AUCS 340: Ethics in the Professions Homework Assignment: International and US Health Care Systems The following homework assignment will help you to discover some of the differences between the administration of health care in the United States and internationally. This is a research based assignment; remember the use of Wikipedia.com is not an acceptable reference site for this course. You must include a references cited page for this assignment; correctly formatted APA or MLA references are acceptable (simply stating s web address is NOT a complete reference). The answers should be presented in paragraph formation. Staple all pages together for presentation. The first question refers to a country other than the United States of America 1) Socialized Medicine – provide a definition of the term socialized medicine and discuss a country that currently has a socialized medicine system to cover all citizens; this discussion should include the types of services offered to the citizens of this country. When was this system first implemented in this country? What is the name of this country’s health insurance plan? Compare the ranking for the life expectancy for this country to that of the United States. Which is higher? Why? Compare the cost of financing healthcare in this country to the United States in comparison to the amount of annual funding in dollars and the percentage of gross domestic product spent on health care for each country. What rank does this country have in comparison to the United States for overall health of its citizens? (This portion of the assignment should be approximately one page in length and graphic data is acceptable to support some answers, however, graphic information should only be used to explain your written explanation not as the answer to the question.) Bonus: Is this country’s system currently financially stable? Why or why not? The following questions refer to the delivery of healthcare in the United States of America, as it was organized prior to the implementation of the Affordable Care Act (ACA). The ACA is currently being phased into coverage. It is estimated that the answers to the following questions will result in an additional two to three pages of written text in addition to the page for question number one. 2) Medicare – when was it enacted? Who does it cover? Who was President when Medicare was originally passed? What do the specific portions Part A, Part B and Part D cover? When was Part D enacted? Who was President when Part D was enacted? Is the Medicare system currently financially stable? Why or why not. Compare the average life expectancy for males and females when Medicare was originally passed and the average life expectancy of males and females as of 2010; more recent data is acceptable. Bonus: What does Part C cover and when was it enacted? 3) Health Maintenance Organization (HMO) – Define the term health maintenance organization. When did this type of health insurance plan become popular in the United States? How does this type of system provide medical care to the people enrolled? This answer should discuss in network versus out of network coverage. 4) Medicaid- when was it enacted? Who does it cover? Who was President when this insurance plan was enacted? Are the coverage benefits the same state to state? Why or why not? Is the system currently financially stable? Why or why not. What effect does passage of the ACA project to have on enrollment in the Medicaid system? Why? 5) Organ Transplants – What is the mechanism for placement of a patient’s name on the organ transplant list? What is the current length of time a patient must wait for a heart transplant? Explain at least one reason why transplants are considered an ethical issue. How are transplants financed? Give at least one example of how much any type of organ transplant would cost. 6) Health Insurance/Information Portability and Accountability Act (HIPAA) – When was it enacted? Who was President when this legislation as passed? What is the scope of this legislative for the medical community and the general community? (Hint: There are actually two reasons for HIPAA legislation; make sure to state both in your response) 7) Death with Dignity Act – what year was the Oregon Death with Dignity Act passed? What ethical issue is covered by the Death with Dignity Act? List the factors that must be met for a patient to use the Death with Dignity Act. List two additional states that have enacted Death with Dignity Acts and when was the legislation passed in these states? 8) Hospice – what is hospice care? When was it developed? What country was most instrumental in the development of hospice care? Do health insurance plans in the United States cover hospice care? What types of services are covered for hospice care? Grading: 1) Accuracy and completeness of responses = 60% of grade 2) Correct use of sentence structure, spelling and grammar = 30% of grade 3) Appropriate use of references and citations = 10% of grade Simply stating a web page is not an appropriate reference This assignment is due on the date published in the course syllabus.

AUCS 340: Ethics in the Professions Homework Assignment: International and US Health Care Systems The following homework assignment will help you to discover some of the differences between the administration of health care in the United States and internationally. This is a research based assignment; remember the use of Wikipedia.com is not an acceptable reference site for this course. You must include a references cited page for this assignment; correctly formatted APA or MLA references are acceptable (simply stating s web address is NOT a complete reference). The answers should be presented in paragraph formation. Staple all pages together for presentation. The first question refers to a country other than the United States of America 1) Socialized Medicine – provide a definition of the term socialized medicine and discuss a country that currently has a socialized medicine system to cover all citizens; this discussion should include the types of services offered to the citizens of this country. When was this system first implemented in this country? What is the name of this country’s health insurance plan? Compare the ranking for the life expectancy for this country to that of the United States. Which is higher? Why? Compare the cost of financing healthcare in this country to the United States in comparison to the amount of annual funding in dollars and the percentage of gross domestic product spent on health care for each country. What rank does this country have in comparison to the United States for overall health of its citizens? (This portion of the assignment should be approximately one page in length and graphic data is acceptable to support some answers, however, graphic information should only be used to explain your written explanation not as the answer to the question.) Bonus: Is this country’s system currently financially stable? Why or why not? The following questions refer to the delivery of healthcare in the United States of America, as it was organized prior to the implementation of the Affordable Care Act (ACA). The ACA is currently being phased into coverage. It is estimated that the answers to the following questions will result in an additional two to three pages of written text in addition to the page for question number one. 2) Medicare – when was it enacted? Who does it cover? Who was President when Medicare was originally passed? What do the specific portions Part A, Part B and Part D cover? When was Part D enacted? Who was President when Part D was enacted? Is the Medicare system currently financially stable? Why or why not. Compare the average life expectancy for males and females when Medicare was originally passed and the average life expectancy of males and females as of 2010; more recent data is acceptable. Bonus: What does Part C cover and when was it enacted? 3) Health Maintenance Organization (HMO) – Define the term health maintenance organization. When did this type of health insurance plan become popular in the United States? How does this type of system provide medical care to the people enrolled? This answer should discuss in network versus out of network coverage. 4) Medicaid- when was it enacted? Who does it cover? Who was President when this insurance plan was enacted? Are the coverage benefits the same state to state? Why or why not? Is the system currently financially stable? Why or why not. What effect does passage of the ACA project to have on enrollment in the Medicaid system? Why? 5) Organ Transplants – What is the mechanism for placement of a patient’s name on the organ transplant list? What is the current length of time a patient must wait for a heart transplant? Explain at least one reason why transplants are considered an ethical issue. How are transplants financed? Give at least one example of how much any type of organ transplant would cost. 6) Health Insurance/Information Portability and Accountability Act (HIPAA) – When was it enacted? Who was President when this legislation as passed? What is the scope of this legislative for the medical community and the general community? (Hint: There are actually two reasons for HIPAA legislation; make sure to state both in your response) 7) Death with Dignity Act – what year was the Oregon Death with Dignity Act passed? What ethical issue is covered by the Death with Dignity Act? List the factors that must be met for a patient to use the Death with Dignity Act. List two additional states that have enacted Death with Dignity Acts and when was the legislation passed in these states? 8) Hospice – what is hospice care? When was it developed? What country was most instrumental in the development of hospice care? Do health insurance plans in the United States cover hospice care? What types of services are covered for hospice care? Grading: 1) Accuracy and completeness of responses = 60% of grade 2) Correct use of sentence structure, spelling and grammar = 30% of grade 3) Appropriate use of references and citations = 10% of grade Simply stating a web page is not an appropriate reference This assignment is due on the date published in the course syllabus.

What is the numerical relationship of neuroglial cells compared to neurons? Select one: a. Because they are big, one neuroglial cell can serve many neurons so there are about nine neurons for every neuroglial cell. b. There are about an equal number of both; each neuron has a companion neuroglial cell. c. There are about 9 neuroglial cells for every neuron. d. The numbers vary widely from animal to animal and depend on how large the animal is. e. Brain volume is made of approximately two thirds neurons and one third neuroglial cells.

What is the numerical relationship of neuroglial cells compared to neurons? Select one: a. Because they are big, one neuroglial cell can serve many neurons so there are about nine neurons for every neuroglial cell. b. There are about an equal number of both; each neuron has a companion neuroglial cell. c. There are about 9 neuroglial cells for every neuron. d. The numbers vary widely from animal to animal and depend on how large the animal is. e. Brain volume is made of approximately two thirds neurons and one third neuroglial cells.

Info@checkyourstudy.com                                                                                                                                                                                       : There are about 9 neuroglial cells for every … Read More...
Tornado Eddy Investigation Abstract The objective of this lab was to write a bunch of jibberish to provide students with a formatting template. Chemical engineering, bioengineering, and environmental engineering are “process engineering” disciplines. Good abstracts contains real content, such as 560 mL/min, 35 deg, and 67 percent yield. Ideal degreed graduates are technically strong, bring broad system perspectives to problem solving, and have the professional “soft skills” to make immediate contributions in the workplace. The senior lab sequence is the “capstone” opportunity to realize this ideal by integrating technical skills and developing professional soft skills to ensure workforce preparedness. The best conclusions are objective and numerical, such as operating conditions of 45 L/min at 32 deg C with expected costs of $4.55/lb. Background Insect exchange processes are often used in bug filtration, as they are effective at removing either positive or negative insects from water. An insect exchange column is a packed or fluidized bed filled with resin beads. Water flows through the column and most of the insects from the water enter the beads, but some of them pass in between the beads, which makes the exchange of insects non-ideal. Insectac 249 resin is a cation exchange resin, as it is being used to attract cationic Ca2+ from the toxic waste stream. This means the resin is negatively charged, and needs to be regenerated with a solution that produces positively charged insects, in this case, salt water which contains Na+ insects. The resin contains acidic styrene backbones which capture the cationic insects in a reversible process. A curve of Ca2+ concentration concentration vs. time was obtained after a standard curve was made to determine how many drops from the low cost barium test kit from Aquarium Pharmaceuticals (API)1 bottle #2 would correspond to a certain concentration in solution. A standard curve works by preparing solutions with known concentrations and testing these concentrations using the kit to create a curve of number of drops from bottle #2 (obtained result) vs. concentration of Ca2+ in solution (desired response). The standard curve can then be used for every test on the prototype and in the field, to quickly and accurately obtain a concentration from the test kit. The barium concentration vs. time curve can be used to calculate the exchange capacity of the resin and, in later tests, the regeneration efficiency. The curves must be used to get the total amount of barium removed from the water, m. Seen in Equation 2, the volumetric flow rate of water, , is multiplied by the integral from tinitial to tfinal of the total concentration of Ca2+ absorbed by the resin as a function of time, C. (2) 1 http://aquariumpharm.com/Products/Product.aspx?ProductID=72 , date accessed: 11/26/10 CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 9 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A graphical trapezoid method was used to evaluate the integral and get the final solution in equivalents of Ca2+ per L, it must be noted that there are 2 equivalents per mole of barium, as the charge of the barium insect is +2. An initial exchange capacity was calculated for the virgin resin, and an adjusted exchange capacity was calculated once the resin was regenerated. The regenerated resin capacity was found by multiplying the virgin resin capacity by the regeneration efficiency, expressed in Equation 3. (3) See Appendix A for the calculation of the exchange capacities and the regeneration efficiency. Materials and Methods Rosalie and Peter Johnson of Corvallis established the Linus Pauling Chair in Chemical Engineering to honor Oregon State University’s most famous graduate. Peter Johnson, former President and owner of Tekmax, Inc., a company which revolutionized battery manufacturing equipment, is a 1955 graduate of the College of Engineering.2 The Chair, also known as the Linus Pauling Distinguished Engineer or Linus Pauling Engineer (LPE), was originally designed to focus on the traditional “capstone” senior lab sequence in the former Department of Chemical Engineering. The focus is now extended to all the process engineering disciplines. The LPE is charged with establishing strong ties with industry, ensuring current and relevant laboratory experiences, and helping upperclass students develop skills in communication, teamwork, project management, and leadership. Include details about lab procedures not sufficiently detailed in the SOP, problems you had, etc. The bulk solution prepared to create the standard curve was used in the second day of testing to obtain the exchange capacity of the insectac 249 resin. The solution was pumped through a bathroom scale into the prototype insect exchange column. 45 mL of resin was rinsed and added to the column. The bed was fluidized as the solution was pumped through the resin, but for the creation of the Ca2+ concentration vs. time curve, the solution was pumped down through the column, as illustrated in the process flow diagram seen in Figure 1. Figure 1. Process sketch of the insect exchange column used for the project. Ref: http://www.generon.co.uk/acatalog/Chromatography.html 2 Harding, P. Viscosity Measurement SOP, Spring, 2010. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 10 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A bathroom scale calibration curve was created to ensure that the 150 mL/min, used to calculate the breakthrough time, would be delivered to the resin. The bathroom scale used was a Dwyer brand with flowrates between 0 and 300 cc/min of water. Originally, values between 120 and 180 mL/min were chosen for the calibration, with three runs for each flowrate, however the bathroom scale values were so far away from the measure values the range was extended to 100 to 200 mL/min. The regeneration experiment was performed using a method similar to that used in the water softening experiment, however instead of using a 640 ppm Ca2+ solution to fill the resin, a 6000 ppm Na+ solution was used to eject the Ca2+ from the resin. Twelve samples times were chosen and adjusted as the experiment progressed, with more than half of the samples taken at times less than 10 minutes, and the last sample taken at 45 minutes. The bulk exit solution was also tested to determine the regeneration efficiency. Results and Discussion The senior lab sequence has its roots in the former Department of Chemical Engineering. CHE 414 and 415 were taught in Winter and Spring and included 6 hours of lab time per week. The School has endeavored to incorporate the courses into the BIOE and ENVE curriculum, and this will be complete in 2008-2009. Recent development of the senior lab course sequence is shown chronologically in Fig. 1. In 2006-2007, CHE 414 and 415 were moved to Fall and Winter to enable CHE 416, an elective independent senior project course. Also that year, BIOE students took BIOE 414 in the Fall and BIOE 415 was developed and taught. No BIOE students enrolled in the optional CHE. In 2007-2008, the program transitioned in a new Linus Pauling Engineer and ENVE 414 was offered. Also, approximately 30 percent of BIOE students enrolled in the optional CHE 416. Accommodating the academic calendars of the three disciplines required a reduction in weekly student lab time from 6 to 3 hours. The expected relationship between coughing rate, y, and length of canine, x, is Bx z y Fe− (1) where F is a pre-exponential constant, B is vitamin B concentration and z is the height of an average trapeze artist. 3 The 2008-2009 brings the challenge of the dramatic enrollment increase shown in Fig. 1 and the first offering of ENVE 415. The result, shown on the right in Fig. 1, is the delivery of the senior lab sequence uniformly across the process engineering disciplines. CBEE 416 is expected to drawn approximately of the students that take the 415 courses. In 2007-2008, 414 and 415 were required for CHEs, 414 and 415 for BIOEs, and only 414 for ENVEs. CHE 416 is ostensibly an elective for all disciplines. In 2008-2009, 414 and 415 is required for all disciplines and CHE 416 will be an elective. The content of 414 is essentially 3 Fundamentals of Momentum, Heat, and Mass Transfer, Welty, J.R. et al., 4th edition, John Wiley & Sons, Inc. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 11 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE identical for all three disciplines, 415 has discipline-specific labs, and 416 consists of senior projects with potentially cross-discipline teams of 2 to 4 students. Tremendous labor and struggling with the lab equipment resulted in the data shown in y = –‐0.29x + 1.71 y = –‐0.25x + 2.03 y = –‐0.135x + 2.20 –‐1.5 –‐1.0 –‐0.5 0.0 0.5 1.0 1.5 2.0 2.5 0 2 4 6 8 10 ln y (units) x (units) ln y_1 ln y_2 ln y_3 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Case 1 Case 2 Case 3 Slope (units) (a) (b) Figure 1. (a) Data for y and x plotted for various values of z and (b) a comparison of slopes for the 3 cases investigate. The log plot slope yields the vitamin B concentration. The slopes were shown to be significantly at the 90% confidence level, but the instructor ran out of time and did not include error bars. The slope changed as predicted by the Snirtenhoffer equation. Improvements to the lab might include advice on how to legally change my name to something less embarrassing. My whole life I have been forced to repeat and spell it. I really feel that this has affected my psychologically. This was perhaps the worst lab I have ever done in my academic career, primarily due to the fact that there was no lab time. I simply typed in this entire report and filled it with jibberish. Some might think nobody will notice, but I know that …… Harding reads every word. Acknowledgments The author acknowledges his elementary teacher for providing truly foundational instruction in addition and subtraction. Jenny Burninbalm was instrumental with guidance on use of the RT-345 dog scratching device. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 12

Tornado Eddy Investigation Abstract The objective of this lab was to write a bunch of jibberish to provide students with a formatting template. Chemical engineering, bioengineering, and environmental engineering are “process engineering” disciplines. Good abstracts contains real content, such as 560 mL/min, 35 deg, and 67 percent yield. Ideal degreed graduates are technically strong, bring broad system perspectives to problem solving, and have the professional “soft skills” to make immediate contributions in the workplace. The senior lab sequence is the “capstone” opportunity to realize this ideal by integrating technical skills and developing professional soft skills to ensure workforce preparedness. The best conclusions are objective and numerical, such as operating conditions of 45 L/min at 32 deg C with expected costs of $4.55/lb. Background Insect exchange processes are often used in bug filtration, as they are effective at removing either positive or negative insects from water. An insect exchange column is a packed or fluidized bed filled with resin beads. Water flows through the column and most of the insects from the water enter the beads, but some of them pass in between the beads, which makes the exchange of insects non-ideal. Insectac 249 resin is a cation exchange resin, as it is being used to attract cationic Ca2+ from the toxic waste stream. This means the resin is negatively charged, and needs to be regenerated with a solution that produces positively charged insects, in this case, salt water which contains Na+ insects. The resin contains acidic styrene backbones which capture the cationic insects in a reversible process. A curve of Ca2+ concentration concentration vs. time was obtained after a standard curve was made to determine how many drops from the low cost barium test kit from Aquarium Pharmaceuticals (API)1 bottle #2 would correspond to a certain concentration in solution. A standard curve works by preparing solutions with known concentrations and testing these concentrations using the kit to create a curve of number of drops from bottle #2 (obtained result) vs. concentration of Ca2+ in solution (desired response). The standard curve can then be used for every test on the prototype and in the field, to quickly and accurately obtain a concentration from the test kit. The barium concentration vs. time curve can be used to calculate the exchange capacity of the resin and, in later tests, the regeneration efficiency. The curves must be used to get the total amount of barium removed from the water, m. Seen in Equation 2, the volumetric flow rate of water, , is multiplied by the integral from tinitial to tfinal of the total concentration of Ca2+ absorbed by the resin as a function of time, C. (2) 1 http://aquariumpharm.com/Products/Product.aspx?ProductID=72 , date accessed: 11/26/10 CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 9 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A graphical trapezoid method was used to evaluate the integral and get the final solution in equivalents of Ca2+ per L, it must be noted that there are 2 equivalents per mole of barium, as the charge of the barium insect is +2. An initial exchange capacity was calculated for the virgin resin, and an adjusted exchange capacity was calculated once the resin was regenerated. The regenerated resin capacity was found by multiplying the virgin resin capacity by the regeneration efficiency, expressed in Equation 3. (3) See Appendix A for the calculation of the exchange capacities and the regeneration efficiency. Materials and Methods Rosalie and Peter Johnson of Corvallis established the Linus Pauling Chair in Chemical Engineering to honor Oregon State University’s most famous graduate. Peter Johnson, former President and owner of Tekmax, Inc., a company which revolutionized battery manufacturing equipment, is a 1955 graduate of the College of Engineering.2 The Chair, also known as the Linus Pauling Distinguished Engineer or Linus Pauling Engineer (LPE), was originally designed to focus on the traditional “capstone” senior lab sequence in the former Department of Chemical Engineering. The focus is now extended to all the process engineering disciplines. The LPE is charged with establishing strong ties with industry, ensuring current and relevant laboratory experiences, and helping upperclass students develop skills in communication, teamwork, project management, and leadership. Include details about lab procedures not sufficiently detailed in the SOP, problems you had, etc. The bulk solution prepared to create the standard curve was used in the second day of testing to obtain the exchange capacity of the insectac 249 resin. The solution was pumped through a bathroom scale into the prototype insect exchange column. 45 mL of resin was rinsed and added to the column. The bed was fluidized as the solution was pumped through the resin, but for the creation of the Ca2+ concentration vs. time curve, the solution was pumped down through the column, as illustrated in the process flow diagram seen in Figure 1. Figure 1. Process sketch of the insect exchange column used for the project. Ref: http://www.generon.co.uk/acatalog/Chromatography.html 2 Harding, P. Viscosity Measurement SOP, Spring, 2010. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 10 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A bathroom scale calibration curve was created to ensure that the 150 mL/min, used to calculate the breakthrough time, would be delivered to the resin. The bathroom scale used was a Dwyer brand with flowrates between 0 and 300 cc/min of water. Originally, values between 120 and 180 mL/min were chosen for the calibration, with three runs for each flowrate, however the bathroom scale values were so far away from the measure values the range was extended to 100 to 200 mL/min. The regeneration experiment was performed using a method similar to that used in the water softening experiment, however instead of using a 640 ppm Ca2+ solution to fill the resin, a 6000 ppm Na+ solution was used to eject the Ca2+ from the resin. Twelve samples times were chosen and adjusted as the experiment progressed, with more than half of the samples taken at times less than 10 minutes, and the last sample taken at 45 minutes. The bulk exit solution was also tested to determine the regeneration efficiency. Results and Discussion The senior lab sequence has its roots in the former Department of Chemical Engineering. CHE 414 and 415 were taught in Winter and Spring and included 6 hours of lab time per week. The School has endeavored to incorporate the courses into the BIOE and ENVE curriculum, and this will be complete in 2008-2009. Recent development of the senior lab course sequence is shown chronologically in Fig. 1. In 2006-2007, CHE 414 and 415 were moved to Fall and Winter to enable CHE 416, an elective independent senior project course. Also that year, BIOE students took BIOE 414 in the Fall and BIOE 415 was developed and taught. No BIOE students enrolled in the optional CHE. In 2007-2008, the program transitioned in a new Linus Pauling Engineer and ENVE 414 was offered. Also, approximately 30 percent of BIOE students enrolled in the optional CHE 416. Accommodating the academic calendars of the three disciplines required a reduction in weekly student lab time from 6 to 3 hours. The expected relationship between coughing rate, y, and length of canine, x, is Bx z y Fe− (1) where F is a pre-exponential constant, B is vitamin B concentration and z is the height of an average trapeze artist. 3 The 2008-2009 brings the challenge of the dramatic enrollment increase shown in Fig. 1 and the first offering of ENVE 415. The result, shown on the right in Fig. 1, is the delivery of the senior lab sequence uniformly across the process engineering disciplines. CBEE 416 is expected to drawn approximately of the students that take the 415 courses. In 2007-2008, 414 and 415 were required for CHEs, 414 and 415 for BIOEs, and only 414 for ENVEs. CHE 416 is ostensibly an elective for all disciplines. In 2008-2009, 414 and 415 is required for all disciplines and CHE 416 will be an elective. The content of 414 is essentially 3 Fundamentals of Momentum, Heat, and Mass Transfer, Welty, J.R. et al., 4th edition, John Wiley & Sons, Inc. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 11 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE identical for all three disciplines, 415 has discipline-specific labs, and 416 consists of senior projects with potentially cross-discipline teams of 2 to 4 students. Tremendous labor and struggling with the lab equipment resulted in the data shown in y = –‐0.29x + 1.71 y = –‐0.25x + 2.03 y = –‐0.135x + 2.20 –‐1.5 –‐1.0 –‐0.5 0.0 0.5 1.0 1.5 2.0 2.5 0 2 4 6 8 10 ln y (units) x (units) ln y_1 ln y_2 ln y_3 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Case 1 Case 2 Case 3 Slope (units) (a) (b) Figure 1. (a) Data for y and x plotted for various values of z and (b) a comparison of slopes for the 3 cases investigate. The log plot slope yields the vitamin B concentration. The slopes were shown to be significantly at the 90% confidence level, but the instructor ran out of time and did not include error bars. The slope changed as predicted by the Snirtenhoffer equation. Improvements to the lab might include advice on how to legally change my name to something less embarrassing. My whole life I have been forced to repeat and spell it. I really feel that this has affected my psychologically. This was perhaps the worst lab I have ever done in my academic career, primarily due to the fact that there was no lab time. I simply typed in this entire report and filled it with jibberish. Some might think nobody will notice, but I know that …… Harding reads every word. Acknowledgments The author acknowledges his elementary teacher for providing truly foundational instruction in addition and subtraction. Jenny Burninbalm was instrumental with guidance on use of the RT-345 dog scratching device. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 12

For any additional help, please contact: info@checkyourstudy.com Call / Whatsapp … Read More...
Que 1: in women who suffer from migraine …………………. are classified menstrual migraines, which tend to be more severe and longer lasting . a) 5% – 10% b) 45% – 55% c) 20% – 50% d) 65%-75% Que 2: why are the women on average, slightly shorter than men a) They have fat then man which contributes to stature b) Their long bones are sealed and stop growing earlier than men c) Their brains are somewhat smaller than man’s brain d) Their brains are somewhat larger than man, brain que 3: menopause frequently occurs between ………………..age of year a) 25-30 b) 45-55 c) 35-40 d) 65-75 que 4: this hormone causes enlargement of the larynx and an increase in the length and thickness of the vocal cords. A) estrogen 2) cholesterol 3) progesterone 4) testosterone Que 5: the reproductive cycle includes which of the following interconnected sets of events a) Ovarian cycle b) Urinary cycle c) Placental cycle d) Female prostate cycle Que 6: high level of circulating progesterone have been associated with : a) Excessive milk production b) Ovarian cancer c) Inability to breast feed a new born child d) Pregnancy Que 7: although variations exist, ovulation typically occurs on the …………day before mensuaration a) 1st b) 14th c) 7th d) 28th Que 8: LH stimulates interstitial cells a) To decrease GnRH b) To produce FSH c) To produce testosterones d) To produce sperm Que 9:what region of the uterus is shed during menstration? a) Stratum basalis of the myometrium b) Stratum basalis of the endometrium c) Stratum functionalis of the endometrium d) Perimetrium Que 10: the phenomenon is which women living in close proximity tend to menstruate at approximately the time is called. a) Precocious puberty b) Menstrual synchrony’ c) Delayed puberty d) Ovarian synchrony Que 11.studies have shown that healthy menstruating women a) Should not participate in sports b) Often feel ill or weak when exercising c) Are able to safety engage in athletic activities d) Can contaminate others and should not engage in contacts sports. Que 12: which term below describes a chemical that resembles steroid hormones and posses threat to maintain homeostasis. a) Androgens b) Prostaglandins c) Endocrine disruptors d) All of the above Que 13: one of the primary function of ……….is preparing and sustaining the uterus of pregnancy a) Testosterone b) Progesterone c) Estradiol d) inhibin Que 14: typically ovulation occurs a) at the end of the uterine phase b) at the start of follicular phase c) during an increase of LH in the ovarian cycle d) at the middle of the luteal phase

Que 1: in women who suffer from migraine …………………. are classified menstrual migraines, which tend to be more severe and longer lasting . a) 5% – 10% b) 45% – 55% c) 20% – 50% d) 65%-75% Que 2: why are the women on average, slightly shorter than men a) They have fat then man which contributes to stature b) Their long bones are sealed and stop growing earlier than men c) Their brains are somewhat smaller than man’s brain d) Their brains are somewhat larger than man, brain que 3: menopause frequently occurs between ………………..age of year a) 25-30 b) 45-55 c) 35-40 d) 65-75 que 4: this hormone causes enlargement of the larynx and an increase in the length and thickness of the vocal cords. A) estrogen 2) cholesterol 3) progesterone 4) testosterone Que 5: the reproductive cycle includes which of the following interconnected sets of events a) Ovarian cycle b) Urinary cycle c) Placental cycle d) Female prostate cycle Que 6: high level of circulating progesterone have been associated with : a) Excessive milk production b) Ovarian cancer c) Inability to breast feed a new born child d) Pregnancy Que 7: although variations exist, ovulation typically occurs on the …………day before mensuaration a) 1st b) 14th c) 7th d) 28th Que 8: LH stimulates interstitial cells a) To decrease GnRH b) To produce FSH c) To produce testosterones d) To produce sperm Que 9:what region of the uterus is shed during menstration? a) Stratum basalis of the myometrium b) Stratum basalis of the endometrium c) Stratum functionalis of the endometrium d) Perimetrium Que 10: the phenomenon is which women living in close proximity tend to menstruate at approximately the time is called. a) Precocious puberty b) Menstrual synchrony’ c) Delayed puberty d) Ovarian synchrony Que 11.studies have shown that healthy menstruating women a) Should not participate in sports b) Often feel ill or weak when exercising c) Are able to safety engage in athletic activities d) Can contaminate others and should not engage in contacts sports. Que 12: which term below describes a chemical that resembles steroid hormones and posses threat to maintain homeostasis. a) Androgens b) Prostaglandins c) Endocrine disruptors d) All of the above Que 13: one of the primary function of ……….is preparing and sustaining the uterus of pregnancy a) Testosterone b) Progesterone c) Estradiol d) inhibin Que 14: typically ovulation occurs a) at the end of the uterine phase b) at the start of follicular phase c) during an increase of LH in the ovarian cycle d) at the middle of the luteal phase

SUPPLY CHAIN MANAGEMENT AT BOSE CORPORATION Bose Corporation, headquartered in Framingham, Massachusetts, offers an excellent example of integrated supply chain management. Bose, a producer of audio premium speakers used in automobiles, high-fidelity systems, and consumer and commercial broadcasting systems, was founded in 1964 by Dr. Bose of MIT. Bose currently maintains plants in Massachusetts and Michigan as well as Canada, Mexico, and Ireland. Its purchasing organization, while decentralized, has some overlap that requires coordination between sites. It manages this coordination by using conference calls between managers, electronic communication, and joint problem solving. The company is moving toward single sourcing many of its 800 to 1,000 parts, which include corrugated paper, particle board and wood, plastic injected molded parts, fasteners, glues, woofers, and fabric. Some product components, such as woofers, are sourced overseas. For example, at the Hillsdale, Michigan, plant, foreign sourcing accounts for 20% of purchases, with the remainder of suppliers located immediately within the state of Michigan. About 35% of the parts purchased at this site are single sourced, with approximately half of the components arriving with no incoming inspection performed. In turn, Bose ships finished products directly to Delco, Honda, and Nissan and has a record of no missed deliveries. Normal lead time to customers is 60 working days, but Bose can expedite shipments in one week and airfreight them if necessary. The company has developed a detailed supplier performance system that measures on-time delivery, quality performance, technical improvements, and supplier suggestions. A report is generated twice a month from this system and sent to the supplier providing feedback about supplier performance. If there is a three-week trend of poor performance, Bose will usually establish a specific goal for improvement that the supplier must attain. Examples include 10% delivery improvement every month until 100% conformance is achieved, or 5% quality improvement until a 1% defect level is reached over a four-month period. In one case, a supplier sent a rejected shipment back to Bose without explanation and with no corrective action taken. When no significant improvement occurred, another supplier replaced the delinquent supplier. Bose has few written contracts with suppliers. After six months of deliveries without rejects, Bose encourages suppliers to apply for a certificate of achievement form, signifying that they are qualified suppliers. One of the primary criteria for gaining certification involves how well the supplier responds to corrective action requests. One of the biggest problems observed is that suppliers often correct problems on individual parts covered by a corrective action form without extending these corrective actions to other part families and applicable parts. Bose has adopted a unique system of marrying just-in-time (JIT) purchasing with global sourcing. Approximately half of the dollar value of Bose’s total purchases are made overseas, with the majority of the sourcing done in Asia. Because foreign sourcing does not support just-in-time deliveries, Bose “had to find a way to blend low inventory with buying from distant sources,” says the director of purchasing and logistics for Bose. Visualizing itself as a customer-driven organization, Bose now uses a sophisticated transportation system—what Bose’s manager of logistics calls “the best EDI system in the country.” Working closely with a national less-than-truckload carrier for the bulk of its domestic freight movements, including shipments arriving at a U.S. port from oversees, Bose implemented an electronic data interchange (EDI) system that does much more than simple tracking. The system operates close to real time and allows two-way communication between every one of the freight handler’s 230 terminals and Bose. Information is updated several times daily and is downloaded automatically, enabling Bose to perform shipping analysis and distribution channel modeling to achieve reliable lowest total cost scenarios. The company can also request removal from a terminal of any shipment that it must expedite with an air shipment. This state-of-the-art system provides a snapshot of what is happening on a daily basis and keeps Bose’s managers on top of everyday occurrences and decisions. Management proactively manages logistics time elements in pursuit of better customer service. The next step is to implement this system with all major suppliers rather than just with transportation suppliers. In the future, Bose plans to automate its entire materials system. Perhaps one of the most unique features of Bose’s procurement and logistics system is the development of JIT II. The basic premise of JIT II is simple: The person who can do the best job of ordering and managing inventory of a particular item is the supplier himself. Bose negotiated with each supplier to provide a full-time employee at the Bose plant who was responsible for ordering, shipping, and receiving materials from that plant, as well as managing on-site inventories of the items. This was done through an EDI connection between Bose’s plant and the supplier’s facility. Collocating suppliers and buyers was so successful that Bose is now implementing it at all plant locations. In fact, many other companies have also begun to implement collocation of suppliers. Assignment Questions The following assignment questions relate to ideas and concepts presented throughout this text. Answer some or all of the questions as directed by your instructor. 1. Discuss how the strategy development process might work at a company like Bose. 2. What should be the relationship between Bose’s supply management strategy and the development of its performance measurement system? 3. Why is purchased quality so important to Bose? 4. Can a just-in-time purchase system operate without total quality from suppliers? 5. Why can some components arrive at the Hillsdale, Michigan, plant with no incoming inspection required? 6. Discuss the reasons why Bose has a certificate of achievement program for identifying qualified suppliers. 7. Bose is moving toward single sourcing many of its purchased part requirements. Discuss why the company might want to do this. Are there any risks to that approach? 8. Discuss some of the difficulties a company like Bose might experience when trying to implement just-in-time purchasing with international suppliers. 9. Why does Bose have to source so much of its purchase requirements from offshore suppliers? 10. What makes the JIT II system at Bose unique? Why would a company pursue this type of system? 11. Why is it necessary to enter into a longer-term contractual arrangement when pursuing arrangements like the one Bose has with its domestic transportation carrier? 12. Why is it important to manage logistics time elements proactively when pursuing higher levels of customer service? 13. What role does information technology play at Bose? 14. What advantages do information technology systems provide to Bose that might not be available to a company that does not have these systems? 15. Why has Bose developed its supplier performance measurement system? 16. Do you think the performance measurement systems at Bose are computerized or manual? Why?

SUPPLY CHAIN MANAGEMENT AT BOSE CORPORATION Bose Corporation, headquartered in Framingham, Massachusetts, offers an excellent example of integrated supply chain management. Bose, a producer of audio premium speakers used in automobiles, high-fidelity systems, and consumer and commercial broadcasting systems, was founded in 1964 by Dr. Bose of MIT. Bose currently maintains plants in Massachusetts and Michigan as well as Canada, Mexico, and Ireland. Its purchasing organization, while decentralized, has some overlap that requires coordination between sites. It manages this coordination by using conference calls between managers, electronic communication, and joint problem solving. The company is moving toward single sourcing many of its 800 to 1,000 parts, which include corrugated paper, particle board and wood, plastic injected molded parts, fasteners, glues, woofers, and fabric. Some product components, such as woofers, are sourced overseas. For example, at the Hillsdale, Michigan, plant, foreign sourcing accounts for 20% of purchases, with the remainder of suppliers located immediately within the state of Michigan. About 35% of the parts purchased at this site are single sourced, with approximately half of the components arriving with no incoming inspection performed. In turn, Bose ships finished products directly to Delco, Honda, and Nissan and has a record of no missed deliveries. Normal lead time to customers is 60 working days, but Bose can expedite shipments in one week and airfreight them if necessary. The company has developed a detailed supplier performance system that measures on-time delivery, quality performance, technical improvements, and supplier suggestions. A report is generated twice a month from this system and sent to the supplier providing feedback about supplier performance. If there is a three-week trend of poor performance, Bose will usually establish a specific goal for improvement that the supplier must attain. Examples include 10% delivery improvement every month until 100% conformance is achieved, or 5% quality improvement until a 1% defect level is reached over a four-month period. In one case, a supplier sent a rejected shipment back to Bose without explanation and with no corrective action taken. When no significant improvement occurred, another supplier replaced the delinquent supplier. Bose has few written contracts with suppliers. After six months of deliveries without rejects, Bose encourages suppliers to apply for a certificate of achievement form, signifying that they are qualified suppliers. One of the primary criteria for gaining certification involves how well the supplier responds to corrective action requests. One of the biggest problems observed is that suppliers often correct problems on individual parts covered by a corrective action form without extending these corrective actions to other part families and applicable parts. Bose has adopted a unique system of marrying just-in-time (JIT) purchasing with global sourcing. Approximately half of the dollar value of Bose’s total purchases are made overseas, with the majority of the sourcing done in Asia. Because foreign sourcing does not support just-in-time deliveries, Bose “had to find a way to blend low inventory with buying from distant sources,” says the director of purchasing and logistics for Bose. Visualizing itself as a customer-driven organization, Bose now uses a sophisticated transportation system—what Bose’s manager of logistics calls “the best EDI system in the country.” Working closely with a national less-than-truckload carrier for the bulk of its domestic freight movements, including shipments arriving at a U.S. port from oversees, Bose implemented an electronic data interchange (EDI) system that does much more than simple tracking. The system operates close to real time and allows two-way communication between every one of the freight handler’s 230 terminals and Bose. Information is updated several times daily and is downloaded automatically, enabling Bose to perform shipping analysis and distribution channel modeling to achieve reliable lowest total cost scenarios. The company can also request removal from a terminal of any shipment that it must expedite with an air shipment. This state-of-the-art system provides a snapshot of what is happening on a daily basis and keeps Bose’s managers on top of everyday occurrences and decisions. Management proactively manages logistics time elements in pursuit of better customer service. The next step is to implement this system with all major suppliers rather than just with transportation suppliers. In the future, Bose plans to automate its entire materials system. Perhaps one of the most unique features of Bose’s procurement and logistics system is the development of JIT II. The basic premise of JIT II is simple: The person who can do the best job of ordering and managing inventory of a particular item is the supplier himself. Bose negotiated with each supplier to provide a full-time employee at the Bose plant who was responsible for ordering, shipping, and receiving materials from that plant, as well as managing on-site inventories of the items. This was done through an EDI connection between Bose’s plant and the supplier’s facility. Collocating suppliers and buyers was so successful that Bose is now implementing it at all plant locations. In fact, many other companies have also begun to implement collocation of suppliers. Assignment Questions The following assignment questions relate to ideas and concepts presented throughout this text. Answer some or all of the questions as directed by your instructor. 1. Discuss how the strategy development process might work at a company like Bose. 2. What should be the relationship between Bose’s supply management strategy and the development of its performance measurement system? 3. Why is purchased quality so important to Bose? 4. Can a just-in-time purchase system operate without total quality from suppliers? 5. Why can some components arrive at the Hillsdale, Michigan, plant with no incoming inspection required? 6. Discuss the reasons why Bose has a certificate of achievement program for identifying qualified suppliers. 7. Bose is moving toward single sourcing many of its purchased part requirements. Discuss why the company might want to do this. Are there any risks to that approach? 8. Discuss some of the difficulties a company like Bose might experience when trying to implement just-in-time purchasing with international suppliers. 9. Why does Bose have to source so much of its purchase requirements from offshore suppliers? 10. What makes the JIT II system at Bose unique? Why would a company pursue this type of system? 11. Why is it necessary to enter into a longer-term contractual arrangement when pursuing arrangements like the one Bose has with its domestic transportation carrier? 12. Why is it important to manage logistics time elements proactively when pursuing higher levels of customer service? 13. What role does information technology play at Bose? 14. What advantages do information technology systems provide to Bose that might not be available to a company that does not have these systems? 15. Why has Bose developed its supplier performance measurement system? 16. Do you think the performance measurement systems at Bose are computerized or manual? Why?

info@checkyourstudy.com
Physics 220 – HW #1 (Homework) halsalem::app-6@purdue Summer-2013-PHYS-22000-01-XLST, Summer 1 2013 Instructor: Shawn Slavin Current Score : 2 / 20 Due : Wednesday, May 22 2013 11:59 PM EDT 1. –/2 points SerCP9 1.P.006. Kinetic energy KE has dimensions kg · m 2 /s 2 . It can be written in terms of the momentum p and mass m as (a) Determine the proper units for momentum using dimensional analysis. (b) Force has the SI units kg · m/s2. Given the units of force, write a simple equation relating a constant force F exerted on an object, an interval of time t during which the force is applied, and the resulting momentum of the object, p. (Do this on paper. Your instructor may ask you to turn in this work.) Show My Work (Optional) 2. 2/2 points | Previous Answers SerCP9 1.P.502.XP. You can obtain a rough estimate of the size of a molecule by the following simple experiment. Let a droplet of oil spread out on a smooth surface of water. The resulting oil slick will be approximately one molecule thick. Given an oil droplet of mass 8.0 10 -7 kg and density 914 kg/m 3 that spreads out into a circle of radius 41.8 cm on the water surface, what is the order of magnitude of the diameter of an oil molecule? Show My Work (Optional) 3. –/2 points SerCP9 1.P.016. A small turtle moves at a speed of 163 furlongs per fortnight. Find the speed of the turtle in centimeters per second. Note that 1 furlong = 220 yards and 1 fortnight = 14 days. cm/s Show My Work (Optional) 4. –/2 points SerCP9 1.P.035.MI.FB. A point is located in a polar coordinate system by the coordinates r = 4.6 m and θ = 24°. Find the x- and y-coordinates of this point, assuming that the two coordinate systems have the same origin. x = m y = m Show My Work (Optional) WebAssign KE = P . 2 2m kg · m/s2 kg · m/s kg · m2/s kg2 · m/s 10−5 10−7 10−9 10−11 10−14 Physics 220 – HW #1 http://www.webassign.net/web/Student/Assignment-Responses/last?d… 1 of 3 19-05-2013 13:35 5. –/2 points SerCP9 1.P.045. In the figure below, find each of the following. (a) the side opposite θ (b) the side adjacent to (c) cos θ (d) sin (e) tan Show My Work (Optional) 6. –/2 points SerCP9 2.P.028.WI. In 1865, Jules Verne proposed sending men to the Moon by firing a space capsule from a 220-m-long cannon with final speed of 10.97 km/s. What would have been the unrealistically large acceleration experienced by the space travelers during their launch? (A human can stand an acceleration of 15g for a short time.) m/s2 Compare your answer with the free-fall acceleration, 9.80 m/s 2 (i.e. how many times stronger than gravity is this force?). g Show My Work (Optional) 7. –/2 points SerCP9 2.P.045. A ball is thrown vertically upward with a speed of 10.0 m/s. (a) How high does it rise? m (b) How long does it take to reach its highest point? s (c) How long does the ball take to hit the ground after it reaches its highest point? s (d) What is its velocity when it returns to the level from which it started? m/s Show My Work (Optional) Physics 220 – HW #1 http://www.webassign.net/web/Student/Assignment-Responses/last?d… 2 of 3 19-05-2013 13:35 8. –/2 points SerCP9 3.P.001. Vector has a magnitude of 28 units and points in the positive y-direction. When vector is added to the resultant vector points in the negative y-direction with a magnitude of 13 units. Find the magnitude and direction of magnitude unit(s) direction Show My Work (Optional) 9. –/2 points SerCP9 3.P.010. A person walks 24.0° north of east for 2.30 km. How far due north and how far due east would she have to walk to arrive at the same location? north km east km Show My Work (Optional) 10.–/2 points SerCP9 3.P.025.WI. The best leaper in the animal kingdom is the puma, which can jump to a height of 3.7 m when leaving the ground at an angle of 45°. With what speed must the animal leave the ground to reach that height? m/s Show My Work (Optional) A B A, A + B B? Physics 220 – HW #1 http://www.webassign.net/web/Student/Assignment-Responses/last?d… 3 of 3 19-05-2013 13:35

Physics 220 – HW #1 (Homework) halsalem::app-6@purdue Summer-2013-PHYS-22000-01-XLST, Summer 1 2013 Instructor: Shawn Slavin Current Score : 2 / 20 Due : Wednesday, May 22 2013 11:59 PM EDT 1. –/2 points SerCP9 1.P.006. Kinetic energy KE has dimensions kg · m 2 /s 2 . It can be written in terms of the momentum p and mass m as (a) Determine the proper units for momentum using dimensional analysis. (b) Force has the SI units kg · m/s2. Given the units of force, write a simple equation relating a constant force F exerted on an object, an interval of time t during which the force is applied, and the resulting momentum of the object, p. (Do this on paper. Your instructor may ask you to turn in this work.) Show My Work (Optional) 2. 2/2 points | Previous Answers SerCP9 1.P.502.XP. You can obtain a rough estimate of the size of a molecule by the following simple experiment. Let a droplet of oil spread out on a smooth surface of water. The resulting oil slick will be approximately one molecule thick. Given an oil droplet of mass 8.0 10 -7 kg and density 914 kg/m 3 that spreads out into a circle of radius 41.8 cm on the water surface, what is the order of magnitude of the diameter of an oil molecule? Show My Work (Optional) 3. –/2 points SerCP9 1.P.016. A small turtle moves at a speed of 163 furlongs per fortnight. Find the speed of the turtle in centimeters per second. Note that 1 furlong = 220 yards and 1 fortnight = 14 days. cm/s Show My Work (Optional) 4. –/2 points SerCP9 1.P.035.MI.FB. A point is located in a polar coordinate system by the coordinates r = 4.6 m and θ = 24°. Find the x- and y-coordinates of this point, assuming that the two coordinate systems have the same origin. x = m y = m Show My Work (Optional) WebAssign KE = P . 2 2m kg · m/s2 kg · m/s kg · m2/s kg2 · m/s 10−5 10−7 10−9 10−11 10−14 Physics 220 – HW #1 http://www.webassign.net/web/Student/Assignment-Responses/last?d… 1 of 3 19-05-2013 13:35 5. –/2 points SerCP9 1.P.045. In the figure below, find each of the following. (a) the side opposite θ (b) the side adjacent to (c) cos θ (d) sin (e) tan Show My Work (Optional) 6. –/2 points SerCP9 2.P.028.WI. In 1865, Jules Verne proposed sending men to the Moon by firing a space capsule from a 220-m-long cannon with final speed of 10.97 km/s. What would have been the unrealistically large acceleration experienced by the space travelers during their launch? (A human can stand an acceleration of 15g for a short time.) m/s2 Compare your answer with the free-fall acceleration, 9.80 m/s 2 (i.e. how many times stronger than gravity is this force?). g Show My Work (Optional) 7. –/2 points SerCP9 2.P.045. A ball is thrown vertically upward with a speed of 10.0 m/s. (a) How high does it rise? m (b) How long does it take to reach its highest point? s (c) How long does the ball take to hit the ground after it reaches its highest point? s (d) What is its velocity when it returns to the level from which it started? m/s Show My Work (Optional) Physics 220 – HW #1 http://www.webassign.net/web/Student/Assignment-Responses/last?d… 2 of 3 19-05-2013 13:35 8. –/2 points SerCP9 3.P.001. Vector has a magnitude of 28 units and points in the positive y-direction. When vector is added to the resultant vector points in the negative y-direction with a magnitude of 13 units. Find the magnitude and direction of magnitude unit(s) direction Show My Work (Optional) 9. –/2 points SerCP9 3.P.010. A person walks 24.0° north of east for 2.30 km. How far due north and how far due east would she have to walk to arrive at the same location? north km east km Show My Work (Optional) 10.–/2 points SerCP9 3.P.025.WI. The best leaper in the animal kingdom is the puma, which can jump to a height of 3.7 m when leaving the ground at an angle of 45°. With what speed must the animal leave the ground to reach that height? m/s Show My Work (Optional) A B A, A + B B? Physics 220 – HW #1 http://www.webassign.net/web/Student/Assignment-Responses/last?d… 3 of 3 19-05-2013 13:35

info@checkyourstudy.com
The most critical period for disturbance in the development of an embryo is from ap-proximately day _____. Question 9 options: 1-14 57-89 15-56 All of the above

The most critical period for disturbance in the development of an embryo is from ap-proximately day _____. Question 9 options: 1-14 57-89 15-56 All of the above

The most critical period for disturbance in the development of … Read More...
PSY4411 Written Assignment Outline The outline should contain the details of the content you will be including in your final paper (which will be a summary of the journal article). The paper will consist of 2 parts: Part I Description/ summary of the relevant historical topic. This will be determined by the article you selected. It should be approximately ¼ of your total paper. Part II Each section of the article (Introduction, methods, etc) should be summarized as follows: Introduction: Summarize the basics from the background information, and define any key terms. Name the type of study (experiment, correlational study, case study, etc) State the author’s hypothesis and if relevant, describe/ define the independent and dependent variables. Methods: Describe the participants and relevant recruiting/ inclusion/ exclusion information. Describe the variable groups (control vs experimental groups,). Samples sizes for groups do not need to be included. Briefly describe any tests performed by or on the participants (for example, if personality tests were used, it is sufficient to say: The MMPI is a standard personality assessment tool….). Results: A description of the specific statistical tests is not necessary, just a basic summation of the results (ie was there a significant difference between the groups? Was the difference predicted by the hypothesis? Did the data support or refute the hypothesis?). Discussion What do the results mean? If the hypothesis was correct, what does that suggest about the effect of the independent variable on the dependent variable? What further research is suggested? If the hypothesis was not supported, what does that mean? The outline can be structured any way you want, but be consistent; incomplete sentences/ bullet points are okay.

PSY4411 Written Assignment Outline The outline should contain the details of the content you will be including in your final paper (which will be a summary of the journal article). The paper will consist of 2 parts: Part I Description/ summary of the relevant historical topic. This will be determined by the article you selected. It should be approximately ¼ of your total paper. Part II Each section of the article (Introduction, methods, etc) should be summarized as follows: Introduction: Summarize the basics from the background information, and define any key terms. Name the type of study (experiment, correlational study, case study, etc) State the author’s hypothesis and if relevant, describe/ define the independent and dependent variables. Methods: Describe the participants and relevant recruiting/ inclusion/ exclusion information. Describe the variable groups (control vs experimental groups,). Samples sizes for groups do not need to be included. Briefly describe any tests performed by or on the participants (for example, if personality tests were used, it is sufficient to say: The MMPI is a standard personality assessment tool….). Results: A description of the specific statistical tests is not necessary, just a basic summation of the results (ie was there a significant difference between the groups? Was the difference predicted by the hypothesis? Did the data support or refute the hypothesis?). Discussion What do the results mean? If the hypothesis was correct, what does that suggest about the effect of the independent variable on the dependent variable? What further research is suggested? If the hypothesis was not supported, what does that mean? The outline can be structured any way you want, but be consistent; incomplete sentences/ bullet points are okay.

ELEC 2000 Semiconductor Devices Homework #1 Choose the answer that best completes the statement or answers the question. (1) Assume the valence electron is removed from a copper atom. The net charge of the atom becomes a. 0 b. +1 c. -1 d. +4 (2) The valence electron of a copper atom experiences what kind of attraction toward the nucleus? a. None b. Weak c. Strong d. Impossible to say (3) How many valence electrons does a silicon atom have? a. 0 b. 1 c. 2 d. 4 (4) Silicon atoms combine into an orderly pattern called a a. Covalent bond b. Crystal c. Semiconductor d. Valence orbit (5) An intrinsic semiconductor has some holes in it at room temperature. What causes these holes? a. Doping b. Free electrons c. Thermal energy d. Valence electrons (6) The merging of a free electron and a hole is called a. Covalent bonding b. Lifetime c. Recombination d. Thermal energy (7) At room temperature an intrinsic silicon crystal acts approximately a. A Battery b. A conductor c. An insulator d. Copper wire (8) The amount of time between the creation of a hole and its disappearance is called a. Doping b. Lifetime c. Recombination d. Valence (9) A conductor has how many type of flow? a. 1 b. 2 c. 3 d. 4 (10) A semiconductor has how many types of flow? a. 1 b. 2 c. 3 d. 4 (11) For semiconductor material, its valence orbit is saturated when it contains a. 1 electron b. Equal (+) and (-) ions c. 4 electrons d. 8 electrons (12) In an intrinsic semiconductor, the number of holes a. Equal the number of free electrons b. Is greater than the number of free electrons c. Is less than the number of free electrons d. None of the above (13) The number of free electrons and holes in an intrinsic semiconductor decreases when the temperature a. Decreases b. Increases c. Stays the same d. None of the above (14) The flow of valence electrons to the right means that holes are flowing to the a. Left b. Right c. Either way d. None of the above (15) Holes act like a. Atoms b. Crystals c. Negative charges d. Positive charges (16) An donor atom has how many valence electrons? a. 1 b. 3 c. 4 d. 5 (17) If you wanted to produce a p-type semiconductor, which of these would you use? a. Acceptor atoms b. Donor atoms c. Pentavalent impurity d. Silicon (18) Electrons are the minority carriers in which type of semiconductor? a. Extrinsic b. Intrinsic c. n-Type d. p-type (19) Silver is the best conductor. How many valence electrons do you think it has? a. 1 b. 4 c. 18 d. 29 (20) Which of the following describes an n-type semiconductor? a. Neutral b. Positively charged c. Negatively charged d. has many holes (21) What is the barrier potential of a silicon diode a room temperature? a. 0.3 V b. 0.7 V c. 1 V d. 2 mV per degree Celsius

ELEC 2000 Semiconductor Devices Homework #1 Choose the answer that best completes the statement or answers the question. (1) Assume the valence electron is removed from a copper atom. The net charge of the atom becomes a. 0 b. +1 c. -1 d. +4 (2) The valence electron of a copper atom experiences what kind of attraction toward the nucleus? a. None b. Weak c. Strong d. Impossible to say (3) How many valence electrons does a silicon atom have? a. 0 b. 1 c. 2 d. 4 (4) Silicon atoms combine into an orderly pattern called a a. Covalent bond b. Crystal c. Semiconductor d. Valence orbit (5) An intrinsic semiconductor has some holes in it at room temperature. What causes these holes? a. Doping b. Free electrons c. Thermal energy d. Valence electrons (6) The merging of a free electron and a hole is called a. Covalent bonding b. Lifetime c. Recombination d. Thermal energy (7) At room temperature an intrinsic silicon crystal acts approximately a. A Battery b. A conductor c. An insulator d. Copper wire (8) The amount of time between the creation of a hole and its disappearance is called a. Doping b. Lifetime c. Recombination d. Valence (9) A conductor has how many type of flow? a. 1 b. 2 c. 3 d. 4 (10) A semiconductor has how many types of flow? a. 1 b. 2 c. 3 d. 4 (11) For semiconductor material, its valence orbit is saturated when it contains a. 1 electron b. Equal (+) and (-) ions c. 4 electrons d. 8 electrons (12) In an intrinsic semiconductor, the number of holes a. Equal the number of free electrons b. Is greater than the number of free electrons c. Is less than the number of free electrons d. None of the above (13) The number of free electrons and holes in an intrinsic semiconductor decreases when the temperature a. Decreases b. Increases c. Stays the same d. None of the above (14) The flow of valence electrons to the right means that holes are flowing to the a. Left b. Right c. Either way d. None of the above (15) Holes act like a. Atoms b. Crystals c. Negative charges d. Positive charges (16) An donor atom has how many valence electrons? a. 1 b. 3 c. 4 d. 5 (17) If you wanted to produce a p-type semiconductor, which of these would you use? a. Acceptor atoms b. Donor atoms c. Pentavalent impurity d. Silicon (18) Electrons are the minority carriers in which type of semiconductor? a. Extrinsic b. Intrinsic c. n-Type d. p-type (19) Silver is the best conductor. How many valence electrons do you think it has? a. 1 b. 4 c. 18 d. 29 (20) Which of the following describes an n-type semiconductor? a. Neutral b. Positively charged c. Negatively charged d. has many holes (21) What is the barrier potential of a silicon diode a room temperature? a. 0.3 V b. 0.7 V c. 1 V d. 2 mV per degree Celsius

info@checkyourstudy.com