F7.10 The flame spread rate through porous solids increases with concurrent wind velocity. decreases with concurrent wind velocity. is independent of concurrent wind velocity. F7.11 Surface tension accelerates opposed-flow flame spread over liquid fuels. True False F7.12 Opposed-flow flame spread rates over a solid surface are typically much smaller than 1 mm/s. around 1mm/s. much greater than 1 mm/s. F7.13 Upward flame spread rate over a vertical surface is typically between 10 and 1000 mm/s. True False F7.14 The Steiner tunnel test described in ASTM standard E 84 is used to assess the fire performance of interior finish materials based on lateral flame spread over a vertical sample. True False F8.1 Describe the triad of fire growth. F8.2 Liquid pool fires reach steady burning conditions within seconds after ignition. True False F8.3 The heat of gasification of liquid fuels is typically less than 1 kJ/g. between 1 and 3 kJ/g. greater than 3 kJ/g. F8.4 The heat flux from the flame to the surface of real burning objects can usually be determined with sufficient accuracy so that reasonable burning rate predictions can be made. True False F8.5 The mass burning flux generally associated with extinction is 0.5 g/m2s. 5 g/m2s. 50 g/m2s. F8.6 The mass burning flux of a liquid pool fire is a function of only the pool diameter. only the fuel type. pool diameter and fuel type. F8.7 The energy release rate of real objects can be measured in an oxygen bomb calorimeter. an oxygen consumption calorimeter. a room/corner test. F8.8 The peak energy release rate of typical domestic upholstered furniture can be as high as 3000 kW. True False F8.9 Draw a typical curve of the mass burning flux of a char forming fuel as a function of time. F8.10 A fast fire as defined in NFPA 72B grows proportionally to t2 and reaches an energy release rate of 1 MW in 75 sec. 150 sec. 300 sec. F9.1 Air entrainment into turbulent pool fire flames is due to buoyancy. True False F9.2 The frequency of vortex shedding in turbulent pool fire flames increases with pool diameter. decreases with pool diameter. is independent of pool diameter. F9.3 The height of turbulent jet flames for a given fuel type and orifice size is independent of energy release rate. True False F9.4 The exit velocities of fuel vapors leaving a solid or liquid pool fire surface are responsible for entrainment of air in the plume. True False F9.5 The height of a turbulent pool fire flame is a function of only energy release rate. only pool diameter. energy release rate and pool diameter. F9.6 Turbulent pool fire flame heights fluctuate in time within a factor of 2. True False F9.7 The Q* value for jet fires is 102 or greater. 104 or greater. 106 or greater. F9.8 The temperature in the continuous flame region of moderate size turbulent pool fires is approximately 820°C. True False F9.9 The temperature at the maximum flame height of a turbulent pool fire flame is approximately 1200°C. 800°C. 300°C. F9.10 The adiabatic flame temperature of hydrocarbon fuels is 1700-2000°C. 2000-2300°C. 2300-2600°C. F10.1 The stoichiometric air to fuel mass ratio of hydrocarbon fuels is of the order of 1.5 g/g. 15 g/g. 150 g/g. F10.2 Give two examples of products of incomplete combustion that occur in fires. F10.3 Slight amounts of products of incomplete combustion are generated in overventilated fires. True False F10.4 The CO yield of a fire is a function of only the fuel involved. only the ventilation conditions. the fuel and the ventilation conditions. F10.5 A carboxyhemoglobin level of 40% in the blood is usually lethal. True (doubt) False F10.6 Carbon monoxide is the leading killer of people in fires. True False F10.7 HCN is a narcotic gas. an irritant gas. a fuel vapor. F10.8 The hazard to humans from narcotic gases is a function of only the concentration of the gas. only the duration of exposure. the product of concentration and duration of exposure. F10.9 The effects on lethality of CO, HCN, and reduced O2 are additive. True False F10.10 Irritant gases typically cause post-exposure fatalities. True False F10.11 Visibility through smoke improves with increasing optical density. True False F10.12 Heat stress occurs when the skin is exposed to a heat flux of 1 kW/m2. the skin reaches a temperature of 45°C. the body’s core temperature reaches 41°C.

F7.10 The flame spread rate through porous solids increases with concurrent wind velocity. decreases with concurrent wind velocity. is independent of concurrent wind velocity. F7.11 Surface tension accelerates opposed-flow flame spread over liquid fuels. True False F7.12 Opposed-flow flame spread rates over a solid surface are typically much smaller than 1 mm/s. around 1mm/s. much greater than 1 mm/s. F7.13 Upward flame spread rate over a vertical surface is typically between 10 and 1000 mm/s. True False F7.14 The Steiner tunnel test described in ASTM standard E 84 is used to assess the fire performance of interior finish materials based on lateral flame spread over a vertical sample. True False F8.1 Describe the triad of fire growth. F8.2 Liquid pool fires reach steady burning conditions within seconds after ignition. True False F8.3 The heat of gasification of liquid fuels is typically less than 1 kJ/g. between 1 and 3 kJ/g. greater than 3 kJ/g. F8.4 The heat flux from the flame to the surface of real burning objects can usually be determined with sufficient accuracy so that reasonable burning rate predictions can be made. True False F8.5 The mass burning flux generally associated with extinction is 0.5 g/m2s. 5 g/m2s. 50 g/m2s. F8.6 The mass burning flux of a liquid pool fire is a function of only the pool diameter. only the fuel type. pool diameter and fuel type. F8.7 The energy release rate of real objects can be measured in an oxygen bomb calorimeter. an oxygen consumption calorimeter. a room/corner test. F8.8 The peak energy release rate of typical domestic upholstered furniture can be as high as 3000 kW. True False F8.9 Draw a typical curve of the mass burning flux of a char forming fuel as a function of time. F8.10 A fast fire as defined in NFPA 72B grows proportionally to t2 and reaches an energy release rate of 1 MW in 75 sec. 150 sec. 300 sec. F9.1 Air entrainment into turbulent pool fire flames is due to buoyancy. True False F9.2 The frequency of vortex shedding in turbulent pool fire flames increases with pool diameter. decreases with pool diameter. is independent of pool diameter. F9.3 The height of turbulent jet flames for a given fuel type and orifice size is independent of energy release rate. True False F9.4 The exit velocities of fuel vapors leaving a solid or liquid pool fire surface are responsible for entrainment of air in the plume. True False F9.5 The height of a turbulent pool fire flame is a function of only energy release rate. only pool diameter. energy release rate and pool diameter. F9.6 Turbulent pool fire flame heights fluctuate in time within a factor of 2. True False F9.7 The Q* value for jet fires is 102 or greater. 104 or greater. 106 or greater. F9.8 The temperature in the continuous flame region of moderate size turbulent pool fires is approximately 820°C. True False F9.9 The temperature at the maximum flame height of a turbulent pool fire flame is approximately 1200°C. 800°C. 300°C. F9.10 The adiabatic flame temperature of hydrocarbon fuels is 1700-2000°C. 2000-2300°C. 2300-2600°C. F10.1 The stoichiometric air to fuel mass ratio of hydrocarbon fuels is of the order of 1.5 g/g. 15 g/g. 150 g/g. F10.2 Give two examples of products of incomplete combustion that occur in fires. F10.3 Slight amounts of products of incomplete combustion are generated in overventilated fires. True False F10.4 The CO yield of a fire is a function of only the fuel involved. only the ventilation conditions. the fuel and the ventilation conditions. F10.5 A carboxyhemoglobin level of 40% in the blood is usually lethal. True (doubt) False F10.6 Carbon monoxide is the leading killer of people in fires. True False F10.7 HCN is a narcotic gas. an irritant gas. a fuel vapor. F10.8 The hazard to humans from narcotic gases is a function of only the concentration of the gas. only the duration of exposure. the product of concentration and duration of exposure. F10.9 The effects on lethality of CO, HCN, and reduced O2 are additive. True False F10.10 Irritant gases typically cause post-exposure fatalities. True False F10.11 Visibility through smoke improves with increasing optical density. True False F10.12 Heat stress occurs when the skin is exposed to a heat flux of 1 kW/m2. the skin reaches a temperature of 45°C. the body’s core temperature reaches 41°C.

F7.10 The flame spread rate through porous solids increases with … Read More...
My Success Assignment ‘where you want to be in ten years’ Objective Make a plan and try to see all the details. Does some research, ask questions, and consider what it’s going to take to get where you want to be.

My Success Assignment ‘where you want to be in ten years’ Objective Make a plan and try to see all the details. Does some research, ask questions, and consider what it’s going to take to get where you want to be.

  My Road map for career planning is based on … Read More...
Name ____________________________________ Motion in 2D Simulation Go to http://phet.colorado.edu/simulations/sims.php?sim=Motion_in_2D and click on Run Now. 1) Once the simulation opens, click on ‘Show Both’ for Velocity and Acceleration at the top of the page. Now click and drag the red ball around the screen. Make 3 observations about the blue and green arrows (also called vectors) as you drag the ball around. 2) Which color vector (arrow) represents velocity and which one represents acceleration? How can you tell? 3) Try dragging the ball around and around in a circular path. What do you notice about the lengths and directions of the blue and green vectors? Describe their behavior in detail below. 4) Now move the ball at a slow constant speed across the screen. What do you notice now about the vectors? Explain why this happens. 5) What happens to the vectors when you jerk the ball rapidly back and forth across the screen? Explain why this happens. 6) Now click on ‘Circular’ on the bottom. Describe the motion of the ball and the behavior of the two vectors. Is there a force on the ball? How can you tell? Be detailed in your explanations. 7) Click on ‘Simple Harmonic’ on the bottom. Based on the behavior of the ball and the vectors, write a definition of Simple Harmonic Motion.

Name ____________________________________ Motion in 2D Simulation Go to http://phet.colorado.edu/simulations/sims.php?sim=Motion_in_2D and click on Run Now. 1) Once the simulation opens, click on ‘Show Both’ for Velocity and Acceleration at the top of the page. Now click and drag the red ball around the screen. Make 3 observations about the blue and green arrows (also called vectors) as you drag the ball around. 2) Which color vector (arrow) represents velocity and which one represents acceleration? How can you tell? 3) Try dragging the ball around and around in a circular path. What do you notice about the lengths and directions of the blue and green vectors? Describe their behavior in detail below. 4) Now move the ball at a slow constant speed across the screen. What do you notice now about the vectors? Explain why this happens. 5) What happens to the vectors when you jerk the ball rapidly back and forth across the screen? Explain why this happens. 6) Now click on ‘Circular’ on the bottom. Describe the motion of the ball and the behavior of the two vectors. Is there a force on the ball? How can you tell? Be detailed in your explanations. 7) Click on ‘Simple Harmonic’ on the bottom. Based on the behavior of the ball and the vectors, write a definition of Simple Harmonic Motion.

Name ____________________________________                                      Motion in 2D Simulation   Go to http://phet.colorado.edu/simulations/sims.php?sim=Motion_in_2D … Read More...
1 | P a g e Lecture #2: Abortion (Warren) While studying this topic, we will ask whether it is morally permissible to intentionally terminate a pregnancy and, if so, whether certain restrictions should be placed upon such practices. Even though we will most often be speaking of terminating a fetus, biologists make further classifications: the zygote is the single cell resulting from the fusion of the egg and the sperm; the morula is the cluster of cells that travels through the fallopian tubes; the blastocyte exists once an outer shell of cells has formed around an inner group of cells; the embryo exists once the cells begin to take on specific functions (around the 15th day); the fetus comes into existence in the 8th week when the embryo gains a basic structural resemblance to the adult. Given these distinctions, there are certain kinds of non-fetal abortion—such as usage of RU-486 (the morning-after “abortion pill”)—though most of the writers we will study refer to fetal abortions. So now let us consider the “Classical Argument against Abortion”, which has been very influential: P1) It is wrong to kill innocent persons. P2) A fetus is an innocent person. C) It is wrong to kill a fetus. (Note that this argument has received various formulations, including those from Warren and Thomson which differ from the above. For this course, we will refer to the above formulation as the “Classical Argument”.) Before evaluating this argument, we should talk about terminology: A person is a member of the moral community; i.e., someone who has rights and/or duties. ‘Persons’ is the plural of ‘person’. ‘Person’ can be contrasted with ‘human being’; a human being is anyone who is genetically human (i.e., a member of Homo sapiens). ‘People’ (or ‘human beings’) is the plural of ‘human being’. Why does this matter? First, not all persons are human beings. For example, consider an alien from another planet who mentally resembled us. If he were to visit Earth, it would be morally reprehensible to kick him or to set him on fire because of the pain and suffering that these acts would cause. And, similarly, the alien would be morally condemnable if he were to propagate such acts on us; he has a moral duty not to act in those ways (again, assuming a certain mental resemblance to us). So, even though this alien is not a human being, he is nevertheless a person with the associative rights and/or duties. 2 | P a g e And, more controversially, maybe not all human beings are persons. For example, anencephalic infants—i.e., ones born without cerebral cortexes and therefore with severely limited cognitive abilities—certainly do not have duties since they are not capable of rational thought and autonomous action. Some philosophers have even argued that they do not have rights. Now let us return to the Classical Argument. It is valid insofar as, if the premises are true, then the conclusion has to be true. But maybe it commits equivocation, which is to say that it uses the same word in multiple senses; equivocation is an informal fallacy (i.e., attaches to arguments that are formally valid but otherwise fallacious). Consider the following: P1) I put my money in the bank. P2) The bank borders the river. C) I put my money somewhere that borders the river. This argument equivocates since ‘bank’ is being used in two different senses: in P1 it is used to represent a financial institution and, in P2, it is used to represent a geological feature. Returning to the classical argument, it could be argued that ‘person’ is being used in two different senses: in P1 it is used in its appropriate moral sense and, in P2, it is inappropriately used instead of ‘human being’. The critic might suggest that a more accurate way to represent the argument would be as follows: P1) It is wrong to kill innocent persons. P2) A fetus is a human being. C) It is wrong to kill a fetus. This argument is obviously invalid. So one way to criticize the Classical Argument is to say that it conflates two different concepts—viz., ‘person’ and ‘human being’—and therefore commits equivocation. However, the more straightforward way to attack the Classical Argument is just to deny its second premise and thus contend that the argument is unsound. This is the approach that Mary Anne Warren takes in “On the Moral and Legal Status of Abortion”. Why does Warren think that the second premise is false? Remember that we defined a person as “a member of the moral community.” And we said that an alien, for example, could be afforded moral status even though it is not a human being. Why do we think that this alien should not be tortured or set on fire? Warren thinks that, intuitively, we think that membership in the moral community is based upon possession of the following traits: 3 | P a g e 1. Consciousness of objects and events external and/or internal to the being and especially the capacity to feel pain; 2. Reasoning or rationality (i.e., the developed capacity to solve new and relatively complex problems); 3. Self-motivated activity (i.e., activity which is relatively independent of either genetic or direct external control); 4. Capacity to communicate (not necessarily verbal or linguistic); and 5. Possession of self-concepts and self-awareness. Warren then admits that, though all of the items on this list look promising, we need not require that a person have all of the items on this list. (4) is perhaps the most expendable: imagine someone who is fully paralyzed as well as deaf, these incapacities, which preclude communication, are not sufficient to justify torture. Similarly, we might be able to imagine certain psychological afflictions that negate (5) without compromising personhood. Warren suspects that (1) and (2) are might be sufficient to confer personhood, and thinks that (1)-(3) “quite probably” are sufficient. Note that, if she is right, we would not be able to torture chimps, let us say, but we could set plants on fire (and most likely ants as well). However, given Warren’s aims, she does not need to specify which of these traits are necessary or sufficient for personhood; all that she wants to observe is that the fetus has none of them! Therefore, regardless of which traits we want to require, Warren thinks that the fetus is not a person. Therefore she thinks that the Classical Argument is unsound and should be rejected. Even if we accept Warren’s refutation of the second premise, we might be inclined to say that, while the fetus is not (now) a person, it is a potential person: the fetus will hopefully mature into a being that possesses all five of the traits on Warren’s list. We might then propose the following adjustment to the Classical Argument: P1) It is wrong to kill all innocent persons. P2) A fetus is a potential person. C) It is wrong to kill a fetus. However, this argument is invalid. Warren grants that potentiality might serve as a prima facie reason (i.e., a reason that has some moral weight but which might be outweighed by other considerations) not to abort a fetus, but potentiality alone is insufficient to grant the fetus a moral right against being terminated. By analogy, consider the following argument: 4 | P a g e P1) The President has the right to declare war. P2) Mary is a potential President. C) Mary has the right to declare war. This argument is invalid since the premises are both true and the conclusion is false. By parity, the following argument is also invalid: P1) A person has a right to life. P2) A fetus is a potential person. C) A fetus has a right to life. Thus Warren thinks that considerations of potentiality are insufficient to undermine her argument that fetuses—which are potential persons but, she thinks, not persons—do not have a right to life.

1 | P a g e Lecture #2: Abortion (Warren) While studying this topic, we will ask whether it is morally permissible to intentionally terminate a pregnancy and, if so, whether certain restrictions should be placed upon such practices. Even though we will most often be speaking of terminating a fetus, biologists make further classifications: the zygote is the single cell resulting from the fusion of the egg and the sperm; the morula is the cluster of cells that travels through the fallopian tubes; the blastocyte exists once an outer shell of cells has formed around an inner group of cells; the embryo exists once the cells begin to take on specific functions (around the 15th day); the fetus comes into existence in the 8th week when the embryo gains a basic structural resemblance to the adult. Given these distinctions, there are certain kinds of non-fetal abortion—such as usage of RU-486 (the morning-after “abortion pill”)—though most of the writers we will study refer to fetal abortions. So now let us consider the “Classical Argument against Abortion”, which has been very influential: P1) It is wrong to kill innocent persons. P2) A fetus is an innocent person. C) It is wrong to kill a fetus. (Note that this argument has received various formulations, including those from Warren and Thomson which differ from the above. For this course, we will refer to the above formulation as the “Classical Argument”.) Before evaluating this argument, we should talk about terminology: A person is a member of the moral community; i.e., someone who has rights and/or duties. ‘Persons’ is the plural of ‘person’. ‘Person’ can be contrasted with ‘human being’; a human being is anyone who is genetically human (i.e., a member of Homo sapiens). ‘People’ (or ‘human beings’) is the plural of ‘human being’. Why does this matter? First, not all persons are human beings. For example, consider an alien from another planet who mentally resembled us. If he were to visit Earth, it would be morally reprehensible to kick him or to set him on fire because of the pain and suffering that these acts would cause. And, similarly, the alien would be morally condemnable if he were to propagate such acts on us; he has a moral duty not to act in those ways (again, assuming a certain mental resemblance to us). So, even though this alien is not a human being, he is nevertheless a person with the associative rights and/or duties. 2 | P a g e And, more controversially, maybe not all human beings are persons. For example, anencephalic infants—i.e., ones born without cerebral cortexes and therefore with severely limited cognitive abilities—certainly do not have duties since they are not capable of rational thought and autonomous action. Some philosophers have even argued that they do not have rights. Now let us return to the Classical Argument. It is valid insofar as, if the premises are true, then the conclusion has to be true. But maybe it commits equivocation, which is to say that it uses the same word in multiple senses; equivocation is an informal fallacy (i.e., attaches to arguments that are formally valid but otherwise fallacious). Consider the following: P1) I put my money in the bank. P2) The bank borders the river. C) I put my money somewhere that borders the river. This argument equivocates since ‘bank’ is being used in two different senses: in P1 it is used to represent a financial institution and, in P2, it is used to represent a geological feature. Returning to the classical argument, it could be argued that ‘person’ is being used in two different senses: in P1 it is used in its appropriate moral sense and, in P2, it is inappropriately used instead of ‘human being’. The critic might suggest that a more accurate way to represent the argument would be as follows: P1) It is wrong to kill innocent persons. P2) A fetus is a human being. C) It is wrong to kill a fetus. This argument is obviously invalid. So one way to criticize the Classical Argument is to say that it conflates two different concepts—viz., ‘person’ and ‘human being’—and therefore commits equivocation. However, the more straightforward way to attack the Classical Argument is just to deny its second premise and thus contend that the argument is unsound. This is the approach that Mary Anne Warren takes in “On the Moral and Legal Status of Abortion”. Why does Warren think that the second premise is false? Remember that we defined a person as “a member of the moral community.” And we said that an alien, for example, could be afforded moral status even though it is not a human being. Why do we think that this alien should not be tortured or set on fire? Warren thinks that, intuitively, we think that membership in the moral community is based upon possession of the following traits: 3 | P a g e 1. Consciousness of objects and events external and/or internal to the being and especially the capacity to feel pain; 2. Reasoning or rationality (i.e., the developed capacity to solve new and relatively complex problems); 3. Self-motivated activity (i.e., activity which is relatively independent of either genetic or direct external control); 4. Capacity to communicate (not necessarily verbal or linguistic); and 5. Possession of self-concepts and self-awareness. Warren then admits that, though all of the items on this list look promising, we need not require that a person have all of the items on this list. (4) is perhaps the most expendable: imagine someone who is fully paralyzed as well as deaf, these incapacities, which preclude communication, are not sufficient to justify torture. Similarly, we might be able to imagine certain psychological afflictions that negate (5) without compromising personhood. Warren suspects that (1) and (2) are might be sufficient to confer personhood, and thinks that (1)-(3) “quite probably” are sufficient. Note that, if she is right, we would not be able to torture chimps, let us say, but we could set plants on fire (and most likely ants as well). However, given Warren’s aims, she does not need to specify which of these traits are necessary or sufficient for personhood; all that she wants to observe is that the fetus has none of them! Therefore, regardless of which traits we want to require, Warren thinks that the fetus is not a person. Therefore she thinks that the Classical Argument is unsound and should be rejected. Even if we accept Warren’s refutation of the second premise, we might be inclined to say that, while the fetus is not (now) a person, it is a potential person: the fetus will hopefully mature into a being that possesses all five of the traits on Warren’s list. We might then propose the following adjustment to the Classical Argument: P1) It is wrong to kill all innocent persons. P2) A fetus is a potential person. C) It is wrong to kill a fetus. However, this argument is invalid. Warren grants that potentiality might serve as a prima facie reason (i.e., a reason that has some moral weight but which might be outweighed by other considerations) not to abort a fetus, but potentiality alone is insufficient to grant the fetus a moral right against being terminated. By analogy, consider the following argument: 4 | P a g e P1) The President has the right to declare war. P2) Mary is a potential President. C) Mary has the right to declare war. This argument is invalid since the premises are both true and the conclusion is false. By parity, the following argument is also invalid: P1) A person has a right to life. P2) A fetus is a potential person. C) A fetus has a right to life. Thus Warren thinks that considerations of potentiality are insufficient to undermine her argument that fetuses—which are potential persons but, she thinks, not persons—do not have a right to life.

A vegan diet Question 19 options: contains no animal products in any form is based on what is eaten on the planet Vega contains some dairy products can include shell fish

A vegan diet Question 19 options: contains no animal products in any form is based on what is eaten on the planet Vega contains some dairy products can include shell fish

A vegan diet Question 19 options: contains no animal products … Read More...
Problem 5: Physical Fitness versus Weight. You may have noticed from your analysis in Problem 4 that height does not explain 100% of the variation that we have observed in students’ heights. Is it possible that the amount of time students devote to physical fitness each week may help us to better understand their weights? a. Question 12 of the survey asked students, “About how much time per week (on average) do you devote to physical fitness?” We have named this variable FITNESS. Create a suitable graph to display the distribution of FITNESS and insert it here. b. What is the mode of this distribution? (Please underline one option.) Between 0 & 2 hours Between 2 & 5 hours Between 5 & 9 hours Between 9 & 15 hours Over 15 hours c. Create side-by-side boxplots to display students’ weights for the different levels of FITNESS. (Go to Graph > Boxplot > One Y with Groups > OK. Select WEIGHT for the “Graph variables” slot and FITNESS for the “Categorical variables for grouping” slot.) Insert your graph here. d. Use Minitab to calculate the basic statistics of WEIGHT for each level of FITNESS. Copy and paste the output here. e. With regard to FITNESS levels, which group of students has the lowest mean weight? (Please underline one option.) Between 0 & 2 hours Between 2 & 5 hours Between 5 & 9 hours Between 9 & 15 hours Over 15 hours f. Discuss the results: Describe the distributions of WEIGHT for the different levels of FITNESS as well as draw comparisons (i.e., What do they have in common?) and contrasts (i.e., How are they different?) between these distributions. Are there any surprises in the results? Explain why you think so, or why not. Problem 6 (Even): If your E number ends in an even number (0, 2, 4, 6, or 8) then do this question. (Omit this page/problem if your E# ends with an odd number.) Gender and Nuclear Safety. Question 5 in the survey asked students “How safe would you feel if a nuclear energy plant were built near where you live?” (Students could choose one of these options: Extremely safe, Very Safe, Moderately safe, Slightly safe, or Not at all safe.) Is there a relationship between gender and students’ opinions about nuclear safety? a. Create an appropriate graph to display the relationship between GENDER and NUCLEAR SAFETY. You don’t want to display information for students that didn’t answer both of these questions on the survey, so click on Data Options > Group Options and remove the checks in the boxes beside “Include missing as a group” and “Include empty cells.” Insert your graph here. b. Create an appropriate two-way table to summarize the data. Click on Options > Display missing values for… and put a dot in the circle beside “No variables.” Insert your table here. c. SUPPOSE WE SELECT ONE STUDENT AT RANDOM: (Calculate the following probabilities and show your work.) i. What is the probability that this student is a female and feels “very safe”? P = ii. What is the probability that this student is either a male or that he/she feels “very safe”? P = iii. What is the probability that this student feels “not at all safe” given that the student selected is a female? P = iv. What is the probability that this student is a male given that the student selected feels “not at all safe”? P = d. Do you think there may be an association between GENDER and NUCLEAR SAFETY? Why or why not? Explain your reasoning based on what you see in your graph.

Problem 5: Physical Fitness versus Weight. You may have noticed from your analysis in Problem 4 that height does not explain 100% of the variation that we have observed in students’ heights. Is it possible that the amount of time students devote to physical fitness each week may help us to better understand their weights? a. Question 12 of the survey asked students, “About how much time per week (on average) do you devote to physical fitness?” We have named this variable FITNESS. Create a suitable graph to display the distribution of FITNESS and insert it here. b. What is the mode of this distribution? (Please underline one option.) Between 0 & 2 hours Between 2 & 5 hours Between 5 & 9 hours Between 9 & 15 hours Over 15 hours c. Create side-by-side boxplots to display students’ weights for the different levels of FITNESS. (Go to Graph > Boxplot > One Y with Groups > OK. Select WEIGHT for the “Graph variables” slot and FITNESS for the “Categorical variables for grouping” slot.) Insert your graph here. d. Use Minitab to calculate the basic statistics of WEIGHT for each level of FITNESS. Copy and paste the output here. e. With regard to FITNESS levels, which group of students has the lowest mean weight? (Please underline one option.) Between 0 & 2 hours Between 2 & 5 hours Between 5 & 9 hours Between 9 & 15 hours Over 15 hours f. Discuss the results: Describe the distributions of WEIGHT for the different levels of FITNESS as well as draw comparisons (i.e., What do they have in common?) and contrasts (i.e., How are they different?) between these distributions. Are there any surprises in the results? Explain why you think so, or why not. Problem 6 (Even): If your E number ends in an even number (0, 2, 4, 6, or 8) then do this question. (Omit this page/problem if your E# ends with an odd number.) Gender and Nuclear Safety. Question 5 in the survey asked students “How safe would you feel if a nuclear energy plant were built near where you live?” (Students could choose one of these options: Extremely safe, Very Safe, Moderately safe, Slightly safe, or Not at all safe.) Is there a relationship between gender and students’ opinions about nuclear safety? a. Create an appropriate graph to display the relationship between GENDER and NUCLEAR SAFETY. You don’t want to display information for students that didn’t answer both of these questions on the survey, so click on Data Options > Group Options and remove the checks in the boxes beside “Include missing as a group” and “Include empty cells.” Insert your graph here. b. Create an appropriate two-way table to summarize the data. Click on Options > Display missing values for… and put a dot in the circle beside “No variables.” Insert your table here. c. SUPPOSE WE SELECT ONE STUDENT AT RANDOM: (Calculate the following probabilities and show your work.) i. What is the probability that this student is a female and feels “very safe”? P = ii. What is the probability that this student is either a male or that he/she feels “very safe”? P = iii. What is the probability that this student feels “not at all safe” given that the student selected is a female? P = iv. What is the probability that this student is a male given that the student selected feels “not at all safe”? P = d. Do you think there may be an association between GENDER and NUCLEAR SAFETY? Why or why not? Explain your reasoning based on what you see in your graph.

info@checkyourstudy.com
SECTION A: CASE STUDY In-text citation and references (or sources) are required using the Harvard referencing style This section is based on the following case study which can be accessed via the CIS3…CIS2005 Principles of Information Security – Assignment 3 Description Marks out of Weighting Due date Assignment 3 Report and Presentation based on CASE STUDY: BCX.COM (A fictitious analysis of a secu…HA 2022 INTRODUCTION TO BUSINESS LAW Assessment 2 Individual Report PLEASE NOTE THE FOLLOWING INSTRUCTIONS: Candidates are required to write 2000 words on the topic given below. Your argument, must b…BAO5734 – FINANCIAL ANALYSIS Analysts’ report group project Guidelines Due: end of week 12 Weight: 25% Submission: electronic Length: 4 000 words (excluding bibliography, appendix, and cover page), ab…Task Team Project Management Plan Due Date Week 11 – Fri, October 24, 2014, 5:00 pm – Team Project Management Plan Week 11 – Fri, October 24, 2014, 5:00 pm – Individual Report Worth 20% (60 marks) Cou…The focus of this assignment is to draw upon your analysis of national culture of two countries in Assignment 1 to develop an assessment of Description/Focus: similarities and differences in manageria…PRMB022 Organisational Behaviour Assignment #2 Case Study ASSIGNMENT 2 – TASK AND GUIDANCE Stimulus Article Scenario Task Purpose Guidance The article on which this assignment is based, ‘WA Police do…Show All Questions

SECTION A: CASE STUDY In-text citation and references (or sources) are required using the Harvard referencing style This section is based on the following case study which can be accessed via the CIS3…CIS2005 Principles of Information Security – Assignment 3 Description Marks out of Weighting Due date Assignment 3 Report and Presentation based on CASE STUDY: BCX.COM (A fictitious analysis of a secu…HA 2022 INTRODUCTION TO BUSINESS LAW Assessment 2 Individual Report PLEASE NOTE THE FOLLOWING INSTRUCTIONS: Candidates are required to write 2000 words on the topic given below. Your argument, must b…BAO5734 – FINANCIAL ANALYSIS Analysts’ report group project Guidelines Due: end of week 12 Weight: 25% Submission: electronic Length: 4 000 words (excluding bibliography, appendix, and cover page), ab…Task Team Project Management Plan Due Date Week 11 – Fri, October 24, 2014, 5:00 pm – Team Project Management Plan Week 11 – Fri, October 24, 2014, 5:00 pm – Individual Report Worth 20% (60 marks) Cou…The focus of this assignment is to draw upon your analysis of national culture of two countries in Assignment 1 to develop an assessment of Description/Focus: similarities and differences in manageria…PRMB022 Organisational Behaviour Assignment #2 Case Study ASSIGNMENT 2 – TASK AND GUIDANCE Stimulus Article Scenario Task Purpose Guidance The article on which this assignment is based, ‘WA Police do…Show All Questions

info@checkyourstudy.com
ENGL 122-Geist Drew Writing Assignment #3 Your first draft is due Monday, Oct. 26 with 3 copies. Conference days: Oct.30th and Nov. 2nd Your revised draft is due Wednesday, Nov. 4th Your Assignment: Type a 4 page essay about a quote you think should be added to the Anne Frank Human Rights Memorial Quote Wall. This can be a quote from a human right’s activist, a well-known person from your country, or someone else in the world. The quote must be related to human rights! Make sure that the quote is not already on the AFHRMQW. Tell us about the person who said the quote, and when and why they said what they said. Help your reader understand what the person meant by what he/she said, and why it is important for other’s to remember. Finally, help your reader understand why this particular quote would be a good quote to include on the Anne Frank Human Rights Memorial Quote Wall for people to read. If you include information from outside sources, make sure that you give full credit following the correct MLA format for in-text citations and the Works Cited page. Remember that Knight Cite might be a helpful tool. Here are some things to consider while you are brainstorming ideas for this assignment: Why is this person and what he/she said important to the whole world and not just his/her country? What is the significance of what this person said (did) to the rest of the world? How does this person serve as an example to others? What can we learn from this person? Do this person’s ideas/words transcend place and time? That means, is this person’s words and ideas still true TODAY and will they continue to be true in the FUTURE? How has this person and their words influenced or impacted you or your way of thinking? How are this person’s words related to human rights? Requirements: 1. Your essay must be 4-pages, typed, double-spaced and have 1-inch margins. 2. Use essay format: Name, Date, Assignment Name, Title, Essay 3. Your essay should be written in paragraph form with each paragraph indented. 4. Your essay should have an interesting title that catches the attention of the reader. 5. Think about your intended audience. Consider your writer’s voice based on your audience. Criteria for evaluating this essay: 1. You must choose a quote that you think should be added to the AFHRMQW. 2. You must have a clear main idea that includes your chosen quote and why it should be added to the AFH RMQW. 3. Your essay should include details, description and support from your experience and others. 4. Include your opinions about how this person and what they said/did has had an impact on you and your life. 5. Make sure that you have followed the correct MLA format for documenting in-text citations for summaries, quotes and other references. 6. Include a Works Cited page if you use sources other than your own ideas. REMEMBER THAT REVSION IS THE KEY! Please come and see me if you have any questions. Make Writing Center appointments early. This is a busy time!

ENGL 122-Geist Drew Writing Assignment #3 Your first draft is due Monday, Oct. 26 with 3 copies. Conference days: Oct.30th and Nov. 2nd Your revised draft is due Wednesday, Nov. 4th Your Assignment: Type a 4 page essay about a quote you think should be added to the Anne Frank Human Rights Memorial Quote Wall. This can be a quote from a human right’s activist, a well-known person from your country, or someone else in the world. The quote must be related to human rights! Make sure that the quote is not already on the AFHRMQW. Tell us about the person who said the quote, and when and why they said what they said. Help your reader understand what the person meant by what he/she said, and why it is important for other’s to remember. Finally, help your reader understand why this particular quote would be a good quote to include on the Anne Frank Human Rights Memorial Quote Wall for people to read. If you include information from outside sources, make sure that you give full credit following the correct MLA format for in-text citations and the Works Cited page. Remember that Knight Cite might be a helpful tool. Here are some things to consider while you are brainstorming ideas for this assignment: Why is this person and what he/she said important to the whole world and not just his/her country? What is the significance of what this person said (did) to the rest of the world? How does this person serve as an example to others? What can we learn from this person? Do this person’s ideas/words transcend place and time? That means, is this person’s words and ideas still true TODAY and will they continue to be true in the FUTURE? How has this person and their words influenced or impacted you or your way of thinking? How are this person’s words related to human rights? Requirements: 1. Your essay must be 4-pages, typed, double-spaced and have 1-inch margins. 2. Use essay format: Name, Date, Assignment Name, Title, Essay 3. Your essay should be written in paragraph form with each paragraph indented. 4. Your essay should have an interesting title that catches the attention of the reader. 5. Think about your intended audience. Consider your writer’s voice based on your audience. Criteria for evaluating this essay: 1. You must choose a quote that you think should be added to the AFHRMQW. 2. You must have a clear main idea that includes your chosen quote and why it should be added to the AFH RMQW. 3. Your essay should include details, description and support from your experience and others. 4. Include your opinions about how this person and what they said/did has had an impact on you and your life. 5. Make sure that you have followed the correct MLA format for documenting in-text citations for summaries, quotes and other references. 6. Include a Works Cited page if you use sources other than your own ideas. REMEMBER THAT REVSION IS THE KEY! Please come and see me if you have any questions. Make Writing Center appointments early. This is a busy time!

info@checkyourstudy.com Whatsapp +919911743277
Assignment 1 Due: 11:59pm on Wednesday, February 5, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 1.6 Part A Determine the sign (positive or negative) of the position for the particle in the figure. ANSWER: Correct Part B Determine the sign (positive or negative) of the velocity for the particle in the figure. ANSWER: Correct Positive Negative Negative Positive Part C Determine the sign (positive or negative) of the acceleration for the particle in the figure. ANSWER: Correct Conceptual Question 1.7 Part A Determine the sign (positive or negative) of the position for the particle in the figure. ANSWER: Positive Negative Correct Part B Determine the sign (positive or negative) of the velocity for the particle in the figure. ANSWER: Correct Part C Determine the sign (positive or negative) of the acceleration for the particle in the figure. ANSWER: Correct Enhanced EOC: Problem 1.18 The figure shows the motion diagram of a drag racer. The camera took one frame every 2 . Positive Negative Positive Negative Negative Positive s You may want to review ( pages 16 – 19) . For help with math skills, you may want to review: Plotting Points on a Graph Part A Make a position-versus-time graph for the drag racer. Hint 1. How to approach the problem Based on Table 1.1 in the book/e-text, what two observables are associated with each point? Which position or point of the drag racer occurs first? Which position occurs last? If you label the first point as happening at , at what time does the next point occur? At what time does the last position point occur? What is the position of a point halfway in between and ? Can you think of a way to estimate the positions of the points using a ruler? ANSWER: t = 0 s x = 0 m x = 200 m Correct Motion of Two Rockets Learning Goal: To learn to use images of an object in motion to determine velocity and acceleration. Two toy rockets are traveling in the same direction (taken to be the x axis). A diagram is shown of a time-exposure image where a stroboscope has illuminated the rockets at the uniform time intervals indicated. Part A At what time(s) do the rockets have the same velocity? Hint 1. How to determine the velocity The diagram shows position, not velocity. You can’t find instantaneous velocity from this diagram, but you can determine the average velocity between two times and : . Note that no position values are given in the diagram; you will need to estimate these based on the distance between successive positions of the rockets. ANSWER: Correct t1 t2 vavg[t1, t2] = x(t2)−x(t1) t2−t1 at time only at time only at times and at some instant in time between and at no time shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 Part B At what time(s) do the rockets have the same x position? ANSWER: Correct Part C At what time(s) do the two rockets have the same acceleration? Hint 1. How to determine the acceleration The velocity is related to the spacing between images in a stroboscopic diagram. Since acceleration is the rate at which velocity changes, the acceleration is related to the how much this spacing changes from one interval to the next. ANSWER: at time only at time only at times and at some instant in time between and at no time shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 at time only at time only at times and at some instant in time between and at no time shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 Correct Part D The motion of the rocket labeled A is an example of motion with uniform (i.e., constant) __________. ANSWER: Correct Part E The motion of the rocket labeled B is an example of motion with uniform (i.e., constant) __________. ANSWER: Correct Part F At what time(s) is rocket A ahead of rocket B? and nonzero acceleration velocity displacement time and nonzero acceleration velocity displacement time Hint 1. Use the diagram You can answer this question by looking at the diagram and identifying the time(s) when rocket A is to the right of rocket B. ANSWER: Correct Dimensions of Physical Quantities Learning Goal: To introduce the idea of physical dimensions and to learn how to find them. Physical quantities are generally not purely numerical: They have a particular dimension or combination of dimensions associated with them. Thus, your height is not 74, but rather 74 inches, often expressed as 6 feet 2 inches. Although feet and inches are different units they have the same dimension–length. Part A In classical mechanics there are three base dimensions. Length is one of them. What are the other two? Hint 1. MKS system The current system of units is called the International System (abbreviated SI from the French Système International). In the past this system was called the mks system for its base units: meter, kilogram, and second. What are the dimensions of these quantities? ANSWER: before only after only before and after between and at no time(s) shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 Correct There are three dimensions used in mechanics: length ( ), mass ( ), and time ( ). A combination of these three dimensions suffices to express any physical quantity, because when a new physical quantity is needed (e.g., velocity), it always obeys an equation that permits it to be expressed in terms of the units used for these three dimensions. One then derives a unit to measure the new physical quantity from that equation, and often its unit is given a special name. Such new dimensions are called derived dimensions and the units they are measured in are called derived units. For example, area has derived dimensions . (Note that “dimensions of variable ” is symbolized as .) You can find these dimensions by looking at the formula for the area of a square , where is the length of a side of the square. Clearly . Plugging this into the equation gives . Part B Find the dimensions of volume. Express your answer as powers of length ( ), mass ( ), and time ( ). Hint 1. Equation for volume You have likely learned many formulas for the volume of various shapes in geometry. Any of these equations will give you the dimensions for volume. You can find the dimensions most easily from the volume of a cube , where is the length of the edge of the cube. ANSWER: acceleration and mass acceleration and time acceleration and charge mass and time mass and charge time and charge l m t A [A] = l2 x [x] A = s2 s [s] = l [A] = [s] = 2 l2 [V ] l m t V = e3 e [V ] = l3 Correct Part C Find the dimensions of speed. Express your answer as powers of length ( ), mass ( ), and time ( ). Hint 1. Equation for speed Speed is defined in terms of distance and time as . Therefore, . Hint 2. Familiar units for speed You are probably accustomed to hearing speeds in miles per hour (or possibly kilometers per hour). Think about the dimensions for miles and hours. If you divide the dimensions for miles by the dimensions for hours, you will have the dimensions for speed. ANSWER: Correct The dimensions of a quantity are not changed by addition or subtraction of another quantity with the same dimensions. This means that , which comes from subtracting two speeds, has the same dimensions as speed. It does not make physical sense to add or subtract two quanitites that have different dimensions, like length plus time. You can add quantities that have different units, like miles per hour and kilometers per hour, as long as you convert both quantities to the same set of units before you actually compute the sum. You can use this rule to check your answers to any physics problem you work. If the answer involves the sum or difference of two quantities with different dimensions, then it must be incorrect. This rule also ensures that the dimensions of any physical quantity will never involve sums or differences of the base dimensions. (As in the preceeding example, is not a valid dimension for a [v] l m t v d t v = d t [v] = [d]/[t] [v] = lt−1 v l + t physical quantitiy.) A valid dimension will only involve the product or ratio of powers of the base dimensions (e.g. ). Part D Find the dimensions of acceleration. Express your answer as powers of length ( ), mass ( ), and time ( ). Hint 1. Equation for acceleration In physics, acceleration is defined as the change in velocity in a certain time. This is shown by the equation . The is a symbol that means “the change in.” ANSWER: Correct Consistency of Units In physics, every physical quantity is measured with respect to a unit. Time is measured in seconds, length is measured in meters, and mass is measured in kilograms. Knowing the units of physical quantities will help you solve problems in physics. Part A Gravity causes objects to be attracted to one another. This attraction keeps our feet firmly planted on the ground and causes the moon to orbit the earth. The force of gravitational attraction is represented by the equation , where is the magnitude of the gravitational attraction on either body, and are the masses of the bodies, is the distance between them, and is the gravitational constant. In SI units, the units of force are , the units of mass are , and the units of distance are . For this equation to have consistent units, the units of must be which of the following? Hint 1. How to approach the problem To solve this problem, we start with the equation m2/3 l2 t−2 [a] l m t a a = v/t  [a] = lt−2 F = Gm1m2 r2 F m1 m2 r G kg  m/s2 kg m G . For each symbol whose units we know, we replace the symbol with those units. For example, we replace with . We now solve this equation for . ANSWER: Correct Part B One consequence of Einstein’s theory of special relativity is that mass is a form of energy. This mass-energy relationship is perhaps the most famous of all physics equations: , where is mass, is the speed of the light, and is the energy. In SI units, the units of speed are . For the preceding equation to have consistent units (the same units on both sides of the equation), the units of must be which of the following? Hint 1. How to approach the problem To solve this problem, we start with the equation . For each symbol whose units we know, we replace the symbol with those units. For example, we replace with . We now solve this equation for . ANSWER: F = Gm1m2 r2 m1 kg G kg3 ms2 kgs2 m3 m3 kgs2 m kgs2 E = mc2 m c E m/s E E = mc2 m kg E Correct To solve the types of problems typified by these examples, we start with the given equation. For each symbol whose units we know, we replace the symbol with those units. For example, we replace with . We now solve this equation for the units of the unknown variable. Problem 1.24 Convert the following to SI units: Part A 5.0 Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B 54 Express your answer to two significant figures and include the appropriate units. kgm s kgm2 s2 kgs2 m2 kgm2 s m kg in 0.13 m ft/s ANSWER: Correct Part C 72 Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part D 17 Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 1.55 The figure shows a motion diagram of a car traveling down a street. The camera took one frame every 10 . A distance scale is provided. 16 ms mph 32 ms in2 1.1×10−2 m2 s Part A Make a position-versus-time graph for the car. ANSWER: Incorrect; Try Again ± Moving at the Speed of Light Part A How many nanoseconds does it take light to travel a distance of 4.40 in vacuum? Express your answer numerically in nanoseconds. Hint 1. How to approach the problem Light travels at a constant speed; therefore, you can use the formula for the distance traveled in a certain amount of time by an object moving at constant speed. Before performing any calculations, it is often recommended, although it is not strictly necessary, to convert all quantities to their fundamental units rather than to multiples of the fundamental unit. km Hint 2. Find how many seconds it takes light to travel the given distance Given that the speed of light in vacuum is , how many seconds does it take light to travel a distance of 4.40 ? Express your answer numerically in seconds. Hint 1. Find the time it takes light to travel a certain distance How long does it take light to travel a distance ? Let be the speed of light. Hint 1. The speed of an object The equation that relates the distance traveled by an object with constant speed in a time is . ANSWER: Correct Hint 2. Convert the given distance to meters Convert = 4.40 to meters. Express your answer numerically in meters. Hint 1. Conversion of kilometers to meters Recall that . 3.00 × 108 m/s km r c s v t s = vt r  c r c c r d km 1 km = 103 m ANSWER: Correct ANSWER: Correct Now convert the time into nanoseconds. Recall that . ANSWER: Correct Score Summary: Your score on this assignment is 84.7%. You received 50.84 out of a possible total of 60 points. 4.40km = 4400 m 1.47×10−5 s 1 ns = 10−9 s 1.47×104 ns

Assignment 1 Due: 11:59pm on Wednesday, February 5, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 1.6 Part A Determine the sign (positive or negative) of the position for the particle in the figure. ANSWER: Correct Part B Determine the sign (positive or negative) of the velocity for the particle in the figure. ANSWER: Correct Positive Negative Negative Positive Part C Determine the sign (positive or negative) of the acceleration for the particle in the figure. ANSWER: Correct Conceptual Question 1.7 Part A Determine the sign (positive or negative) of the position for the particle in the figure. ANSWER: Positive Negative Correct Part B Determine the sign (positive or negative) of the velocity for the particle in the figure. ANSWER: Correct Part C Determine the sign (positive or negative) of the acceleration for the particle in the figure. ANSWER: Correct Enhanced EOC: Problem 1.18 The figure shows the motion diagram of a drag racer. The camera took one frame every 2 . Positive Negative Positive Negative Negative Positive s You may want to review ( pages 16 – 19) . For help with math skills, you may want to review: Plotting Points on a Graph Part A Make a position-versus-time graph for the drag racer. Hint 1. How to approach the problem Based on Table 1.1 in the book/e-text, what two observables are associated with each point? Which position or point of the drag racer occurs first? Which position occurs last? If you label the first point as happening at , at what time does the next point occur? At what time does the last position point occur? What is the position of a point halfway in between and ? Can you think of a way to estimate the positions of the points using a ruler? ANSWER: t = 0 s x = 0 m x = 200 m Correct Motion of Two Rockets Learning Goal: To learn to use images of an object in motion to determine velocity and acceleration. Two toy rockets are traveling in the same direction (taken to be the x axis). A diagram is shown of a time-exposure image where a stroboscope has illuminated the rockets at the uniform time intervals indicated. Part A At what time(s) do the rockets have the same velocity? Hint 1. How to determine the velocity The diagram shows position, not velocity. You can’t find instantaneous velocity from this diagram, but you can determine the average velocity between two times and : . Note that no position values are given in the diagram; you will need to estimate these based on the distance between successive positions of the rockets. ANSWER: Correct t1 t2 vavg[t1, t2] = x(t2)−x(t1) t2−t1 at time only at time only at times and at some instant in time between and at no time shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 Part B At what time(s) do the rockets have the same x position? ANSWER: Correct Part C At what time(s) do the two rockets have the same acceleration? Hint 1. How to determine the acceleration The velocity is related to the spacing between images in a stroboscopic diagram. Since acceleration is the rate at which velocity changes, the acceleration is related to the how much this spacing changes from one interval to the next. ANSWER: at time only at time only at times and at some instant in time between and at no time shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 at time only at time only at times and at some instant in time between and at no time shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 Correct Part D The motion of the rocket labeled A is an example of motion with uniform (i.e., constant) __________. ANSWER: Correct Part E The motion of the rocket labeled B is an example of motion with uniform (i.e., constant) __________. ANSWER: Correct Part F At what time(s) is rocket A ahead of rocket B? and nonzero acceleration velocity displacement time and nonzero acceleration velocity displacement time Hint 1. Use the diagram You can answer this question by looking at the diagram and identifying the time(s) when rocket A is to the right of rocket B. ANSWER: Correct Dimensions of Physical Quantities Learning Goal: To introduce the idea of physical dimensions and to learn how to find them. Physical quantities are generally not purely numerical: They have a particular dimension or combination of dimensions associated with them. Thus, your height is not 74, but rather 74 inches, often expressed as 6 feet 2 inches. Although feet and inches are different units they have the same dimension–length. Part A In classical mechanics there are three base dimensions. Length is one of them. What are the other two? Hint 1. MKS system The current system of units is called the International System (abbreviated SI from the French Système International). In the past this system was called the mks system for its base units: meter, kilogram, and second. What are the dimensions of these quantities? ANSWER: before only after only before and after between and at no time(s) shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 Correct There are three dimensions used in mechanics: length ( ), mass ( ), and time ( ). A combination of these three dimensions suffices to express any physical quantity, because when a new physical quantity is needed (e.g., velocity), it always obeys an equation that permits it to be expressed in terms of the units used for these three dimensions. One then derives a unit to measure the new physical quantity from that equation, and often its unit is given a special name. Such new dimensions are called derived dimensions and the units they are measured in are called derived units. For example, area has derived dimensions . (Note that “dimensions of variable ” is symbolized as .) You can find these dimensions by looking at the formula for the area of a square , where is the length of a side of the square. Clearly . Plugging this into the equation gives . Part B Find the dimensions of volume. Express your answer as powers of length ( ), mass ( ), and time ( ). Hint 1. Equation for volume You have likely learned many formulas for the volume of various shapes in geometry. Any of these equations will give you the dimensions for volume. You can find the dimensions most easily from the volume of a cube , where is the length of the edge of the cube. ANSWER: acceleration and mass acceleration and time acceleration and charge mass and time mass and charge time and charge l m t A [A] = l2 x [x] A = s2 s [s] = l [A] = [s] = 2 l2 [V ] l m t V = e3 e [V ] = l3 Correct Part C Find the dimensions of speed. Express your answer as powers of length ( ), mass ( ), and time ( ). Hint 1. Equation for speed Speed is defined in terms of distance and time as . Therefore, . Hint 2. Familiar units for speed You are probably accustomed to hearing speeds in miles per hour (or possibly kilometers per hour). Think about the dimensions for miles and hours. If you divide the dimensions for miles by the dimensions for hours, you will have the dimensions for speed. ANSWER: Correct The dimensions of a quantity are not changed by addition or subtraction of another quantity with the same dimensions. This means that , which comes from subtracting two speeds, has the same dimensions as speed. It does not make physical sense to add or subtract two quanitites that have different dimensions, like length plus time. You can add quantities that have different units, like miles per hour and kilometers per hour, as long as you convert both quantities to the same set of units before you actually compute the sum. You can use this rule to check your answers to any physics problem you work. If the answer involves the sum or difference of two quantities with different dimensions, then it must be incorrect. This rule also ensures that the dimensions of any physical quantity will never involve sums or differences of the base dimensions. (As in the preceeding example, is not a valid dimension for a [v] l m t v d t v = d t [v] = [d]/[t] [v] = lt−1 v l + t physical quantitiy.) A valid dimension will only involve the product or ratio of powers of the base dimensions (e.g. ). Part D Find the dimensions of acceleration. Express your answer as powers of length ( ), mass ( ), and time ( ). Hint 1. Equation for acceleration In physics, acceleration is defined as the change in velocity in a certain time. This is shown by the equation . The is a symbol that means “the change in.” ANSWER: Correct Consistency of Units In physics, every physical quantity is measured with respect to a unit. Time is measured in seconds, length is measured in meters, and mass is measured in kilograms. Knowing the units of physical quantities will help you solve problems in physics. Part A Gravity causes objects to be attracted to one another. This attraction keeps our feet firmly planted on the ground and causes the moon to orbit the earth. The force of gravitational attraction is represented by the equation , where is the magnitude of the gravitational attraction on either body, and are the masses of the bodies, is the distance between them, and is the gravitational constant. In SI units, the units of force are , the units of mass are , and the units of distance are . For this equation to have consistent units, the units of must be which of the following? Hint 1. How to approach the problem To solve this problem, we start with the equation m2/3 l2 t−2 [a] l m t a a = v/t  [a] = lt−2 F = Gm1m2 r2 F m1 m2 r G kg  m/s2 kg m G . For each symbol whose units we know, we replace the symbol with those units. For example, we replace with . We now solve this equation for . ANSWER: Correct Part B One consequence of Einstein’s theory of special relativity is that mass is a form of energy. This mass-energy relationship is perhaps the most famous of all physics equations: , where is mass, is the speed of the light, and is the energy. In SI units, the units of speed are . For the preceding equation to have consistent units (the same units on both sides of the equation), the units of must be which of the following? Hint 1. How to approach the problem To solve this problem, we start with the equation . For each symbol whose units we know, we replace the symbol with those units. For example, we replace with . We now solve this equation for . ANSWER: F = Gm1m2 r2 m1 kg G kg3 ms2 kgs2 m3 m3 kgs2 m kgs2 E = mc2 m c E m/s E E = mc2 m kg E Correct To solve the types of problems typified by these examples, we start with the given equation. For each symbol whose units we know, we replace the symbol with those units. For example, we replace with . We now solve this equation for the units of the unknown variable. Problem 1.24 Convert the following to SI units: Part A 5.0 Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B 54 Express your answer to two significant figures and include the appropriate units. kgm s kgm2 s2 kgs2 m2 kgm2 s m kg in 0.13 m ft/s ANSWER: Correct Part C 72 Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part D 17 Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 1.55 The figure shows a motion diagram of a car traveling down a street. The camera took one frame every 10 . A distance scale is provided. 16 ms mph 32 ms in2 1.1×10−2 m2 s Part A Make a position-versus-time graph for the car. ANSWER: Incorrect; Try Again ± Moving at the Speed of Light Part A How many nanoseconds does it take light to travel a distance of 4.40 in vacuum? Express your answer numerically in nanoseconds. Hint 1. How to approach the problem Light travels at a constant speed; therefore, you can use the formula for the distance traveled in a certain amount of time by an object moving at constant speed. Before performing any calculations, it is often recommended, although it is not strictly necessary, to convert all quantities to their fundamental units rather than to multiples of the fundamental unit. km Hint 2. Find how many seconds it takes light to travel the given distance Given that the speed of light in vacuum is , how many seconds does it take light to travel a distance of 4.40 ? Express your answer numerically in seconds. Hint 1. Find the time it takes light to travel a certain distance How long does it take light to travel a distance ? Let be the speed of light. Hint 1. The speed of an object The equation that relates the distance traveled by an object with constant speed in a time is . ANSWER: Correct Hint 2. Convert the given distance to meters Convert = 4.40 to meters. Express your answer numerically in meters. Hint 1. Conversion of kilometers to meters Recall that . 3.00 × 108 m/s km r c s v t s = vt r  c r c c r d km 1 km = 103 m ANSWER: Correct ANSWER: Correct Now convert the time into nanoseconds. Recall that . ANSWER: Correct Score Summary: Your score on this assignment is 84.7%. You received 50.84 out of a possible total of 60 points. 4.40km = 4400 m 1.47×10−5 s 1 ns = 10−9 s 1.47×104 ns

please email info@checkyourstudy.com
. which of the following predictions appear(s) to follow from a model based on the assumption that rational, self-interested individuals respond to incentives? (See pages 6–7.) a. For every 10 exam points Myrna must earn in order to pass her economics course and meet her graduation requirements, she will study one additional hour for her economics test next week. b. A coin toss will best predict Leonardo’s decision about whether to purchase an expensive business suit or an inexpensive casual outfit to wear next week when he interviews for a high-paying job he is seeking. c. Celeste, who uses earnings from her regularly scheduled hours of part-time work to pay for her room and board at college, will decide to purchase and download a newly released video this week only if

. which of the following predictions appear(s) to follow from a model based on the assumption that rational, self-interested individuals respond to incentives? (See pages 6–7.) a. For every 10 exam points Myrna must earn in order to pass her economics course and meet her graduation requirements, she will study one additional hour for her economics test next week. b. A coin toss will best predict Leonardo’s decision about whether to purchase an expensive business suit or an inexpensive casual outfit to wear next week when he interviews for a high-paying job he is seeking. c. Celeste, who uses earnings from her regularly scheduled hours of part-time work to pay for her room and board at college, will decide to purchase and download a newly released video this week only if