A circular loop of wire, 8.0 cm in diameter and having 600 turns is placed outside and close to one end of a relatively large solenoid with variable current. The solenoid is sufficiently large such that the magnetic field it generates is homogeneous over the area of the loop. Two ends of the loop are connected to a voltmeter that measures the voltage induced inside the loop. When the solenoid is powered up the magnetic field changes from zero to final steady value of 0.5 T. How quickly must the magnetic field be switched on so that the induced voltage in the lop does no exceed 12 V.

A circular loop of wire, 8.0 cm in diameter and having 600 turns is placed outside and close to one end of a relatively large solenoid with variable current. The solenoid is sufficiently large such that the magnetic field it generates is homogeneous over the area of the loop. Two ends of the loop are connected to a voltmeter that measures the voltage induced inside the loop. When the solenoid is powered up the magnetic field changes from zero to final steady value of 0.5 T. How quickly must the magnetic field be switched on so that the induced voltage in the lop does no exceed 12 V.

info@checkyourstudy.com A circular loop of wire, 8.0 cm in diameter … Read More...
Discuss the differences in North Pole and the magnetic North Pole, and the South Pole and the magnetic South Pole in terms of dip angle and magnetic declination. Discuss the cause of northern lights

Discuss the differences in North Pole and the magnetic North Pole, and the South Pole and the magnetic South Pole in terms of dip angle and magnetic declination. Discuss the cause of northern lights

The South Pole of the Earth’s magnet is in the … Read More...
NAME: _____________________________________________ (print) INTRODUCTORY SURVEYING – MINING ENGINEERING 2400 Second Midterm Exam October 24, 2014 Work all four problems in the space provided. Solutions must be neat and logically presented for full credit. 1. (25 pts) Put an “X” over the letter corresponding to correct answers for the following multiple choice questions. A theodolite is used to estimate a distance using stadia. The stadia factor is 100, the stadia constant is zero, the zenith angle is 90°, the upper reading is 10.20, the rod reading is 7.75 and the lower reading is 5.30. The best estimate for horizontal distance is: (a) 1020 ft; (b) 490 ft; (c) 245 ft; (d) if none of the preceding – provide your answer . From B the azimuth to A is 233° 15′ 30″. The angle right to C is 215° 05′ 15″. The azimuth of C to B is: (a)88°20’45”; (b) 268°20’45”; (c) 250°10’30”; (d) if none of the preceding – provide your answer. A five-level station is described as C3.5/34.1 C4.8/25.0 C6.7/0.0 C9.2/25.0 C10.8/33.6. How wide is the road? (a) 50.0 ft, (b) 67.7 ft, (c) 25.0 ft, (e) if none of the preceding – provide your answer . An engineer used a total station to complete a closed traverse at a construction site. The sum of LAT and sum of DEP were determined to be 0.04 and 0.07 respectively. The total horizontal distance measured 2510.00 ft. What is the corresponding precision? (a) 1/63000; (b) 1/36000; (c) 1/31000; (d) if none of the preceding-provide your answer. The interior angles of a closed six sided traverse measure: 34° 28′ 20″ 185° 37′ 00″ 110° 59′ 20″ 195° 10′ 40″ 81° 40′ 20″ 112° 05′ 20″ In adjusting this traverse, the adjusted value for the first angle is: (a) 34° 28′ 20″; (b) 34° 28′ 10″; ( c) 34° 28′ 30″; (d) if none of the preceding – provide your answer . 2. (15 pts) Given the position of points A and B, determine the azimuth of A to B to the nearest second. Point A 5470.00N 4710.00E Point B 5130.00N 5350.00E 3. (25 pts) The volume of a fill between station 24+00 and 26+00 on a 50-foot wide road is to be determined by the prismoidal method. The three level sections are given by: Stn. 24+00 F10.0 F12.0 F8.0 52.0 0.0 65.0 Stn. 25+00 F8.0 F10.0 F10.0 55.0 0.0 52.0 Stn. 26+00 F12.0 F8.0 F15.0 61.0 0.0 55.0 Determine the volume to the nearest 100 cubic feet. (All fill dimensions are in feet.) (Hint: The area at Stn. 25 is 760 sq ft and the area at Stn. 26 is 801.5 sq ft.) 4. (35 points) The following information was obtained from an angle-right traverse conducted on the surface with a total station (conventional practice for HI and HS, i.e. HS is above the target of interest and, therefore, indicated as negative in the notes): BS IS FS Angle Rt. Zenith Angle SD HI HS A B C 261°12’20” 97° 25’20” 355.33 4.99 -0.33 261°11’40” 262° 34’20” The position of B is N5000.00, E5000.00, El 5000.00. The azimuth of A to B is 49°18’30”. Determine the coordinates and elevation of C. Show and identify all intermediate calculations.

NAME: _____________________________________________ (print) INTRODUCTORY SURVEYING – MINING ENGINEERING 2400 Second Midterm Exam October 24, 2014 Work all four problems in the space provided. Solutions must be neat and logically presented for full credit. 1. (25 pts) Put an “X” over the letter corresponding to correct answers for the following multiple choice questions. A theodolite is used to estimate a distance using stadia. The stadia factor is 100, the stadia constant is zero, the zenith angle is 90°, the upper reading is 10.20, the rod reading is 7.75 and the lower reading is 5.30. The best estimate for horizontal distance is: (a) 1020 ft; (b) 490 ft; (c) 245 ft; (d) if none of the preceding – provide your answer . From B the azimuth to A is 233° 15′ 30″. The angle right to C is 215° 05′ 15″. The azimuth of C to B is: (a)88°20’45”; (b) 268°20’45”; (c) 250°10’30”; (d) if none of the preceding – provide your answer. A five-level station is described as C3.5/34.1 C4.8/25.0 C6.7/0.0 C9.2/25.0 C10.8/33.6. How wide is the road? (a) 50.0 ft, (b) 67.7 ft, (c) 25.0 ft, (e) if none of the preceding – provide your answer . An engineer used a total station to complete a closed traverse at a construction site. The sum of LAT and sum of DEP were determined to be 0.04 and 0.07 respectively. The total horizontal distance measured 2510.00 ft. What is the corresponding precision? (a) 1/63000; (b) 1/36000; (c) 1/31000; (d) if none of the preceding-provide your answer. The interior angles of a closed six sided traverse measure: 34° 28′ 20″ 185° 37′ 00″ 110° 59′ 20″ 195° 10′ 40″ 81° 40′ 20″ 112° 05′ 20″ In adjusting this traverse, the adjusted value for the first angle is: (a) 34° 28′ 20″; (b) 34° 28′ 10″; ( c) 34° 28′ 30″; (d) if none of the preceding – provide your answer . 2. (15 pts) Given the position of points A and B, determine the azimuth of A to B to the nearest second. Point A 5470.00N 4710.00E Point B 5130.00N 5350.00E 3. (25 pts) The volume of a fill between station 24+00 and 26+00 on a 50-foot wide road is to be determined by the prismoidal method. The three level sections are given by: Stn. 24+00 F10.0 F12.0 F8.0 52.0 0.0 65.0 Stn. 25+00 F8.0 F10.0 F10.0 55.0 0.0 52.0 Stn. 26+00 F12.0 F8.0 F15.0 61.0 0.0 55.0 Determine the volume to the nearest 100 cubic feet. (All fill dimensions are in feet.) (Hint: The area at Stn. 25 is 760 sq ft and the area at Stn. 26 is 801.5 sq ft.) 4. (35 points) The following information was obtained from an angle-right traverse conducted on the surface with a total station (conventional practice for HI and HS, i.e. HS is above the target of interest and, therefore, indicated as negative in the notes): BS IS FS Angle Rt. Zenith Angle SD HI HS A B C 261°12’20” 97° 25’20” 355.33 4.99 -0.33 261°11’40” 262° 34’20” The position of B is N5000.00, E5000.00, El 5000.00. The azimuth of A to B is 49°18’30”. Determine the coordinates and elevation of C. Show and identify all intermediate calculations.

info@checkyourstudy.com Whatsapp +919911743277
The purification of hydrogen gas can be achieved by diffirsion through a palladium sheet. Compute the number of kilograms of hydrogen that pass per second through a 6_-mm thick sheet of palladium having an area of 0.35 m2 at 600oC. Assume a diffirsion coeffrcient of 1.7 ” l0-8 m2ls, that the respective concentr;;;at the high- and low-pressure sides ortn” pt” *” tlla 0.3 kg of hydrogen per cubic meter of palladium, and that steady-state conditions have been attained. (10 points)

The purification of hydrogen gas can be achieved by diffirsion through a palladium sheet. Compute the number of kilograms of hydrogen that pass per second through a 6_-mm thick sheet of palladium having an area of 0.35 m2 at 600oC. Assume a diffirsion coeffrcient of 1.7 ” l0-8 m2ls, that the respective concentr;;;at the high- and low-pressure sides ortn” pt” *” tlla 0.3 kg of hydrogen per cubic meter of palladium, and that steady-state conditions have been attained. (10 points)

c. A wall with an area 0f 35 m2 is made up of six layers. On the inside is plaster 20 mm thick, then there is the brick 100 mm thick, followed by the insulation of 60 mm thick, then the brick of 100 mm thick, then there is the insulation of 65 mm thick and finally brick 100 mm thick. Calculate the thermal resistance, the heat transfer between the layers and the overall heat transfer coefficient given that the thermal conductivity of plaster is 20 W/ m K, the thermal conductivity of the brick is 0.6 W/m K and the thermal conductivity of the insulation is 0.08 W/ m K. The inner surface temperature of the wall is 22oC and the outer is -4oC.

c. A wall with an area 0f 35 m2 is made up of six layers. On the inside is plaster 20 mm thick, then there is the brick 100 mm thick, followed by the insulation of 60 mm thick, then the brick of 100 mm thick, then there is the insulation of 65 mm thick and finally brick 100 mm thick. Calculate the thermal resistance, the heat transfer between the layers and the overall heat transfer coefficient given that the thermal conductivity of plaster is 20 W/ m K, the thermal conductivity of the brick is 0.6 W/m K and the thermal conductivity of the insulation is 0.08 W/ m K. The inner surface temperature of the wall is 22oC and the outer is -4oC.

1) R= R1+ R2+ R3+ R4+ R5+ R6             = … Read More...
For Day 3 Homework Cover Sheet Name:_________________________________________________ 1. Read Pages from 34-42, or watch the videos listed below.  Geometry http://www.youtube.com/watch?v=X4v0CZzC9ec (10 min) 2. Attempt Workbook pages 7-8 Summary of the lectures you watched. List any parts of the video lecture (if there are any) that were unclear or you had trouble understanding. Please be specific and do not just say “All of it”. Questions you had difficulty with or felt stuck on- ALEKS topics to be mastered (21 topics) Acute, obtuse, and right angles Acute, obtuse, and right triangles Area of a triangle Classifying parallelograms Classifying quadrilaterals Classifying solids Corresponding and alternate angles Drawing an angle with the protractor Identifying congruent shapes on a grid Identifying numbers as integers or non-integers Identifying numbers as rational or irrational Identifying parallel and perpendicular lines Identifying parallelograms, rectangles, and squares Interpreting a tally table Introduction to a circle: Diameter, radius, and chord Measuring an angle with the protractor Naming polygons Naming segments, rays, and lines Scalene, isosceles, and equilateral triangles Supplementary and complementary angles Supplementary and vertical angles

For Day 3 Homework Cover Sheet Name:_________________________________________________ 1. Read Pages from 34-42, or watch the videos listed below.  Geometry http://www.youtube.com/watch?v=X4v0CZzC9ec (10 min) 2. Attempt Workbook pages 7-8 Summary of the lectures you watched. List any parts of the video lecture (if there are any) that were unclear or you had trouble understanding. Please be specific and do not just say “All of it”. Questions you had difficulty with or felt stuck on- ALEKS topics to be mastered (21 topics) Acute, obtuse, and right angles Acute, obtuse, and right triangles Area of a triangle Classifying parallelograms Classifying quadrilaterals Classifying solids Corresponding and alternate angles Drawing an angle with the protractor Identifying congruent shapes on a grid Identifying numbers as integers or non-integers Identifying numbers as rational or irrational Identifying parallel and perpendicular lines Identifying parallelograms, rectangles, and squares Interpreting a tally table Introduction to a circle: Diameter, radius, and chord Measuring an angle with the protractor Naming polygons Naming segments, rays, and lines Scalene, isosceles, and equilateral triangles Supplementary and complementary angles Supplementary and vertical angles

No expert has answered this question yet. You can browse … Read More...
This is about the vibrations in aircraft wings Please answer the followings: 1-How many degrees of freedom are there? Is the forcing at a point or distributed? If distributed, how to simplify to a single degree-of-freedom formulation? 2-derivation of equations of motion 3- sketch of model system including where is stiffness/damping/direction of vibration 4- dynamic parameters (initial conditions, external excitation parameters like frequency and magnitude) 5- discuss assumptions/simplifications & justification anticipated results based on physics/background **The stiffness of this model can be considered as a bending stifness where k=(3EI/L^3) 6-overview of results 7- accurate description of how results were determined (analytical solutions, numerical integration, type of numerical integration) 8- displacement plot in time (appropriate length of time to show relevant dynamics) 9- discussion of results accuracy: transient vs steady state, resolution if using numerical integration 10- additional considerations (ex. How results vary for varying model or excitation parameters) EYMA 1 Homework: DUE ON 13, 2017 by 4:00 pm Watch the documentary, “White People”, below. What are your reactions? Do racial and cultural ideas, conflicts, attitudes, etc. play out the way they were depicted in the documentary? Briefly explain your thoughts. Then, breifly describe one challenge you have experienced when communicating with someone of a different cultural group. Be honest, but not critical. What was most discomforting about the interaction? Lastly, discuss the factors that make it difficult to understand the norms and values of a culture. How can you prepare yourself to understand and/or adapt to a different culture? https://youtu.be/_zjj1PmJcRM Answer every question/inquiry stated, thoughtfully and completely. Assignment responses need to be at least 250 words, typed, in 12pt Times New Roman font, using APA format for citations, edited and proof read for grammar. Project topic List 1. Design a Doubly Fed Induction Machine (DFIM) wind turbine system The system size is targeted at 200 kW. The system must generate electricity for a variable speed wind profile and provide the generated power to the grid at 60Hz. Each group needs to submit only one project report. The report should have the following items: – Abstract – One-page introduction – Simulation results – Discussion – Conclusions An essay about the Novel (Never Let Me Go). the subject is about freedom, with freedom theme and example from the book. For example, the kids life in Hailsham and every place they go to and how their freedom is limited according to a normal human. introduction that have (opener and bridge and thesis). 600 words Assignment Flextronics will be a case study used at different times throughout the workshop. The case will be used to illustrate a number of techniques and learning points; it will begin by asking for: ? Part One: an assessment of the electronics manufacturing services industry ? Part Two: the company’s business strategy Analytical Exercise? (Google) READ: BBC: Syria War: G7 Rejects Sanctions on Russia after “Chemical Attack” (April 11, 2017) 1. Nancy’s plans for a square garden include an area of (x2 + 12x + 36) m2. Write expressions for the length and width of this square garden. 2. The plans for the square garden shows a length of 12 m. What is the width of the square garden? Using the area from problem 1, what is the value of x? What is the total area of this square garden?

This is about the vibrations in aircraft wings Please answer the followings: 1-How many degrees of freedom are there? Is the forcing at a point or distributed? If distributed, how to simplify to a single degree-of-freedom formulation? 2-derivation of equations of motion 3- sketch of model system including where is stiffness/damping/direction of vibration 4- dynamic parameters (initial conditions, external excitation parameters like frequency and magnitude) 5- discuss assumptions/simplifications & justification anticipated results based on physics/background **The stiffness of this model can be considered as a bending stifness where k=(3EI/L^3) 6-overview of results 7- accurate description of how results were determined (analytical solutions, numerical integration, type of numerical integration) 8- displacement plot in time (appropriate length of time to show relevant dynamics) 9- discussion of results accuracy: transient vs steady state, resolution if using numerical integration 10- additional considerations (ex. How results vary for varying model or excitation parameters) EYMA 1 Homework: DUE ON 13, 2017 by 4:00 pm Watch the documentary, “White People”, below. What are your reactions? Do racial and cultural ideas, conflicts, attitudes, etc. play out the way they were depicted in the documentary? Briefly explain your thoughts. Then, breifly describe one challenge you have experienced when communicating with someone of a different cultural group. Be honest, but not critical. What was most discomforting about the interaction? Lastly, discuss the factors that make it difficult to understand the norms and values of a culture. How can you prepare yourself to understand and/or adapt to a different culture? https://youtu.be/_zjj1PmJcRM Answer every question/inquiry stated, thoughtfully and completely. Assignment responses need to be at least 250 words, typed, in 12pt Times New Roman font, using APA format for citations, edited and proof read for grammar. Project topic List 1. Design a Doubly Fed Induction Machine (DFIM) wind turbine system The system size is targeted at 200 kW. The system must generate electricity for a variable speed wind profile and provide the generated power to the grid at 60Hz. Each group needs to submit only one project report. The report should have the following items: – Abstract – One-page introduction – Simulation results – Discussion – Conclusions An essay about the Novel (Never Let Me Go). the subject is about freedom, with freedom theme and example from the book. For example, the kids life in Hailsham and every place they go to and how their freedom is limited according to a normal human. introduction that have (opener and bridge and thesis). 600 words Assignment Flextronics will be a case study used at different times throughout the workshop. The case will be used to illustrate a number of techniques and learning points; it will begin by asking for: ? Part One: an assessment of the electronics manufacturing services industry ? Part Two: the company’s business strategy Analytical Exercise? (Google) READ: BBC: Syria War: G7 Rejects Sanctions on Russia after “Chemical Attack” (April 11, 2017) 1. Nancy’s plans for a square garden include an area of (x2 + 12x + 36) m2. Write expressions for the length and width of this square garden. 2. The plans for the square garden shows a length of 12 m. What is the width of the square garden? Using the area from problem 1, what is the value of x? What is the total area of this square garden?

checkyourstudy.com Whatsapp +919891515290
Chapter 15 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, May 16, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Fluid Pressure in a U-Tube A U-tube is filled with water, and the two arms are capped. The tube is cylindrical, and the right arm has twice the radius of the left arm. The caps have negligible mass, are watertight, and can freely slide up and down the tube. Part A A one-inch depth of sand is poured onto the cap on each arm. After the caps have moved (if necessary) to reestablish equilibrium, is the right cap higher, lower, or the same height as the left cap? You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Pressure in the Ocean The pressure at 10 below the surface of the ocean is about 2.00×105 . Part A higher lower the same height m Pa Which of the following statements is true? You did not open hints for this part. ANSWER: Part B Now consider the pressure 20 below the surface of the ocean. Which of the following statements is true? You did not open hints for this part. ANSWER: Relating Pressure and Height in a Container Learning Goal: To understand the derivation of the law relating height and pressure in a container. The weight of a column of seawater 1 in cross section and 10 high is about 2.00×105 . The weight of a column of seawater 1 in cross section and 10 high plus the weight of a column of air with the same cross section extending up to the top of the atmosphere is about 2.00×105 . The weight of 1 of seawater at 10 below the surface of the ocean is about 2.00×105 . The density of seawater is about 2.00×105 times the density of air at sea level. m2 m N m2 m N m3 m N m The pressure is twice that at a depth of 10 . The pressure is the same as that at a depth of 10 . The pressure is equal to that at a depth of 10 plus the weight per 1 cross sectional area of a column of seawater 10 high. The pressure is equal to the weight per 1 cross sectional area of a column of seawater 20 high. m m m m2 m m2 m In this problem, you will derive the law relating pressure to height in a container by analyzing a particular system. A container of uniform cross-sectional area is filled with liquid of uniform density . Consider a thin horizontal layer of liquid (thickness ) at a height as measured from the bottom of the container. Let the pressure exerted upward on the bottom of the layer be and the pressure exerted downward on the top be . Assume throughout the problem that the system is in equilibrium (the container has not been recently shaken or moved, etc.). Part A What is , the magnitude of the force exerted upward on the bottom of the liquid? You did not open hints for this part. ANSWER: Part B What is , the magnitude of the force exerted downward on the top of the liquid? A  dy y p p + dp Fup Fup = Fdown You did not open hints for this part. ANSWER: Part C What is the weight of the thin layer of liquid? Express your answer in terms of quantities given in the problem introduction and , the magnitude of the acceleration due to gravity. You did not open hints for this part. ANSWER: Part D Since the liquid is in equilibrium, the net force on the thin layer of liquid is zero. Complete the force equation for the sum of the vertical forces acting on the liquid layer described in the problem introduction. Express your answer in terms of quantities given in the problem introduction and taking upward forces to be positive. You did not open hints for this part. ANSWER: Fdown = wlayer g wlayer = Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). A Submerged Ball A ball of mass and volume is lowered on a string into a fluid of density . Assume that the object would sink to the bottom if it were not supported by the string. Part A  = = i Fy,i mb V f What is the tension in the string when the ball is fully submerged but not touching the bottom, as shown in the figure? Express your answer in terms of any or all of the given quantities and , the magnitude of the acceleration due to gravity. You did not open hints for this part. ANSWER: Archimedes’ Principle Learning Goal: To understand the applications of Archimedes’ principle. Archimedes’ principle is a powerful tool for solving many problems involving equilibrium in fluids. It states the following: When a body is partially or completely submerged in a fluid (either a liquid or a gas), the fluid exerts an upward force on the body equal to the weight of the fluid displaced by the body. As a result of the upward Archimedes force (often called the buoyant force), some objects may float in a fluid, and all of them appear to weigh less. This is the familiar phenomenon of buoyancy. Quantitatively, the buoyant force can be found as , where is the force, is the density of the fluid, is the magnitude of the acceleration due to gravity, and is the volume of the displaced fluid. In this problem, you will be asked several qualitative questions that should help you develop a feel for Archimedes’ principle. An object is placed in a fluid and then released. Assume that the object either floats to the surface (settling so that the object is partly above and partly below the fluid surface) or sinks to the bottom. (Note that for Parts A through D, you should assume that the object has settled in equilibrium.) Part A Consider the following statement: The magnitude of the buoyant force is equal to the weight of fluid displaced by the object. Under what circumstances is this statement true? T g T = Fbuoyant = fluidgV Fbuoyant fluid g V You did not open hints for this part. ANSWER: Part B Consider the following statement: The magnitude of the buoyant force is equal to the weight of the amount of fluid that has the same total volume as the object. Under what circumstances is this statement true? You did not open hints for this part. ANSWER: Part C Consider the following statement: The magnitude of the buoyant force equals the weight of the object. Under what circumstances is this statement true? for every object submerged partially or completely in a fluid only for an object that floats only for an object that sinks for no object submerged in a fluid for an object that is partially submerged in a fluid only for an object that floats for an object completely submerged in a fluid for no object partially or completely submerged in a fluid You did not open hints for this part. ANSWER: Part D Consider the following statement: The magnitude of the buoyant force is less than the weight of the object. Under what circumstances is this statement true? ANSWER: Now apply what you know to some more complicated situations. Part E An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, filled with a denser liquid. What would you observe? You did not open hints for this part. ANSWER: for every object submerged partially or completely in a fluid for an object that floats only for an object that sinks for no object submerged in a fluid for every object submerged partially or completely in a fluid for an object that floats for an object that sinks for no object submerged in a fluid Part F An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, filled with a less dense liquid. What would you observe? You did not open hints for this part. ANSWER: Part G Two objects, T and B, have identical size and shape and have uniform density. They are carefully placed in a container filled with a liquid. Both objects float in equilibrium. Less of object T is submerged than of object B, which floats, fully submerged, closer to the bottom of the container. Which of the following statements is true? ANSWER: The object would sink all the way to the bottom. The object would float submerged more deeply than in the first container. The object would float submerged less deeply than in the first container. More than one of these outcomes is possible. The object would sink all the way to the bottom. The object would float submerged more deeply than in the first container. The object would float submerged less deeply than in the first container. More than one of these outcomes is possible. Object T has a greater density than object B. Object B has a greater density than object T. Both objects have the same density. ± Buoyant Force Conceptual Question A rectangular wooden block of weight floats with exactly one-half of its volume below the waterline. Part A What is the buoyant force acting on the block? You did not open hints for this part. ANSWER: Part B W The buoyant force cannot be determined. 2W W 1 W 2 The density of water is 1.00 . What is the density of the block? You did not open hints for this part. ANSWER: Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). g/cm3 2.00 between 1.00 and 2.00 1.00 between 0.50 and 1.00 0.50 The density cannot be determined. g/cm3 g/cm3 g/cm3 g/cm3 g/cm3 Flow Velocity of Blood Conceptual Question Arteriosclerotic plaques forming on the inner walls of arteries can decrease the effective cross-sectional area of an artery. Even small changes in the effective area of an artery can lead to very large changes in the blood pressure in the artery and possibly to the collapse of the blood vessel. Imagine a healthy artery, with blood flow velocity of and mass per unit volume of . The kinetic energy per unit volume of blood is given by Imagine that plaque has narrowed an artery to one-fifth of its normal cross-sectional area (an 80% blockage). Part A Compared to normal blood flow velocity, , what is the velocity of blood as it passes through this blockage? You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C v0 = 0.14 m/s  = 1050 kg/m3 K0 =  . 1 2 v20 v0 80v0 20v0 5v0 v0/5 This question will be shown after you complete previous question(s). For parts D – F imagine that plaque has grown to a 90% blockage. Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). ± Playing with a Water Hose Two children, Ferdinand and Isabella, are playing with a water hose on a sunny summer day. Isabella is holding the hose in her hand 1.0 meters above the ground and is trying to spray Ferdinand, who is standing 10.0 meters away. Part A Will Isabella be able to spray Ferdinand if the water is flowing out of the hose at a constant speed of 3.5 meters per second? Assume that the hose is pointed parallel to the ground and take the magnitude of the acceleration due to gravity to be 9.81 meters per second, per second. You did not open hints for this part. v0 g ANSWER: Part B This question will be shown after you complete previous question(s). Tactics Box 15.2 Finding Whether an Object Floats or Sinks Learning Goal: To practice Tactics Box 15.2 Finding whether an object floats or sinks. If you hold an object underwater and then release it, it can float to the surface, sink, or remain “hanging” in the water, depending on whether the fluid density is larger than, smaller than, or equal to the object’s average density . These conditions are summarized in this Tactics Box. Yes No f avg TACTICS BOX 15.2 Finding whether an object floats or sinks Object sinks Object floats Object has neutral buoyancy An object sinks if it weighs more than the fluid it displaces, that is, if its average density is greater than the density of the fluid: . An object floats on the surface if it weighs less than the fluid it displaces, that is, if its average density is less than the density of the fluid: . An object hangs motionless in the fluid if it weighs exactly the same as the fluid it displaces. It has neutral buoyancy if its average density equals the density of the fluid: . Part A Ice at 0.0 has a density of 917 . A 3.00 ice cube is gently released inside a small container filled with oil and is observed to be neutrally buoyant. What is the density of the oil, ? Express your answer in kilograms per meter cubed to three significant figures. ANSWER: Part B Once the ice cube melts, what happens to the liquid water that it produces? You did not open hints for this part. ANSWER: avg > f avg < f avg = f 'C kg/m3 cm3 oil oil = kg/m3 Part C What happens if some ethyl alcohol of density 790 is poured into the container after the ice cube has melted? ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. The liquid water sinks to the bottom of the container. The liquid water rises to the surface and floats on top of the oil. The liquid water is in static equilibrium at the location where the ice cube was originally placed. kg/m3 A layer of ethyl alcohol forms between the oil and the water. The layer of ethyl alcohol forms at the bottom of the container. The layer of ethyl alcohol forms on the surface.

Chapter 15 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, May 16, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Fluid Pressure in a U-Tube A U-tube is filled with water, and the two arms are capped. The tube is cylindrical, and the right arm has twice the radius of the left arm. The caps have negligible mass, are watertight, and can freely slide up and down the tube. Part A A one-inch depth of sand is poured onto the cap on each arm. After the caps have moved (if necessary) to reestablish equilibrium, is the right cap higher, lower, or the same height as the left cap? You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Pressure in the Ocean The pressure at 10 below the surface of the ocean is about 2.00×105 . Part A higher lower the same height m Pa Which of the following statements is true? You did not open hints for this part. ANSWER: Part B Now consider the pressure 20 below the surface of the ocean. Which of the following statements is true? You did not open hints for this part. ANSWER: Relating Pressure and Height in a Container Learning Goal: To understand the derivation of the law relating height and pressure in a container. The weight of a column of seawater 1 in cross section and 10 high is about 2.00×105 . The weight of a column of seawater 1 in cross section and 10 high plus the weight of a column of air with the same cross section extending up to the top of the atmosphere is about 2.00×105 . The weight of 1 of seawater at 10 below the surface of the ocean is about 2.00×105 . The density of seawater is about 2.00×105 times the density of air at sea level. m2 m N m2 m N m3 m N m The pressure is twice that at a depth of 10 . The pressure is the same as that at a depth of 10 . The pressure is equal to that at a depth of 10 plus the weight per 1 cross sectional area of a column of seawater 10 high. The pressure is equal to the weight per 1 cross sectional area of a column of seawater 20 high. m m m m2 m m2 m In this problem, you will derive the law relating pressure to height in a container by analyzing a particular system. A container of uniform cross-sectional area is filled with liquid of uniform density . Consider a thin horizontal layer of liquid (thickness ) at a height as measured from the bottom of the container. Let the pressure exerted upward on the bottom of the layer be and the pressure exerted downward on the top be . Assume throughout the problem that the system is in equilibrium (the container has not been recently shaken or moved, etc.). Part A What is , the magnitude of the force exerted upward on the bottom of the liquid? You did not open hints for this part. ANSWER: Part B What is , the magnitude of the force exerted downward on the top of the liquid? A  dy y p p + dp Fup Fup = Fdown You did not open hints for this part. ANSWER: Part C What is the weight of the thin layer of liquid? Express your answer in terms of quantities given in the problem introduction and , the magnitude of the acceleration due to gravity. You did not open hints for this part. ANSWER: Part D Since the liquid is in equilibrium, the net force on the thin layer of liquid is zero. Complete the force equation for the sum of the vertical forces acting on the liquid layer described in the problem introduction. Express your answer in terms of quantities given in the problem introduction and taking upward forces to be positive. You did not open hints for this part. ANSWER: Fdown = wlayer g wlayer = Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). A Submerged Ball A ball of mass and volume is lowered on a string into a fluid of density . Assume that the object would sink to the bottom if it were not supported by the string. Part A  = = i Fy,i mb V f What is the tension in the string when the ball is fully submerged but not touching the bottom, as shown in the figure? Express your answer in terms of any or all of the given quantities and , the magnitude of the acceleration due to gravity. You did not open hints for this part. ANSWER: Archimedes’ Principle Learning Goal: To understand the applications of Archimedes’ principle. Archimedes’ principle is a powerful tool for solving many problems involving equilibrium in fluids. It states the following: When a body is partially or completely submerged in a fluid (either a liquid or a gas), the fluid exerts an upward force on the body equal to the weight of the fluid displaced by the body. As a result of the upward Archimedes force (often called the buoyant force), some objects may float in a fluid, and all of them appear to weigh less. This is the familiar phenomenon of buoyancy. Quantitatively, the buoyant force can be found as , where is the force, is the density of the fluid, is the magnitude of the acceleration due to gravity, and is the volume of the displaced fluid. In this problem, you will be asked several qualitative questions that should help you develop a feel for Archimedes’ principle. An object is placed in a fluid and then released. Assume that the object either floats to the surface (settling so that the object is partly above and partly below the fluid surface) or sinks to the bottom. (Note that for Parts A through D, you should assume that the object has settled in equilibrium.) Part A Consider the following statement: The magnitude of the buoyant force is equal to the weight of fluid displaced by the object. Under what circumstances is this statement true? T g T = Fbuoyant = fluidgV Fbuoyant fluid g V You did not open hints for this part. ANSWER: Part B Consider the following statement: The magnitude of the buoyant force is equal to the weight of the amount of fluid that has the same total volume as the object. Under what circumstances is this statement true? You did not open hints for this part. ANSWER: Part C Consider the following statement: The magnitude of the buoyant force equals the weight of the object. Under what circumstances is this statement true? for every object submerged partially or completely in a fluid only for an object that floats only for an object that sinks for no object submerged in a fluid for an object that is partially submerged in a fluid only for an object that floats for an object completely submerged in a fluid for no object partially or completely submerged in a fluid You did not open hints for this part. ANSWER: Part D Consider the following statement: The magnitude of the buoyant force is less than the weight of the object. Under what circumstances is this statement true? ANSWER: Now apply what you know to some more complicated situations. Part E An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, filled with a denser liquid. What would you observe? You did not open hints for this part. ANSWER: for every object submerged partially or completely in a fluid for an object that floats only for an object that sinks for no object submerged in a fluid for every object submerged partially or completely in a fluid for an object that floats for an object that sinks for no object submerged in a fluid Part F An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, filled with a less dense liquid. What would you observe? You did not open hints for this part. ANSWER: Part G Two objects, T and B, have identical size and shape and have uniform density. They are carefully placed in a container filled with a liquid. Both objects float in equilibrium. Less of object T is submerged than of object B, which floats, fully submerged, closer to the bottom of the container. Which of the following statements is true? ANSWER: The object would sink all the way to the bottom. The object would float submerged more deeply than in the first container. The object would float submerged less deeply than in the first container. More than one of these outcomes is possible. The object would sink all the way to the bottom. The object would float submerged more deeply than in the first container. The object would float submerged less deeply than in the first container. More than one of these outcomes is possible. Object T has a greater density than object B. Object B has a greater density than object T. Both objects have the same density. ± Buoyant Force Conceptual Question A rectangular wooden block of weight floats with exactly one-half of its volume below the waterline. Part A What is the buoyant force acting on the block? You did not open hints for this part. ANSWER: Part B W The buoyant force cannot be determined. 2W W 1 W 2 The density of water is 1.00 . What is the density of the block? You did not open hints for this part. ANSWER: Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). g/cm3 2.00 between 1.00 and 2.00 1.00 between 0.50 and 1.00 0.50 The density cannot be determined. g/cm3 g/cm3 g/cm3 g/cm3 g/cm3 Flow Velocity of Blood Conceptual Question Arteriosclerotic plaques forming on the inner walls of arteries can decrease the effective cross-sectional area of an artery. Even small changes in the effective area of an artery can lead to very large changes in the blood pressure in the artery and possibly to the collapse of the blood vessel. Imagine a healthy artery, with blood flow velocity of and mass per unit volume of . The kinetic energy per unit volume of blood is given by Imagine that plaque has narrowed an artery to one-fifth of its normal cross-sectional area (an 80% blockage). Part A Compared to normal blood flow velocity, , what is the velocity of blood as it passes through this blockage? You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C v0 = 0.14 m/s  = 1050 kg/m3 K0 =  . 1 2 v20 v0 80v0 20v0 5v0 v0/5 This question will be shown after you complete previous question(s). For parts D – F imagine that plaque has grown to a 90% blockage. Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). ± Playing with a Water Hose Two children, Ferdinand and Isabella, are playing with a water hose on a sunny summer day. Isabella is holding the hose in her hand 1.0 meters above the ground and is trying to spray Ferdinand, who is standing 10.0 meters away. Part A Will Isabella be able to spray Ferdinand if the water is flowing out of the hose at a constant speed of 3.5 meters per second? Assume that the hose is pointed parallel to the ground and take the magnitude of the acceleration due to gravity to be 9.81 meters per second, per second. You did not open hints for this part. v0 g ANSWER: Part B This question will be shown after you complete previous question(s). Tactics Box 15.2 Finding Whether an Object Floats or Sinks Learning Goal: To practice Tactics Box 15.2 Finding whether an object floats or sinks. If you hold an object underwater and then release it, it can float to the surface, sink, or remain “hanging” in the water, depending on whether the fluid density is larger than, smaller than, or equal to the object’s average density . These conditions are summarized in this Tactics Box. Yes No f avg TACTICS BOX 15.2 Finding whether an object floats or sinks Object sinks Object floats Object has neutral buoyancy An object sinks if it weighs more than the fluid it displaces, that is, if its average density is greater than the density of the fluid: . An object floats on the surface if it weighs less than the fluid it displaces, that is, if its average density is less than the density of the fluid: . An object hangs motionless in the fluid if it weighs exactly the same as the fluid it displaces. It has neutral buoyancy if its average density equals the density of the fluid: . Part A Ice at 0.0 has a density of 917 . A 3.00 ice cube is gently released inside a small container filled with oil and is observed to be neutrally buoyant. What is the density of the oil, ? Express your answer in kilograms per meter cubed to three significant figures. ANSWER: Part B Once the ice cube melts, what happens to the liquid water that it produces? You did not open hints for this part. ANSWER: avg > f avg < f avg = f 'C kg/m3 cm3 oil oil = kg/m3 Part C What happens if some ethyl alcohol of density 790 is poured into the container after the ice cube has melted? ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. The liquid water sinks to the bottom of the container. The liquid water rises to the surface and floats on top of the oil. The liquid water is in static equilibrium at the location where the ice cube was originally placed. kg/m3 A layer of ethyl alcohol forms between the oil and the water. The layer of ethyl alcohol forms at the bottom of the container. The layer of ethyl alcohol forms on the surface.

please email info@checkyourstudy.com Chapter 15 Practice Problems (Practice – no … Read More...
1. (2 marks total) a. Multiply 109 x 309 b. Divide 1988 by 16 exactly 2. (4 marks total) a. Write 2/11 as a decimal to 2 decimal places b. Calculate 35% of 62 c. Add 103/4 to 92/3 d. Subtract 79.04 from 115.225 giving your answer correct to 2 decimal places 3. Circle the fractions in the list which are equivalent to 0.80 (2 marks) 2/7 32/40 8/10 8/20 8/25 9/24 36/45 40/50 4. Write the numerical value of: 3-3 (2 marks total) 5. Simplify z + 67 = 3z + 33 (1 mark total) 6. Solve to 1 decimal place 3y – 34 = 2y + 89 (1 mark total) 7. Solve the following equations to 2 decimal places (3 marks total) a. 37x + 1 = 35 b. 27 – a = 7.45 c. 3(y + 2) = 14 8. A 7-sided polygon is called a Heptagon. (3 marks total) a. What is the total of a Heptagon’s interior angles? b. If the Heptagon is regular (all angles the same), calculate the size of each interior angle to 2 decimal places. 9. Calculate the size of angle a and angle b. (2 mark total) 10. How many centilitres are there in 1.25 litres? (1 mark total) 11. The diagram below shows a stone carving with a hole on it; determine its volume (not including hole), if its thickness is 8 cm. Give your answer in cm3 to 2 decimal points. Assume π = 3.14 (6 marks total) 12. The diagram below shows a piece of alloy plate with a hole in it made from aluminium, copper and magnesium with a mass ratio of 35:3:2. Calculate the following to 2 decimal places. All measurements are in cm. (7 marks total) a. Using the formula A = 1/2(a+b)h calculate the height of the shape below. b. The volume of the solid part (not including the hole) of the shape below to 3 decimal places if it was 0.25cm thick. c. The mass of each material if the total mass of the plate is 62 kg. 10 cm Hole dia = 3 cm Cross sectional area of solid (not including hole) = 28.935 cm2 8 cm 13. A 66kg boy is running at 3 m/s. Calculate his Kinetic Energy using the formula KE = 1/2mv2 (2 marks total) 14. A rocket has a mass of 2,000 kg. What is its acceleration if the forces of its engines are 50kN? Show working out to receive full marks. (1 marks total) 250,000,000 m/s² 25 m/s² 25,000 m/s² 15. In the diagram below a force of 125N (F1) is applied to a lever 20cm (D1) away from the fulcrum, (4 marks total) Fulcrum (a) How far away in metres would a force of 5N (F2) need to be to balance the load? (b) How much force (F2) would need to be applied 0.7m away to balance the same load (F1)? 16. For the circuit shown in the diagram below, calculate: (3 mark total) a. The total circuit resistance. b. The value of the current I. c. Calculate the voltage of the battery cell if the current was 3amp and the resistors stayed the same. 17. In the diagram of a hydraulic system, the area of piston A is 8cm2 and the area of piston B is 48cm2. (2 mark total) If the Force IN is 16 N, calculate the force OUT. 18. Plot the graph 2y = x3 – 4 using a value range for x from 0 to 3 (3 marks total) 14 12 10 8 6 4 2 0 -2 Choosing appropriate scale (1 mark) Accurately plotting y values (1 mark) X 0 1 2 3 Y Accurately plotting line of best fit. (1 mark) SPARE PAPER

1. (2 marks total) a. Multiply 109 x 309 b. Divide 1988 by 16 exactly 2. (4 marks total) a. Write 2/11 as a decimal to 2 decimal places b. Calculate 35% of 62 c. Add 103/4 to 92/3 d. Subtract 79.04 from 115.225 giving your answer correct to 2 decimal places 3. Circle the fractions in the list which are equivalent to 0.80 (2 marks) 2/7 32/40 8/10 8/20 8/25 9/24 36/45 40/50 4. Write the numerical value of: 3-3 (2 marks total) 5. Simplify z + 67 = 3z + 33 (1 mark total) 6. Solve to 1 decimal place 3y – 34 = 2y + 89 (1 mark total) 7. Solve the following equations to 2 decimal places (3 marks total) a. 37x + 1 = 35 b. 27 – a = 7.45 c. 3(y + 2) = 14 8. A 7-sided polygon is called a Heptagon. (3 marks total) a. What is the total of a Heptagon’s interior angles? b. If the Heptagon is regular (all angles the same), calculate the size of each interior angle to 2 decimal places. 9. Calculate the size of angle a and angle b. (2 mark total) 10. How many centilitres are there in 1.25 litres? (1 mark total) 11. The diagram below shows a stone carving with a hole on it; determine its volume (not including hole), if its thickness is 8 cm. Give your answer in cm3 to 2 decimal points. Assume π = 3.14 (6 marks total) 12. The diagram below shows a piece of alloy plate with a hole in it made from aluminium, copper and magnesium with a mass ratio of 35:3:2. Calculate the following to 2 decimal places. All measurements are in cm. (7 marks total) a. Using the formula A = 1/2(a+b)h calculate the height of the shape below. b. The volume of the solid part (not including the hole) of the shape below to 3 decimal places if it was 0.25cm thick. c. The mass of each material if the total mass of the plate is 62 kg. 10 cm Hole dia = 3 cm Cross sectional area of solid (not including hole) = 28.935 cm2 8 cm 13. A 66kg boy is running at 3 m/s. Calculate his Kinetic Energy using the formula KE = 1/2mv2 (2 marks total) 14. A rocket has a mass of 2,000 kg. What is its acceleration if the forces of its engines are 50kN? Show working out to receive full marks. (1 marks total) 250,000,000 m/s² 25 m/s² 25,000 m/s² 15. In the diagram below a force of 125N (F1) is applied to a lever 20cm (D1) away from the fulcrum, (4 marks total) Fulcrum (a) How far away in metres would a force of 5N (F2) need to be to balance the load? (b) How much force (F2) would need to be applied 0.7m away to balance the same load (F1)? 16. For the circuit shown in the diagram below, calculate: (3 mark total) a. The total circuit resistance. b. The value of the current I. c. Calculate the voltage of the battery cell if the current was 3amp and the resistors stayed the same. 17. In the diagram of a hydraulic system, the area of piston A is 8cm2 and the area of piston B is 48cm2. (2 mark total) If the Force IN is 16 N, calculate the force OUT. 18. Plot the graph 2y = x3 – 4 using a value range for x from 0 to 3 (3 marks total) 14 12 10 8 6 4 2 0 -2 Choosing appropriate scale (1 mark) Accurately plotting y values (1 mark) X 0 1 2 3 Y Accurately plotting line of best fit. (1 mark) SPARE PAPER

No expert has answered this question yet. You can browse … Read More...
FSE 100 Extra Credit (20 points) Instructions: Read the description below and work through the design process to build an automated waste sorting system. Turn in the following deliverables in one document, typed: 1. Problem Statement – 1 point 2. Technical System Requirements (at least 3 complete sentences using “shall”) – 3 points 3. Judging Criteria (at least 3, explain why you chose them) – 2 points 4. AHP – 2 points 5. Summaries of your 3 design options (paragraph minimum for each option) – 3 points 6. Design Decision Matrix – 3 points 7. Orthographic Drawing of your final design (3 projections required) – 3 points 8. Activity Diagram of how your sorter functions – 3 points Description: The city of Tempe waste management has notified ASU that due to the exceptional effort the Sundevil students have made in the sustainability area, ASU has been contributing three times the amount of recyclable materials than what was predicted on a monthly basis. Unfortunately, due to the immense amount of materials being delivered, the city of Tempe waste management has asked for assistance from ASU prior to picking up the recyclable waste. They have requested that ASU implement an automated waste sorting system that would pre-filter all the materials so the city of Tempe can collect the materials based on one of three types and process the waste much faster. ASU has hired you to design an automated sorter, but due to the unexpected nature of this request, ASU prefers that this design be as simple and inexpensive to build as possible. The city of Tempe would like to have the waste categorized as either glass, plastic, or metal. Paper will not be considered in this design. Any glass that is sorted in your device needs to stay intact, and not break. Very few people will be able to monitor this device as it sorts, so it must be able to sort the items with no input from a user, as quickly as possible. This design cannot exceed 2m in length, width, or height, but the weight is unlimited. ASU is not giving any guidance as to the materials you can use, so you are free to shop for whatever you’d like, but keep in mind, the final cost of this device must be as inexpensive as possible. Submit through Blackboard or print out your document and turn it in to me no later than the date shown on Blackboard.

FSE 100 Extra Credit (20 points) Instructions: Read the description below and work through the design process to build an automated waste sorting system. Turn in the following deliverables in one document, typed: 1. Problem Statement – 1 point 2. Technical System Requirements (at least 3 complete sentences using “shall”) – 3 points 3. Judging Criteria (at least 3, explain why you chose them) – 2 points 4. AHP – 2 points 5. Summaries of your 3 design options (paragraph minimum for each option) – 3 points 6. Design Decision Matrix – 3 points 7. Orthographic Drawing of your final design (3 projections required) – 3 points 8. Activity Diagram of how your sorter functions – 3 points Description: The city of Tempe waste management has notified ASU that due to the exceptional effort the Sundevil students have made in the sustainability area, ASU has been contributing three times the amount of recyclable materials than what was predicted on a monthly basis. Unfortunately, due to the immense amount of materials being delivered, the city of Tempe waste management has asked for assistance from ASU prior to picking up the recyclable waste. They have requested that ASU implement an automated waste sorting system that would pre-filter all the materials so the city of Tempe can collect the materials based on one of three types and process the waste much faster. ASU has hired you to design an automated sorter, but due to the unexpected nature of this request, ASU prefers that this design be as simple and inexpensive to build as possible. The city of Tempe would like to have the waste categorized as either glass, plastic, or metal. Paper will not be considered in this design. Any glass that is sorted in your device needs to stay intact, and not break. Very few people will be able to monitor this device as it sorts, so it must be able to sort the items with no input from a user, as quickly as possible. This design cannot exceed 2m in length, width, or height, but the weight is unlimited. ASU is not giving any guidance as to the materials you can use, so you are free to shop for whatever you’d like, but keep in mind, the final cost of this device must be as inexpensive as possible. Submit through Blackboard or print out your document and turn it in to me no later than the date shown on Blackboard.

  Problem statement      ASU has been contributing three … Read More...