There is a term called “hydrotherapy” (http://en.wikipedia.org/wiki/Hydrotherapy), which states that cold water bath can reduce pain and improve health, especially immune function. Explain the possible benefits and possible problems of hydrotherapy with the information you learned.

There is a term called “hydrotherapy” (http://en.wikipedia.org/wiki/Hydrotherapy), which states that cold water bath can reduce pain and improve health, especially immune function. Explain the possible benefits and possible problems of hydrotherapy with the information you learned.

Hydrotherapy is the use of water to treat a disease … Read More...
My Success Assignment ‘where you want to be in ten years’ Objective Make a plan and try to see all the details. Does some research, ask questions, and consider what it’s going to take to get where you want to be.

My Success Assignment ‘where you want to be in ten years’ Objective Make a plan and try to see all the details. Does some research, ask questions, and consider what it’s going to take to get where you want to be.

  My Road map for career planning is based on … Read More...
Q51. Place the following Assets in groups giving justification for your choice – Website – Digital Certificates – SOP – KYC guidelines – Portable storage devices

Q51. Place the following Assets in groups giving justification for your choice – Website – Digital Certificates – SOP – KYC guidelines – Portable storage devices

Q51. Place the following Assets in groups giving justification for … Read More...
1 15325 Pre-work assignment Preparing your conflict scenario (four copies of your scenario must be brought to the workshop) Dear Participant, This letter introduces some pre-course work that is essential for you to complete before arriving at the workshop for the subject Negotiations and Conflict Management: 15325 – in which you are enrolled. The workshop will combine theory and practice in a manner intended to use the wisdom in the room to bring together our thinking about enacting the practices you will learn about. You will bring with you a scenario to work through during the workshop. This letter explains how to write that. 1 The situation (you can give it a title if that helps to frame it for you) Your first task is to identify a situation that is (or in your opinion is) unresolved and has potential to escalate into a matter causing stress, tension, delay or confusion. This may be something at work or in a context where you have the power to take action. You will use fictional names and disguise other facts to ensure confidentiality, but it is essential that this is a real situation – not a hypothetical or fictional one. 2 The Details To enable others to understand the context you will need to describe the following – A The people. Describe each person using the following items – Name – Use a fictional name for each person and do not include more than four others apart from yourself. You can use your own name if you wish or also disguise that as well. General facts about each person – gender, age range, role title, marital status (if relevant) work/life location (if other than yours) Personal characteristics – select at least 5 key words/phrases chosen from the list at the end of this letter Relationship to others in the scenario – boss, subordinate, peer, family member, relative etc. B The context. Type of business or other relevant information to provide a general setting for the moment you will use to describe the unresolved issue. C The event (moment in time). This can be at least partly imagined in that you will need to summarise a lot of information and it might be easier to do so if you write it as conversation even if that has not happened. 2 A sample example written in this way follows. This is a real scenario written by a person who will not be attending the workshop. It took 40 minutes to write. That involved 10 minutes to collect thoughts, select words and frame the setting and then 30 minutes to put it into the words you are reading. The advice is to allow yourself at least this amount of time and also to find a quiet space and time to write your scenario. Example Case Study Title – Where is that space? Setting – a Sydney residential street, in a smallish inner city suburb. There is a main road at one end of the street and a large schoolyard at the other end. At the corner of the street and the main road is a temporary church site whose owners are seeking to extend and develop the site. On the opposite corner is a second hand car yard with the imaginative title of “Junk your Jalopy” (JyJ). Aside from a block of six flats next to the home Eva has lived in for 12 years, all the other residences are single storey homes most built in the first two decades of the 20th century. Most residents have at least one car – often two. Umberto works at JyJ and may be a part owner. He doesn’t live nearby. On a recent occasion Eva, who is reasonably laid back but can be forgetful, was moved to anger by the presence, in the street outside her front door, of a very old and battered panel van that she knew did not belong to any of the residents. It has been there for nearly two weeks and meant that she was parking her car out of sight in a side lane, on land owned by the church. This is not official parking for the street and is often blocked off by the church. Walking to the corner one morning she saw Umberto taking photos of a motorbike and went to raise the issue of the van with him. He is not particularly interested in others’ concerns about the lack of parking and merely wants to make a success of the business. If that means parking extra cars in the street and annoying a few residents he’s opportunistic enough to do so without compunction. Although she is usually fearful of conflict Eva was determined to do something to try and put a stop to JYJ’s habit of parking cars illegally in the residential area. She opened the conversation by asking if Umberto knew anything about the van. He denied all knowledge of it and became quite aggressive (or at least it seemed that way to Eva) about the matter of cars in the street, denying that any were from JyJ, suggesting she talk to the owners of the spare parts yard facing the main road. As Eva tried to ask him to consider the needs and rights of residents, Umberto became ever more inflexible disregarding her issue and suggesting she leave his premises. Although she is quite creative, and has worked for 30 years in a variety of roles Eva is not always able to speak her mind easily, and his denials were not helping. He even began whinging about having to ‘cop the s—t’ for the spare parts yard but resisted the idea of marking his cars so residents could see those parked illegally were not his. 3 As she walked away Eva heard herself say “well if you do nothing about it, then you’ll have to continue copping the s—t, and I hope it hurts”, realising as she did so that she would not be any better off for her efforts. When she got home that night the van was gone – but a different one had arrived within four days. The issue is unresolved. Words to describe the people in your scenario accurate inquisitive empire building adaptable knowledgeable erratic analytical logical fearful of conflict broad in outlook loyal forgetful calm & confident observant frightened of failure caring opportunistic fussy challenging original impatient clever outgoing impulsive competitive outspoken indecisive conscientious perfectionist inflexible conscious of priorities persistent insular consultative persuasive laid back 4 co-operative practical manipulative creative professionally dedicated not interested in others diplomatic Marking Criteria for the Case Study How to get the maximum marks for the case study! For 10 marks – the case study – Accurately uses more than the required number of suggested words to describe the people in the scenario. That is the words used to describe the people are descriptive and placed appropriately to ensure a reader is able to create an informative word picture of each person. The sequence of events is presented in a manner that ensures the current situation, and possible consequences of any future actions, are easily understood by a reader not familiar with the context. Includes enough information to ensure that a stranger does not need to ask additional questions to affirm understanding of the situation as described in the case study. For 8 – 9 marks – the case study – Uses the set minimum number of words. The words are used correctly. The sequence is reasonably ordered, but readers find they need to ask one or two questions about the actual context, order of events. There is less that a sufficient amount of information to ensure that a stranger will quickly understand the nature of issues that remain unresolved. For 5 – 7 – the case study – Uses the set minimum number of words. Not all words are used appropriately in the context, but a stranger is able to gain an impression of the people. The sequence of events – as presented in the case study text – needs some re-ordering in response to questions from other readers to enable them to understand the issues. Strangers will need to seek additional information before they feel able to understand the issue and/or the context. For F = less than 5 – the case study – Uses fewer than the set minimum number of words. They do not add to the information about the people. 5 The sequence of events is unclear and does not represent the issue/s in a manner that can be understood by a stranger. A good deal of additional information is required before a stranger can understand the nature of the issues and context.

1 15325 Pre-work assignment Preparing your conflict scenario (four copies of your scenario must be brought to the workshop) Dear Participant, This letter introduces some pre-course work that is essential for you to complete before arriving at the workshop for the subject Negotiations and Conflict Management: 15325 – in which you are enrolled. The workshop will combine theory and practice in a manner intended to use the wisdom in the room to bring together our thinking about enacting the practices you will learn about. You will bring with you a scenario to work through during the workshop. This letter explains how to write that. 1 The situation (you can give it a title if that helps to frame it for you) Your first task is to identify a situation that is (or in your opinion is) unresolved and has potential to escalate into a matter causing stress, tension, delay or confusion. This may be something at work or in a context where you have the power to take action. You will use fictional names and disguise other facts to ensure confidentiality, but it is essential that this is a real situation – not a hypothetical or fictional one. 2 The Details To enable others to understand the context you will need to describe the following – A The people. Describe each person using the following items – Name – Use a fictional name for each person and do not include more than four others apart from yourself. You can use your own name if you wish or also disguise that as well. General facts about each person – gender, age range, role title, marital status (if relevant) work/life location (if other than yours) Personal characteristics – select at least 5 key words/phrases chosen from the list at the end of this letter Relationship to others in the scenario – boss, subordinate, peer, family member, relative etc. B The context. Type of business or other relevant information to provide a general setting for the moment you will use to describe the unresolved issue. C The event (moment in time). This can be at least partly imagined in that you will need to summarise a lot of information and it might be easier to do so if you write it as conversation even if that has not happened. 2 A sample example written in this way follows. This is a real scenario written by a person who will not be attending the workshop. It took 40 minutes to write. That involved 10 minutes to collect thoughts, select words and frame the setting and then 30 minutes to put it into the words you are reading. The advice is to allow yourself at least this amount of time and also to find a quiet space and time to write your scenario. Example Case Study Title – Where is that space? Setting – a Sydney residential street, in a smallish inner city suburb. There is a main road at one end of the street and a large schoolyard at the other end. At the corner of the street and the main road is a temporary church site whose owners are seeking to extend and develop the site. On the opposite corner is a second hand car yard with the imaginative title of “Junk your Jalopy” (JyJ). Aside from a block of six flats next to the home Eva has lived in for 12 years, all the other residences are single storey homes most built in the first two decades of the 20th century. Most residents have at least one car – often two. Umberto works at JyJ and may be a part owner. He doesn’t live nearby. On a recent occasion Eva, who is reasonably laid back but can be forgetful, was moved to anger by the presence, in the street outside her front door, of a very old and battered panel van that she knew did not belong to any of the residents. It has been there for nearly two weeks and meant that she was parking her car out of sight in a side lane, on land owned by the church. This is not official parking for the street and is often blocked off by the church. Walking to the corner one morning she saw Umberto taking photos of a motorbike and went to raise the issue of the van with him. He is not particularly interested in others’ concerns about the lack of parking and merely wants to make a success of the business. If that means parking extra cars in the street and annoying a few residents he’s opportunistic enough to do so without compunction. Although she is usually fearful of conflict Eva was determined to do something to try and put a stop to JYJ’s habit of parking cars illegally in the residential area. She opened the conversation by asking if Umberto knew anything about the van. He denied all knowledge of it and became quite aggressive (or at least it seemed that way to Eva) about the matter of cars in the street, denying that any were from JyJ, suggesting she talk to the owners of the spare parts yard facing the main road. As Eva tried to ask him to consider the needs and rights of residents, Umberto became ever more inflexible disregarding her issue and suggesting she leave his premises. Although she is quite creative, and has worked for 30 years in a variety of roles Eva is not always able to speak her mind easily, and his denials were not helping. He even began whinging about having to ‘cop the s—t’ for the spare parts yard but resisted the idea of marking his cars so residents could see those parked illegally were not his. 3 As she walked away Eva heard herself say “well if you do nothing about it, then you’ll have to continue copping the s—t, and I hope it hurts”, realising as she did so that she would not be any better off for her efforts. When she got home that night the van was gone – but a different one had arrived within four days. The issue is unresolved. Words to describe the people in your scenario accurate inquisitive empire building adaptable knowledgeable erratic analytical logical fearful of conflict broad in outlook loyal forgetful calm & confident observant frightened of failure caring opportunistic fussy challenging original impatient clever outgoing impulsive competitive outspoken indecisive conscientious perfectionist inflexible conscious of priorities persistent insular consultative persuasive laid back 4 co-operative practical manipulative creative professionally dedicated not interested in others diplomatic Marking Criteria for the Case Study How to get the maximum marks for the case study! For 10 marks – the case study – Accurately uses more than the required number of suggested words to describe the people in the scenario. That is the words used to describe the people are descriptive and placed appropriately to ensure a reader is able to create an informative word picture of each person. The sequence of events is presented in a manner that ensures the current situation, and possible consequences of any future actions, are easily understood by a reader not familiar with the context. Includes enough information to ensure that a stranger does not need to ask additional questions to affirm understanding of the situation as described in the case study. For 8 – 9 marks – the case study – Uses the set minimum number of words. The words are used correctly. The sequence is reasonably ordered, but readers find they need to ask one or two questions about the actual context, order of events. There is less that a sufficient amount of information to ensure that a stranger will quickly understand the nature of issues that remain unresolved. For 5 – 7 – the case study – Uses the set minimum number of words. Not all words are used appropriately in the context, but a stranger is able to gain an impression of the people. The sequence of events – as presented in the case study text – needs some re-ordering in response to questions from other readers to enable them to understand the issues. Strangers will need to seek additional information before they feel able to understand the issue and/or the context. For F = less than 5 – the case study – Uses fewer than the set minimum number of words. They do not add to the information about the people. 5 The sequence of events is unclear and does not represent the issue/s in a manner that can be understood by a stranger. A good deal of additional information is required before a stranger can understand the nature of the issues and context.

(Conflict scenario) Title – Who steal the gold?   Setting: … Read More...
Name ____________________________________ Motion in 2D Simulation Go to http://phet.colorado.edu/simulations/sims.php?sim=Motion_in_2D and click on Run Now. 1) Once the simulation opens, click on ‘Show Both’ for Velocity and Acceleration at the top of the page. Now click and drag the red ball around the screen. Make 3 observations about the blue and green arrows (also called vectors) as you drag the ball around. 2) Which color vector (arrow) represents velocity and which one represents acceleration? How can you tell? 3) Try dragging the ball around and around in a circular path. What do you notice about the lengths and directions of the blue and green vectors? Describe their behavior in detail below. 4) Now move the ball at a slow constant speed across the screen. What do you notice now about the vectors? Explain why this happens. 5) What happens to the vectors when you jerk the ball rapidly back and forth across the screen? Explain why this happens. 6) Now click on ‘Circular’ on the bottom. Describe the motion of the ball and the behavior of the two vectors. Is there a force on the ball? How can you tell? Be detailed in your explanations. 7) Click on ‘Simple Harmonic’ on the bottom. Based on the behavior of the ball and the vectors, write a definition of Simple Harmonic Motion.

Name ____________________________________ Motion in 2D Simulation Go to http://phet.colorado.edu/simulations/sims.php?sim=Motion_in_2D and click on Run Now. 1) Once the simulation opens, click on ‘Show Both’ for Velocity and Acceleration at the top of the page. Now click and drag the red ball around the screen. Make 3 observations about the blue and green arrows (also called vectors) as you drag the ball around. 2) Which color vector (arrow) represents velocity and which one represents acceleration? How can you tell? 3) Try dragging the ball around and around in a circular path. What do you notice about the lengths and directions of the blue and green vectors? Describe their behavior in detail below. 4) Now move the ball at a slow constant speed across the screen. What do you notice now about the vectors? Explain why this happens. 5) What happens to the vectors when you jerk the ball rapidly back and forth across the screen? Explain why this happens. 6) Now click on ‘Circular’ on the bottom. Describe the motion of the ball and the behavior of the two vectors. Is there a force on the ball? How can you tell? Be detailed in your explanations. 7) Click on ‘Simple Harmonic’ on the bottom. Based on the behavior of the ball and the vectors, write a definition of Simple Harmonic Motion.

Name ____________________________________                                      Motion in 2D Simulation   Go to http://phet.colorado.edu/simulations/sims.php?sim=Motion_in_2D … Read More...
Lab #02 Relationship between distance & illumination As engineers, we deal with the effects of light on many projects. The first key to working with light is understanding how the light waves propagate. Once we understand light waves, we will test a manufacturers claim that lower wattage fluorescent bulbs output the same quantity of light as incandescent bulbs. This experiment is designed for you to work as a class to collect data regarding a given light source and then, working within your individual group, attempt to determine the re-lationship(s) between the measured parameter (lux) and the distance (meter) from the source. Measure and record data, in the manner described below, as a class. Work on your so-lutions as a group of 2-3. Your first task is to develop a mathematical formula, or a simple relationship that predicts the amount of lux that can be expected at a given distance from the light source. Purpose: The purpose of this assignment is to accomplish the following goals: • Gain experience collecting data in a controlled, systematic fashion. • Practice working as a group to infer relationships between variables from your collected data. • Use the data you collect to draw conclusions. In this case, to evaluate the hypothesis that the fluorescent and incandescent bulb output the same quantity of light. • Become accustomed to working in teams (note, teamwork often requires individual work as well). • Learn to balance workload across your team. (Individuals will be responsible for certain tasks, and ensure they are performed on time and to the desired quality level. • Demonstrate to me what your group’s attention to detail is, as well as your ability to construct a written explanation of work. Problem: What effect does distance have on the lux, intensity, emitted from a light source and are the 5 light bulbs producing the same intensity light? Use the rough protocol listed below and the data sheet provided to collect your data, then complete the assignment outlined below. 1. Set up a light source on one of the lab tables. 2. Using the illumination meter, measure the lux at 0.5 meter increments from the source back to 3 meters from the source. • Be sure the keep the meter perpendicular to the horizontal line from the source at all times! 3. Record your measurements on your data sheets. 4. Measurements should be taken in a random order 5. Repeat the experiment 3 times, using different people and a different order of collection and different colors. Assignment Requirements: 1. Create the appropriate graph(s) to express the data you have collected. Your report must, at the minimum, contain the following: a. An X-Y Scatter plot showing the data from both bulbs. The chart should follow all conventions taught in lecture, and display the equation for the trend-line you choose. b. A column or bar chart of your choosing showing the difference, if any, between the two bulbs. 2. Write an introduction, briefly explaining what you are accomplishing with this exper-iment. 3. Create a hierarchal outline that states, step by step, each activity that was performed to conduct the experiment and analyze the experimental data. 4. Anova analysis for data collected 5. Write a verbal explanation of what each of the charts from requirement #1 are showing. 6. Include, at the end of the document, a summary of all the tasks required to complete the assignment, including the 5 listed above, and which member or members of the group were principally responsible for completing those tasks. This should be in the form of a simple list. 7. Write at least 3 possible applications of the experiment with detailed explanation. DUE DATE: This assignment is to be completed and turned in at the beginning of your laboratory meeting during the week of 18th February Microsoft office package: Excel: Insert, page layout tab functions, Mean, standard deviation, graph functions

Lab #02 Relationship between distance & illumination As engineers, we deal with the effects of light on many projects. The first key to working with light is understanding how the light waves propagate. Once we understand light waves, we will test a manufacturers claim that lower wattage fluorescent bulbs output the same quantity of light as incandescent bulbs. This experiment is designed for you to work as a class to collect data regarding a given light source and then, working within your individual group, attempt to determine the re-lationship(s) between the measured parameter (lux) and the distance (meter) from the source. Measure and record data, in the manner described below, as a class. Work on your so-lutions as a group of 2-3. Your first task is to develop a mathematical formula, or a simple relationship that predicts the amount of lux that can be expected at a given distance from the light source. Purpose: The purpose of this assignment is to accomplish the following goals: • Gain experience collecting data in a controlled, systematic fashion. • Practice working as a group to infer relationships between variables from your collected data. • Use the data you collect to draw conclusions. In this case, to evaluate the hypothesis that the fluorescent and incandescent bulb output the same quantity of light. • Become accustomed to working in teams (note, teamwork often requires individual work as well). • Learn to balance workload across your team. (Individuals will be responsible for certain tasks, and ensure they are performed on time and to the desired quality level. • Demonstrate to me what your group’s attention to detail is, as well as your ability to construct a written explanation of work. Problem: What effect does distance have on the lux, intensity, emitted from a light source and are the 5 light bulbs producing the same intensity light? Use the rough protocol listed below and the data sheet provided to collect your data, then complete the assignment outlined below. 1. Set up a light source on one of the lab tables. 2. Using the illumination meter, measure the lux at 0.5 meter increments from the source back to 3 meters from the source. • Be sure the keep the meter perpendicular to the horizontal line from the source at all times! 3. Record your measurements on your data sheets. 4. Measurements should be taken in a random order 5. Repeat the experiment 3 times, using different people and a different order of collection and different colors. Assignment Requirements: 1. Create the appropriate graph(s) to express the data you have collected. Your report must, at the minimum, contain the following: a. An X-Y Scatter plot showing the data from both bulbs. The chart should follow all conventions taught in lecture, and display the equation for the trend-line you choose. b. A column or bar chart of your choosing showing the difference, if any, between the two bulbs. 2. Write an introduction, briefly explaining what you are accomplishing with this exper-iment. 3. Create a hierarchal outline that states, step by step, each activity that was performed to conduct the experiment and analyze the experimental data. 4. Anova analysis for data collected 5. Write a verbal explanation of what each of the charts from requirement #1 are showing. 6. Include, at the end of the document, a summary of all the tasks required to complete the assignment, including the 5 listed above, and which member or members of the group were principally responsible for completing those tasks. This should be in the form of a simple list. 7. Write at least 3 possible applications of the experiment with detailed explanation. DUE DATE: This assignment is to be completed and turned in at the beginning of your laboratory meeting during the week of 18th February Microsoft office package: Excel: Insert, page layout tab functions, Mean, standard deviation, graph functions

info@checkyourstudy.com Lab #02 Relationship between distance & illumination As engineers, … Read More...
2/24/2015 Assignment 2 =3484333 1/22 Assignment 2 Due: 6:43pm on Saturday, February 28, 2015 You will receive no credit for items you complete after the assignment is due. Grading Policy Adding and Subtracting Vectors Conceptual Question Six vectors (A to F) have the magnitudes and directions indicated in the figure. Part A Which two vectors, when added, will have the largest (positive) x component? You did not open hints for this part. ANSWER: Part B Which two vectors, when added, will have the largest (positive) y component? You did not open hints for this part. ANSWER: C and E E and F A and F C and D B and D 2/24/2015 Assignment 2 =3484333 2/22 Part C Which two vectors, when subtracted (i.e., when one vector is subtracted from the other), will have the largest magnitude? You did not open hints for this part. ANSWER: Components of Vectors Shown is a 10 by 10 grid, with coordinate axes x and y . The grid runs from 5 to 5 on both axes. Drawn on this grid are four vectors, labeled through . This problem will ask you various questions about these vectors. All answers should be in decimal notation, unless otherwise specified. Part A C and D A and F E and F A and B E and D A and F A and E D and B C and D E and F _._ _._ ._ 2/24/2015 Assignment 2 =3484333 3/22 What is the x component of ? Express your answer to two significant figures. You did not open hints for this part. ANSWER: Part B What is the y component of ? Express your answer to the nearest integer. ANSWER: Part C What is the y component of ? Express your answer to the nearest integer. You did not open hints for this part. ANSWER: Part D What is the component of ? Express your answer to the nearest integer. You did not open hints for this part. ANSWER: _._ _4 = _._ _5 = _._ _5 = 4 _._ _4 = 2/24/2015 Assignment 2 =3484333 4/22 The following questions will ask you to give both components of vectors using the ordered pairs method. In this method, the x component is written first, followed by a comma, and then the y component. For example, the components of would be written 2.5,3 in ordered pair notation. The answers below are all integers, so estimate the components to the nearest whole number. Part E In ordered pair notation, write down the components of vector . Express your answers to the nearest integer. ANSWER: Part F In ordered pair notation, write down the components of vector . Express your answers to the nearest integer. ANSWER: Part G What is true about and ? Choose from the pulldown list below. ANSWER: Finding the Cross Product The figure shows two vectors and separated by an angle . You are given that , , and . _._ _._ _4, _5 = _._ _4 , _5 = _._ _._ They have different components and are not the same vectors. They have the same components but are not the same vectors. They are the same vectors. _ ._ _._ J56 _ .__ _ _ _ _.__ _ _ _ _ ._g_.__ _ ._ 2/24/2015 Assignment 2 =3484333 5/22 Part A Express as an ordered triplet of values, separated by commas. ANSWER: Part B Find the magnitude of . ANSWER: Part C Find the sine of the angle between and . ANSWER: Significant Figures Conceptual Question In the parts that follow select whether the number presented in statement A is greater than, less than, or equal to the number presented in statement B. Be sure to follow all of the rules concerning significant figures. _ ._ _ ._= _ ._ ]_ ]._ = _ ._ _._ TJO J__ = 2/24/2015 Assignment 2 =3484333 6/22 Part A Statement A: 2.567 , to two significant figures. Statement B: 2.567 , to three significant figures. Determine the correct relationship between the statements. You did not open hints for this part. ANSWER: Part B Statement A: (2.567 + 3.146 ), to two significant figures. Statement B: (2.567 , to two significant figures) + (3.146 , to two significant figures). Determine the correct relationship between the statements. ANSWER: Part C Statement A: Area of a rectangle with measured length = 2.536 and width = 1.4 . Statement B: Area of a rectangle with measured length = 2.536 and width = 1.41 . Since you are not told specific numbers of significant figures to round to, you must use the rules for multiplying numbers while respecting significant figures. If you need a reminder, consult the hint. Determine the correct relationship between the statements. You did not open hints for this part. ANSWER: LN LN Statement A is greater than less than equal to Statement B. LN LN LN LN Statement A is greater than less than equal to Statement B. N N N N 2/24/2015 Assignment 2 =3484333 7/22 ± Vector Dot Product Let vectors , , and . Calculate the following: Part A You did not open hints for this part. ANSWER: Part B What is the angle between and ? Express your answer using one significant figure. You did not open hints for this part. ANSWER: Part C ANSWER: Part D ANSWER: Statement A is greater than less than equal to Statement B. _.__ _ _Ã_ _.__ Ã_ _ _ _.__ Ã_Ã_ _ _._ø _._ = J”# _._ _._ J”# = SBEJBOT __._ø __._ = 2/24/2015 Assignment 2 =3484333 8/22 Part E Which of the following can be computed? You did not open hints for this part. ANSWER: and are different vectors with lengths and respectively. Find the following: Part F Express your answer in terms of You did not open hints for this part. ANSWER: Part G If and are perpendicular, You did not open hints for this part. ANSWER: _ _._ø __._ = _._ø _._ø _._ _._ø _._ø _._ _._ø _.___._ _ ø _._ _ .__ _ .__ __ __ __ = ø _ .__ _ .__ _ .__ _ .__ = ø _ .__ _ .__ 2/24/2015 Assignment 2 =3484333 9/22 Part H If and are parallel, Express your answer in terms of and . You did not open hints for this part. ANSWER: ± Resolving Vector Components with Trigonometry Often a vector is specified by a magnitude and a direction; for example, a rope with tension exerts a force of magnitude in a direction 35 north of east. This is a good way to think of vectors; however, to calculate results with vectors, it is best to select a coordinate system and manipulate the components of the vectors in that coordinate system. Part A Find the components of the vector with length = 1.00 and angle =20.0 with respect to the x axis as shown. Enter the x component followed by the y component, separated by a comma. You did not open hints for this part. ANSWER: Part B _ .__ _ .__ __ __ = ø _ .__ _ .__ _ ._ _ È _._ _ C È _._ = ._ 2/24/2015 Assignment 2 =3484333 10/22 Find the components of the vector with length = 1.00 and angle =20.0 with respect to the x axis as shown. Enter the x component followed by the y component, separated by a comma. You did not open hints for this part. ANSWER: Part C Find the components of the vector with length = 1.00 and angle 30.0 as shown. Enter the x component followed by the y component, separated by a comma. You did not open hints for this part. ANSWER: Exercise 1.28 Part A How many dollar bills would you have to stack to reach the moon? (Depending on age, dollar bills can be stacked with about 23 per millimeter.) Express your answer using one significant figure. ANSWER: Problem 1.80 A boulder of weight rests on a hillside that rises at a constant angle above the horizontal, as shown in the figure . Its weight is a force on the boulder that has direction vertically downward. _._ _ D È _._ = _._ _ ] _ È _._ = dollar bills 3 C 2/24/2015 Assignment 2 =3484333 11/22 Part A In terms of and , what is the component of the weight of the boulder in the direction parallel to the surface of the hill? Express your answer in terms of and . ANSWER: Part B What is the component of the weight in the direction perpendicular to the surface of the hill? Express your answer in terms of and . ANSWER: Part C An air conditioner unit is fastened to a roof that slopes upward at an angle of . In order that the unit not slide down the roof, the component of the unit’s weight parallel to the roof cannot exceed 550 N. What is the maximum allowed weight of the unit? ANSWER: Problem 1.84 You are camping with two friends, Joe and Karl. Since all three of you like your privacy, you don’t pitch your tents close together. Joe’s tent is 23.5 from yours, in the direction 19.0 north of east. Karl’s tent is 40.0 from yours, in the direction 36.0 south of east. C 3 C 3 ]3,_. ] = C 3 ]3,!., ] = ____È 3 = / N È N È 2/24/2015 Assignment 2 =3484333 12/22 Part A What is the distance between Karl’s tent and Joe’s tent? ANSWER: Multiple Choice Question 1.8 Part A The components of vectors and are given as follows: Ax = +5.7 Bx = 9.8 Ay = 3.6 By = 6.5 The magnitude of the vector difference , is closest to: ANSWER: OneDimensional Kinematics with Constant Acceleration Learning Goal: To understand the meaning of the variables that appear in the equations for onedimensional kinematics with constant acceleration. Motion with a constant, nonzero acceleration is not uncommon in the world around us. Falling (or thrown) objects and cars starting and stopping approximate this type of motion. It is also the type of motion most frequently involved in introductory kinematics problems. The kinematic equations for such motion can be written as , , where the symbols are defined as follows: is the position of the particle; _ = N _ ¥ _ ¥ à _ ¥ _ ¥ 5.0 11 5.0 16 250 4 0_ 4J_2J0_ _ __ 0_ 2 0 _ 2J __0 4 0 2/24/2015 Assignment 2 =3484333 13/22 is the initial position of the particle; is the velocity of the particle; is the initial velocity of the particle; is the acceleration of the particle. In anwering the following questions, assume that the acceleration is constant and nonzero: . Part A The quantity represented by is a function of time (i.e., is not constant). ANSWER: Part B The quantity represented by is a function of time (i.e., is not constant). ANSWER: Part C The quantity represented by is a function of time (i.e., is not constant). ANSWER: Part D The quantity represented by is a function of time (i.e., is not constant). ANSWER: 4J 2 0 2J _ _ Ü _ 4 true false 4J true false 2J true false 2 true false 2/24/2015 Assignment 2 =3484333 14/22 Part E Which of the given equations is not an explicit function of and is therefore useful when you don’t know or don’t need the time? ANSWER: Part F A particle moves with constant acceleration . The expression represents the particle’s velocity at what instant in time? ANSWER: More generally, the equations of motion can be written as and . Here is the time that has elapsed since the beginning of the particle’s motion, that is, , where is the current time and is the time at which we start measuring the particle’s motion. The terms and are, respectively, the position and velocity at . As you can now see, the equations given at the beginning of this problem correspond to the case , which is a convenient choice if there is only one particle of interest. To illustrate the use of these more general equations, consider the motion of two particles, A and B. The position of particle A depends on time as . That is, particle A starts moving at time with velocity , from . At time , particle B has twice the acceleration, half the velocity, and the same position that particle A had at time . Part G What is the equation describing the position of particle B? You did not open hints for this part. ANSWER: 0 4_ 4J_2J0_ _ __ 0_ 2 _ 2J __0 _ ___ 4à 2_ 2_J 4J _ 2J __0 only at time only at the “initial” time when a time has passed since the particle’s velocity was 0 _ _ 0 2J 4 0_ 4J_2J 0_ _ 0 __ _ 2 0 _ 2J __ 0 0 0 _ 0Ã0J 0 0J 4J 2J 0 _ 0J 0J _ _ 4″ 0 _ 4J _2J0_ ____0_ 0 _ 0J” _ _ 2J” _ 2J 4J” _ 4J 0 _ 0_ 0 _ _ 2/24/2015 Assignment 2 =3484333 15/22 Part H At what time does the velocity of particle B equal that of particle A? You did not open hints for this part. ANSWER: Given Positions, Find Velocity and Acceleration Learning Goal: To understand how to graph position, velocity, and acceleration of an object starting with a table of positions vs. time. The table shows the x coordinate of a moving object. The position is tabulated at 1s intervals. The x coordinate is indicated below each time. You should make the simplification that the acceleration of the object is bounded and contains no spikes. time (s) 0 1 2 3 4 5 6 7 8 9 x (m) 0 1 4 9 16 24 32 40 46 48 Part A Which graph best represents the function , describing the object’s position vs. time? 4# 0_ 4J__2J0_ _ __ 0_ 4# 0 _ 4J ____2J0__0_ 4# 0_ 4J__2J 0_0__ _ 0_ __ 0__ 4# 0 _ 4J ____2J 0_0_ __ 0_0_ _ 4# 0_ 4J__2J 0Ã0__ _ 0à __ 0__ 4# 0 _ 4J ____2J 0Ã0_ __ 0Ã0_ _ The two particles never have the same velocity. 0_ 0__ 2J __ 0__0__ 2J __ 0__0__ 2J __ 4 0 2/24/2015 Assignment 2 =3484333 16/22 You did not open hints for this part. ANSWER: Part B Which of the following graphs best represents the function , describing the object’s velocity as a function of time? You did not open hints for this part. ANSWER: 1 2 3 4 2 0 2/24/2015 Assignment 2 =3484333 17/22 Part C Which of the following graphs best represents the function , describing the acceleration of this object? You did not open hints for this part. ANSWER: A Man Running to Catch a Bus A man is running at speed (much less than the speed of light) to catch a bus already at a stop. At , when he is a distance from the door to the bus, the bus starts moving with the positive acceleration . Use a coordinate system with at the door of the stopped bus. 1 2 3 4 _ 0 1 2 3 4 _ 0 _ _ _ _ 4 _ _ 2/24/2015 Assignment 2 =3484333 18/22 Part A What is , the position of the man as a function of time? Answer symbolically in terms of the variables , , and . You did not open hints for this part. ANSWER: Part B What is , the position of the bus as a function of time? Answer symbolically in terms of and . You did not open hints for this part. ANSWER: Part C What condition is necessary for the man to catch the bus? Assume he catches it at time . You did not open hints for this part. 4NBO 0 _ _ 0 4NBO 0 = 4CVT 0 _ 0 4CVT = 0DBUDI 2/24/2015 Assignment 2 =3484333 19/22 ANSWER: Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Stopping on Snow Light, dry snow is called powder. Skiing on a powder day is different than skiing on a day when the snow is wet and heavy. When you slow down on dry snow the maximum (negative) acceleration caused by the snow acting on your skis is about twofifths as much as that of stopping on wet snow. Part A For a given initial velocity, how does the time it takes to stop on dry snow differ from the time it takes to stop on wet snow? You did not open hints for this part. ANSWER: Part B For a given initial velocity, how does the stopping distance on dry snow differ from the stopping distance on wet snow? 4NBO 0DBUDI _ 4CVT 0DBUDI 4NBO 0DBUDI _ 4CVT 0DBUDI 4NBO 0DBUDI _ 4CVT 0DBUDI _ _ _ Ç 0DBUDI 0E 0X 0E _ ___0X 0E _ 0X 0E _ ___0X 4E 4X 2/24/2015 Assignment 2 =3484333 20/22 You did not open hints for this part. ANSWER: Exercise 2.34 A subway train starts from rest at a station and accelerates at a rate of for 14.0 . It runs at constant speed for 70.0 and slows down at a rate of until it stops at the next station. Part A Find the total distance covered. ANSWER: Problem 2.57 Dan gets on Interstate Highway I280 at Seward, Nebraska, and drives due west in a straight line and at an average velocity of magnitude 88.0 . After traveling 76 km, he reaches the Aurora exit . Realizing he has gone too far, he turns around and drives due east 34 back to the York exit at an average velocity of magnitude 75.0 . Part A For his whole trip from Seward to the York exit, what is his average speed? 4E _ ___4X 4E _ 4X 4E _ ___4X ____ N_T_ T T ____ N_T_ = LN LN_I LN LN_I 2/24/2015 Assignment 2 =3484333 21/22 ANSWER: Part B For his whole trip from Seward to the York exit, what is the magnitude of his average velocity? ANSWER: Multiple Choice Question 2.1 Part A A train starts from rest and accelerates uniformly, until it has traveled 5.9 km and acquired a velocity of 35 m/s. The train then moves at a constant velocity of 35 m/s for 400 s. The train then decelerates uniformly at 0.065 m/s2, until it is brought to a halt. The acceleration during the first 5.9 km of travel is closest to: ANSWER: Multiple Choice Question 2.8 Part A A racquetball strikes a wall with a speed of 30 m/s and rebounds with a speed of 26 m/s. The collision takes 20 ms. What is the average acceleration of the ball during collision? ANSWER: 2 = LN_I 2 = LN_I 0.13 m/s2 0.11 m/s2 0.12 m/s2 0.10 m/s2 0.093 m/s2 2/24/2015 Assignment 2 Score Summary: Your score on this assignment is 0.0%. You received 0 out of a possible total of 18 points. zero 200 m/s2 1500 m/s2 1300 m/s2 2800 m/s2

2/24/2015 Assignment 2 =3484333 1/22 Assignment 2 Due: 6:43pm on Saturday, February 28, 2015 You will receive no credit for items you complete after the assignment is due. Grading Policy Adding and Subtracting Vectors Conceptual Question Six vectors (A to F) have the magnitudes and directions indicated in the figure. Part A Which two vectors, when added, will have the largest (positive) x component? You did not open hints for this part. ANSWER: Part B Which two vectors, when added, will have the largest (positive) y component? You did not open hints for this part. ANSWER: C and E E and F A and F C and D B and D 2/24/2015 Assignment 2 =3484333 2/22 Part C Which two vectors, when subtracted (i.e., when one vector is subtracted from the other), will have the largest magnitude? You did not open hints for this part. ANSWER: Components of Vectors Shown is a 10 by 10 grid, with coordinate axes x and y . The grid runs from 5 to 5 on both axes. Drawn on this grid are four vectors, labeled through . This problem will ask you various questions about these vectors. All answers should be in decimal notation, unless otherwise specified. Part A C and D A and F E and F A and B E and D A and F A and E D and B C and D E and F _._ _._ ._ 2/24/2015 Assignment 2 =3484333 3/22 What is the x component of ? Express your answer to two significant figures. You did not open hints for this part. ANSWER: Part B What is the y component of ? Express your answer to the nearest integer. ANSWER: Part C What is the y component of ? Express your answer to the nearest integer. You did not open hints for this part. ANSWER: Part D What is the component of ? Express your answer to the nearest integer. You did not open hints for this part. ANSWER: _._ _4 = _._ _5 = _._ _5 = 4 _._ _4 = 2/24/2015 Assignment 2 =3484333 4/22 The following questions will ask you to give both components of vectors using the ordered pairs method. In this method, the x component is written first, followed by a comma, and then the y component. For example, the components of would be written 2.5,3 in ordered pair notation. The answers below are all integers, so estimate the components to the nearest whole number. Part E In ordered pair notation, write down the components of vector . Express your answers to the nearest integer. ANSWER: Part F In ordered pair notation, write down the components of vector . Express your answers to the nearest integer. ANSWER: Part G What is true about and ? Choose from the pulldown list below. ANSWER: Finding the Cross Product The figure shows two vectors and separated by an angle . You are given that , , and . _._ _._ _4, _5 = _._ _4 , _5 = _._ _._ They have different components and are not the same vectors. They have the same components but are not the same vectors. They are the same vectors. _ ._ _._ J56 _ .__ _ _ _ _.__ _ _ _ _ ._g_.__ _ ._ 2/24/2015 Assignment 2 =3484333 5/22 Part A Express as an ordered triplet of values, separated by commas. ANSWER: Part B Find the magnitude of . ANSWER: Part C Find the sine of the angle between and . ANSWER: Significant Figures Conceptual Question In the parts that follow select whether the number presented in statement A is greater than, less than, or equal to the number presented in statement B. Be sure to follow all of the rules concerning significant figures. _ ._ _ ._= _ ._ ]_ ]._ = _ ._ _._ TJO J__ = 2/24/2015 Assignment 2 =3484333 6/22 Part A Statement A: 2.567 , to two significant figures. Statement B: 2.567 , to three significant figures. Determine the correct relationship between the statements. You did not open hints for this part. ANSWER: Part B Statement A: (2.567 + 3.146 ), to two significant figures. Statement B: (2.567 , to two significant figures) + (3.146 , to two significant figures). Determine the correct relationship between the statements. ANSWER: Part C Statement A: Area of a rectangle with measured length = 2.536 and width = 1.4 . Statement B: Area of a rectangle with measured length = 2.536 and width = 1.41 . Since you are not told specific numbers of significant figures to round to, you must use the rules for multiplying numbers while respecting significant figures. If you need a reminder, consult the hint. Determine the correct relationship between the statements. You did not open hints for this part. ANSWER: LN LN Statement A is greater than less than equal to Statement B. LN LN LN LN Statement A is greater than less than equal to Statement B. N N N N 2/24/2015 Assignment 2 =3484333 7/22 ± Vector Dot Product Let vectors , , and . Calculate the following: Part A You did not open hints for this part. ANSWER: Part B What is the angle between and ? Express your answer using one significant figure. You did not open hints for this part. ANSWER: Part C ANSWER: Part D ANSWER: Statement A is greater than less than equal to Statement B. _.__ _ _Ã_ _.__ Ã_ _ _ _.__ Ã_Ã_ _ _._ø _._ = J”# _._ _._ J”# = SBEJBOT __._ø __._ = 2/24/2015 Assignment 2 =3484333 8/22 Part E Which of the following can be computed? You did not open hints for this part. ANSWER: and are different vectors with lengths and respectively. Find the following: Part F Express your answer in terms of You did not open hints for this part. ANSWER: Part G If and are perpendicular, You did not open hints for this part. ANSWER: _ _._ø __._ = _._ø _._ø _._ _._ø _._ø _._ _._ø _.___._ _ ø _._ _ .__ _ .__ __ __ __ = ø _ .__ _ .__ _ .__ _ .__ = ø _ .__ _ .__ 2/24/2015 Assignment 2 =3484333 9/22 Part H If and are parallel, Express your answer in terms of and . You did not open hints for this part. ANSWER: ± Resolving Vector Components with Trigonometry Often a vector is specified by a magnitude and a direction; for example, a rope with tension exerts a force of magnitude in a direction 35 north of east. This is a good way to think of vectors; however, to calculate results with vectors, it is best to select a coordinate system and manipulate the components of the vectors in that coordinate system. Part A Find the components of the vector with length = 1.00 and angle =20.0 with respect to the x axis as shown. Enter the x component followed by the y component, separated by a comma. You did not open hints for this part. ANSWER: Part B _ .__ _ .__ __ __ = ø _ .__ _ .__ _ ._ _ È _._ _ C È _._ = ._ 2/24/2015 Assignment 2 =3484333 10/22 Find the components of the vector with length = 1.00 and angle =20.0 with respect to the x axis as shown. Enter the x component followed by the y component, separated by a comma. You did not open hints for this part. ANSWER: Part C Find the components of the vector with length = 1.00 and angle 30.0 as shown. Enter the x component followed by the y component, separated by a comma. You did not open hints for this part. ANSWER: Exercise 1.28 Part A How many dollar bills would you have to stack to reach the moon? (Depending on age, dollar bills can be stacked with about 23 per millimeter.) Express your answer using one significant figure. ANSWER: Problem 1.80 A boulder of weight rests on a hillside that rises at a constant angle above the horizontal, as shown in the figure . Its weight is a force on the boulder that has direction vertically downward. _._ _ D È _._ = _._ _ ] _ È _._ = dollar bills 3 C 2/24/2015 Assignment 2 =3484333 11/22 Part A In terms of and , what is the component of the weight of the boulder in the direction parallel to the surface of the hill? Express your answer in terms of and . ANSWER: Part B What is the component of the weight in the direction perpendicular to the surface of the hill? Express your answer in terms of and . ANSWER: Part C An air conditioner unit is fastened to a roof that slopes upward at an angle of . In order that the unit not slide down the roof, the component of the unit’s weight parallel to the roof cannot exceed 550 N. What is the maximum allowed weight of the unit? ANSWER: Problem 1.84 You are camping with two friends, Joe and Karl. Since all three of you like your privacy, you don’t pitch your tents close together. Joe’s tent is 23.5 from yours, in the direction 19.0 north of east. Karl’s tent is 40.0 from yours, in the direction 36.0 south of east. C 3 C 3 ]3,_. ] = C 3 ]3,!., ] = ____È 3 = / N È N È 2/24/2015 Assignment 2 =3484333 12/22 Part A What is the distance between Karl’s tent and Joe’s tent? ANSWER: Multiple Choice Question 1.8 Part A The components of vectors and are given as follows: Ax = +5.7 Bx = 9.8 Ay = 3.6 By = 6.5 The magnitude of the vector difference , is closest to: ANSWER: OneDimensional Kinematics with Constant Acceleration Learning Goal: To understand the meaning of the variables that appear in the equations for onedimensional kinematics with constant acceleration. Motion with a constant, nonzero acceleration is not uncommon in the world around us. Falling (or thrown) objects and cars starting and stopping approximate this type of motion. It is also the type of motion most frequently involved in introductory kinematics problems. The kinematic equations for such motion can be written as , , where the symbols are defined as follows: is the position of the particle; _ = N _ ¥ _ ¥ à _ ¥ _ ¥ 5.0 11 5.0 16 250 4 0_ 4J_2J0_ _ __ 0_ 2 0 _ 2J __0 4 0 2/24/2015 Assignment 2 =3484333 13/22 is the initial position of the particle; is the velocity of the particle; is the initial velocity of the particle; is the acceleration of the particle. In anwering the following questions, assume that the acceleration is constant and nonzero: . Part A The quantity represented by is a function of time (i.e., is not constant). ANSWER: Part B The quantity represented by is a function of time (i.e., is not constant). ANSWER: Part C The quantity represented by is a function of time (i.e., is not constant). ANSWER: Part D The quantity represented by is a function of time (i.e., is not constant). ANSWER: 4J 2 0 2J _ _ Ü _ 4 true false 4J true false 2J true false 2 true false 2/24/2015 Assignment 2 =3484333 14/22 Part E Which of the given equations is not an explicit function of and is therefore useful when you don’t know or don’t need the time? ANSWER: Part F A particle moves with constant acceleration . The expression represents the particle’s velocity at what instant in time? ANSWER: More generally, the equations of motion can be written as and . Here is the time that has elapsed since the beginning of the particle’s motion, that is, , where is the current time and is the time at which we start measuring the particle’s motion. The terms and are, respectively, the position and velocity at . As you can now see, the equations given at the beginning of this problem correspond to the case , which is a convenient choice if there is only one particle of interest. To illustrate the use of these more general equations, consider the motion of two particles, A and B. The position of particle A depends on time as . That is, particle A starts moving at time with velocity , from . At time , particle B has twice the acceleration, half the velocity, and the same position that particle A had at time . Part G What is the equation describing the position of particle B? You did not open hints for this part. ANSWER: 0 4_ 4J_2J0_ _ __ 0_ 2 _ 2J __0 _ ___ 4à 2_ 2_J 4J _ 2J __0 only at time only at the “initial” time when a time has passed since the particle’s velocity was 0 _ _ 0 2J 4 0_ 4J_2J 0_ _ 0 __ _ 2 0 _ 2J __ 0 0 0 _ 0Ã0J 0 0J 4J 2J 0 _ 0J 0J _ _ 4″ 0 _ 4J _2J0_ ____0_ 0 _ 0J” _ _ 2J” _ 2J 4J” _ 4J 0 _ 0_ 0 _ _ 2/24/2015 Assignment 2 =3484333 15/22 Part H At what time does the velocity of particle B equal that of particle A? You did not open hints for this part. ANSWER: Given Positions, Find Velocity and Acceleration Learning Goal: To understand how to graph position, velocity, and acceleration of an object starting with a table of positions vs. time. The table shows the x coordinate of a moving object. The position is tabulated at 1s intervals. The x coordinate is indicated below each time. You should make the simplification that the acceleration of the object is bounded and contains no spikes. time (s) 0 1 2 3 4 5 6 7 8 9 x (m) 0 1 4 9 16 24 32 40 46 48 Part A Which graph best represents the function , describing the object’s position vs. time? 4# 0_ 4J__2J0_ _ __ 0_ 4# 0 _ 4J ____2J0__0_ 4# 0_ 4J__2J 0_0__ _ 0_ __ 0__ 4# 0 _ 4J ____2J 0_0_ __ 0_0_ _ 4# 0_ 4J__2J 0Ã0__ _ 0à __ 0__ 4# 0 _ 4J ____2J 0Ã0_ __ 0Ã0_ _ The two particles never have the same velocity. 0_ 0__ 2J __ 0__0__ 2J __ 0__0__ 2J __ 4 0 2/24/2015 Assignment 2 =3484333 16/22 You did not open hints for this part. ANSWER: Part B Which of the following graphs best represents the function , describing the object’s velocity as a function of time? You did not open hints for this part. ANSWER: 1 2 3 4 2 0 2/24/2015 Assignment 2 =3484333 17/22 Part C Which of the following graphs best represents the function , describing the acceleration of this object? You did not open hints for this part. ANSWER: A Man Running to Catch a Bus A man is running at speed (much less than the speed of light) to catch a bus already at a stop. At , when he is a distance from the door to the bus, the bus starts moving with the positive acceleration . Use a coordinate system with at the door of the stopped bus. 1 2 3 4 _ 0 1 2 3 4 _ 0 _ _ _ _ 4 _ _ 2/24/2015 Assignment 2 =3484333 18/22 Part A What is , the position of the man as a function of time? Answer symbolically in terms of the variables , , and . You did not open hints for this part. ANSWER: Part B What is , the position of the bus as a function of time? Answer symbolically in terms of and . You did not open hints for this part. ANSWER: Part C What condition is necessary for the man to catch the bus? Assume he catches it at time . You did not open hints for this part. 4NBO 0 _ _ 0 4NBO 0 = 4CVT 0 _ 0 4CVT = 0DBUDI 2/24/2015 Assignment 2 =3484333 19/22 ANSWER: Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Stopping on Snow Light, dry snow is called powder. Skiing on a powder day is different than skiing on a day when the snow is wet and heavy. When you slow down on dry snow the maximum (negative) acceleration caused by the snow acting on your skis is about twofifths as much as that of stopping on wet snow. Part A For a given initial velocity, how does the time it takes to stop on dry snow differ from the time it takes to stop on wet snow? You did not open hints for this part. ANSWER: Part B For a given initial velocity, how does the stopping distance on dry snow differ from the stopping distance on wet snow? 4NBO 0DBUDI _ 4CVT 0DBUDI 4NBO 0DBUDI _ 4CVT 0DBUDI 4NBO 0DBUDI _ 4CVT 0DBUDI _ _ _ Ç 0DBUDI 0E 0X 0E _ ___0X 0E _ 0X 0E _ ___0X 4E 4X 2/24/2015 Assignment 2 =3484333 20/22 You did not open hints for this part. ANSWER: Exercise 2.34 A subway train starts from rest at a station and accelerates at a rate of for 14.0 . It runs at constant speed for 70.0 and slows down at a rate of until it stops at the next station. Part A Find the total distance covered. ANSWER: Problem 2.57 Dan gets on Interstate Highway I280 at Seward, Nebraska, and drives due west in a straight line and at an average velocity of magnitude 88.0 . After traveling 76 km, he reaches the Aurora exit . Realizing he has gone too far, he turns around and drives due east 34 back to the York exit at an average velocity of magnitude 75.0 . Part A For his whole trip from Seward to the York exit, what is his average speed? 4E _ ___4X 4E _ 4X 4E _ ___4X ____ N_T_ T T ____ N_T_ = LN LN_I LN LN_I 2/24/2015 Assignment 2 =3484333 21/22 ANSWER: Part B For his whole trip from Seward to the York exit, what is the magnitude of his average velocity? ANSWER: Multiple Choice Question 2.1 Part A A train starts from rest and accelerates uniformly, until it has traveled 5.9 km and acquired a velocity of 35 m/s. The train then moves at a constant velocity of 35 m/s for 400 s. The train then decelerates uniformly at 0.065 m/s2, until it is brought to a halt. The acceleration during the first 5.9 km of travel is closest to: ANSWER: Multiple Choice Question 2.8 Part A A racquetball strikes a wall with a speed of 30 m/s and rebounds with a speed of 26 m/s. The collision takes 20 ms. What is the average acceleration of the ball during collision? ANSWER: 2 = LN_I 2 = LN_I 0.13 m/s2 0.11 m/s2 0.12 m/s2 0.10 m/s2 0.093 m/s2 2/24/2015 Assignment 2 Score Summary: Your score on this assignment is 0.0%. You received 0 out of a possible total of 18 points. zero 200 m/s2 1500 m/s2 1300 m/s2 2800 m/s2

info@checkyourstudy.com 2/24/2015 Assignment 2 =3484333 1/22 Assignment 2 Due: 6:43pm … Read More...
Essay – Athlete’s high salaries. Should they be paid that amount or not?

Essay – Athlete’s high salaries. Should they be paid that amount or not?

Athlete’s high salaries: Should they be paid that amount or … Read More...