Essential Statistics for Public Managers and Policy Analysts / Edition 3 by Evan M Berman, Xiaohu Wang 1-Use the public perception dataset. Is the relationship between watching Orange TV (watch), the county’s cable television station, and trusting the government to do what is right most of the time (trust) statistically significant? Do you consider this a causal relationship or an association? Does the analysis satisfy the assumptions of the Chi-square test? If not, how might you address this problem? 2-Use the public perception dataset. Examine the relationship between residents who trust the county government to do what is right most of the time (trust) and their belief that county government works efficiently (works). What is the practical significant of this relationship? 3-Use the public perception dataset. In Chapter 10 of this workbook, you used Chi-square to examine the relationship between residents who trust the county government to do what is right most of the time (trust) and their belief that county government works efficiently (works). Reexamine this relationship using measures of gamma, Somer’s d, Kendall’s tau-c. What do you conclude? 4-Table W 12.1 is the printout of a t-test (independent samples). The continuous variable is an index variable of environmental concern. The dichotomous variable is a measure of education (college versus no college). Interpret and write up the results. What other information would you like to have about this relationship? 5-Table W 12.2 is the printout of a period-samples t-test. The data are before-and-after measurements of a public safety program. Interpret and write up the results. What other information would you like to have about this relationship? 6-Use the Public Perception dataset. An analyst wants to know whether incomes vary by age group. Treat the income variable as a continuous variable, and treat the age variable as an ordinal variable. Calculate the means for each of these groups, and then use ANOVA to determine whether any of these differences are statistically significant. For which group is the relationship linear?

## Essential Statistics for Public Managers and Policy Analysts / Edition 3 by Evan M Berman, Xiaohu Wang 1-Use the public perception dataset. Is the relationship between watching Orange TV (watch), the county’s cable television station, and trusting the government to do what is right most of the time (trust) statistically significant? Do you consider this a causal relationship or an association? Does the analysis satisfy the assumptions of the Chi-square test? If not, how might you address this problem? 2-Use the public perception dataset. Examine the relationship between residents who trust the county government to do what is right most of the time (trust) and their belief that county government works efficiently (works). What is the practical significant of this relationship? 3-Use the public perception dataset. In Chapter 10 of this workbook, you used Chi-square to examine the relationship between residents who trust the county government to do what is right most of the time (trust) and their belief that county government works efficiently (works). Reexamine this relationship using measures of gamma, Somer’s d, Kendall’s tau-c. What do you conclude? 4-Table W 12.1 is the printout of a t-test (independent samples). The continuous variable is an index variable of environmental concern. The dichotomous variable is a measure of education (college versus no college). Interpret and write up the results. What other information would you like to have about this relationship? 5-Table W 12.2 is the printout of a period-samples t-test. The data are before-and-after measurements of a public safety program. Interpret and write up the results. What other information would you like to have about this relationship? 6-Use the Public Perception dataset. An analyst wants to know whether incomes vary by age group. Treat the income variable as a continuous variable, and treat the age variable as an ordinal variable. Calculate the means for each of these groups, and then use ANOVA to determine whether any of these differences are statistically significant. For which group is the relationship linear?

info@checkyourstudy.com
EE118 FALL 2012 SAN JOSE STATE UNIVERSITY Department of Electrical Engineering TEST 2 — Digital Design I October 24, 2012 10:30 a.m. – 11:45 a.m. — Closed Book & Closed Notes — — No Crib Sheet Allowed — STUDENT NAME: (Last) Claussen , (First) Matthew STUDENT ID NUMBER (LAST 4 DIGITS): No interpretation of test problems will be given during the test. If you are not sure of what is intended, make appropriate assumptions and continue. Do not unstaple !!! Problems 1-14(4 points each) TOTAL Problems 15 – 17 (15 pts each) 1203 2 For the next 14 problems, circle the correct answer. No partial credit will be given. PROBLEM 1 (4 points) Which statement is not true? A. Any combinational circuit may be designed using multiplexers only. B. Any combinational circuit may be designed using decoders only. C. All Sequential circuits are based on cross-coupled NAND or NOR gates. D. A hazard in a digital system is an undesirable effect caused by either a deficiency in the system or external influences. E. None of the above PROBLEM 2 (4 points) For a 2-bit comparator comparing 2-bit numbers A = (a1 a0) and B = (b1 b0), what is the proper function for the f(A>B) output through logical reasoning? A. a1 b1’ + (a1 b1 + a1’b1’ ) a0 b0’ B. a1 b1’ + (a1 b1’+ a1’b1 ) a0 b0 C. a1 a0’ + (a1 a0 + b1’b0’ ) b1 b0’ D. a1 a0 + (a1 a0’+ b1’b0 ) b1 b0 PROBLEM 3 (4 points) What is the priority scheme of this encoder? Inputs Outputs I3 I2 I1 I0 O1 O 0 d d 1 d 0 1 d d 0 1 0 0 d 1 0 0 1 0 1 0 0 0 1 1 A. I3 > I2 > I1 >I0 B. I0 > I1 > I2 >I3 C. I1 > I0 > I2 >I3 D. I2 > I1 > I3 >I0 3 PROBLEM 4 (4 points) Which is the correct binary representation of the decimal number 46.625? A. 101101.001 B. 101000.01 C. 111001.001 D. 101110.101 PROBLEM 5 (4 points) Which is the decimal equivalent number of the sum of the two 8-bit 2’s complement numbers FB16 and 3748? A. 3 B. 5 C. 7 D. 9 PROBLEM 6 (4 points) For the MUX-based circuit shown below, f(X,Y,Z) = ? X Y Z f A. X’Y’ + Y’Z’ B. X’Y’Z’ + YZ’ C. XYZ’ + Y’Z D. X’Y’Z’ + YZ 1 0 MUX 4 PROBLEM 7 (4 points) Which is the correct output F of this circuit? E C B D F A A. (A’E+AB)(C’D) B. (AE+A’B)(C’+D) C. (A’E+AB)(C’D’+CD’+CD) D. (A’E+AB)(CD’)’ PROBLEM 8 (5 points) In order to correctly perform 2910  14510, how many bits are required to represent the numbers? A 8 B 9 C 10 D 11 PROBLEM 9 (4 points) Which is the negative 2’s complement equivalent of the 8-bit number 01001101? A. 11001101 B. 10111100 C. 10110000 D. 10110011 0 2-1 1 MUX 0 0 1 1 2-4 decoder 2 EN 3 5 PROBLEM 10 (4 points) Which is the correct statement describing the behavior of the following Verilog code? module whatisthis(hmm, X, Y); output [3:0] hmm; input [3:0] X, Y; assign hmm = (X < Y) ? X : Y; endmodule A. If X>Y, hmm becomes 1111. B. hmm assumes min(X,Y). C. If X<Y, hmm becomes 1111. D. hmm assumes max(X,Y). PROBLEM 11 (4 points) Which Boolean expression corresponds to the function g(W,X,Y,Z) implemented by the following “non-priority” encoder-based circuit? Assume that one and only one input is high at any time. f W X g Y Z A. Y + Z B. W + Y C. X + Y D. X + Z PROBLEM 12 (4 points) Which Boolean expression corresponds to the output of the following logic diagram? (/B = B’) A. Z = ( A(B’ + C)’ )’ + ( (B’ + C)’ + D )’ B. Z= A(B C’) + (B C’ + D) C. Z = (A(B’ + C)(B’ + C + D) )’ D. Z = A(B’ + C)’ + (B’ + C + D)’ 0 0 1 1 2 3 Encoder 6 PROBLEM 13 (4 points) Which is the correct gate-level circuit in minimal SOP form for the following circuit? A F = Y’X’ + W’ZY’X B F = YX’ + W’Z’Y’X C F = YX’ + W’ZY’X D F = Y’X + W’ZY’X’ PROBLEM 14 (4 points) For the following flow map of a certain cross-coupled gate circuit, the circuit is currently in the underlined state. If the inputs YZ change to 11, the circuit becomes meta-stable. Between which two states (WX) does the circuit oscillate ? A 00  11 B 01  10 C 11  10 D 10  00 YZ WX 00 01 11 10 00 00 11 00 10 01 10 10 10 01 11 00 00 11 01 10 10 01 01 10 G1 Y0 G2A Y1 G2B Y2 Y3 A Y4 B Y5 C Y6 Y7 G1 Y0 G2A Y1 G2B Y2 Y3 A Y4 B Y5 C Y6 Y7 OR W X Y Z X Y Z F + 5 V 7 For each of the next 3 problems, show all your work. Partial credits will be given. PROBLEM 15 (15 points) 1) Which logic variable causes the hazard for the circuit given by the K-map below? 2) Using the timing diagram, clearly show how the hazard occurs. 3) Find the best hazard-free logic function. YZ WX 00 01 11 10 00 0 0 1 1 01 0 0 0 0 11 1 0 0 0 10 1 0 1 1 8 PROBLEM 16(15 points) Analyze the following cross-coupled NAND gates by showing: (a) flow map with stable states circled and with meta-stability condition shown by arrows, (b) state table, and (c) completed timing diagram below. Note that d is the propagation delay of each gate. XY G1(t)G2(t) 00 01 11 10 00 01 11 10 Inputs  XY=00 XY=01 XY=11 XY=10 Present States  X Y G1(t) G2(t) 0 d 2d 3d 4d 5d 6d 7d 8d 9d X Y G1 G2 9 PROBLEM 17 (15 points) Using Quine-McCluskey algorithm, find the minimal SOP for the following minterm list. f(A, B, C) = (1,2,3,4,6,7) w(j) j Match I Match II 0 1 2 3 PI Covering Table

## EE118 FALL 2012 SAN JOSE STATE UNIVERSITY Department of Electrical Engineering TEST 2 — Digital Design I October 24, 2012 10:30 a.m. – 11:45 a.m. — Closed Book & Closed Notes — — No Crib Sheet Allowed — STUDENT NAME: (Last) Claussen , (First) Matthew STUDENT ID NUMBER (LAST 4 DIGITS): No interpretation of test problems will be given during the test. If you are not sure of what is intended, make appropriate assumptions and continue. Do not unstaple !!! Problems 1-14(4 points each) TOTAL Problems 15 – 17 (15 pts each) 1203 2 For the next 14 problems, circle the correct answer. No partial credit will be given. PROBLEM 1 (4 points) Which statement is not true? A. Any combinational circuit may be designed using multiplexers only. B. Any combinational circuit may be designed using decoders only. C. All Sequential circuits are based on cross-coupled NAND or NOR gates. D. A hazard in a digital system is an undesirable effect caused by either a deficiency in the system or external influences. E. None of the above PROBLEM 2 (4 points) For a 2-bit comparator comparing 2-bit numbers A = (a1 a0) and B = (b1 b0), what is the proper function for the f(A>B) output through logical reasoning? A. a1 b1’ + (a1 b1 + a1’b1’ ) a0 b0’ B. a1 b1’ + (a1 b1’+ a1’b1 ) a0 b0 C. a1 a0’ + (a1 a0 + b1’b0’ ) b1 b0’ D. a1 a0 + (a1 a0’+ b1’b0 ) b1 b0 PROBLEM 3 (4 points) What is the priority scheme of this encoder? Inputs Outputs I3 I2 I1 I0 O1 O 0 d d 1 d 0 1 d d 0 1 0 0 d 1 0 0 1 0 1 0 0 0 1 1 A. I3 > I2 > I1 >I0 B. I0 > I1 > I2 >I3 C. I1 > I0 > I2 >I3 D. I2 > I1 > I3 >I0 3 PROBLEM 4 (4 points) Which is the correct binary representation of the decimal number 46.625? A. 101101.001 B. 101000.01 C. 111001.001 D. 101110.101 PROBLEM 5 (4 points) Which is the decimal equivalent number of the sum of the two 8-bit 2’s complement numbers FB16 and 3748? A. 3 B. 5 C. 7 D. 9 PROBLEM 6 (4 points) For the MUX-based circuit shown below, f(X,Y,Z) = ? X Y Z f A. X’Y’ + Y’Z’ B. X’Y’Z’ + YZ’ C. XYZ’ + Y’Z D. X’Y’Z’ + YZ 1 0 MUX 4 PROBLEM 7 (4 points) Which is the correct output F of this circuit? E C B D F A A. (A’E+AB)(C’D) B. (AE+A’B)(C’+D) C. (A’E+AB)(C’D’+CD’+CD) D. (A’E+AB)(CD’)’ PROBLEM 8 (5 points) In order to correctly perform 2910  14510, how many bits are required to represent the numbers? A 8 B 9 C 10 D 11 PROBLEM 9 (4 points) Which is the negative 2’s complement equivalent of the 8-bit number 01001101? A. 11001101 B. 10111100 C. 10110000 D. 10110011 0 2-1 1 MUX 0 0 1 1 2-4 decoder 2 EN 3 5 PROBLEM 10 (4 points) Which is the correct statement describing the behavior of the following Verilog code? module whatisthis(hmm, X, Y); output [3:0] hmm; input [3:0] X, Y; assign hmm = (X < Y) ? X : Y; endmodule A. If X>Y, hmm becomes 1111. B. hmm assumes min(X,Y). C. If X

info@checkyourstudy.com Operations Team Whatsapp( +91 9911743277)