop there. move to the left until it reaches and then begin to move to the right. x = −A x = −A x = −A x = −A x = A T f f = 1/T f Hz Part B If the period is doubled, the frequency is ANSWER: Correct Part C An oscillating object takes 0.10 to complete one cycle; that is, its period is 0.10 . What is its frequency ? Express your answer in hertz. ANSWER: Correct unchanged. doubled. halved. s s f f = 10 Hz Part D If the frequency is 40 , what is the period ? Express your answer in seconds. ANSWER: Correct The following questions refer to the figure that graphically depicts the oscillations of the block on the spring. Note that the vertical axis represents the x coordinate of the oscillating object, and the horizontal axis represents time. Part E Which points on the x axis are located a distance from the equilibrium position? ANSWER: Hz T T = 0.025 s A Correct Part F Suppose that the period is . Which of the following points on the t axis are separated by the time interval ? ANSWER: Correct Now assume for the remaining Parts G – J, that the x coordinate of point R is 0.12 and the t coordinate of point K is 0.0050 . Part G What is the period ? Express your answer in seconds. Hint 1. How to approach the problem In moving from the point to the point K, what fraction of a full wavelength is covered? Call that fraction . Then you can set . Dividing by the fraction will give the R only Q only both R and Q T T K and L K and M K and P L and N M and P m s T t = 0 a aT = 0.005 s a period . ANSWER: Correct Part H How much time does the block take to travel from the point of maximum displacement to the opposite point of maximum displacement? Express your answer in seconds. ANSWER: Correct Part I What distance does the object cover during one period of oscillation? Express your answer in meters. ANSWER: Correct Part J What distance does the object cover between the moments labeled K and N on the graph? T T = 0.02 s t t = 0.01 s d d = 0.48 m d Express your answer in meters. ANSWER: Correct Problem 14.4 Part A What is the amplitude of the oscillation shown in the figure? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct d = 0.36 m A = 20.0 cm Part B What is the frequency of this oscillation? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the phase constant? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.10 An air-track glider attached to a spring oscillates with a period of 1.50 . At the glider is 4.60 left of the equilibrium position and moving to the right at 33.4 . Part A What is the phase constant? Express your answer to three significant figures and include the appropriate units. ANSWER: f = 0.25 Hz 0 = -60 % s t = 0 s cm cm/s 0 = -2.09 rad Correct Part B What is the phase at ? Express your answer as an integer and include the appropriate units. ANSWER: Correct Part C What is the phase at ? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part D What is the phase at ? Express your answer to three significant figures and include the appropriate units. ANSWER: t = 0.5 s  = 0 rad t = 1.0 s  = 2.09 rad t = 1.5 s  = 4.19 rad Correct Problem 14.12 A 140 air-track glider is attached to a spring. The glider is pushed in 12.2 and released. A student with a stopwatch finds that 14.0 oscillations take 19.0 . Part A What is the spring constant? Express your answer with the appropriate units. ANSWER: Correct Problem 14.14 The position of a 50 g oscillating mass is given by , where is in s. If necessary, round your answers to three significant figures. Determine: Part A The amplitude. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct g cm s 3.00 Nm x(t) = (2.0 cm)cos(10t − /4) t 2.00 cm Part B The period. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part C The spring constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part D The phase constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct 0.628 s 5.00 Nm -0.785 rad Part E The initial coordinate of the mass. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part F The initial velocity. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part G The maximum speed. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct 1.41 cm 14.1 cms 20.0 cms Part H The total energy. Express your answer to one decimal place and include the appropriate units. ANSWER: Correct Part I The velocity at . Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 14.17 A spring with spring constant 16 hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 4.0 and released. The ball makes 35 oscillations in 18 seconds. You may want to review ( pages 389 – 391) . For help with math skills, you may want to review: Differentiation of Trigonometric Functions Part A What is its the mass of the ball? 1.0 mJ t = 0.40 s 1.46 cms N/m cm s Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the period of oscillation? What is the angular frequency of the oscillations? How is the angular frequency related to the mass and spring constant? What is the mass? ANSWER: Correct Part B What is its maximum speed? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the amplitude of the oscillations? How is the maximum speed related to the amplitude of the oscillations and the angular frequency? ANSWER: Correct Changing the Period of a Pendulum m = 110 g vmax = 49 cms A simple pendulum consisting of a bob of mass attached to a string of length swings with a period . Part A If the bob’s mass is doubled, approximately what will the pendulum’s new period be? Hint 1. Period of a simple pendulum The period of a simple pendulum of length is given by , where is the acceleration due to gravity. ANSWER: Correct Part B If the pendulum is brought on the moon where the gravitational acceleration is about , approximately what will its period now be? Hint 1. How to approach the problem Recall the formula of the period of a simple pendulum. Since the gravitational acceleration appears in the denominator, the period must increase when the gravitational acceleration decreases. m L T T L T = 2 Lg −−  g T/2 T ‘2T 2T g/6 ANSWER: Correct Part C If the pendulum is taken into the orbiting space station what will happen to the bob? Hint 1. How to approach the problem Recall that the oscillations of a simple pendulum occur when a pendulum bob is raised above its equilibrium position and let go, causing the pendulum bob to fall. The gravitational force acts to bring the bob back to its equilibrium position. In the space station, the earth’s gravity acts on both the station and everything inside it, giving them the same acceleration. These objects are said to be in free fall. ANSWER: Correct In the space station, where all objects undergo the same acceleration due to the earth’s gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. T/6 T/’6 ‘6T 6T It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. It will oscillate much faster with a period that approaches zero. Problem 14.20 A 175 ball is tied to a string. It is pulled to an angle of 8.0 and released to swing as a pendulum. A student with a stopwatch finds that 15 oscillations take 13 . Part A How long is the string? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.22 Part A What is the length of a pendulum whose period on the moon matches the period of a 2.1- -long pendulum on the earth? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.42 An ultrasonic transducer, of the type used in medical ultrasound imaging, is a very thin disk ( = 0.17 ) driven back and forth in SHM at by an electromagnetic coil. g % s L = 19 cm m lmoon = 0.35 m m g 1.0 MHz Part A The maximum restoring force that can be applied to the disk without breaking it is 4.4×104 . What is the maximum oscillation amplitude that won’t rupture the disk? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the disk’s maximum speed at this amplitude? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 94.2%. You received 135.71 out of a possible total of 144 points. N amax = 6.6 μm vmax = 41 ms

Assignment 11 Due: 11:59pm on Wednesday, April 30, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 13.2 The gravitational force of a star on orbiting planet 1 is . Planet 2, which is twice as massive as planet 1 and orbits at twice the distance from the star, experiences gravitational force . Part A What is the ratio ? ANSWER: Correct Conceptual Question 13.3 A 1500 satellite and a 2200 satellite follow exactly the same orbit around the earth. Part A What is the ratio of the force on the first satellite to that on the second satellite? ANSWER: Correct F1 F2 F1 F2 = 2 F1 F2 kg kg F1 F2 = 0.682 F1 F2 Part B What is the ratio of the acceleration of the first satellite to that of the second satellite? ANSWER: Correct Problem 13.2 The centers of a 15.0 lead ball and a 90.0 lead ball are separated by 9.00 . Part A What gravitational force does each exert on the other? Express your answer with the appropriate units. ANSWER: Correct Part B What is the ratio of this gravitational force to the weight of the 90.0 ball? ANSWER: a1 a2 = 1 a1 a2 kg g cm 1.11×10−8 N g 1.26×10−8 Correct Problem 13.6 The space shuttle orbits 310 above the surface of the earth. Part A What is the gravitational force on a 7.5 sphere inside the space shuttle? Express your answer with the appropriate units. ANSWER: Correct ± A Satellite in Orbit A satellite used in a cellular telephone network has a mass of 2310 and is in a circular orbit at a height of 650 above the surface of the earth. Part A What is the gravitational force on the satellite? Take the gravitational constant to be = 6.67×10−11 , the mass of the earth to be = 5.97×1024 , and the radius of the Earth to be = 6.38×106 . Express your answer in newtons. Hint 1. How to approach the problem Use the equation for the law of gravitation to calculate the force on the satellite. Be careful about the units when performing the calculations. km kg Fe on s = 67.0 N kg km Fgrav G N m2/kg2 me kg re m Hint 2. Law of gravitation According to Newton’s law of gravitation, , where is the gravitational constant, and are the masses of the two objects, and is the distance between the centers of mass of the two objects. Hint 3. Calculate the distance between the centers of mass What is the distance from the center of mass of the satellite to the center of mass of the earth? Express your answer in meters. ANSWER: ANSWER: Correct Part B What fraction is this of the satellite’s weight at the surface of the earth? Take the free-fall acceleration at the surface of the earth to be = 9.80 . Hint 1. How to approach the problem All you need to do is to take the ratio of the gravitational force on the satellite to the weight of the satellite at ground level. There are two ways to do this, depending on how you define the force of gravity at the surface of the earth. ANSWER: F = Gm1m2/r2 G m1 m2 r r = 7.03×10r 6 m = 1.86×10Fgrav 4 N g m/s2 0.824 Correct Although it is easy to find the weight of the satellite using the constant acceleration due to gravity, it is instructional to consider the weight calculated using the law of gravitation: . Dividing the gravitational force on the satellite by , we find that the ratio of the forces due to the earth’s gravity is simply the square of the ratio of the earth’s radius to the sum of the earth’s radius and the height of the orbit of the satellite above the earth, . This will also be the fraction of the weight of, say, an astronaut in an orbit at the same altitude. Notice that an astronaut’s weight is never zero. When people speak of “weightlessness” in space, what they really mean is “free fall.” Problem 13.8 Part A What is the free-fall acceleration at the surface of the moon? Express your answer with the appropriate units. ANSWER: Correct Part B What is the free-fall acceleration at the surface of the Jupiter? Express your answer with the appropriate units. ANSWER: Correct w = G m/ me r2e Fgrav = Gmem/(re + h)2 w [re/(re + h)]2 gmoon = 1.62 m s2 gJupiter = 25.9 m s2 Enhanced EOC: Problem 13.14 A rocket is launched straight up from the earth’s surface at a speed of 1.90×104 . You may want to review ( pages 362 – 365) . For help with math skills, you may want to review: Mathematical Expressions Involving Squares Part A What is its speed when it is very far away from the earth? Express your answer with the appropriate units. Hint 1. How to approach the problem What is conserved in this problem? What is the rocket’s initial kinetic energy in terms of its unknown mass, ? What is the rocket’s initial gravitational potential energy in terms of its unknown mass, ? When the rocket is very far away from the Earth, what is its gravitational potential energy? Using conservation of energy, what is the rocket’s kinetic energy when it is very far away from the Earth? Therefore, what is the rocket’s velocity when it is very far away from the Earth? ANSWER: Correct Problem 13.13 Part A m/s m m 1.54×104 ms What is the escape speed from Venus? Express your answer with the appropriate units. ANSWER: Correct Problem 13.17 The asteroid belt circles the sun between the orbits of Mars and Jupiter. One asteroid has a period of 4.2 earth years. Part A What is the asteroid’s orbital radius? Express your answer with the appropriate units. ANSWER: Correct Part B What is the asteroid’s orbital speed? Express your answer with the appropriate units. ANSWER: vescape = 10.4 km s = 3.89×1011 R m = 1.85×104 v ms Correct Problem 13.32 Part A At what height above the earth is the acceleration due to gravity 15.0% of its value at the surface? Express your answer with the appropriate units. ANSWER: Correct Part B What is the speed of a satellite orbiting at that height? Express your answer with the appropriate units. ANSWER: Correct Problem 13.36 Two meteoroids are heading for earth. Their speeds as they cross the moon’s orbit are 2 . 1.01×107 m 4920 ms km/s Part A The first meteoroid is heading straight for earth. What is its speed of impact? Express your answer with the appropriate units. ANSWER: Correct Part B The second misses the earth by 5500 . What is its speed at its closest point? Express your answer with the appropriate units. ANSWER: Incorrect; Try Again Problem 14.2 An air-track glider attached to a spring oscillates between the 11.0 mark and the 67.0 mark on the track. The glider completes 11.0 oscillations in 32.0 . Part A What is the period of the oscillations? Express your answer with the appropriate units. v1 = 11.3 km s km v2 = cm cm s ANSWER: Correct Part B What is the frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part C What is the angular frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part D What is the amplitude? Express your answer with the appropriate units. 2.91 s 0.344 Hz 2.16 rad s ANSWER: Correct Part E What is the maximum speed of the glider? Express your answer with the appropriate units. ANSWER: Correct Good Vibes: Introduction to Oscillations Learning Goal: To learn the basic terminology and relationships among the main characteristics of simple harmonic motion. Motion that repeats itself over and over is called periodic motion. There are many examples of periodic motion: the earth revolving around the sun, an elastic ball bouncing up and down, or a block attached to a spring oscillating back and forth. The last example differs from the first two, in that it represents a special kind of periodic motion called simple harmonic motion. The conditions that lead to simple harmonic motion are as follows: There must be a position of stable equilibrium. There must be a restoring force acting on the oscillating object. The direction of this force must always point toward the equilibrium, and its magnitude must be directly proportional to the magnitude of the object’s displacement from its equilibrium position. Mathematically, the restoring force is given by , where is the displacement from equilibrium and is a constant that depends on the properties of the oscillating system. The resistive forces in the system must be reasonably small. In this problem, we will introduce some of the basic quantities that describe oscillations and the relationships among them. Consider a block of mass attached to a spring with force constant , as shown in the figure. The spring can be either stretched or compressed. The block slides on a frictionless horizontal surface, as shown. When the spring is relaxed, the block is located at . If the 28.0 cm 60.5 cms F  F = −kx x k m k x = 0 block is pulled to the right a distance and then released, will be the amplitude of the resulting oscillations. Assume that the mechanical energy of the block-spring system remains unchanged in the subsequent motion of the block. Part A After the block is released from , it will ANSWER: Correct As the block begins its motion to the left, it accelerates. Although the restoring force decreases as the block approaches equilibrium, it still pulls the block to the left, so by the time the equilibrium position is reached, the block has gained some speed. It will, therefore, pass the equilibrium position and keep moving, compressing the spring. The spring will now be pushing the block to the right, and the block will slow down, temporarily coming to rest at . After is reached, the block will begin its motion to the right, pushed by the spring. The block will pass the equilibrium position and continue until it reaches , completing one cycle of motion. The motion will then repeat; if, as we’ve assumed, there is no friction, the motion will repeat indefinitely. The time it takes the block to complete one cycle is called the period. Usually, the period is denoted and is measured in seconds. The frequency, denoted , is the number of cycles that are completed per unit of time: . In SI units, is measured in inverse seconds, or hertz ( ). A A x = A remain at rest. move to the left until it reaches equilibrium and stop there. move to the left until it reaches and stop there. move to the left until it reaches and then begin to move to the right. x = −A x = −A x = −A x = −A x = A T f f = 1/T f Hz Part B If the period is doubled, the frequency is ANSWER: Correct Part C An oscillating object takes 0.10 to complete one cycle; that is, its period is 0.10 . What is its frequency ? Express your answer in hertz. ANSWER: Correct unchanged. doubled. halved. s s f f = 10 Hz Part D If the frequency is 40 , what is the period ? Express your answer in seconds. ANSWER: Correct The following questions refer to the figure that graphically depicts the oscillations of the block on the spring. Note that the vertical axis represents the x coordinate of the oscillating object, and the horizontal axis represents time. Part E Which points on the x axis are located a distance from the equilibrium position? ANSWER: Hz T T = 0.025 s A Correct Part F Suppose that the period is . Which of the following points on the t axis are separated by the time interval ? ANSWER: Correct Now assume for the remaining Parts G – J, that the x coordinate of point R is 0.12 and the t coordinate of point K is 0.0050 . Part G What is the period ? Express your answer in seconds. Hint 1. How to approach the problem In moving from the point to the point K, what fraction of a full wavelength is covered? Call that fraction . Then you can set . Dividing by the fraction will give the R only Q only both R and Q T T K and L K and M K and P L and N M and P m s T t = 0 a aT = 0.005 s a period . ANSWER: Correct Part H How much time does the block take to travel from the point of maximum displacement to the opposite point of maximum displacement? Express your answer in seconds. ANSWER: Correct Part I What distance does the object cover during one period of oscillation? Express your answer in meters. ANSWER: Correct Part J What distance does the object cover between the moments labeled K and N on the graph? T T = 0.02 s t t = 0.01 s d d = 0.48 m d Express your answer in meters. ANSWER: Correct Problem 14.4 Part A What is the amplitude of the oscillation shown in the figure? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct d = 0.36 m A = 20.0 cm Part B What is the frequency of this oscillation? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the phase constant? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.10 An air-track glider attached to a spring oscillates with a period of 1.50 . At the glider is 4.60 left of the equilibrium position and moving to the right at 33.4 . Part A What is the phase constant? Express your answer to three significant figures and include the appropriate units. ANSWER: f = 0.25 Hz 0 = -60 % s t = 0 s cm cm/s 0 = -2.09 rad Correct Part B What is the phase at ? Express your answer as an integer and include the appropriate units. ANSWER: Correct Part C What is the phase at ? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part D What is the phase at ? Express your answer to three significant figures and include the appropriate units. ANSWER: t = 0.5 s  = 0 rad t = 1.0 s  = 2.09 rad t = 1.5 s  = 4.19 rad Correct Problem 14.12 A 140 air-track glider is attached to a spring. The glider is pushed in 12.2 and released. A student with a stopwatch finds that 14.0 oscillations take 19.0 . Part A What is the spring constant? Express your answer with the appropriate units. ANSWER: Correct Problem 14.14 The position of a 50 g oscillating mass is given by , where is in s. If necessary, round your answers to three significant figures. Determine: Part A The amplitude. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct g cm s 3.00 Nm x(t) = (2.0 cm)cos(10t − /4) t 2.00 cm Part B The period. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part C The spring constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part D The phase constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct 0.628 s 5.00 Nm -0.785 rad Part E The initial coordinate of the mass. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part F The initial velocity. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part G The maximum speed. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct 1.41 cm 14.1 cms 20.0 cms Part H The total energy. Express your answer to one decimal place and include the appropriate units. ANSWER: Correct Part I The velocity at . Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 14.17 A spring with spring constant 16 hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 4.0 and released. The ball makes 35 oscillations in 18 seconds. You may want to review ( pages 389 – 391) . For help with math skills, you may want to review: Differentiation of Trigonometric Functions Part A What is its the mass of the ball? 1.0 mJ t = 0.40 s 1.46 cms N/m cm s Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the period of oscillation? What is the angular frequency of the oscillations? How is the angular frequency related to the mass and spring constant? What is the mass? ANSWER: Correct Part B What is its maximum speed? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the amplitude of the oscillations? How is the maximum speed related to the amplitude of the oscillations and the angular frequency? ANSWER: Correct Changing the Period of a Pendulum m = 110 g vmax = 49 cms A simple pendulum consisting of a bob of mass attached to a string of length swings with a period . Part A If the bob’s mass is doubled, approximately what will the pendulum’s new period be? Hint 1. Period of a simple pendulum The period of a simple pendulum of length is given by , where is the acceleration due to gravity. ANSWER: Correct Part B If the pendulum is brought on the moon where the gravitational acceleration is about , approximately what will its period now be? Hint 1. How to approach the problem Recall the formula of the period of a simple pendulum. Since the gravitational acceleration appears in the denominator, the period must increase when the gravitational acceleration decreases. m L T T L T = 2 Lg −−  g T/2 T ‘2T 2T g/6 ANSWER: Correct Part C If the pendulum is taken into the orbiting space station what will happen to the bob? Hint 1. How to approach the problem Recall that the oscillations of a simple pendulum occur when a pendulum bob is raised above its equilibrium position and let go, causing the pendulum bob to fall. The gravitational force acts to bring the bob back to its equilibrium position. In the space station, the earth’s gravity acts on both the station and everything inside it, giving them the same acceleration. These objects are said to be in free fall. ANSWER: Correct In the space station, where all objects undergo the same acceleration due to the earth’s gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. T/6 T/’6 ‘6T 6T It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. It will oscillate much faster with a period that approaches zero. Problem 14.20 A 175 ball is tied to a string. It is pulled to an angle of 8.0 and released to swing as a pendulum. A student with a stopwatch finds that 15 oscillations take 13 . Part A How long is the string? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.22 Part A What is the length of a pendulum whose period on the moon matches the period of a 2.1- -long pendulum on the earth? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.42 An ultrasonic transducer, of the type used in medical ultrasound imaging, is a very thin disk ( = 0.17 ) driven back and forth in SHM at by an electromagnetic coil. g % s L = 19 cm m lmoon = 0.35 m m g 1.0 MHz Part A The maximum restoring force that can be applied to the disk without breaking it is 4.4×104 . What is the maximum oscillation amplitude that won’t rupture the disk? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the disk’s maximum speed at this amplitude? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 94.2%. You received 135.71 out of a possible total of 144 points. N amax = 6.6 μm vmax = 41 ms

please email info@checkyourstudy.com
CE 309 Fluid Mechanics Laboratory 2015 Assignment: ABET Criterion b You are tasked by SMU to design laboratory equipment for accurately determining discharge coefficients of an orifice in a reservoir discharging into the atmosphere (free jet). The equipment will be used in an undergraduate fluid mechanics laboratory class. You are not allowed to recommend an over-the-shelf system sold by manufacturers but must begin with basic materials. Your design must include the following; • Neat sketches and drawing illustrating your design. Sketches must be to scale. All sections of the sketch must be labeled in detail. As an example, a proposed motor must show the type, horsepower as well as any details necessary for the acquisition of the motor. • Statement of cost of individual items as well as the gross. It must also include installation costs where applicable. You are encouraged to recommend modern instrumentation in you design however costs must be kept as reasonable as possible. An esoteric system with no regard to the cost is of little value. Justify all your choices. • Develop a procedure for students operating the system to achieve the laboratory objectives. Indicate the advantages of your design over the current. • Keep your report to 3 pages maximum.

CE 309 Fluid Mechanics Laboratory 2015 Assignment: ABET Criterion b You are tasked by SMU to design laboratory equipment for accurately determining discharge coefficients of an orifice in a reservoir discharging into the atmosphere (free jet). The equipment will be used in an undergraduate fluid mechanics laboratory class. You are not allowed to recommend an over-the-shelf system sold by manufacturers but must begin with basic materials. Your design must include the following; • Neat sketches and drawing illustrating your design. Sketches must be to scale. All sections of the sketch must be labeled in detail. As an example, a proposed motor must show the type, horsepower as well as any details necessary for the acquisition of the motor. • Statement of cost of individual items as well as the gross. It must also include installation costs where applicable. You are encouraged to recommend modern instrumentation in you design however costs must be kept as reasonable as possible. An esoteric system with no regard to the cost is of little value. Justify all your choices. • Develop a procedure for students operating the system to achieve the laboratory objectives. Indicate the advantages of your design over the current. • Keep your report to 3 pages maximum.

No expert has answered this question yet. You can browse … Read More...
1) During the late 19th century, the nature of work changed for Americans and has never been the same since. Facets of work which we take for granted today such as working long hours and working by the clock, working with machines, and feeling like a very small part of a very large company or corporation, were alien to workers of the late 19th century. Scholars have long debated this transition in the workplace, and have attempted to assess whether the change was beneficial or not for the worker. Using your own personal experience if you wish, but also using specific historical examples discussed in the text and lesson, do you feel the changes the American worker experienced in the 19th century were beneficial or not? Would you rather work in a pre-industrial workplace, not governed by the clock, or has the advent of machines and machinery allowed American workers more freedom? Or has it made them robots? Also, why do you think we don’t have violent labor conflicts in this country like there were in the 19th century? Are workers happier? Or just used to a system now that they have no choice but to accept?

1) During the late 19th century, the nature of work changed for Americans and has never been the same since. Facets of work which we take for granted today such as working long hours and working by the clock, working with machines, and feeling like a very small part of a very large company or corporation, were alien to workers of the late 19th century. Scholars have long debated this transition in the workplace, and have attempted to assess whether the change was beneficial or not for the worker. Using your own personal experience if you wish, but also using specific historical examples discussed in the text and lesson, do you feel the changes the American worker experienced in the 19th century were beneficial or not? Would you rather work in a pre-industrial workplace, not governed by the clock, or has the advent of machines and machinery allowed American workers more freedom? Or has it made them robots? Also, why do you think we don’t have violent labor conflicts in this country like there were in the 19th century? Are workers happier? Or just used to a system now that they have no choice but to accept?

Planned labor has always been of paramount importance as supporting … Read More...
Assignment 11 Due: 11:59pm on Wednesday, April 30, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 13.2 The gravitational force of a star on orbiting planet 1 is . Planet 2, which is twice as massive as planet 1 and orbits at twice the distance from the star, experiences gravitational force . Part A What is the ratio ? ANSWER: Correct Conceptual Question 13.3 A 1500 satellite and a 2200 satellite follow exactly the same orbit around the earth. Part A What is the ratio of the force on the first satellite to that on the second satellite? ANSWER: Correct F1 F2 F1 F2 = 2 F1 F2 kg kg F1 F2 = 0.682 F1 F2 Part B What is the ratio of the acceleration of the first satellite to that of the second satellite? ANSWER: Correct Problem 13.2 The centers of a 15.0 lead ball and a 90.0 lead ball are separated by 9.00 . Part A What gravitational force does each exert on the other? Express your answer with the appropriate units. ANSWER: Correct Part B What is the ratio of this gravitational force to the weight of the 90.0 ball? ANSWER: a1 a2 = 1 a1 a2 kg g cm 1.11×10−8 N g 1.26×10−8 Typesetting math: 100% Correct Problem 13.6 The space shuttle orbits 310 above the surface of the earth. Part A What is the gravitational force on a 7.5 sphere inside the space shuttle? Express your answer with the appropriate units. ANSWER: Correct ± A Satellite in Orbit A satellite used in a cellular telephone network has a mass of 2310 and is in a circular orbit at a height of 650 above the surface of the earth. Part A What is the gravitational force on the satellite? Take the gravitational constant to be = 6.67×10−11 , the mass of the earth to be = 5.97×1024 , and the radius of the Earth to be = 6.38×106 . Express your answer in newtons. Hint 1. How to approach the problem Use the equation for the law of gravitation to calculate the force on the satellite. Be careful about the units when performing the calculations. km kg Fe on s = 67.0 N kg km Fgrav G N m2/kg2 me kg re m Typesetting math: 100% Hint 2. Law of gravitation According to Newton’s law of gravitation, , where is the gravitational constant, and are the masses of the two objects, and is the distance between the centers of mass of the two objects. Hint 3. Calculate the distance between the centers of mass What is the distance from the center of mass of the satellite to the center of mass of the earth? Express your answer in meters. ANSWER: ANSWER: Correct Part B What fraction is this of the satellite’s weight at the surface of the earth? Take the free-fall acceleration at the surface of the earth to be = 9.80 . Hint 1. How to approach the problem All you need to do is to take the ratio of the gravitational force on the satellite to the weight of the satellite at ground level. There are two ways to do this, depending on how you define the force of gravity at the surface of the earth. ANSWER: F = Gm1m2/r2 G m1 m2 r r = 7.03×10r 6 m = 1.86×10Fgrav 4 N g m/s2 0.824 Typesetting math: 100% Correct Although it is easy to find the weight of the satellite using the constant acceleration due to gravity, it is instructional to consider the weight calculated using the law of gravitation: . Dividing the gravitational force on the satellite by , we find that the ratio of the forces due to the earth’s gravity is simply the square of the ratio of the earth’s radius to the sum of the earth’s radius and the height of the orbit of the satellite above the earth, . This will also be the fraction of the weight of, say, an astronaut in an orbit at the same altitude. Notice that an astronaut’s weight is never zero. When people speak of “weightlessness” in space, what they really mean is “free fall.” Problem 13.8 Part A What is the free-fall acceleration at the surface of the moon? Express your answer with the appropriate units. ANSWER: Correct Part B What is the free-fall acceleration at the surface of the Jupiter? Express your answer with the appropriate units. ANSWER: Correct w = G m/ me r2e Fgrav = Gmem/(re + h)2 w [re/(re + h)]2 gmoon = 1.62 m s2 gJupiter = 25.9 m s2 Typesetting math: 100% Enhanced EOC: Problem 13.14 A rocket is launched straight up from the earth’s surface at a speed of 1.90×104 . You may want to review ( pages 362 – 365) . For help with math skills, you may want to review: Mathematical Expressions Involving Squares Part A What is its speed when it is very far away from the earth? Express your answer with the appropriate units. Hint 1. How to approach the problem What is conserved in this problem? What is the rocket’s initial kinetic energy in terms of its unknown mass, ? What is the rocket’s initial gravitational potential energy in terms of its unknown mass, ? When the rocket is very far away from the Earth, what is its gravitational potential energy? Using conservation of energy, what is the rocket’s kinetic energy when it is very far away from the Earth? Therefore, what is the rocket’s velocity when it is very far away from the Earth? ANSWER: Correct Problem 13.13 Part A m/s m m 1.54×104 ms Typesetting math: 100% What is the escape speed from Venus? Express your answer with the appropriate units. ANSWER: Correct Problem 13.17 The asteroid belt circles the sun between the orbits of Mars and Jupiter. One asteroid has a period of 4.2 earth years. Part A What is the asteroid’s orbital radius? Express your answer with the appropriate units. ANSWER: Correct Part B What is the asteroid’s orbital speed? Express your answer with the appropriate units. ANSWER: vescape = 10.4 km s = 3.89×1011 R m = 1.85×104 v ms Typesetting math: 100% Correct Problem 13.32 Part A At what height above the earth is the acceleration due to gravity 15.0% of its value at the surface? Express your answer with the appropriate units. ANSWER: Correct Part B What is the speed of a satellite orbiting at that height? Express your answer with the appropriate units. ANSWER: Correct Problem 13.36 Two meteoroids are heading for earth. Their speeds as they cross the moon’s orbit are 2 . 1.01×107 m 4920 ms km/s Typesetting math: 100% Part A The first meteoroid is heading straight for earth. What is its speed of impact? Express your answer with the appropriate units. ANSWER: Correct Part B The second misses the earth by 5500 . What is its speed at its closest point? Express your answer with the appropriate units. ANSWER: Incorrect; Try Again Problem 14.2 An air-track glider attached to a spring oscillates between the 11.0 mark and the 67.0 mark on the track. The glider completes 11.0 oscillations in 32.0 . Part A What is the period of the oscillations? Express your answer with the appropriate units. v1 = 11.3 km s km v2 = cm cm s Typesetting math: 100% ANSWER: Correct Part B What is the frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part C What is the angular frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part D What is the amplitude? Express your answer with the appropriate units. 2.91 s 0.344 Hz 2.16 rad s Typesetting math: 100% ANSWER: Correct Part E What is the maximum speed of the glider? Express your answer with the appropriate units. ANSWER: Correct Good Vibes: Introduction to Oscillations Learning Goal: To learn the basic terminology and relationships among the main characteristics of simple harmonic motion. Motion that repeats itself over and over is called periodic motion. There are many examples of periodic motion: the earth revolving around the sun, an elastic ball bouncing up and down, or a block attached to a spring oscillating back and forth. The last example differs from the first two, in that it represents a special kind of periodic motion called simple harmonic motion. The conditions that lead to simple harmonic motion are as follows: There must be a position of stable equilibrium. There must be a restoring force acting on the oscillating object. The direction of this force must always point toward the equilibrium, and its magnitude must be directly proportional to the magnitude of the object’s displacement from its equilibrium position. Mathematically, the restoring force is given by , where is the displacement from equilibrium and is a constant that depends on the properties of the oscillating system. The resistive forces in the system must be reasonably small. In this problem, we will introduce some of the basic quantities that describe oscillations and the relationships among them. Consider a block of mass attached to a spring with force constant , as shown in the figure. The spring can be either stretched or compressed. The block slides on a frictionless horizontal surface, as shown. When the spring is relaxed, the block is located at . If the 28.0 cm 60.5 cms F  F = −kx x k m k x = 0 Typesetting math: 100% block is pulled to the right a distance and then released, will be the amplitude of the resulting oscillations. Assume that the mechanical energy of the block-spring system remains unchanged in the subsequent motion of the block. Part A After the block is released from , it will ANSWER: Correct As the block begins its motion to the left, it accelerates. Although the restoring force decreases as the block approaches equilibrium, it still pulls the block to the left, so by the time the equilibrium position is reached, the block has gained some speed. It will, therefore, pass the equilibrium position and keep moving, compressing the spring. The spring will now be pushing the block to the right, and the block will slow down, temporarily coming to rest at . After is reached, the block will begin its motion to the right, pushed by the spring. The block will pass the equilibrium position and continue until it reaches , completing one cycle of motion. The motion will then repeat; if, as we’ve assumed, there is no friction, the motion will repeat indefinitely. The time it takes the block to complete one cycle is called the period. Usually, the period is denoted and is measured in seconds. The frequency, denoted , is the number of cycles that are completed per unit of time: . In SI units, is measured in inverse seconds, or hertz ( ). A A x = A remain at rest. move to the left until it reaches equilibrium and stop there. move to the left until it reaches and stop there. move to the left until it reaches and then begin to move to the right. x = −A x = −A x = −A x = −A x = A T f f = 1/T f Hz Typesetting math: 100% Part B If the period is doubled, the frequency is ANSWER: Correct Part C An oscillating object takes 0.10 to complete one cycle; that is, its period is 0.10 . What is its frequency ? Express your answer in hertz. ANSWER: Correct unchanged. doubled. halved. s s f f = 10 Hz Typesetting math: 100% Part D If the frequency is 40 , what is the period ? Express your answer in seconds. ANSWER: Correct The following questions refer to the figure that graphically depicts the oscillations of the block on the spring. Note that the vertical axis represents the x coordinate of the oscillating object, and the horizontal axis represents time. Part E Which points on the x axis are located a distance from the equilibrium position? ANSWER: Hz T T = 0.025 s A Typesetting math: 100% Correct Part F Suppose that the period is . Which of the following points on the t axis are separated by the time interval ? ANSWER: Correct Now assume for the remaining Parts G – J, that the x coordinate of point R is 0.12 and the t coordinate of point K is 0.0050 . Part G What is the period ? Express your answer in seconds. Hint 1. How to approach the problem In moving from the point to the point K, what fraction of a full wavelength is covered? Call that fraction . Then you can set . Dividing by the fraction will give the R only Q only both R and Q T T K and L K and M K and P L and N M and P m s T t = 0 a aT = 0.005 s a Typesetting math: 100% period . ANSWER: Correct Part H How much time does the block take to travel from the point of maximum displacement to the opposite point of maximum displacement? Express your answer in seconds. ANSWER: Correct Part I What distance does the object cover during one period of oscillation? Express your answer in meters. ANSWER: Correct Part J What distance does the object cover between the moments labeled K and N on the graph? T T = 0.02 s t t = 0.01 s d d = 0.48 m d Typesetting math: 100% Express your answer in meters. ANSWER: Correct Problem 14.4 Part A What is the amplitude of the oscillation shown in the figure? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct d = 0.36 m A = 20.0 cm Typesetting math: 100% Part B What is the frequency of this oscillation? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the phase constant? Express your answer to two significant figures and include the appropriate units. ANSWER: Incorrect; Try Again Problem 14.10 An air-track glider attached to a spring oscillates with a period of 1.50 . At the glider is 4.60 left of the equilibrium position and moving to the right at 33.4 . Part A What is the phase constant? Express your answer to three significant figures and include the appropriate units. ANSWER: f = 0.25 Hz 0 = s t = 0 s cm cm/s Typesetting math: 100% Incorrect; Try Again Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Problem 14.12 A 140 air-track glider is attached to a spring. The glider is pushed in 12.2 and released. A student with a stopwatch finds that 14.0 oscillations take 19.0 . Part A What is the spring constant? Express your answer with the appropriate units. ANSWER: 0 = g cm s Typesetting math: 100% Correct Problem 14.14 The position of a 50 g oscillating mass is given by , where is in s. If necessary, round your answers to three significant figures. Determine: Part A The amplitude. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part B The period. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part C 3.00 Nm x(t) = (2.0 cm)cos(10t − /4) t 2.00 cm 0.628 s Typesetting math: 100% The spring constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Part D The phase constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Incorrect; Try Again Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G Typesetting math: 100% This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). Part I This question will be shown after you complete previous question(s). Enhanced EOC: Problem 14.17 A spring with spring constant 16 hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 4.0 and released. The ball makes 35 oscillations in 18 seconds. You may want to review ( pages 389 – 391) . For help with math skills, you may want to review: Differentiation of Trigonometric Functions Part A What is its the mass of the ball? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the period of oscillation? What is the angular frequency of the oscillations? How is the angular frequency related to the mass and spring constant? What is the mass? N/m cm s Typesetting math: 100% ANSWER: Correct Part B What is its maximum speed? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the amplitude of the oscillations? How is the maximum speed related to the amplitude of the oscillations and the angular frequency? ANSWER: Correct Changing the Period of a Pendulum A simple pendulum consisting of a bob of mass attached to a string of length swings with a period . Part A If the bob’s mass is doubled, approximately what will the pendulum’s new period be? Hint 1. Period of a simple pendulum The period of a simple pendulum of length is given by m = 110 g vmax = 49 cms m L T Typesetting math: 10T0% L , where is the acceleration due to gravity. ANSWER: Correct Part B If the pendulum is brought on the moon where the gravitational acceleration is about , approximately what will its period now be? Hint 1. How to approach the problem Recall the formula of the period of a simple pendulum. Since the gravitational acceleration appears in the denominator, the period must increase when the gravitational acceleration decreases. ANSWER: T = 2 Lg −−  g T/2 T &2T 2T g/6 T/6 T/&6 &6T 6T Typesetting math: 100% Correct Part C If the pendulum is taken into the orbiting space station what will happen to the bob? Hint 1. How to approach the problem Recall that the oscillations of a simple pendulum occur when a pendulum bob is raised above its equilibrium position and let go, causing the pendulum bob to fall. The gravitational force acts to bring the bob back to its equilibrium position. In the space station, the earth’s gravity acts on both the station and everything inside it, giving them the same acceleration. These objects are said to be in free fall. ANSWER: Correct In the space station, where all objects undergo the same acceleration due to the earth’s gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. Problem 14.20 A 175 ball is tied to a string. It is pulled to an angle of 8.0 and released to swing as a pendulum. A student with a stopwatch finds that 15 oscillations take 13 . Part A How long is the string? Express your answer to two significant figures and include the appropriate units. It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. It will oscillate much faster with a period that approaches zero. g ( s Typesetting math: 100% ANSWER: Correct Problem 14.22 Part A What is the length of a pendulum whose period on the moon matches the period of a 2.1- -long pendulum on the earth? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.42 An ultrasonic transducer, of the type used in medical ultrasound imaging, is a very thin disk ( = 0.17 ) driven back and forth in SHM at by an electromagnetic coil. Part A The maximum restoring force that can be applied to the disk without breaking it is 4.4×104 . What is the maximum oscillation amplitude that won’t rupture the disk? Express your answer to two significant figures and include the appropriate units. ANSWER: L = 19 cm m lmoon = 0.35 m m g 1.0 MHz N amax = 6.6 μm Typesetting math: 100% Correct Part B What is the disk’s maximum speed at this amplitude? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 81.4%. You received 117.25 out of a possible total of 144 points. vmax = 41 ms

Assignment 11 Due: 11:59pm on Wednesday, April 30, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 13.2 The gravitational force of a star on orbiting planet 1 is . Planet 2, which is twice as massive as planet 1 and orbits at twice the distance from the star, experiences gravitational force . Part A What is the ratio ? ANSWER: Correct Conceptual Question 13.3 A 1500 satellite and a 2200 satellite follow exactly the same orbit around the earth. Part A What is the ratio of the force on the first satellite to that on the second satellite? ANSWER: Correct F1 F2 F1 F2 = 2 F1 F2 kg kg F1 F2 = 0.682 F1 F2 Part B What is the ratio of the acceleration of the first satellite to that of the second satellite? ANSWER: Correct Problem 13.2 The centers of a 15.0 lead ball and a 90.0 lead ball are separated by 9.00 . Part A What gravitational force does each exert on the other? Express your answer with the appropriate units. ANSWER: Correct Part B What is the ratio of this gravitational force to the weight of the 90.0 ball? ANSWER: a1 a2 = 1 a1 a2 kg g cm 1.11×10−8 N g 1.26×10−8 Typesetting math: 100% Correct Problem 13.6 The space shuttle orbits 310 above the surface of the earth. Part A What is the gravitational force on a 7.5 sphere inside the space shuttle? Express your answer with the appropriate units. ANSWER: Correct ± A Satellite in Orbit A satellite used in a cellular telephone network has a mass of 2310 and is in a circular orbit at a height of 650 above the surface of the earth. Part A What is the gravitational force on the satellite? Take the gravitational constant to be = 6.67×10−11 , the mass of the earth to be = 5.97×1024 , and the radius of the Earth to be = 6.38×106 . Express your answer in newtons. Hint 1. How to approach the problem Use the equation for the law of gravitation to calculate the force on the satellite. Be careful about the units when performing the calculations. km kg Fe on s = 67.0 N kg km Fgrav G N m2/kg2 me kg re m Typesetting math: 100% Hint 2. Law of gravitation According to Newton’s law of gravitation, , where is the gravitational constant, and are the masses of the two objects, and is the distance between the centers of mass of the two objects. Hint 3. Calculate the distance between the centers of mass What is the distance from the center of mass of the satellite to the center of mass of the earth? Express your answer in meters. ANSWER: ANSWER: Correct Part B What fraction is this of the satellite’s weight at the surface of the earth? Take the free-fall acceleration at the surface of the earth to be = 9.80 . Hint 1. How to approach the problem All you need to do is to take the ratio of the gravitational force on the satellite to the weight of the satellite at ground level. There are two ways to do this, depending on how you define the force of gravity at the surface of the earth. ANSWER: F = Gm1m2/r2 G m1 m2 r r = 7.03×10r 6 m = 1.86×10Fgrav 4 N g m/s2 0.824 Typesetting math: 100% Correct Although it is easy to find the weight of the satellite using the constant acceleration due to gravity, it is instructional to consider the weight calculated using the law of gravitation: . Dividing the gravitational force on the satellite by , we find that the ratio of the forces due to the earth’s gravity is simply the square of the ratio of the earth’s radius to the sum of the earth’s radius and the height of the orbit of the satellite above the earth, . This will also be the fraction of the weight of, say, an astronaut in an orbit at the same altitude. Notice that an astronaut’s weight is never zero. When people speak of “weightlessness” in space, what they really mean is “free fall.” Problem 13.8 Part A What is the free-fall acceleration at the surface of the moon? Express your answer with the appropriate units. ANSWER: Correct Part B What is the free-fall acceleration at the surface of the Jupiter? Express your answer with the appropriate units. ANSWER: Correct w = G m/ me r2e Fgrav = Gmem/(re + h)2 w [re/(re + h)]2 gmoon = 1.62 m s2 gJupiter = 25.9 m s2 Typesetting math: 100% Enhanced EOC: Problem 13.14 A rocket is launched straight up from the earth’s surface at a speed of 1.90×104 . You may want to review ( pages 362 – 365) . For help with math skills, you may want to review: Mathematical Expressions Involving Squares Part A What is its speed when it is very far away from the earth? Express your answer with the appropriate units. Hint 1. How to approach the problem What is conserved in this problem? What is the rocket’s initial kinetic energy in terms of its unknown mass, ? What is the rocket’s initial gravitational potential energy in terms of its unknown mass, ? When the rocket is very far away from the Earth, what is its gravitational potential energy? Using conservation of energy, what is the rocket’s kinetic energy when it is very far away from the Earth? Therefore, what is the rocket’s velocity when it is very far away from the Earth? ANSWER: Correct Problem 13.13 Part A m/s m m 1.54×104 ms Typesetting math: 100% What is the escape speed from Venus? Express your answer with the appropriate units. ANSWER: Correct Problem 13.17 The asteroid belt circles the sun between the orbits of Mars and Jupiter. One asteroid has a period of 4.2 earth years. Part A What is the asteroid’s orbital radius? Express your answer with the appropriate units. ANSWER: Correct Part B What is the asteroid’s orbital speed? Express your answer with the appropriate units. ANSWER: vescape = 10.4 km s = 3.89×1011 R m = 1.85×104 v ms Typesetting math: 100% Correct Problem 13.32 Part A At what height above the earth is the acceleration due to gravity 15.0% of its value at the surface? Express your answer with the appropriate units. ANSWER: Correct Part B What is the speed of a satellite orbiting at that height? Express your answer with the appropriate units. ANSWER: Correct Problem 13.36 Two meteoroids are heading for earth. Their speeds as they cross the moon’s orbit are 2 . 1.01×107 m 4920 ms km/s Typesetting math: 100% Part A The first meteoroid is heading straight for earth. What is its speed of impact? Express your answer with the appropriate units. ANSWER: Correct Part B The second misses the earth by 5500 . What is its speed at its closest point? Express your answer with the appropriate units. ANSWER: Incorrect; Try Again Problem 14.2 An air-track glider attached to a spring oscillates between the 11.0 mark and the 67.0 mark on the track. The glider completes 11.0 oscillations in 32.0 . Part A What is the period of the oscillations? Express your answer with the appropriate units. v1 = 11.3 km s km v2 = cm cm s Typesetting math: 100% ANSWER: Correct Part B What is the frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part C What is the angular frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part D What is the amplitude? Express your answer with the appropriate units. 2.91 s 0.344 Hz 2.16 rad s Typesetting math: 100% ANSWER: Correct Part E What is the maximum speed of the glider? Express your answer with the appropriate units. ANSWER: Correct Good Vibes: Introduction to Oscillations Learning Goal: To learn the basic terminology and relationships among the main characteristics of simple harmonic motion. Motion that repeats itself over and over is called periodic motion. There are many examples of periodic motion: the earth revolving around the sun, an elastic ball bouncing up and down, or a block attached to a spring oscillating back and forth. The last example differs from the first two, in that it represents a special kind of periodic motion called simple harmonic motion. The conditions that lead to simple harmonic motion are as follows: There must be a position of stable equilibrium. There must be a restoring force acting on the oscillating object. The direction of this force must always point toward the equilibrium, and its magnitude must be directly proportional to the magnitude of the object’s displacement from its equilibrium position. Mathematically, the restoring force is given by , where is the displacement from equilibrium and is a constant that depends on the properties of the oscillating system. The resistive forces in the system must be reasonably small. In this problem, we will introduce some of the basic quantities that describe oscillations and the relationships among them. Consider a block of mass attached to a spring with force constant , as shown in the figure. The spring can be either stretched or compressed. The block slides on a frictionless horizontal surface, as shown. When the spring is relaxed, the block is located at . If the 28.0 cm 60.5 cms F  F = −kx x k m k x = 0 Typesetting math: 100% block is pulled to the right a distance and then released, will be the amplitude of the resulting oscillations. Assume that the mechanical energy of the block-spring system remains unchanged in the subsequent motion of the block. Part A After the block is released from , it will ANSWER: Correct As the block begins its motion to the left, it accelerates. Although the restoring force decreases as the block approaches equilibrium, it still pulls the block to the left, so by the time the equilibrium position is reached, the block has gained some speed. It will, therefore, pass the equilibrium position and keep moving, compressing the spring. The spring will now be pushing the block to the right, and the block will slow down, temporarily coming to rest at . After is reached, the block will begin its motion to the right, pushed by the spring. The block will pass the equilibrium position and continue until it reaches , completing one cycle of motion. The motion will then repeat; if, as we’ve assumed, there is no friction, the motion will repeat indefinitely. The time it takes the block to complete one cycle is called the period. Usually, the period is denoted and is measured in seconds. The frequency, denoted , is the number of cycles that are completed per unit of time: . In SI units, is measured in inverse seconds, or hertz ( ). A A x = A remain at rest. move to the left until it reaches equilibrium and stop there. move to the left until it reaches and stop there. move to the left until it reaches and then begin to move to the right. x = −A x = −A x = −A x = −A x = A T f f = 1/T f Hz Typesetting math: 100% Part B If the period is doubled, the frequency is ANSWER: Correct Part C An oscillating object takes 0.10 to complete one cycle; that is, its period is 0.10 . What is its frequency ? Express your answer in hertz. ANSWER: Correct unchanged. doubled. halved. s s f f = 10 Hz Typesetting math: 100% Part D If the frequency is 40 , what is the period ? Express your answer in seconds. ANSWER: Correct The following questions refer to the figure that graphically depicts the oscillations of the block on the spring. Note that the vertical axis represents the x coordinate of the oscillating object, and the horizontal axis represents time. Part E Which points on the x axis are located a distance from the equilibrium position? ANSWER: Hz T T = 0.025 s A Typesetting math: 100% Correct Part F Suppose that the period is . Which of the following points on the t axis are separated by the time interval ? ANSWER: Correct Now assume for the remaining Parts G – J, that the x coordinate of point R is 0.12 and the t coordinate of point K is 0.0050 . Part G What is the period ? Express your answer in seconds. Hint 1. How to approach the problem In moving from the point to the point K, what fraction of a full wavelength is covered? Call that fraction . Then you can set . Dividing by the fraction will give the R only Q only both R and Q T T K and L K and M K and P L and N M and P m s T t = 0 a aT = 0.005 s a Typesetting math: 100% period . ANSWER: Correct Part H How much time does the block take to travel from the point of maximum displacement to the opposite point of maximum displacement? Express your answer in seconds. ANSWER: Correct Part I What distance does the object cover during one period of oscillation? Express your answer in meters. ANSWER: Correct Part J What distance does the object cover between the moments labeled K and N on the graph? T T = 0.02 s t t = 0.01 s d d = 0.48 m d Typesetting math: 100% Express your answer in meters. ANSWER: Correct Problem 14.4 Part A What is the amplitude of the oscillation shown in the figure? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct d = 0.36 m A = 20.0 cm Typesetting math: 100% Part B What is the frequency of this oscillation? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the phase constant? Express your answer to two significant figures and include the appropriate units. ANSWER: Incorrect; Try Again Problem 14.10 An air-track glider attached to a spring oscillates with a period of 1.50 . At the glider is 4.60 left of the equilibrium position and moving to the right at 33.4 . Part A What is the phase constant? Express your answer to three significant figures and include the appropriate units. ANSWER: f = 0.25 Hz 0 = s t = 0 s cm cm/s Typesetting math: 100% Incorrect; Try Again Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Problem 14.12 A 140 air-track glider is attached to a spring. The glider is pushed in 12.2 and released. A student with a stopwatch finds that 14.0 oscillations take 19.0 . Part A What is the spring constant? Express your answer with the appropriate units. ANSWER: 0 = g cm s Typesetting math: 100% Correct Problem 14.14 The position of a 50 g oscillating mass is given by , where is in s. If necessary, round your answers to three significant figures. Determine: Part A The amplitude. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part B The period. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part C 3.00 Nm x(t) = (2.0 cm)cos(10t − /4) t 2.00 cm 0.628 s Typesetting math: 100% The spring constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Part D The phase constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Incorrect; Try Again Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G Typesetting math: 100% This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). Part I This question will be shown after you complete previous question(s). Enhanced EOC: Problem 14.17 A spring with spring constant 16 hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 4.0 and released. The ball makes 35 oscillations in 18 seconds. You may want to review ( pages 389 – 391) . For help with math skills, you may want to review: Differentiation of Trigonometric Functions Part A What is its the mass of the ball? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the period of oscillation? What is the angular frequency of the oscillations? How is the angular frequency related to the mass and spring constant? What is the mass? N/m cm s Typesetting math: 100% ANSWER: Correct Part B What is its maximum speed? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the amplitude of the oscillations? How is the maximum speed related to the amplitude of the oscillations and the angular frequency? ANSWER: Correct Changing the Period of a Pendulum A simple pendulum consisting of a bob of mass attached to a string of length swings with a period . Part A If the bob’s mass is doubled, approximately what will the pendulum’s new period be? Hint 1. Period of a simple pendulum The period of a simple pendulum of length is given by m = 110 g vmax = 49 cms m L T Typesetting math: 10T0% L , where is the acceleration due to gravity. ANSWER: Correct Part B If the pendulum is brought on the moon where the gravitational acceleration is about , approximately what will its period now be? Hint 1. How to approach the problem Recall the formula of the period of a simple pendulum. Since the gravitational acceleration appears in the denominator, the period must increase when the gravitational acceleration decreases. ANSWER: T = 2 Lg −−  g T/2 T &2T 2T g/6 T/6 T/&6 &6T 6T Typesetting math: 100% Correct Part C If the pendulum is taken into the orbiting space station what will happen to the bob? Hint 1. How to approach the problem Recall that the oscillations of a simple pendulum occur when a pendulum bob is raised above its equilibrium position and let go, causing the pendulum bob to fall. The gravitational force acts to bring the bob back to its equilibrium position. In the space station, the earth’s gravity acts on both the station and everything inside it, giving them the same acceleration. These objects are said to be in free fall. ANSWER: Correct In the space station, where all objects undergo the same acceleration due to the earth’s gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. Problem 14.20 A 175 ball is tied to a string. It is pulled to an angle of 8.0 and released to swing as a pendulum. A student with a stopwatch finds that 15 oscillations take 13 . Part A How long is the string? Express your answer to two significant figures and include the appropriate units. It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. It will oscillate much faster with a period that approaches zero. g ( s Typesetting math: 100% ANSWER: Correct Problem 14.22 Part A What is the length of a pendulum whose period on the moon matches the period of a 2.1- -long pendulum on the earth? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.42 An ultrasonic transducer, of the type used in medical ultrasound imaging, is a very thin disk ( = 0.17 ) driven back and forth in SHM at by an electromagnetic coil. Part A The maximum restoring force that can be applied to the disk without breaking it is 4.4×104 . What is the maximum oscillation amplitude that won’t rupture the disk? Express your answer to two significant figures and include the appropriate units. ANSWER: L = 19 cm m lmoon = 0.35 m m g 1.0 MHz N amax = 6.6 μm Typesetting math: 100% Correct Part B What is the disk’s maximum speed at this amplitude? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 81.4%. You received 117.25 out of a possible total of 144 points. vmax = 41 ms

info@checkyourstudy.com
Read this article and answer this question in 2 pages : Answers should be from the below article only. What is the difference between “standards-based” and “standards-embedded” curriculum? what are the curricular implications of this difference? Article: In 2007, at the dawn of 21st century in education, it is impossible to talk about teaching, curriculum, schools, or education without discussing standards . standards-based v. standards-embedded curriculum We are in an age of accountability where our success as educators is determined by individual and group mastery of specific standards dem- onstrated by standardized test per- formance. Even before No Child Left Behind (NCLB), standards and measures were used to determine if schools and students were success- ful (McClure, 2005). But, NCLB has increased the pace, intensity, and high stakes of this trend. Gifted and talented students and their teach- ers are significantly impacted by these local or state proficiency stan- dards and grade-level assessments (VanTassel-Baska & Stambaugh, 2006). This article explores how to use these standards in the develop- ment of high-quality curriculum for gifted students. NCLB, High-Stakes State Testing, and Standards- Based Instruction There are a few potentially positive outcomes of this evolution to public accountability. All stakeholders have had to ask themselves, “Are students learning? If so, what are they learning and how do we know?” In cases where we have been allowed to thoughtfully evaluate curriculum and instruction, we have also asked, “What’s worth learning?” “When’s the best time to learn it?” and “Who needs to learn it?” Even though state achievement tests are only a single measure, citizens are now offered a yardstick, albeit a nar- row one, for comparing communities, schools, and in some cases, teachers. Some testing reports allow teachers to identify for parents what their chil- dren can do and what they can not do. Testing also has focused attention on the not-so-new observations that pov- erty, discrimination and prejudices, and language proficiency impacts learning. With enough ceiling (e.g., above-grade-level assessments), even gifted students’ actual achievement and readiness levels can be identi- fied and provide a starting point for appropriately differentiated instruc- tion (Tomlinson, 2001). Unfortunately, as a veteran teacher for more than three decades and as a teacher-educator, my recent observa- tions of and conversations with class- room and gifted teachers have usually revealed negative outcomes. For gifted children, their actual achievement level is often unrecognized by teachers because both the tests and the reporting of the results rarely reach above the student’s grade-level placement. Assessments also focus on a huge number of state stan- dards for a given school year that cre- ate “overload” (Tomlinson & McTighe, 2006) and have a devastating impact on the development and implementation of rich and relevant curriculum and instruction. In too many scenarios, I see teachers teach- ing directly to the test. And, in the worst cases, some teachers actually teach The Test. In those cases, The Test itself becomes the curriculum. Consistently I hear, “Oh, I used to teach a great unit on ________ but I can’t do it any- more because I have to teach the standards.” Or, “I have to teach my favorite units in April and May after testing.” If the outcomes can’t be boiled down to simple “I can . . .” state- ments that can be posted on a school’s walls, then teachers seem to omit poten- tially meaningful learning opportunities from the school year. In many cases, real education and learning are being trivial- ized. We seem to have lost sight of the more significant purpose of teaching and learning: individual growth and develop- ment. We also have surrendered much of the joy of learning, as the incidentals, the tangents, the “bird walks” are cut short or elimi- nated because teachers hear the con- stant ticking clock of the countdown to the state test and feel the pressure of the way-too-many standards that have to be covered in a mere 180 school days. The accountability movement has pushed us away from seeing the whole child: “Students are not machines, as the standards movement suggests; they are volatile, complicated, and paradoxical” (Cookson, 2001, p. 42). How does this impact gifted chil- dren? In many heterogeneous class- rooms, teachers have retreated to traditional subject delineations and traditional instruction in an effort to ensure direct standards-based instruc- tion even though “no solid basis exists in the research literature for the ways we currently develop, place, and align educational standards in school cur- ricula” (Zenger & Zenger, 2002, p. 212). Grade-level standards are often particularly inappropriate for the gifted and talented whose pace of learning, achievement levels, and depth of knowledge are significantly beyond their chronological peers. A broad-based, thematically rich, and challenging curriculum is the heart of education for the gifted. Virgil Ward, one of the earliest voices for a differen- tial education for the gifted, said, “It is insufficient to consider the curriculum for the gifted in terms of traditional subjects and instructional processes” (Ward, 1980, p. 5). VanTassel-Baska Standards-Based v. Standards-Embedded Curriculum gifted child today 45 Standards-Based v. Standards-Embedded Curriculum and Stambaugh (2006) described three dimensions of successful curriculum for gifted students: content mastery, pro- cess and product, and epistemological concept, “understanding and appre- ciating systems of knowledge rather than individual elements of those systems” (p. 9). Overemphasis on testing and grade-level standards limits all three and therefore limits learning for gifted students. Hirsch (2001) concluded that “broad gen- eral knowledge is the best entrée to deep knowledge” (p. 23) and that it is highly correlated with general ability to learn. He continued, “the best way to learn a subject is to learn its gen- eral principles and to study an ample number of diverse examples that illustrate those principles” (Hirsch, 2001, p. 23). Principle-based learn- ing applies to both gifted and general education children. In order to meet the needs of gifted and general education students, cur- riculum should be differentiated in ways that are relevant and engaging. Curriculum content, processes, and products should provide challenge, depth, and complexity, offering multiple opportunities for problem solving, creativity, and exploration. In specific content areas, the cur- riculum should reflect the elegance and sophistication unique to the discipline. Even with this expanded view of curriculum in mind, we still must find ways to address the current reality of state standards and assess- ments. Standards-Embedded Curriculum How can educators address this chal- lenge? As in most things, a change of perspective can be helpful. Standards- based curriculum as described above should be replaced with standards- embedded curriculum. Standards- embedded curriculum begins with broad questions and topics, either discipline specific or interdisciplinary. Once teachers have given thoughtful consideration to relevant, engaging, and important content and the con- nections that support meaning-making (Jensen, 1998), they next select stan- dards that are relevant to this content and to summative assessments. This process is supported by the backward planning advocated in Understanding by Design by Wiggins and McTighe (2005) and its predecessors, as well as current thinkers in other fields, such as Covey (Tomlinson & McTighe, 2006). It is a critical component of differenti- ating instruction for advanced learners (Tomlinson, 2001) and a significant factor in the Core Parallel in the Parallel Curriculum Model (Tomlinson et al., 2002). Teachers choose from standards in multiple disciplines at both above and below grade level depending on the needs of the students and the classroom or program structure. Preassessment data and the results of prior instruc- tion also inform this process of embed- ding appropriate standards. For gifted students, this formative assessment will result in “more advanced curricula available at younger ages, ensuring that all levels of the standards are traversed in the process” (VanTassel-Baska & Little, 2003, p. 3). Once the essential questions, key content, and relevant standards are selected and sequenced, they are embedded into a coherent unit design and instructional decisions (grouping, pacing, instructional methodology) can be made. For gifted students, this includes the identification of appropri- ate resources, often including advanced texts, mentors, and independent research, as appropriate to the child’s developmental level and interest. Applying Standards- Embedded Curriculum What does this look like in practice? In reading the possible class- room applications below, consider these three Ohio Academic Content Standards for third grade: 1. Math: “Read thermometers in both Fahrenheit and Celsius scales” (“Academic Content Standards: K–12 Mathematics,” n.d., p. 71). 2. Social Studies: “Compare some of the cultural practices and products of various groups of people who have lived in the local community including artistic expression, religion, language, and food. Compare the cultural practices and products of the local community with those of other communities in Ohio, the United States, and countries of the world” (Academic Content Standards: K–12 Social Studies, n.d., p. 122). 3. Life Science: “Observe and explore how fossils provide evidence about animals that lived long ago and the nature of the environment at that time” (Academic Content Standards: K–12 Science, n.d., p. 57). When students are fortunate to have a teacher who is dedicated to helping all of them make good use of their time, the gifted may have a preassessment opportunity where they can demonstrate their familiarity with the content and potential mastery of a standard at their grade level. Students who pass may get to read by them- selves for the brief period while the rest of the class works on the single outcome. Sometimes more experienced teachers will create opportunities for gifted and advanced students Standards-Based v. Standards-Embedded Curriculum to work on a standard in the same domain or strand at the next higher grade level (i.e., accelerate through the standards). For example, a stu- dent might be able to work on a Life Science standard for fourth grade that progresses to other communities such as ecosystems. These above-grade-level standards can provide rich material for differentiation, advanced problem solving, and more in-depth curriculum integration. In another classroom scenario, a teacher may focus on the math stan- dard above, identifying the standard number on his lesson plan. He creates or collects paper thermometers, some showing measurement in Celsius and some in Fahrenheit. He also has some real thermometers. He demonstrates thermometer use with boiling water and with freezing water and reads the different temperatures. Students complete a worksheet that has them read thermometers in Celsius and Fahrenheit. The more advanced students may learn how to convert between the two scales. Students then practice with several questions on the topic that are similar in structure and content to those that have been on past proficiency tests. They are coached in how to answer them so that the stan- dard, instruction, formative assess- ment, and summative assessment are all aligned. Then, each student writes a statement that says, “I can read a thermometer using either Celsius or Fahrenheit scales.” Both of these examples describe a standards-based environment, where the starting point is the standard. Direct instruction to that standard is followed by an observable student behavior that demonstrates specific mastery of that single standard. The standard becomes both the start- ing point and the ending point of the curriculum. Education, rather than opening up a student’s mind, becomes a series of closed links in a chain. Whereas the above lessons may be differentiated to some extent, they have no context; they may relate only to the next standard on the list, such as, “Telling time to the nearest minute and finding elapsed time using a cal- endar or a clock.” How would a “standards-embed- ded” model of curriculum design be different? It would begin with the development of an essential ques- tion such as, “Who or what lived here before me? How were they different from me? How were they the same? How do we know?” These questions might be more relevant to our con- temporary highly mobile students. It would involve place and time. Using this intriguing line of inquiry, students might work on the social studies stan- dard as part of the study of their home- town, their school, or even their house or apartment. Because where people live and what they do is influenced by the weather, students could look into weather patterns of their area and learn how to measure temperature using a Fahrenheit scale so they could see if it is similar now to what it was a century ago. Skipping ahead to consideration of the social studies standard, students could then choose another country, preferably one that uses Celsius, and do the same investigation of fossils, communities, and the like. Students could complete a weather comparison, looking at the temperature in Celsius as people in other parts of the world, such as those in Canada, do. Thus, learning is contextualized and connected, dem- onstrating both depth and complexity. This approach takes a lot more work and time. It is a sophisticated integrated view of curriculum devel- opment and involves in-depth knowl- edge of the content areas, as well as an understanding of the scope and sequence of the standards in each dis- cipline. Teachers who develop vital single-discipline units, as well as inter- disciplinary teaching units, begin with a central topic surrounded by subtopics and connections to other areas. Then they connect important terms, facts, or concepts to the subtopics. Next, the skilled teacher/curriculum devel- oper embeds relevant, multileveled standards and objectives appropriate to a given student or group of stu- dents into the unit. Finally, teachers select the instructional strategies and develop student assessments. These assessments include, but are not lim- ited to, the types of questions asked on standardized and state assessments. Comparing Standards- Based and Standards- Embedded Curriculum Design Following is an articulation of the differences between standards-based and standards-embedded curriculum design. (See Figure 1.) 1. The starting point. Standards- based curriculum begins with the grade-level standard and the underlying assumption that every student needs to master that stan- dard at that moment in time. In standards-embedded curriculum, the multifaceted essential ques- tion and students’ needs are the starting points. 2. Preassessment. In standards- based curriculum and teaching, if a preassessment is provided, it cov- ers a single standard or two. In a standards-embedded curriculum, preassessment includes a broader range of grade-level and advanced standards, as well as students’ knowledge of surrounding content such as background experiences with the subject, relevant skills (such as reading and writing), and continued on page ?? even learning style or interests. gifted child today 47 Standards-Based v. Standards-Embedded Curriculum Standards Based Standards Embedded Starting Points The grade-level standard. Whole class’ general skill level Essential questions and content relevant to individual students and groups. Preassessment Targeted to a single grade-level standard. Short-cycle assessments. Background knowledge. Multiple grade-level standards from multiple areas connected by the theme of the unit. Includes annual learning style and interest inventories. Acceleration/ Enrichment To next grade-level standard in the same strand. To above-grade-level standards, as well as into broader thematically connected content. Language Arts Divided into individual skills. Reading and writing skills often separated from real-world relevant contexts. The language arts are embedded in all units and themes and connected to differentiated processes and products across all content areas. Instruction Lesson planning begins with the standard as the objective. Sequential direct instruction progresses through the standards in each content area separately. Strategies are selected to introduce, practice, and demonstrate mastery of all grade-level standards in all content areas in one school year. Lesson planning begins with essential questions, topics, and significant themes. Integrated instruction is designed around connections among content areas and embeds all relevant standards. Assessment Format modeled after the state test. Variety of assessments including questions similar to the state test format. Teacher Role Monitor of standards mastery. Time manager. Facilitator of instructional design and student engagement with learning, as well as assessor of achievement. Student Self- Esteem “I can . . .” statements. Star Charts. Passing “the test.” Completed projects/products. Making personal connections to learning and the theme/topic. Figure 1. Standards based v. standards-embedded instruction and gifted students. and the potential political outcry of “stepping on the toes” of the next grade’s teacher. Few classroom teachers have been provided with the in-depth professional develop- ment and understanding of curric- ulum compacting that would allow them to implement this effectively. In standards-embedded curricu- lum, enrichment and extensions of learning are more possible and more interesting because ideas, top- ics, and questions lend themselves more easily to depth and complex- ity than isolated skills. 4. Language arts. In standards- based classrooms, the language arts have been redivided into sepa- rate skills, with reading separated from writing, and writing sepa- rated from grammar. To many concrete thinkers, whole-language approaches seem antithetical to teaching “to the standards.” In a standards-embedded classroom, integrated language arts skills (reading, writing, listening, speak- ing, presenting, and even pho- nics) are embedded into the study of every unit. Especially for the gifted, the communication and language arts are essential, regard- less of domain-specific talents (Ward, 1980) and should be com- ponents of all curriculum because they are the underpinnings of scholarship in all areas. 5. Instruction. A standards-based classroom lends itself to direct instruction and sequential pro- gression from one standard to the next. A standards-embedded class- room requires a variety of more open-ended instructional strate- gies and materials that extend and diversify learning rather than focus it narrowly. Creativity and differ- entiation in instruction and stu- dent performance are supported more effectively in a standards- embedded approach. 6. Assessment. A standards-based classroom uses targeted assess- ments focused on the structure and content of questions on the externally imposed standardized test (i.e., proficiency tests). A stan- dards-embedded classroom lends itself to greater use of authentic assessment and differentiated 3. Acceleration/Enrichment. In a standards-based curriculum, the narrow definition of the learning outcome (a test item) often makes acceleration or curriculum compact- ing the only path for differentiating instruction for gifted, talented, and/ or advanced learners. This rarely happens, however, because of lack of materials, knowledge, o

Read this article and answer this question in 2 pages : Answers should be from the below article only. What is the difference between “standards-based” and “standards-embedded” curriculum? what are the curricular implications of this difference? Article: In 2007, at the dawn of 21st century in education, it is impossible to talk about teaching, curriculum, schools, or education without discussing standards . standards-based v. standards-embedded curriculum We are in an age of accountability where our success as educators is determined by individual and group mastery of specific standards dem- onstrated by standardized test per- formance. Even before No Child Left Behind (NCLB), standards and measures were used to determine if schools and students were success- ful (McClure, 2005). But, NCLB has increased the pace, intensity, and high stakes of this trend. Gifted and talented students and their teach- ers are significantly impacted by these local or state proficiency stan- dards and grade-level assessments (VanTassel-Baska & Stambaugh, 2006). This article explores how to use these standards in the develop- ment of high-quality curriculum for gifted students. NCLB, High-Stakes State Testing, and Standards- Based Instruction There are a few potentially positive outcomes of this evolution to public accountability. All stakeholders have had to ask themselves, “Are students learning? If so, what are they learning and how do we know?” In cases where we have been allowed to thoughtfully evaluate curriculum and instruction, we have also asked, “What’s worth learning?” “When’s the best time to learn it?” and “Who needs to learn it?” Even though state achievement tests are only a single measure, citizens are now offered a yardstick, albeit a nar- row one, for comparing communities, schools, and in some cases, teachers. Some testing reports allow teachers to identify for parents what their chil- dren can do and what they can not do. Testing also has focused attention on the not-so-new observations that pov- erty, discrimination and prejudices, and language proficiency impacts learning. With enough ceiling (e.g., above-grade-level assessments), even gifted students’ actual achievement and readiness levels can be identi- fied and provide a starting point for appropriately differentiated instruc- tion (Tomlinson, 2001). Unfortunately, as a veteran teacher for more than three decades and as a teacher-educator, my recent observa- tions of and conversations with class- room and gifted teachers have usually revealed negative outcomes. For gifted children, their actual achievement level is often unrecognized by teachers because both the tests and the reporting of the results rarely reach above the student’s grade-level placement. Assessments also focus on a huge number of state stan- dards for a given school year that cre- ate “overload” (Tomlinson & McTighe, 2006) and have a devastating impact on the development and implementation of rich and relevant curriculum and instruction. In too many scenarios, I see teachers teach- ing directly to the test. And, in the worst cases, some teachers actually teach The Test. In those cases, The Test itself becomes the curriculum. Consistently I hear, “Oh, I used to teach a great unit on ________ but I can’t do it any- more because I have to teach the standards.” Or, “I have to teach my favorite units in April and May after testing.” If the outcomes can’t be boiled down to simple “I can . . .” state- ments that can be posted on a school’s walls, then teachers seem to omit poten- tially meaningful learning opportunities from the school year. In many cases, real education and learning are being trivial- ized. We seem to have lost sight of the more significant purpose of teaching and learning: individual growth and develop- ment. We also have surrendered much of the joy of learning, as the incidentals, the tangents, the “bird walks” are cut short or elimi- nated because teachers hear the con- stant ticking clock of the countdown to the state test and feel the pressure of the way-too-many standards that have to be covered in a mere 180 school days. The accountability movement has pushed us away from seeing the whole child: “Students are not machines, as the standards movement suggests; they are volatile, complicated, and paradoxical” (Cookson, 2001, p. 42). How does this impact gifted chil- dren? In many heterogeneous class- rooms, teachers have retreated to traditional subject delineations and traditional instruction in an effort to ensure direct standards-based instruc- tion even though “no solid basis exists in the research literature for the ways we currently develop, place, and align educational standards in school cur- ricula” (Zenger & Zenger, 2002, p. 212). Grade-level standards are often particularly inappropriate for the gifted and talented whose pace of learning, achievement levels, and depth of knowledge are significantly beyond their chronological peers. A broad-based, thematically rich, and challenging curriculum is the heart of education for the gifted. Virgil Ward, one of the earliest voices for a differen- tial education for the gifted, said, “It is insufficient to consider the curriculum for the gifted in terms of traditional subjects and instructional processes” (Ward, 1980, p. 5). VanTassel-Baska Standards-Based v. Standards-Embedded Curriculum gifted child today 45 Standards-Based v. Standards-Embedded Curriculum and Stambaugh (2006) described three dimensions of successful curriculum for gifted students: content mastery, pro- cess and product, and epistemological concept, “understanding and appre- ciating systems of knowledge rather than individual elements of those systems” (p. 9). Overemphasis on testing and grade-level standards limits all three and therefore limits learning for gifted students. Hirsch (2001) concluded that “broad gen- eral knowledge is the best entrée to deep knowledge” (p. 23) and that it is highly correlated with general ability to learn. He continued, “the best way to learn a subject is to learn its gen- eral principles and to study an ample number of diverse examples that illustrate those principles” (Hirsch, 2001, p. 23). Principle-based learn- ing applies to both gifted and general education children. In order to meet the needs of gifted and general education students, cur- riculum should be differentiated in ways that are relevant and engaging. Curriculum content, processes, and products should provide challenge, depth, and complexity, offering multiple opportunities for problem solving, creativity, and exploration. In specific content areas, the cur- riculum should reflect the elegance and sophistication unique to the discipline. Even with this expanded view of curriculum in mind, we still must find ways to address the current reality of state standards and assess- ments. Standards-Embedded Curriculum How can educators address this chal- lenge? As in most things, a change of perspective can be helpful. Standards- based curriculum as described above should be replaced with standards- embedded curriculum. Standards- embedded curriculum begins with broad questions and topics, either discipline specific or interdisciplinary. Once teachers have given thoughtful consideration to relevant, engaging, and important content and the con- nections that support meaning-making (Jensen, 1998), they next select stan- dards that are relevant to this content and to summative assessments. This process is supported by the backward planning advocated in Understanding by Design by Wiggins and McTighe (2005) and its predecessors, as well as current thinkers in other fields, such as Covey (Tomlinson & McTighe, 2006). It is a critical component of differenti- ating instruction for advanced learners (Tomlinson, 2001) and a significant factor in the Core Parallel in the Parallel Curriculum Model (Tomlinson et al., 2002). Teachers choose from standards in multiple disciplines at both above and below grade level depending on the needs of the students and the classroom or program structure. Preassessment data and the results of prior instruc- tion also inform this process of embed- ding appropriate standards. For gifted students, this formative assessment will result in “more advanced curricula available at younger ages, ensuring that all levels of the standards are traversed in the process” (VanTassel-Baska & Little, 2003, p. 3). Once the essential questions, key content, and relevant standards are selected and sequenced, they are embedded into a coherent unit design and instructional decisions (grouping, pacing, instructional methodology) can be made. For gifted students, this includes the identification of appropri- ate resources, often including advanced texts, mentors, and independent research, as appropriate to the child’s developmental level and interest. Applying Standards- Embedded Curriculum What does this look like in practice? In reading the possible class- room applications below, consider these three Ohio Academic Content Standards for third grade: 1. Math: “Read thermometers in both Fahrenheit and Celsius scales” (“Academic Content Standards: K–12 Mathematics,” n.d., p. 71). 2. Social Studies: “Compare some of the cultural practices and products of various groups of people who have lived in the local community including artistic expression, religion, language, and food. Compare the cultural practices and products of the local community with those of other communities in Ohio, the United States, and countries of the world” (Academic Content Standards: K–12 Social Studies, n.d., p. 122). 3. Life Science: “Observe and explore how fossils provide evidence about animals that lived long ago and the nature of the environment at that time” (Academic Content Standards: K–12 Science, n.d., p. 57). When students are fortunate to have a teacher who is dedicated to helping all of them make good use of their time, the gifted may have a preassessment opportunity where they can demonstrate their familiarity with the content and potential mastery of a standard at their grade level. Students who pass may get to read by them- selves for the brief period while the rest of the class works on the single outcome. Sometimes more experienced teachers will create opportunities for gifted and advanced students Standards-Based v. Standards-Embedded Curriculum to work on a standard in the same domain or strand at the next higher grade level (i.e., accelerate through the standards). For example, a stu- dent might be able to work on a Life Science standard for fourth grade that progresses to other communities such as ecosystems. These above-grade-level standards can provide rich material for differentiation, advanced problem solving, and more in-depth curriculum integration. In another classroom scenario, a teacher may focus on the math stan- dard above, identifying the standard number on his lesson plan. He creates or collects paper thermometers, some showing measurement in Celsius and some in Fahrenheit. He also has some real thermometers. He demonstrates thermometer use with boiling water and with freezing water and reads the different temperatures. Students complete a worksheet that has them read thermometers in Celsius and Fahrenheit. The more advanced students may learn how to convert between the two scales. Students then practice with several questions on the topic that are similar in structure and content to those that have been on past proficiency tests. They are coached in how to answer them so that the stan- dard, instruction, formative assess- ment, and summative assessment are all aligned. Then, each student writes a statement that says, “I can read a thermometer using either Celsius or Fahrenheit scales.” Both of these examples describe a standards-based environment, where the starting point is the standard. Direct instruction to that standard is followed by an observable student behavior that demonstrates specific mastery of that single standard. The standard becomes both the start- ing point and the ending point of the curriculum. Education, rather than opening up a student’s mind, becomes a series of closed links in a chain. Whereas the above lessons may be differentiated to some extent, they have no context; they may relate only to the next standard on the list, such as, “Telling time to the nearest minute and finding elapsed time using a cal- endar or a clock.” How would a “standards-embed- ded” model of curriculum design be different? It would begin with the development of an essential ques- tion such as, “Who or what lived here before me? How were they different from me? How were they the same? How do we know?” These questions might be more relevant to our con- temporary highly mobile students. It would involve place and time. Using this intriguing line of inquiry, students might work on the social studies stan- dard as part of the study of their home- town, their school, or even their house or apartment. Because where people live and what they do is influenced by the weather, students could look into weather patterns of their area and learn how to measure temperature using a Fahrenheit scale so they could see if it is similar now to what it was a century ago. Skipping ahead to consideration of the social studies standard, students could then choose another country, preferably one that uses Celsius, and do the same investigation of fossils, communities, and the like. Students could complete a weather comparison, looking at the temperature in Celsius as people in other parts of the world, such as those in Canada, do. Thus, learning is contextualized and connected, dem- onstrating both depth and complexity. This approach takes a lot more work and time. It is a sophisticated integrated view of curriculum devel- opment and involves in-depth knowl- edge of the content areas, as well as an understanding of the scope and sequence of the standards in each dis- cipline. Teachers who develop vital single-discipline units, as well as inter- disciplinary teaching units, begin with a central topic surrounded by subtopics and connections to other areas. Then they connect important terms, facts, or concepts to the subtopics. Next, the skilled teacher/curriculum devel- oper embeds relevant, multileveled standards and objectives appropriate to a given student or group of stu- dents into the unit. Finally, teachers select the instructional strategies and develop student assessments. These assessments include, but are not lim- ited to, the types of questions asked on standardized and state assessments. Comparing Standards- Based and Standards- Embedded Curriculum Design Following is an articulation of the differences between standards-based and standards-embedded curriculum design. (See Figure 1.) 1. The starting point. Standards- based curriculum begins with the grade-level standard and the underlying assumption that every student needs to master that stan- dard at that moment in time. In standards-embedded curriculum, the multifaceted essential ques- tion and students’ needs are the starting points. 2. Preassessment. In standards- based curriculum and teaching, if a preassessment is provided, it cov- ers a single standard or two. In a standards-embedded curriculum, preassessment includes a broader range of grade-level and advanced standards, as well as students’ knowledge of surrounding content such as background experiences with the subject, relevant skills (such as reading and writing), and continued on page ?? even learning style or interests. gifted child today 47 Standards-Based v. Standards-Embedded Curriculum Standards Based Standards Embedded Starting Points The grade-level standard. Whole class’ general skill level Essential questions and content relevant to individual students and groups. Preassessment Targeted to a single grade-level standard. Short-cycle assessments. Background knowledge. Multiple grade-level standards from multiple areas connected by the theme of the unit. Includes annual learning style and interest inventories. Acceleration/ Enrichment To next grade-level standard in the same strand. To above-grade-level standards, as well as into broader thematically connected content. Language Arts Divided into individual skills. Reading and writing skills often separated from real-world relevant contexts. The language arts are embedded in all units and themes and connected to differentiated processes and products across all content areas. Instruction Lesson planning begins with the standard as the objective. Sequential direct instruction progresses through the standards in each content area separately. Strategies are selected to introduce, practice, and demonstrate mastery of all grade-level standards in all content areas in one school year. Lesson planning begins with essential questions, topics, and significant themes. Integrated instruction is designed around connections among content areas and embeds all relevant standards. Assessment Format modeled after the state test. Variety of assessments including questions similar to the state test format. Teacher Role Monitor of standards mastery. Time manager. Facilitator of instructional design and student engagement with learning, as well as assessor of achievement. Student Self- Esteem “I can . . .” statements. Star Charts. Passing “the test.” Completed projects/products. Making personal connections to learning and the theme/topic. Figure 1. Standards based v. standards-embedded instruction and gifted students. and the potential political outcry of “stepping on the toes” of the next grade’s teacher. Few classroom teachers have been provided with the in-depth professional develop- ment and understanding of curric- ulum compacting that would allow them to implement this effectively. In standards-embedded curricu- lum, enrichment and extensions of learning are more possible and more interesting because ideas, top- ics, and questions lend themselves more easily to depth and complex- ity than isolated skills. 4. Language arts. In standards- based classrooms, the language arts have been redivided into sepa- rate skills, with reading separated from writing, and writing sepa- rated from grammar. To many concrete thinkers, whole-language approaches seem antithetical to teaching “to the standards.” In a standards-embedded classroom, integrated language arts skills (reading, writing, listening, speak- ing, presenting, and even pho- nics) are embedded into the study of every unit. Especially for the gifted, the communication and language arts are essential, regard- less of domain-specific talents (Ward, 1980) and should be com- ponents of all curriculum because they are the underpinnings of scholarship in all areas. 5. Instruction. A standards-based classroom lends itself to direct instruction and sequential pro- gression from one standard to the next. A standards-embedded class- room requires a variety of more open-ended instructional strate- gies and materials that extend and diversify learning rather than focus it narrowly. Creativity and differ- entiation in instruction and stu- dent performance are supported more effectively in a standards- embedded approach. 6. Assessment. A standards-based classroom uses targeted assess- ments focused on the structure and content of questions on the externally imposed standardized test (i.e., proficiency tests). A stan- dards-embedded classroom lends itself to greater use of authentic assessment and differentiated 3. Acceleration/Enrichment. In a standards-based curriculum, the narrow definition of the learning outcome (a test item) often makes acceleration or curriculum compact- ing the only path for differentiating instruction for gifted, talented, and/ or advanced learners. This rarely happens, however, because of lack of materials, knowledge, o

Standard based Curriculum In standard based curriculum, the initial point … Read More...