Lab Assignment 2 CECS 201, Instructor: Brian Lojeck Date Assigned: 9/11/2015 Date Due: 1. Lab report: 9/25/2015 at the start of lecture, UPLOADED TO BEACHBOARD 2. Demonstration on-board to be done in lab after lecture on 9/25/2015 File Needed: LabAssignment2.ucf is available on the beachboard. Download the correct version for your board (Nexys3, Nexys2_500K, or Nexys2_1200K) Task: Using the lab lectures and the examples in the lab lecture documents use the Xylinx ISE software to design a circuit with 4 inputs (named SW0, SW1, SW2, SW3) and one output (named LED0). The inputs are the first 4 switches on the Digilent board, the output is the first LED light on the board. Note that the input and output names must match EXACTLY as shown above. The circuit will be a “voting” circuit. The output will be high (the led will turn on) whenever more outputs have a value of 1 then a value of 0. The output will be low (the led will turn off) whenever more outputs have a value of 0 then 1. If equal numbers of 1 and 0 are entered, the light should turn off. Design a truth table for the circuit using the description above. Use Karnaugh Maps to find the simplified SOP equation based on the truth table. Implement the equation in a schematic file. Test the schematic using a Verilog testbench. Download the project to your Digilent board to make sure it works properly. Note that you will need to download the code to your board in lab to demonstrate the project and receive full credit for the lab. Hand In For Your Lab Report, as a PDF file, or as a series of screenshots in a word document 1. A cover sheet for the report 2. The truth table for the circuit 3. The K-maps you used to simplify the equations (scans or decent cell-phone photos of the page are acceptable) 4. A printout of your schematic file (printed in landscape mode) 5. A printout of your testbench file (printed in portrait mode) 6. A printout of the results of your simulation (the timing diagram). Remember to print in landscape mode, and to use the printing menu to ensure the printout is readable (not zoomed out too far) and that all data is shown (not zoomed in too far)

Lab Assignment 2 CECS 201, Instructor: Brian Lojeck Date Assigned: 9/11/2015 Date Due: 1. Lab report: 9/25/2015 at the start of lecture, UPLOADED TO BEACHBOARD 2. Demonstration on-board to be done in lab after lecture on 9/25/2015 File Needed: LabAssignment2.ucf is available on the beachboard. Download the correct version for your board (Nexys3, Nexys2_500K, or Nexys2_1200K) Task: Using the lab lectures and the examples in the lab lecture documents use the Xylinx ISE software to design a circuit with 4 inputs (named SW0, SW1, SW2, SW3) and one output (named LED0). The inputs are the first 4 switches on the Digilent board, the output is the first LED light on the board. Note that the input and output names must match EXACTLY as shown above. The circuit will be a “voting” circuit. The output will be high (the led will turn on) whenever more outputs have a value of 1 then a value of 0. The output will be low (the led will turn off) whenever more outputs have a value of 0 then 1. If equal numbers of 1 and 0 are entered, the light should turn off. Design a truth table for the circuit using the description above. Use Karnaugh Maps to find the simplified SOP equation based on the truth table. Implement the equation in a schematic file. Test the schematic using a Verilog testbench. Download the project to your Digilent board to make sure it works properly. Note that you will need to download the code to your board in lab to demonstrate the project and receive full credit for the lab. Hand In For Your Lab Report, as a PDF file, or as a series of screenshots in a word document 1. A cover sheet for the report 2. The truth table for the circuit 3. The K-maps you used to simplify the equations (scans or decent cell-phone photos of the page are acceptable) 4. A printout of your schematic file (printed in landscape mode) 5. A printout of your testbench file (printed in portrait mode) 6. A printout of the results of your simulation (the timing diagram). Remember to print in landscape mode, and to use the printing menu to ensure the printout is readable (not zoomed out too far) and that all data is shown (not zoomed in too far)

info@checkyourstudy.com
BI 102 Lab 1 Writing Assignment How did the different concentrations of sucrose impact osmotic rate? This assignment requires you to evaluate a hypothesis and communicate the results of your experiment on the rate of osmosis into sucrose solutions of varying concentrations. The questions below are meant to guide you to reporting the key findings of your experiment and help you think through how to explain the findings and draw conclusions from them in a scientific manner. ASSIGNMENT: Please respond to the following questions to complete your laboratory write up. For this assignment you will only focus on the osmosis of water into sucrose concentrations of varying concentration. Make sure that your write up is accurate, and clearly written so that it is easily readable. A grading rubric is provided on the second page of this assignment. To earn full points on your write up, you must provide answers that align to the “meets” column of your grading rubric as well as meeting all “Quality of Writing and Mechanics” elements described in the rubric. There are also some tips on pages 3-4 of this assignment to help you succeed. FORMAT: • Type your responses, using 1.5 or double spacing. • Include the section headings (Hypothesis, Results, Analysis) and question number (example: 1, 2, 3, etc) in your answers but do not rewrite the question. • Graphs may be made with a computer program (example: Microsoft excel, Mac numbers, etc) or may be neatly produced with a ruler on graphing paper. • Print out the cover sheet on page 2 of this assignment, read and sign the academic honesty statement, and submit it with your write up. Your instructor WILL NOT accept a write up without the signed cover sheet. DUE DATE: Your write up is due at the beginning of class next week. Late assignments will have 1 point deducted per day up to 5 days, at which point the assignment will be assigned 0 points. Hypothesis and Prediction – Part 1 of Rubric 1. What did you think was going to happen in this experiment and why? You may find it helpful to state your answers to these questions as an “if-then” hypothesis-prediction. Be sure you have included a biological rationale that explains WHY you made this hypothesis/prediction. (You worked on this in question 2 on page 10 of this lab activity) Results – Part 2 of Rubric 2. How did the different concentrations of sucrose impact osmotic rate? Answer this question by creating a line graph that shows the results of your experiment. If you need assistance building a graph, there is a Guide to Graphing resource available on your Moodle lab course site. Analysis- Part 3 of Rubric 3. Explain why you think that the results shown in your graph support or refute your hypothesis (remember we never “prove” anything in science). Consider all your data and the overall data pattern as you answer this question. Don’t ignore unusual data that may not seem to fit into a specific patterns (“outliers”). Explain what you think might be behind these unusual data points. 4. What is the biological significance of your results? What biological concepts explain completely why these events happened in the experiment? How do these results help you understand the biology of the cell and how materials move back and forth across the cell membrane? (A hint: refer back to questions 1A-1F on page 10 of this lab activity). Think about giving a specific example. References- Mechanics Checklist 5. Provide at least one full citation (make sure you include an in-text citation that pinpoints where you used this resource) for a resource you made use of in performing the experiment, understanding the concepts and writing this assignment. (Perhaps your lab manual? Your textbook? A website?) If you used more than one resource, you need to cite each one! If you need help with citations, a Guide to Citing References is available on your Moodle lab course site. Please print out and submit this cover sheet with your lab writeup! Lab Writeup Assignment (1) Assessment Rubric-­‐ 10 points total Name: ________________________________________ Element Misses (1 point) Approaches (2 points) Meets (3 points) Hypothesis Clarity/Specificity Testability Rationale ___Hypothesis is unclear and hardto- understand ___Hypothesis is not testable ___No biological rationale for hypothesis or rationale is fully inaccurate ___Hypothesis included is clearly stated, but not specific or lacks specific details __Hypothesis is testable, but not in a feasible way in this lab ___Some foundation for hypothesis, but based in part on biological inaccuracy ___Hypothesis included is clearly stated and very specific ___Hypothesis is testable and could be tested within lab parameters ___Rationale for hypothesis is grounded in accurate biological information Graph Title Axes Variables Key Graph clarity Data accuracy ___Graph lacks a title ___Axes are not labeled ___Variables not addressed in graph ___No key or way to tell data points apart ___Graph is hard to read and comparisons cannot be made: Inappropriate graph type or use of scale ___Data graphed is inaccurate or does not relate to experiment ___Graph has a title that is not very descriptive ___Axes are either unlabeled, or units are unclear or wrong ___Variables addressed in graph, but not on correct axes ___Key included, but is hard to understand ___Graph is somewhat readable, comparisons can be made with difficulty: Appropriate graph type, but not scaled well ___Data graphed is partially accurate; some data is missing ___Graph has a concise, descriptive title ___Axes are labeled, including clarification of units used ___Variables on correct axes ___A clear, easy-to-use key to data points is included ___Graph is clearly readable and comparisons between treatments are easy to make: Graph type and scale are appropriate to data ___Data graphed is accurate and includes all relevant data, including controls (if needed) Analysis Hypothesis Scientific language Data addressed Explanation ___Hypothesis is not addressed ___Hypothesis is described using language like proven, true, or right ___No explanations for data patterns observed in graph or data does not support conclusions. ___No biological explanation for data trends or explanations are completely inaccurate ___Hypothesis is mentioned, but not linked well to data ___Hypothesis is not consistently described as supported or refuted ___Some data considered in conclusions but other data is ignored. Any unusual “outliers” are ignored ___Explanations include minimal or some inaccurate biological concepts ___Hypothesis is evaluated based upon data ___Hypothesis is consistently described as supported or refuted ___All data collected is considered and addressed by conclusions, including presence of outliers, ___Explanations include relevant and accurate biological concepts Quality of Writing and Mechanics: Worth 1 point. Writeup should meet all of the following criteria! Yes No ☐ ☐ Write up includes your name, the date, and your lab section ☐ ☐ Write up is free from spelling and grammatical errors (make sure you proofread!!) ☐ ☐ Write up is clear and easy-to-understand ☐ ☐ Write up includes full citation for at least one reference with corresponding in-text citation ☐ ☐ All portions of write up are clearly labeled, and question numbers are included Plagiarism refers to the use of original work, ideas, or text that are not your own. This includes cut-and-paste from websites, copying directly from texts, and copying the work of others, including fellow students. Telling someone your answers to the questions (including telling someone how to make their graph, question #2), or asking for the answers to any question, is cheating. (Asking someone how to make the graph for this assignment is NOT the same as asking for help learning excel or some other software). All forms of cheating, including plagiarism and copying of work will result in an immediate zero for the exam, quiz, or assignment. In the case of copying, all parties involved in the unethical behavior will earn zeros. Cheating students will be referred to the Student Conduct Committee for further action. You also have the right to appeal to the Student Conduct Committee. I have read and understand the plagiarism statement. ____________________________________________________ Signature Guidelines for Good Quality Scientific Reports Hypothesis and Prediction: The hypothesis is a tentative explanation for the phenomenon. Remember that: • A good hypothesis and prediction is testable (and should be testable under the conditions of our lab environment; For example, if your hypothesis requires shooting a rocket into space, then its not really testable under our laboratory conditions). • Your explanation can be ruled out through testing, or falsified. • A good hypothesis and prediction is detailed and specific in what it is testing. • A good hypothesis provides a rationale or explanation for why you think your prediction is reasonable and this rationale is based on what we know about biology. • A good prediction is specific and can be tested with a specific experiment. Examples*: I think that diet soda will float and regular soda will sink. {This hypothesis misses the goal. It is not specific as we don’t know where the sodas are floating and sinking, and it does not provide any explanation to explain why the hypothesis makes sense} Because diet soda does not contain sugar and regular soda does, the diet soda will float in a bucket of water, while regular soda will sink. {This hypothesis approaches the goal. It is more specific about the conditions, and it provides a partial explanation about why the hypothesis makes sense, but the connection between sugar and sinking is unclear} If diet soda does not contain sugar, then its density (mass/volume) is lower than that of regular soda which does contain sugar, and so diet soda will float in a bucket of water while regular soda sinks. {This hypothesis meets the goal. It is specific and the rationale- sugar affects density and density is what determines floating or sinking in water- is clearly articulated} *Note that these examples are for different experiments and investigations and NOT about your osmosis lab. They are provided only to help you think about what you need to include in your write up. Graph: The graph is a visual representation of the data you gathered while testing your hypothesis. Remember that: • A graph needs a concise title that clearly describes the data that it is showing. • Data must be put on the correct axes of the graph. In general, the data you collected (representing what you are trying to find out about) goes on the vertical (Y) axis. The supporting data that that describes how, when or under what conditions you collected your data goes on the horizontal (X) axis. (For this reason time nearly always goes on the X-axis). • Axes must be labeled, including the units in which data were recorded • Data points should be clearly marked and identified; a key is helpful if more than one group of data is included in the graph. • The scale of a graph is important. It should be consistent (there should be no change in the units or increments on a single axis) and appropriate to the data you collected Examples: {This graph misses the goal. There is no title, nor is there a key to help distinguish what the data points mean. The scale is too large- from 0 to 100 with an increment of 50, when the maximum number in the graph is 25- and makes it hard to interpret this graph. The x-axis is labeled, but without units (the months) and the y-axis has units, but the label is incomplete- number of what?} {This graph meets the goal. There is a descriptive title, and all of the axes are clearly labeled with units. There is a key so that we can distinguish what each set of data points represent. The dependent variable (number of individuals) is correctly placed on the y-axis with the independent variable of time placed on the x-axis. The scale of 0-30 is appropriate to the data, with each line on the x-axis representing an increment of 5.} 0 50 100 Number Month 0 5 10 15 20 25 30 March April May June July Number of individuals Month (2011) Population size of three different madtom catiCish in the Marais de Cygnes River in Spring/Summer 2011 Brindled madtom Neosho madtom Slender madtom Analysis: You need to evaluate your hypothesis based on the data patterns shown by your graph. Remember that: • You use data to determine support or refute your hypothesis. It is only possible to support a hypothesis, not to “prove” one (that would require testing every possible permutation and combination of factors). Your evaluation of your hypothesis should not be contradicted by the pattern shown by your data. • Refer back to the prediction you made as part of your hypothesis and use your data to justify your decision to support or refute your hypothesis. • In the “if” part of your hypothesis you should have provided a rationale, or explanation for the prediction you made in your hypothesis (“then” part of hypothesis”). Use this to help you explain why you think you observed the specific pattern of data revealed in your graph. • You should consider all of the data you collected in examining the support (or lack of support for your hypothesis). If there are unusual data points or “outliers” that don’t seem to fit the general pattern in your graph, explain what you think those mean. Examples: I was right. Diet Pepsi floated and so did Apricot Nectar. Regular Pepsi sank. Obviously the regular Pepsi was heavier. This helps us understand the concept of density, which is a really important one. {This analysis misses the goal. The hypothesis isn’t actually mentioned and the data is only briefly described. There is no explanation of the importance of the Apricot Nectar results. Finally, there is no connection to how these results help understand density or why it is biologically important} I hypothesized that diet soda would float, and all three cans of diet Pepsi did float while the regular Pepsi sank. This supports my hypothesis. Both types of Pepsi were 8.5 fluid ounces in volume, but the regular Pepsi also contained 16 grams of sugar. This means that the regular Pepsi had 16 more grams of mass provided by the sugar in the same amount of volume. This would lead to an increase in density, which explains why the regular soda cans sank. When we put in a can of Apricot Nectar, which had 19 grams of sugar, it floated. This was unexpected, but I think it is explained by the fact that an Apricot Nectar can had a volume of 7 fluid ounces, but the dimensions of the can are the same as that of a Pepsi can. A same-sized can with less liquid probably has an air space that helped it float. The results of this experiment help us understand how the air bladder of a fish, which creates an air space inside the fish, helps it float in the water and also how seaweeds and other living things with air spaces or other factors that decrease their density keep from sinking to the bottom of the water. {This analysis meets the goal. It clearly ties the hypothesis to the results and outlines what they mean. It describes how the results support the hypothesis, but also explains a possible reason behind the unusual results of the Apricot Nectar. Finally, there is a link to how this experiment helps us understand biology}

BI 102 Lab 1 Writing Assignment How did the different concentrations of sucrose impact osmotic rate? This assignment requires you to evaluate a hypothesis and communicate the results of your experiment on the rate of osmosis into sucrose solutions of varying concentrations. The questions below are meant to guide you to reporting the key findings of your experiment and help you think through how to explain the findings and draw conclusions from them in a scientific manner. ASSIGNMENT: Please respond to the following questions to complete your laboratory write up. For this assignment you will only focus on the osmosis of water into sucrose concentrations of varying concentration. Make sure that your write up is accurate, and clearly written so that it is easily readable. A grading rubric is provided on the second page of this assignment. To earn full points on your write up, you must provide answers that align to the “meets” column of your grading rubric as well as meeting all “Quality of Writing and Mechanics” elements described in the rubric. There are also some tips on pages 3-4 of this assignment to help you succeed. FORMAT: • Type your responses, using 1.5 or double spacing. • Include the section headings (Hypothesis, Results, Analysis) and question number (example: 1, 2, 3, etc) in your answers but do not rewrite the question. • Graphs may be made with a computer program (example: Microsoft excel, Mac numbers, etc) or may be neatly produced with a ruler on graphing paper. • Print out the cover sheet on page 2 of this assignment, read and sign the academic honesty statement, and submit it with your write up. Your instructor WILL NOT accept a write up without the signed cover sheet. DUE DATE: Your write up is due at the beginning of class next week. Late assignments will have 1 point deducted per day up to 5 days, at which point the assignment will be assigned 0 points. Hypothesis and Prediction – Part 1 of Rubric 1. What did you think was going to happen in this experiment and why? You may find it helpful to state your answers to these questions as an “if-then” hypothesis-prediction. Be sure you have included a biological rationale that explains WHY you made this hypothesis/prediction. (You worked on this in question 2 on page 10 of this lab activity) Results – Part 2 of Rubric 2. How did the different concentrations of sucrose impact osmotic rate? Answer this question by creating a line graph that shows the results of your experiment. If you need assistance building a graph, there is a Guide to Graphing resource available on your Moodle lab course site. Analysis- Part 3 of Rubric 3. Explain why you think that the results shown in your graph support or refute your hypothesis (remember we never “prove” anything in science). Consider all your data and the overall data pattern as you answer this question. Don’t ignore unusual data that may not seem to fit into a specific patterns (“outliers”). Explain what you think might be behind these unusual data points. 4. What is the biological significance of your results? What biological concepts explain completely why these events happened in the experiment? How do these results help you understand the biology of the cell and how materials move back and forth across the cell membrane? (A hint: refer back to questions 1A-1F on page 10 of this lab activity). Think about giving a specific example. References- Mechanics Checklist 5. Provide at least one full citation (make sure you include an in-text citation that pinpoints where you used this resource) for a resource you made use of in performing the experiment, understanding the concepts and writing this assignment. (Perhaps your lab manual? Your textbook? A website?) If you used more than one resource, you need to cite each one! If you need help with citations, a Guide to Citing References is available on your Moodle lab course site. Please print out and submit this cover sheet with your lab writeup! Lab Writeup Assignment (1) Assessment Rubric-­‐ 10 points total Name: ________________________________________ Element Misses (1 point) Approaches (2 points) Meets (3 points) Hypothesis Clarity/Specificity Testability Rationale ___Hypothesis is unclear and hardto- understand ___Hypothesis is not testable ___No biological rationale for hypothesis or rationale is fully inaccurate ___Hypothesis included is clearly stated, but not specific or lacks specific details __Hypothesis is testable, but not in a feasible way in this lab ___Some foundation for hypothesis, but based in part on biological inaccuracy ___Hypothesis included is clearly stated and very specific ___Hypothesis is testable and could be tested within lab parameters ___Rationale for hypothesis is grounded in accurate biological information Graph Title Axes Variables Key Graph clarity Data accuracy ___Graph lacks a title ___Axes are not labeled ___Variables not addressed in graph ___No key or way to tell data points apart ___Graph is hard to read and comparisons cannot be made: Inappropriate graph type or use of scale ___Data graphed is inaccurate or does not relate to experiment ___Graph has a title that is not very descriptive ___Axes are either unlabeled, or units are unclear or wrong ___Variables addressed in graph, but not on correct axes ___Key included, but is hard to understand ___Graph is somewhat readable, comparisons can be made with difficulty: Appropriate graph type, but not scaled well ___Data graphed is partially accurate; some data is missing ___Graph has a concise, descriptive title ___Axes are labeled, including clarification of units used ___Variables on correct axes ___A clear, easy-to-use key to data points is included ___Graph is clearly readable and comparisons between treatments are easy to make: Graph type and scale are appropriate to data ___Data graphed is accurate and includes all relevant data, including controls (if needed) Analysis Hypothesis Scientific language Data addressed Explanation ___Hypothesis is not addressed ___Hypothesis is described using language like proven, true, or right ___No explanations for data patterns observed in graph or data does not support conclusions. ___No biological explanation for data trends or explanations are completely inaccurate ___Hypothesis is mentioned, but not linked well to data ___Hypothesis is not consistently described as supported or refuted ___Some data considered in conclusions but other data is ignored. Any unusual “outliers” are ignored ___Explanations include minimal or some inaccurate biological concepts ___Hypothesis is evaluated based upon data ___Hypothesis is consistently described as supported or refuted ___All data collected is considered and addressed by conclusions, including presence of outliers, ___Explanations include relevant and accurate biological concepts Quality of Writing and Mechanics: Worth 1 point. Writeup should meet all of the following criteria! Yes No ☐ ☐ Write up includes your name, the date, and your lab section ☐ ☐ Write up is free from spelling and grammatical errors (make sure you proofread!!) ☐ ☐ Write up is clear and easy-to-understand ☐ ☐ Write up includes full citation for at least one reference with corresponding in-text citation ☐ ☐ All portions of write up are clearly labeled, and question numbers are included Plagiarism refers to the use of original work, ideas, or text that are not your own. This includes cut-and-paste from websites, copying directly from texts, and copying the work of others, including fellow students. Telling someone your answers to the questions (including telling someone how to make their graph, question #2), or asking for the answers to any question, is cheating. (Asking someone how to make the graph for this assignment is NOT the same as asking for help learning excel or some other software). All forms of cheating, including plagiarism and copying of work will result in an immediate zero for the exam, quiz, or assignment. In the case of copying, all parties involved in the unethical behavior will earn zeros. Cheating students will be referred to the Student Conduct Committee for further action. You also have the right to appeal to the Student Conduct Committee. I have read and understand the plagiarism statement. ____________________________________________________ Signature Guidelines for Good Quality Scientific Reports Hypothesis and Prediction: The hypothesis is a tentative explanation for the phenomenon. Remember that: • A good hypothesis and prediction is testable (and should be testable under the conditions of our lab environment; For example, if your hypothesis requires shooting a rocket into space, then its not really testable under our laboratory conditions). • Your explanation can be ruled out through testing, or falsified. • A good hypothesis and prediction is detailed and specific in what it is testing. • A good hypothesis provides a rationale or explanation for why you think your prediction is reasonable and this rationale is based on what we know about biology. • A good prediction is specific and can be tested with a specific experiment. Examples*: I think that diet soda will float and regular soda will sink. {This hypothesis misses the goal. It is not specific as we don’t know where the sodas are floating and sinking, and it does not provide any explanation to explain why the hypothesis makes sense} Because diet soda does not contain sugar and regular soda does, the diet soda will float in a bucket of water, while regular soda will sink. {This hypothesis approaches the goal. It is more specific about the conditions, and it provides a partial explanation about why the hypothesis makes sense, but the connection between sugar and sinking is unclear} If diet soda does not contain sugar, then its density (mass/volume) is lower than that of regular soda which does contain sugar, and so diet soda will float in a bucket of water while regular soda sinks. {This hypothesis meets the goal. It is specific and the rationale- sugar affects density and density is what determines floating or sinking in water- is clearly articulated} *Note that these examples are for different experiments and investigations and NOT about your osmosis lab. They are provided only to help you think about what you need to include in your write up. Graph: The graph is a visual representation of the data you gathered while testing your hypothesis. Remember that: • A graph needs a concise title that clearly describes the data that it is showing. • Data must be put on the correct axes of the graph. In general, the data you collected (representing what you are trying to find out about) goes on the vertical (Y) axis. The supporting data that that describes how, when or under what conditions you collected your data goes on the horizontal (X) axis. (For this reason time nearly always goes on the X-axis). • Axes must be labeled, including the units in which data were recorded • Data points should be clearly marked and identified; a key is helpful if more than one group of data is included in the graph. • The scale of a graph is important. It should be consistent (there should be no change in the units or increments on a single axis) and appropriate to the data you collected Examples: {This graph misses the goal. There is no title, nor is there a key to help distinguish what the data points mean. The scale is too large- from 0 to 100 with an increment of 50, when the maximum number in the graph is 25- and makes it hard to interpret this graph. The x-axis is labeled, but without units (the months) and the y-axis has units, but the label is incomplete- number of what?} {This graph meets the goal. There is a descriptive title, and all of the axes are clearly labeled with units. There is a key so that we can distinguish what each set of data points represent. The dependent variable (number of individuals) is correctly placed on the y-axis with the independent variable of time placed on the x-axis. The scale of 0-30 is appropriate to the data, with each line on the x-axis representing an increment of 5.} 0 50 100 Number Month 0 5 10 15 20 25 30 March April May June July Number of individuals Month (2011) Population size of three different madtom catiCish in the Marais de Cygnes River in Spring/Summer 2011 Brindled madtom Neosho madtom Slender madtom Analysis: You need to evaluate your hypothesis based on the data patterns shown by your graph. Remember that: • You use data to determine support or refute your hypothesis. It is only possible to support a hypothesis, not to “prove” one (that would require testing every possible permutation and combination of factors). Your evaluation of your hypothesis should not be contradicted by the pattern shown by your data. • Refer back to the prediction you made as part of your hypothesis and use your data to justify your decision to support or refute your hypothesis. • In the “if” part of your hypothesis you should have provided a rationale, or explanation for the prediction you made in your hypothesis (“then” part of hypothesis”). Use this to help you explain why you think you observed the specific pattern of data revealed in your graph. • You should consider all of the data you collected in examining the support (or lack of support for your hypothesis). If there are unusual data points or “outliers” that don’t seem to fit the general pattern in your graph, explain what you think those mean. Examples: I was right. Diet Pepsi floated and so did Apricot Nectar. Regular Pepsi sank. Obviously the regular Pepsi was heavier. This helps us understand the concept of density, which is a really important one. {This analysis misses the goal. The hypothesis isn’t actually mentioned and the data is only briefly described. There is no explanation of the importance of the Apricot Nectar results. Finally, there is no connection to how these results help understand density or why it is biologically important} I hypothesized that diet soda would float, and all three cans of diet Pepsi did float while the regular Pepsi sank. This supports my hypothesis. Both types of Pepsi were 8.5 fluid ounces in volume, but the regular Pepsi also contained 16 grams of sugar. This means that the regular Pepsi had 16 more grams of mass provided by the sugar in the same amount of volume. This would lead to an increase in density, which explains why the regular soda cans sank. When we put in a can of Apricot Nectar, which had 19 grams of sugar, it floated. This was unexpected, but I think it is explained by the fact that an Apricot Nectar can had a volume of 7 fluid ounces, but the dimensions of the can are the same as that of a Pepsi can. A same-sized can with less liquid probably has an air space that helped it float. The results of this experiment help us understand how the air bladder of a fish, which creates an air space inside the fish, helps it float in the water and also how seaweeds and other living things with air spaces or other factors that decrease their density keep from sinking to the bottom of the water. {This analysis meets the goal. It clearly ties the hypothesis to the results and outlines what they mean. It describes how the results support the hypothesis, but also explains a possible reason behind the unusual results of the Apricot Nectar. Finally, there is a link to how this experiment helps us understand biology}

info@checkyourstudy.com Whatsapp +919911743277
Michael Jordan’s book.If you had to rate this book, from one (1) to five (5), what rating would you give the book? Explain your rating system. For example, what does a one (1) mean? A two? A three? A four? A five: Explain your reasoning for giving the book the rating you assigned.

Michael Jordan’s book.If you had to rate this book, from one (1) to five (5), what rating would you give the book? Explain your rating system. For example, what does a one (1) mean? A two? A three? A four? A five: Explain your reasoning for giving the book the rating you assigned.

My rating scale will be as follow 5 star- Dazzling! … Read More...
6. What is meant by the threshold service level of a least-cost system?

6. What is meant by the threshold service level of a least-cost system?

What is meant by the threshold service level of a … Read More...
Develop a any small project plan that include the following: 1. Name of your proposed project – a business related project 2. Description of the project 3. Goals and objectives 4. Scope statement that includes requirements/deliverable, constraints and assumptions 5. Work breakdown Structure (25 items) 6. Duration of each of the tasks 7. Draw a network diagram 8. Determine the project duration 9. Identify resources, hourly rate and assigned task 10. Identify total cost 11. Identify three to five risks on the project and develop a risk response plan for each one. 12. Develop a quality standard.

Develop a any small project plan that include the following: 1. Name of your proposed project – a business related project 2. Description of the project 3. Goals and objectives 4. Scope statement that includes requirements/deliverable, constraints and assumptions 5. Work breakdown Structure (25 items) 6. Duration of each of the tasks 7. Draw a network diagram 8. Determine the project duration 9. Identify resources, hourly rate and assigned task 10. Identify total cost 11. Identify three to five risks on the project and develop a risk response plan for each one. 12. Develop a quality standard.

No expert has answered this question yet. You can browse … Read More...
Objective: Persuade readers that they should fear a threat of your choosing, real or fabricated. Due Date: Wednesday, November 18th Length: 4-5 pages Format: typed, double-spaced, standard font and margins For this essay, you will be putting together all the aspects of argument that we have been learning about over the last few weeks. You will be using those elements to convince your readers that some issue of your choosing is a threat to them. This issue can be a real threat that you believe people should actually be aware of, or it can be a threat that is not real but that you treat as real (whether it be a fictional/legendary threat or something that is perhaps a small threat but that you present as a big one). Your job is to convince your audience to take this threat seriously, and to do that, you will need to make use of emotional appeal (especially to fear—think back to essays one and two), logical appeal (partly use of details/facts/ evidence we discussed in essay four, but also through definition such as we worked on in essay three), and ethical appeal (your own credibility—think back to issues besides logic and evidence covered in essay four). You may choose to include outside sources if you wish, but you must cite them if you use them and indicate when you are using the words of the original source. We will discuss how to find and to cite them to prepare you to use them correctly. If writing about a fictional threat, you may wish to make up sources. If you do so, I leave it up to you whether you formally cite them (though you must do this if you are using real sources) or informally refer to them in a manner similar to what we saw in the articles we read for essay four. Turning in an essay in which significant portions are not written by you and/or without outside sources cited will result in an essay grade of zero (and not revisable for a higher grade). If you are unsure what to cite, let me know. For ideas, you may want to browse the website snopes.com. This site contains lists and research about many feasible topics for this essay. Try not to use Snopes itself as a source—most entries there contain a list of sources that would be more appropriate for you to utilize and credit in your research. You may also choose to write about a topic covered by one of the essay four articles—if you liked an issue but felt that the warning about it was not very credible, you can use this paper as an opportunity to write about that topic but in a believable, convincing way. Whatever you choose as your topic, by the end of it, you want your reader to believe that what you discuss is a real threat to them. Essay Five: Argument Paper/Warning Assignment Description English 101, Sections 26 & 30 Fall 2015 Skills We Will Cover In This Unit: • finding & citing sources • utilizing emotional, logical, and ethical appeal SCHEDULE GRADING Incomplete papers or papers that stray from the assigned topic/purpose will receive a D or F. C B A To earn at least a C, the paper should: • have a clearly established threat that it attempts to warn the reader about • cite any information obtained from outside sources • be written in such a way as it can be easily understood by the reader To earn a B, the paper should fulfill the criteria above, plus: • include at least one section intended to appeal to the reader’s emotions (especially fear) • include logical support in the form of evidence, details, or other forms of establishing logical reasoning • be organized well, which includes having a clear sense of structure and transitioning into new ideas • include only the information and discussion necessary to accomplish the purpose of the assignment • have only a few grammatical errors, and those should not interfere with understanding To earn an A, the paper should fulfill the criteria for a B paper, plus: • possess strong unity of ideas • skillfully utilize all three rhetorical appeals • make a convincing case that the threat is real • be nearly free of grammatical or wording problems FRI OCT 30 MON NOV 2 discuss “We Are Training Our Kids to Kill” (p. 481) WED NOV 4 discuss “How Bingeing Became the New College Sport” (p. 476) FRI NOV 6 Homecoming—no classes after noon, no Blackboard assignment MON NOV 9 Discuss “The Real Skinny” (p. 492) No class—Blackboard assignment: online scavenger hunt (opens Monday, due by 11:59pm on Sunday 11/1) WED NOV 11 FRI NOV 13 No class—Blackboard assignment: essay five peer review. Post your draft by noon Friday, respond to two classmates’ by 11:59pm on Monday 11/16. You may wish to review skills from previous assignments as you work on this essay: • essay one: telling a story, creating an emotional response • essay two: how to create emotional response, utilizing evidence • essay three: defining important terms, using logic • essay four: establishing character and credibility WED OCT 28 Discuss “Our Unhealthy Obsession with Sickness (p. 469) MON OCT 26 Essay Four Due; Essay Five Assigned; meet in 70-122 MON NOV 16 No class—Dr. Hill at BTW Symposium (you can attend, too!) Meet in 70-122 for research time and citing instruction MON NOV 18 Essay five due; final portfolio assigned

Objective: Persuade readers that they should fear a threat of your choosing, real or fabricated. Due Date: Wednesday, November 18th Length: 4-5 pages Format: typed, double-spaced, standard font and margins For this essay, you will be putting together all the aspects of argument that we have been learning about over the last few weeks. You will be using those elements to convince your readers that some issue of your choosing is a threat to them. This issue can be a real threat that you believe people should actually be aware of, or it can be a threat that is not real but that you treat as real (whether it be a fictional/legendary threat or something that is perhaps a small threat but that you present as a big one). Your job is to convince your audience to take this threat seriously, and to do that, you will need to make use of emotional appeal (especially to fear—think back to essays one and two), logical appeal (partly use of details/facts/ evidence we discussed in essay four, but also through definition such as we worked on in essay three), and ethical appeal (your own credibility—think back to issues besides logic and evidence covered in essay four). You may choose to include outside sources if you wish, but you must cite them if you use them and indicate when you are using the words of the original source. We will discuss how to find and to cite them to prepare you to use them correctly. If writing about a fictional threat, you may wish to make up sources. If you do so, I leave it up to you whether you formally cite them (though you must do this if you are using real sources) or informally refer to them in a manner similar to what we saw in the articles we read for essay four. Turning in an essay in which significant portions are not written by you and/or without outside sources cited will result in an essay grade of zero (and not revisable for a higher grade). If you are unsure what to cite, let me know. For ideas, you may want to browse the website snopes.com. This site contains lists and research about many feasible topics for this essay. Try not to use Snopes itself as a source—most entries there contain a list of sources that would be more appropriate for you to utilize and credit in your research. You may also choose to write about a topic covered by one of the essay four articles—if you liked an issue but felt that the warning about it was not very credible, you can use this paper as an opportunity to write about that topic but in a believable, convincing way. Whatever you choose as your topic, by the end of it, you want your reader to believe that what you discuss is a real threat to them. Essay Five: Argument Paper/Warning Assignment Description English 101, Sections 26 & 30 Fall 2015 Skills We Will Cover In This Unit: • finding & citing sources • utilizing emotional, logical, and ethical appeal SCHEDULE GRADING Incomplete papers or papers that stray from the assigned topic/purpose will receive a D or F. C B A To earn at least a C, the paper should: • have a clearly established threat that it attempts to warn the reader about • cite any information obtained from outside sources • be written in such a way as it can be easily understood by the reader To earn a B, the paper should fulfill the criteria above, plus: • include at least one section intended to appeal to the reader’s emotions (especially fear) • include logical support in the form of evidence, details, or other forms of establishing logical reasoning • be organized well, which includes having a clear sense of structure and transitioning into new ideas • include only the information and discussion necessary to accomplish the purpose of the assignment • have only a few grammatical errors, and those should not interfere with understanding To earn an A, the paper should fulfill the criteria for a B paper, plus: • possess strong unity of ideas • skillfully utilize all three rhetorical appeals • make a convincing case that the threat is real • be nearly free of grammatical or wording problems FRI OCT 30 MON NOV 2 discuss “We Are Training Our Kids to Kill” (p. 481) WED NOV 4 discuss “How Bingeing Became the New College Sport” (p. 476) FRI NOV 6 Homecoming—no classes after noon, no Blackboard assignment MON NOV 9 Discuss “The Real Skinny” (p. 492) No class—Blackboard assignment: online scavenger hunt (opens Monday, due by 11:59pm on Sunday 11/1) WED NOV 11 FRI NOV 13 No class—Blackboard assignment: essay five peer review. Post your draft by noon Friday, respond to two classmates’ by 11:59pm on Monday 11/16. You may wish to review skills from previous assignments as you work on this essay: • essay one: telling a story, creating an emotional response • essay two: how to create emotional response, utilizing evidence • essay three: defining important terms, using logic • essay four: establishing character and credibility WED OCT 28 Discuss “Our Unhealthy Obsession with Sickness (p. 469) MON OCT 26 Essay Four Due; Essay Five Assigned; meet in 70-122 MON NOV 16 No class—Dr. Hill at BTW Symposium (you can attend, too!) Meet in 70-122 for research time and citing instruction MON NOV 18 Essay five due; final portfolio assigned

No expert has answered this question yet.   You can … Read More...