The charge required to operate the flash lamp of a camera is 30uC. if a capacitor charged with a 6 volt battery is used to supply this charge, what is its capacitance and how much energy does it store ? a) C=2uF;U=9*10-5J, b) C=5uF;U=9*10-5J, c) C=5uF;U=1.8*10-4 J, d) C=180uF;U=4.5*10-5J, e) C=180uF;U=9*10-5J,

The charge required to operate the flash lamp of a camera is 30uC. if a capacitor charged with a 6 volt battery is used to supply this charge, what is its capacitance and how much energy does it store ? a) C=2uF;U=9*10-5J, b) C=5uF;U=9*10-5J, c) C=5uF;U=1.8*10-4 J, d) C=180uF;U=4.5*10-5J, e) C=180uF;U=9*10-5J,

The charge required to operate the flash lamp of a … Read More...
1. (2 marks total) a. Multiply 109 x 309 b. Divide 1988 by 16 exactly 2. (4 marks total) a. Write 2/11 as a decimal to 2 decimal places b. Calculate 35% of 62 c. Add 103/4 to 92/3 d. Subtract 79.04 from 115.225 giving your answer correct to 2 decimal places 3. Circle the fractions in the list which are equivalent to 0.80 (2 marks) 2/7 32/40 8/10 8/20 8/25 9/24 36/45 40/50 4. Write the numerical value of: 3-3 (2 marks total) 5. Simplify z + 67 = 3z + 33 (1 mark total) 6. Solve to 1 decimal place 3y – 34 = 2y + 89 (1 mark total) 7. Solve the following equations to 2 decimal places (3 marks total) a. 37x + 1 = 35 b. 27 – a = 7.45 c. 3(y + 2) = 14 8. A 7-sided polygon is called a Heptagon. (3 marks total) a. What is the total of a Heptagon’s interior angles? b. If the Heptagon is regular (all angles the same), calculate the size of each interior angle to 2 decimal places. 9. Calculate the size of angle a and angle b. (2 mark total) 10. How many centilitres are there in 1.25 litres? (1 mark total) 11. The diagram below shows a stone carving with a hole on it; determine its volume (not including hole), if its thickness is 8 cm. Give your answer in cm3 to 2 decimal points. Assume π = 3.14 (6 marks total) 12. The diagram below shows a piece of alloy plate with a hole in it made from aluminium, copper and magnesium with a mass ratio of 35:3:2. Calculate the following to 2 decimal places. All measurements are in cm. (7 marks total) a. Using the formula A = 1/2(a+b)h calculate the height of the shape below. b. The volume of the solid part (not including the hole) of the shape below to 3 decimal places if it was 0.25cm thick. c. The mass of each material if the total mass of the plate is 62 kg. 10 cm Hole dia = 3 cm Cross sectional area of solid (not including hole) = 28.935 cm2 8 cm 13. A 66kg boy is running at 3 m/s. Calculate his Kinetic Energy using the formula KE = 1/2mv2 (2 marks total) 14. A rocket has a mass of 2,000 kg. What is its acceleration if the forces of its engines are 50kN? Show working out to receive full marks. (1 marks total) 250,000,000 m/s² 25 m/s² 25,000 m/s² 15. In the diagram below a force of 125N (F1) is applied to a lever 20cm (D1) away from the fulcrum, (4 marks total) Fulcrum (a) How far away in metres would a force of 5N (F2) need to be to balance the load? (b) How much force (F2) would need to be applied 0.7m away to balance the same load (F1)? 16. For the circuit shown in the diagram below, calculate: (3 mark total) a. The total circuit resistance. b. The value of the current I. c. Calculate the voltage of the battery cell if the current was 3amp and the resistors stayed the same. 17. In the diagram of a hydraulic system, the area of piston A is 8cm2 and the area of piston B is 48cm2. (2 mark total) If the Force IN is 16 N, calculate the force OUT. 18. Plot the graph 2y = x3 – 4 using a value range for x from 0 to 3 (3 marks total) 14 12 10 8 6 4 2 0 -2 Choosing appropriate scale (1 mark) Accurately plotting y values (1 mark) X 0 1 2 3 Y Accurately plotting line of best fit. (1 mark) SPARE PAPER

1. (2 marks total) a. Multiply 109 x 309 b. Divide 1988 by 16 exactly 2. (4 marks total) a. Write 2/11 as a decimal to 2 decimal places b. Calculate 35% of 62 c. Add 103/4 to 92/3 d. Subtract 79.04 from 115.225 giving your answer correct to 2 decimal places 3. Circle the fractions in the list which are equivalent to 0.80 (2 marks) 2/7 32/40 8/10 8/20 8/25 9/24 36/45 40/50 4. Write the numerical value of: 3-3 (2 marks total) 5. Simplify z + 67 = 3z + 33 (1 mark total) 6. Solve to 1 decimal place 3y – 34 = 2y + 89 (1 mark total) 7. Solve the following equations to 2 decimal places (3 marks total) a. 37x + 1 = 35 b. 27 – a = 7.45 c. 3(y + 2) = 14 8. A 7-sided polygon is called a Heptagon. (3 marks total) a. What is the total of a Heptagon’s interior angles? b. If the Heptagon is regular (all angles the same), calculate the size of each interior angle to 2 decimal places. 9. Calculate the size of angle a and angle b. (2 mark total) 10. How many centilitres are there in 1.25 litres? (1 mark total) 11. The diagram below shows a stone carving with a hole on it; determine its volume (not including hole), if its thickness is 8 cm. Give your answer in cm3 to 2 decimal points. Assume π = 3.14 (6 marks total) 12. The diagram below shows a piece of alloy plate with a hole in it made from aluminium, copper and magnesium with a mass ratio of 35:3:2. Calculate the following to 2 decimal places. All measurements are in cm. (7 marks total) a. Using the formula A = 1/2(a+b)h calculate the height of the shape below. b. The volume of the solid part (not including the hole) of the shape below to 3 decimal places if it was 0.25cm thick. c. The mass of each material if the total mass of the plate is 62 kg. 10 cm Hole dia = 3 cm Cross sectional area of solid (not including hole) = 28.935 cm2 8 cm 13. A 66kg boy is running at 3 m/s. Calculate his Kinetic Energy using the formula KE = 1/2mv2 (2 marks total) 14. A rocket has a mass of 2,000 kg. What is its acceleration if the forces of its engines are 50kN? Show working out to receive full marks. (1 marks total) 250,000,000 m/s² 25 m/s² 25,000 m/s² 15. In the diagram below a force of 125N (F1) is applied to a lever 20cm (D1) away from the fulcrum, (4 marks total) Fulcrum (a) How far away in metres would a force of 5N (F2) need to be to balance the load? (b) How much force (F2) would need to be applied 0.7m away to balance the same load (F1)? 16. For the circuit shown in the diagram below, calculate: (3 mark total) a. The total circuit resistance. b. The value of the current I. c. Calculate the voltage of the battery cell if the current was 3amp and the resistors stayed the same. 17. In the diagram of a hydraulic system, the area of piston A is 8cm2 and the area of piston B is 48cm2. (2 mark total) If the Force IN is 16 N, calculate the force OUT. 18. Plot the graph 2y = x3 – 4 using a value range for x from 0 to 3 (3 marks total) 14 12 10 8 6 4 2 0 -2 Choosing appropriate scale (1 mark) Accurately plotting y values (1 mark) X 0 1 2 3 Y Accurately plotting line of best fit. (1 mark) SPARE PAPER

No expert has answered this question yet. You can browse … Read More...
Tornado Eddy Investigation Abstract The objective of this lab was to write a bunch of jibberish to provide students with a formatting template. Chemical engineering, bioengineering, and environmental engineering are “process engineering” disciplines. Good abstracts contains real content, such as 560 mL/min, 35 deg, and 67 percent yield. Ideal degreed graduates are technically strong, bring broad system perspectives to problem solving, and have the professional “soft skills” to make immediate contributions in the workplace. The senior lab sequence is the “capstone” opportunity to realize this ideal by integrating technical skills and developing professional soft skills to ensure workforce preparedness. The best conclusions are objective and numerical, such as operating conditions of 45 L/min at 32 deg C with expected costs of $4.55/lb. Background Insect exchange processes are often used in bug filtration, as they are effective at removing either positive or negative insects from water. An insect exchange column is a packed or fluidized bed filled with resin beads. Water flows through the column and most of the insects from the water enter the beads, but some of them pass in between the beads, which makes the exchange of insects non-ideal. Insectac 249 resin is a cation exchange resin, as it is being used to attract cationic Ca2+ from the toxic waste stream. This means the resin is negatively charged, and needs to be regenerated with a solution that produces positively charged insects, in this case, salt water which contains Na+ insects. The resin contains acidic styrene backbones which capture the cationic insects in a reversible process. A curve of Ca2+ concentration concentration vs. time was obtained after a standard curve was made to determine how many drops from the low cost barium test kit from Aquarium Pharmaceuticals (API)1 bottle #2 would correspond to a certain concentration in solution. A standard curve works by preparing solutions with known concentrations and testing these concentrations using the kit to create a curve of number of drops from bottle #2 (obtained result) vs. concentration of Ca2+ in solution (desired response). The standard curve can then be used for every test on the prototype and in the field, to quickly and accurately obtain a concentration from the test kit. The barium concentration vs. time curve can be used to calculate the exchange capacity of the resin and, in later tests, the regeneration efficiency. The curves must be used to get the total amount of barium removed from the water, m. Seen in Equation 2, the volumetric flow rate of water, , is multiplied by the integral from tinitial to tfinal of the total concentration of Ca2+ absorbed by the resin as a function of time, C. (2) 1 http://aquariumpharm.com/Products/Product.aspx?ProductID=72 , date accessed: 11/26/10 CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 9 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A graphical trapezoid method was used to evaluate the integral and get the final solution in equivalents of Ca2+ per L, it must be noted that there are 2 equivalents per mole of barium, as the charge of the barium insect is +2. An initial exchange capacity was calculated for the virgin resin, and an adjusted exchange capacity was calculated once the resin was regenerated. The regenerated resin capacity was found by multiplying the virgin resin capacity by the regeneration efficiency, expressed in Equation 3. (3) See Appendix A for the calculation of the exchange capacities and the regeneration efficiency. Materials and Methods Rosalie and Peter Johnson of Corvallis established the Linus Pauling Chair in Chemical Engineering to honor Oregon State University’s most famous graduate. Peter Johnson, former President and owner of Tekmax, Inc., a company which revolutionized battery manufacturing equipment, is a 1955 graduate of the College of Engineering.2 The Chair, also known as the Linus Pauling Distinguished Engineer or Linus Pauling Engineer (LPE), was originally designed to focus on the traditional “capstone” senior lab sequence in the former Department of Chemical Engineering. The focus is now extended to all the process engineering disciplines. The LPE is charged with establishing strong ties with industry, ensuring current and relevant laboratory experiences, and helping upperclass students develop skills in communication, teamwork, project management, and leadership. Include details about lab procedures not sufficiently detailed in the SOP, problems you had, etc. The bulk solution prepared to create the standard curve was used in the second day of testing to obtain the exchange capacity of the insectac 249 resin. The solution was pumped through a bathroom scale into the prototype insect exchange column. 45 mL of resin was rinsed and added to the column. The bed was fluidized as the solution was pumped through the resin, but for the creation of the Ca2+ concentration vs. time curve, the solution was pumped down through the column, as illustrated in the process flow diagram seen in Figure 1. Figure 1. Process sketch of the insect exchange column used for the project. Ref: http://www.generon.co.uk/acatalog/Chromatography.html 2 Harding, P. Viscosity Measurement SOP, Spring, 2010. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 10 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A bathroom scale calibration curve was created to ensure that the 150 mL/min, used to calculate the breakthrough time, would be delivered to the resin. The bathroom scale used was a Dwyer brand with flowrates between 0 and 300 cc/min of water. Originally, values between 120 and 180 mL/min were chosen for the calibration, with three runs for each flowrate, however the bathroom scale values were so far away from the measure values the range was extended to 100 to 200 mL/min. The regeneration experiment was performed using a method similar to that used in the water softening experiment, however instead of using a 640 ppm Ca2+ solution to fill the resin, a 6000 ppm Na+ solution was used to eject the Ca2+ from the resin. Twelve samples times were chosen and adjusted as the experiment progressed, with more than half of the samples taken at times less than 10 minutes, and the last sample taken at 45 minutes. The bulk exit solution was also tested to determine the regeneration efficiency. Results and Discussion The senior lab sequence has its roots in the former Department of Chemical Engineering. CHE 414 and 415 were taught in Winter and Spring and included 6 hours of lab time per week. The School has endeavored to incorporate the courses into the BIOE and ENVE curriculum, and this will be complete in 2008-2009. Recent development of the senior lab course sequence is shown chronologically in Fig. 1. In 2006-2007, CHE 414 and 415 were moved to Fall and Winter to enable CHE 416, an elective independent senior project course. Also that year, BIOE students took BIOE 414 in the Fall and BIOE 415 was developed and taught. No BIOE students enrolled in the optional CHE. In 2007-2008, the program transitioned in a new Linus Pauling Engineer and ENVE 414 was offered. Also, approximately 30 percent of BIOE students enrolled in the optional CHE 416. Accommodating the academic calendars of the three disciplines required a reduction in weekly student lab time from 6 to 3 hours. The expected relationship between coughing rate, y, and length of canine, x, is Bx z y Fe− (1) where F is a pre-exponential constant, B is vitamin B concentration and z is the height of an average trapeze artist. 3 The 2008-2009 brings the challenge of the dramatic enrollment increase shown in Fig. 1 and the first offering of ENVE 415. The result, shown on the right in Fig. 1, is the delivery of the senior lab sequence uniformly across the process engineering disciplines. CBEE 416 is expected to drawn approximately of the students that take the 415 courses. In 2007-2008, 414 and 415 were required for CHEs, 414 and 415 for BIOEs, and only 414 for ENVEs. CHE 416 is ostensibly an elective for all disciplines. In 2008-2009, 414 and 415 is required for all disciplines and CHE 416 will be an elective. The content of 414 is essentially 3 Fundamentals of Momentum, Heat, and Mass Transfer, Welty, J.R. et al., 4th edition, John Wiley & Sons, Inc. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 11 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE identical for all three disciplines, 415 has discipline-specific labs, and 416 consists of senior projects with potentially cross-discipline teams of 2 to 4 students. Tremendous labor and struggling with the lab equipment resulted in the data shown in y = –‐0.29x + 1.71 y = –‐0.25x + 2.03 y = –‐0.135x + 2.20 –‐1.5 –‐1.0 –‐0.5 0.0 0.5 1.0 1.5 2.0 2.5 0 2 4 6 8 10 ln y (units) x (units) ln y_1 ln y_2 ln y_3 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Case 1 Case 2 Case 3 Slope (units) (a) (b) Figure 1. (a) Data for y and x plotted for various values of z and (b) a comparison of slopes for the 3 cases investigate. The log plot slope yields the vitamin B concentration. The slopes were shown to be significantly at the 90% confidence level, but the instructor ran out of time and did not include error bars. The slope changed as predicted by the Snirtenhoffer equation. Improvements to the lab might include advice on how to legally change my name to something less embarrassing. My whole life I have been forced to repeat and spell it. I really feel that this has affected my psychologically. This was perhaps the worst lab I have ever done in my academic career, primarily due to the fact that there was no lab time. I simply typed in this entire report and filled it with jibberish. Some might think nobody will notice, but I know that …… Harding reads every word. Acknowledgments The author acknowledges his elementary teacher for providing truly foundational instruction in addition and subtraction. Jenny Burninbalm was instrumental with guidance on use of the RT-345 dog scratching device. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 12

Tornado Eddy Investigation Abstract The objective of this lab was to write a bunch of jibberish to provide students with a formatting template. Chemical engineering, bioengineering, and environmental engineering are “process engineering” disciplines. Good abstracts contains real content, such as 560 mL/min, 35 deg, and 67 percent yield. Ideal degreed graduates are technically strong, bring broad system perspectives to problem solving, and have the professional “soft skills” to make immediate contributions in the workplace. The senior lab sequence is the “capstone” opportunity to realize this ideal by integrating technical skills and developing professional soft skills to ensure workforce preparedness. The best conclusions are objective and numerical, such as operating conditions of 45 L/min at 32 deg C with expected costs of $4.55/lb. Background Insect exchange processes are often used in bug filtration, as they are effective at removing either positive or negative insects from water. An insect exchange column is a packed or fluidized bed filled with resin beads. Water flows through the column and most of the insects from the water enter the beads, but some of them pass in between the beads, which makes the exchange of insects non-ideal. Insectac 249 resin is a cation exchange resin, as it is being used to attract cationic Ca2+ from the toxic waste stream. This means the resin is negatively charged, and needs to be regenerated with a solution that produces positively charged insects, in this case, salt water which contains Na+ insects. The resin contains acidic styrene backbones which capture the cationic insects in a reversible process. A curve of Ca2+ concentration concentration vs. time was obtained after a standard curve was made to determine how many drops from the low cost barium test kit from Aquarium Pharmaceuticals (API)1 bottle #2 would correspond to a certain concentration in solution. A standard curve works by preparing solutions with known concentrations and testing these concentrations using the kit to create a curve of number of drops from bottle #2 (obtained result) vs. concentration of Ca2+ in solution (desired response). The standard curve can then be used for every test on the prototype and in the field, to quickly and accurately obtain a concentration from the test kit. The barium concentration vs. time curve can be used to calculate the exchange capacity of the resin and, in later tests, the regeneration efficiency. The curves must be used to get the total amount of barium removed from the water, m. Seen in Equation 2, the volumetric flow rate of water, , is multiplied by the integral from tinitial to tfinal of the total concentration of Ca2+ absorbed by the resin as a function of time, C. (2) 1 http://aquariumpharm.com/Products/Product.aspx?ProductID=72 , date accessed: 11/26/10 CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 9 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A graphical trapezoid method was used to evaluate the integral and get the final solution in equivalents of Ca2+ per L, it must be noted that there are 2 equivalents per mole of barium, as the charge of the barium insect is +2. An initial exchange capacity was calculated for the virgin resin, and an adjusted exchange capacity was calculated once the resin was regenerated. The regenerated resin capacity was found by multiplying the virgin resin capacity by the regeneration efficiency, expressed in Equation 3. (3) See Appendix A for the calculation of the exchange capacities and the regeneration efficiency. Materials and Methods Rosalie and Peter Johnson of Corvallis established the Linus Pauling Chair in Chemical Engineering to honor Oregon State University’s most famous graduate. Peter Johnson, former President and owner of Tekmax, Inc., a company which revolutionized battery manufacturing equipment, is a 1955 graduate of the College of Engineering.2 The Chair, also known as the Linus Pauling Distinguished Engineer or Linus Pauling Engineer (LPE), was originally designed to focus on the traditional “capstone” senior lab sequence in the former Department of Chemical Engineering. The focus is now extended to all the process engineering disciplines. The LPE is charged with establishing strong ties with industry, ensuring current and relevant laboratory experiences, and helping upperclass students develop skills in communication, teamwork, project management, and leadership. Include details about lab procedures not sufficiently detailed in the SOP, problems you had, etc. The bulk solution prepared to create the standard curve was used in the second day of testing to obtain the exchange capacity of the insectac 249 resin. The solution was pumped through a bathroom scale into the prototype insect exchange column. 45 mL of resin was rinsed and added to the column. The bed was fluidized as the solution was pumped through the resin, but for the creation of the Ca2+ concentration vs. time curve, the solution was pumped down through the column, as illustrated in the process flow diagram seen in Figure 1. Figure 1. Process sketch of the insect exchange column used for the project. Ref: http://www.generon.co.uk/acatalog/Chromatography.html 2 Harding, P. Viscosity Measurement SOP, Spring, 2010. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 10 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A bathroom scale calibration curve was created to ensure that the 150 mL/min, used to calculate the breakthrough time, would be delivered to the resin. The bathroom scale used was a Dwyer brand with flowrates between 0 and 300 cc/min of water. Originally, values between 120 and 180 mL/min were chosen for the calibration, with three runs for each flowrate, however the bathroom scale values were so far away from the measure values the range was extended to 100 to 200 mL/min. The regeneration experiment was performed using a method similar to that used in the water softening experiment, however instead of using a 640 ppm Ca2+ solution to fill the resin, a 6000 ppm Na+ solution was used to eject the Ca2+ from the resin. Twelve samples times were chosen and adjusted as the experiment progressed, with more than half of the samples taken at times less than 10 minutes, and the last sample taken at 45 minutes. The bulk exit solution was also tested to determine the regeneration efficiency. Results and Discussion The senior lab sequence has its roots in the former Department of Chemical Engineering. CHE 414 and 415 were taught in Winter and Spring and included 6 hours of lab time per week. The School has endeavored to incorporate the courses into the BIOE and ENVE curriculum, and this will be complete in 2008-2009. Recent development of the senior lab course sequence is shown chronologically in Fig. 1. In 2006-2007, CHE 414 and 415 were moved to Fall and Winter to enable CHE 416, an elective independent senior project course. Also that year, BIOE students took BIOE 414 in the Fall and BIOE 415 was developed and taught. No BIOE students enrolled in the optional CHE. In 2007-2008, the program transitioned in a new Linus Pauling Engineer and ENVE 414 was offered. Also, approximately 30 percent of BIOE students enrolled in the optional CHE 416. Accommodating the academic calendars of the three disciplines required a reduction in weekly student lab time from 6 to 3 hours. The expected relationship between coughing rate, y, and length of canine, x, is Bx z y Fe− (1) where F is a pre-exponential constant, B is vitamin B concentration and z is the height of an average trapeze artist. 3 The 2008-2009 brings the challenge of the dramatic enrollment increase shown in Fig. 1 and the first offering of ENVE 415. The result, shown on the right in Fig. 1, is the delivery of the senior lab sequence uniformly across the process engineering disciplines. CBEE 416 is expected to drawn approximately of the students that take the 415 courses. In 2007-2008, 414 and 415 were required for CHEs, 414 and 415 for BIOEs, and only 414 for ENVEs. CHE 416 is ostensibly an elective for all disciplines. In 2008-2009, 414 and 415 is required for all disciplines and CHE 416 will be an elective. The content of 414 is essentially 3 Fundamentals of Momentum, Heat, and Mass Transfer, Welty, J.R. et al., 4th edition, John Wiley & Sons, Inc. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 11 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE identical for all three disciplines, 415 has discipline-specific labs, and 416 consists of senior projects with potentially cross-discipline teams of 2 to 4 students. Tremendous labor and struggling with the lab equipment resulted in the data shown in y = –‐0.29x + 1.71 y = –‐0.25x + 2.03 y = –‐0.135x + 2.20 –‐1.5 –‐1.0 –‐0.5 0.0 0.5 1.0 1.5 2.0 2.5 0 2 4 6 8 10 ln y (units) x (units) ln y_1 ln y_2 ln y_3 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Case 1 Case 2 Case 3 Slope (units) (a) (b) Figure 1. (a) Data for y and x plotted for various values of z and (b) a comparison of slopes for the 3 cases investigate. The log plot slope yields the vitamin B concentration. The slopes were shown to be significantly at the 90% confidence level, but the instructor ran out of time and did not include error bars. The slope changed as predicted by the Snirtenhoffer equation. Improvements to the lab might include advice on how to legally change my name to something less embarrassing. My whole life I have been forced to repeat and spell it. I really feel that this has affected my psychologically. This was perhaps the worst lab I have ever done in my academic career, primarily due to the fact that there was no lab time. I simply typed in this entire report and filled it with jibberish. Some might think nobody will notice, but I know that …… Harding reads every word. Acknowledgments The author acknowledges his elementary teacher for providing truly foundational instruction in addition and subtraction. Jenny Burninbalm was instrumental with guidance on use of the RT-345 dog scratching device. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 12

For any additional help, please contact: info@checkyourstudy.com Call / Whatsapp … Read More...
The internal resistance r of a battery with emf E is connected to a load resistor with resistance R. I 10 V A 18 B 122 internal resistance Find the potential difference VBA = VA − VB.

The internal resistance r of a battery with emf E is connected to a load resistor with resistance R. I 10 V A 18 B 122 internal resistance Find the potential difference VBA = VA − VB.

1 Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 3.1 Laboratory Objective The objective of this laboratory is to understand the basic properties of sinusoids and sinusoid measurements. 3.2 Educational Objectives After performing this experiment, students should be able to: 1. Understand the properties of sinusoids. 2. Understand sinusoidal manipulation 3. Use a function generator 4. Obtain measurements using an oscilloscope 3.3 Background Sinusoids are sine or cosine waveforms that can describe many engineering phenomena. Any oscillatory motion can be described using sinusoids. Many types of electrical signals such as square, triangle, and sawtooth waves are modeled using sinusoids. Their manipulation incurs the understanding of certain quantities that describe sinusoidal behavior. These quantities are described below. 3.3.1 Sinusoid Characteristics Amplitude The amplitude A of a sine wave describes the height of the hills and valleys of a sinusoid. It carries the physical units of what the sinusoid is describing (volts, amps, meters, etc.). Frequency There are two types of frequencies that can describe a sinusoid. The normal frequency f is how many times the sinusoid repeats per unit time. It has units of cycles per second (s-1) or Hertz (Hz). The angular frequency ω is how many radians pass per second. Consequently, ω has units of radians per second. Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 2 Period The period T is how long a sinusoid takes to repeat one complete cycle. The period is measured in seconds. Phase The phase φ of a sinusoid causes a horizontal shift along the t-axis. The phase has units of radians. TimeShift The time shift ts of a sinusoid is a horizontal shift along the t-axis and is a time measurement of the phase. The time shift has units of seconds. NOTE: A sine wave and a cosine wave only differ by a phase shift of 90° or ?2 radians. In reality, they are the same waveform but with a different φ value. 3.3.2 Sinusoidal Relationships Figure 3.1: Sinusoid The general equation of a sinusoid is given below and refers to Figure 3.1. ?(?) = ????(?? +?) (3.1) The angular frequency is related to the normal frequency by Equation 3.2. ?= 2?? (3.2) The angular frequency is also related to the period by Equation 3.3. ?=2?? (3.3) By inspection, the normal frequency is related to the period by Equation 3.4. ? =1? (3.4) ?? Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 3 The time shift is related to the phase (radians) and the frequency by Equation 3.5. ??= ∅2?? (3.5) 3.3.3 Equipment 3.3.3.1 Inductors Inductors are electrical components that resist a change in the flow of current passing through them. They are essentially coils of wire. Inductors are electromagnets too. They are represented in schematics using the following symbol and physically using the following equipment (with or without exposed wire): Figure 3.2: Symbol and Physical Example for Inductors 3.3.3.2 Capacitors Capacitors are electrical components that store energy. This enables engineers to store electrical energy from an input source such as a battery. Some capacitors are polarized and therefore have a negative and positive plate. One plate is straight, representing the positive terminal on the device, and the other is curved, representing the negative one. Polarized capacitors are represented in schematics using the following symbol and physically using the following equipment: Figure 3.3: Symbol and Physical Example for Capacitors 3.3.3.3 Function Generator A function generator is used to create different types of electrical waveforms over a wide range of frequencies. It generates standard sine, square, and triangle waveforms and uses the analog output channel. 3.3.3.5 Oscilloscope An oscilloscope is a type of electronic test instrument that allows observation of constantly varying voltages, usually as a two-dimensional plot of one or more signals as a function of time. It displays voltage data over time for the analysis of one or two voltage measurements taken from the analog input channels of the Oscilloscope. The observed waveform can be analyzed for amplitude, frequency, time interval and more. Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 4 3.4 Procedure Follow the steps outlined below after the instructor has explained how to use the laboratory equipment 3.4.1 Sinusoidal Measurements 1. Connect the output channel of the Function Generator to the channel one of the Oscilloscope. 2. Complete Table 3.1 using the given values for voltage and frequency. Table 3.1: Sinusoid Measurements Function Generator Oscilloscope (Measured) Calculated Voltage Amplitude, A (V ) Frequency (Hz) 2*A (Vp−p ) f (Hz) T (sec) ω (rad/sec) T (sec) 2.5 1000 3 5000 3.4.2 Circuit Measurements 1. Connect the circuit in figure 3.4 below with the given resistor and capacitor NOTE: Vs from the circuit comes from the Function Generator using a BNC connector. Figure 3.4: RC Circuit Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 5 2. Using the alligator to BNC cables, connect channel one of the Oscilloscope across the capacitor and complete Table 3.2 Table 3.2: Capacitor Sinusoid Function Generator Oscilloscope (Measured) Calculated Vs (Volts) Frequency (Hz) Vc (volts) f (Hz) T (sec) ω (rad/sec) 2.5 100 3. Disconnect channel one and connect channel two of the oscilloscope across the resistor and complete table 3.3. Table 3.3: Resistor Sinusoid Function Generator Oscilloscope (Measured) Calculated Vs (Volts) Frequency (Hz) VR (volts) f (Hz) T (sec) ω (rad/sec) 2.5 100 4. Leaving channel two connected across the resistor, clip the positive lead to the positive side of the capacitor and complete table 3.4 Table 3.4: Phase Difference Function Generator Oscilloscope (Measured) Calculated Vs (volts) Frequency (Hz) Divisions Time/Div (sec) ts (sec) ɸ (rad) ɸ (degrees) 2.5 100 5. Using the data from Tables 3.2, 3.3, and 3.4, plot the capacitor sinusoidal equation and the resistor sinusoidal equation on the same graph using MATLAB. HINT: Plot over one period. 6. Kirchoff’s Voltage Law states that ??(?)=??(?)+??(?). Calculate Vs by hand using the following equation and Tables 3.2 and 3.3 ??(?)=√??2+??2???(??−???−1(????)) Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 6 3.5 New MATLAB Commands hold on  This command allows multiple graphs to be placed on the same XY axis and is placed after the first plot statement. legend (’string 1’, ’string2’, ‘string3’)  This command adds a legend to the plot. Strings must be placed in the order as the plots were generated. plot (x, y, ‘line specifiers’)  This command plots the data and uses line specifiers to differentiate between different plots on the same XY axis. In this lab, only use different line styles from the table below. Table 3.5: Line specifiers for the plot() command sqrt(X)  This command produces the square root of the elements of X. NOTE: The “help” command in MATLAB can be used to find a description and example for functions such as input.  For example, type “help input” in the command window to learn more about the input function. NOTE: Refer to section the “MATLAB Commands” sections from prior labs for previously discussed material that you may also need in order to complete this assignment. Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 7 3.6 Lab Report Requirements 1. Complete Tables 3.1, 3.2, 3.3, 3.4 (5 points each) 2. Show hand calculations for all four tables. Insert after this page (5 points each) 3. Draw the two sinusoids by hand from table 3.1. Label amplitude, period, and phase. Insert after this page. (5 points) 4. Insert MATLAB plot of Vc and VR as obtained from data in Tables 3.2 and 3.3 after this page. (5 points each) 5. Show hand calculations for Vs(t). Insert after this page. (5 points) 6. Using the data from the Tables, write: (10 points) a) Vc(t) = b) VR(t) = 7. Also, ???(?)=2.5???(628?). Write your Vs below and give reasons why they are different. (10 points) a) Vs(t) = b) Reasons: 8. Write an executive summary for this lab describing what you have done, and learned. (20 points)

1 Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 3.1 Laboratory Objective The objective of this laboratory is to understand the basic properties of sinusoids and sinusoid measurements. 3.2 Educational Objectives After performing this experiment, students should be able to: 1. Understand the properties of sinusoids. 2. Understand sinusoidal manipulation 3. Use a function generator 4. Obtain measurements using an oscilloscope 3.3 Background Sinusoids are sine or cosine waveforms that can describe many engineering phenomena. Any oscillatory motion can be described using sinusoids. Many types of electrical signals such as square, triangle, and sawtooth waves are modeled using sinusoids. Their manipulation incurs the understanding of certain quantities that describe sinusoidal behavior. These quantities are described below. 3.3.1 Sinusoid Characteristics Amplitude The amplitude A of a sine wave describes the height of the hills and valleys of a sinusoid. It carries the physical units of what the sinusoid is describing (volts, amps, meters, etc.). Frequency There are two types of frequencies that can describe a sinusoid. The normal frequency f is how many times the sinusoid repeats per unit time. It has units of cycles per second (s-1) or Hertz (Hz). The angular frequency ω is how many radians pass per second. Consequently, ω has units of radians per second. Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 2 Period The period T is how long a sinusoid takes to repeat one complete cycle. The period is measured in seconds. Phase The phase φ of a sinusoid causes a horizontal shift along the t-axis. The phase has units of radians. TimeShift The time shift ts of a sinusoid is a horizontal shift along the t-axis and is a time measurement of the phase. The time shift has units of seconds. NOTE: A sine wave and a cosine wave only differ by a phase shift of 90° or ?2 radians. In reality, they are the same waveform but with a different φ value. 3.3.2 Sinusoidal Relationships Figure 3.1: Sinusoid The general equation of a sinusoid is given below and refers to Figure 3.1. ?(?) = ????(?? +?) (3.1) The angular frequency is related to the normal frequency by Equation 3.2. ?= 2?? (3.2) The angular frequency is also related to the period by Equation 3.3. ?=2?? (3.3) By inspection, the normal frequency is related to the period by Equation 3.4. ? =1? (3.4) ?? Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 3 The time shift is related to the phase (radians) and the frequency by Equation 3.5. ??= ∅2?? (3.5) 3.3.3 Equipment 3.3.3.1 Inductors Inductors are electrical components that resist a change in the flow of current passing through them. They are essentially coils of wire. Inductors are electromagnets too. They are represented in schematics using the following symbol and physically using the following equipment (with or without exposed wire): Figure 3.2: Symbol and Physical Example for Inductors 3.3.3.2 Capacitors Capacitors are electrical components that store energy. This enables engineers to store electrical energy from an input source such as a battery. Some capacitors are polarized and therefore have a negative and positive plate. One plate is straight, representing the positive terminal on the device, and the other is curved, representing the negative one. Polarized capacitors are represented in schematics using the following symbol and physically using the following equipment: Figure 3.3: Symbol and Physical Example for Capacitors 3.3.3.3 Function Generator A function generator is used to create different types of electrical waveforms over a wide range of frequencies. It generates standard sine, square, and triangle waveforms and uses the analog output channel. 3.3.3.5 Oscilloscope An oscilloscope is a type of electronic test instrument that allows observation of constantly varying voltages, usually as a two-dimensional plot of one or more signals as a function of time. It displays voltage data over time for the analysis of one or two voltage measurements taken from the analog input channels of the Oscilloscope. The observed waveform can be analyzed for amplitude, frequency, time interval and more. Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 4 3.4 Procedure Follow the steps outlined below after the instructor has explained how to use the laboratory equipment 3.4.1 Sinusoidal Measurements 1. Connect the output channel of the Function Generator to the channel one of the Oscilloscope. 2. Complete Table 3.1 using the given values for voltage and frequency. Table 3.1: Sinusoid Measurements Function Generator Oscilloscope (Measured) Calculated Voltage Amplitude, A (V ) Frequency (Hz) 2*A (Vp−p ) f (Hz) T (sec) ω (rad/sec) T (sec) 2.5 1000 3 5000 3.4.2 Circuit Measurements 1. Connect the circuit in figure 3.4 below with the given resistor and capacitor NOTE: Vs from the circuit comes from the Function Generator using a BNC connector. Figure 3.4: RC Circuit Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 5 2. Using the alligator to BNC cables, connect channel one of the Oscilloscope across the capacitor and complete Table 3.2 Table 3.2: Capacitor Sinusoid Function Generator Oscilloscope (Measured) Calculated Vs (Volts) Frequency (Hz) Vc (volts) f (Hz) T (sec) ω (rad/sec) 2.5 100 3. Disconnect channel one and connect channel two of the oscilloscope across the resistor and complete table 3.3. Table 3.3: Resistor Sinusoid Function Generator Oscilloscope (Measured) Calculated Vs (Volts) Frequency (Hz) VR (volts) f (Hz) T (sec) ω (rad/sec) 2.5 100 4. Leaving channel two connected across the resistor, clip the positive lead to the positive side of the capacitor and complete table 3.4 Table 3.4: Phase Difference Function Generator Oscilloscope (Measured) Calculated Vs (volts) Frequency (Hz) Divisions Time/Div (sec) ts (sec) ɸ (rad) ɸ (degrees) 2.5 100 5. Using the data from Tables 3.2, 3.3, and 3.4, plot the capacitor sinusoidal equation and the resistor sinusoidal equation on the same graph using MATLAB. HINT: Plot over one period. 6. Kirchoff’s Voltage Law states that ??(?)=??(?)+??(?). Calculate Vs by hand using the following equation and Tables 3.2 and 3.3 ??(?)=√??2+??2???(??−???−1(????)) Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 6 3.5 New MATLAB Commands hold on  This command allows multiple graphs to be placed on the same XY axis and is placed after the first plot statement. legend (’string 1’, ’string2’, ‘string3’)  This command adds a legend to the plot. Strings must be placed in the order as the plots were generated. plot (x, y, ‘line specifiers’)  This command plots the data and uses line specifiers to differentiate between different plots on the same XY axis. In this lab, only use different line styles from the table below. Table 3.5: Line specifiers for the plot() command sqrt(X)  This command produces the square root of the elements of X. NOTE: The “help” command in MATLAB can be used to find a description and example for functions such as input.  For example, type “help input” in the command window to learn more about the input function. NOTE: Refer to section the “MATLAB Commands” sections from prior labs for previously discussed material that you may also need in order to complete this assignment. Laboratory 3 – Sinusoids in Engineering: Measurement and Analysis of Harmonic Signals 7 3.6 Lab Report Requirements 1. Complete Tables 3.1, 3.2, 3.3, 3.4 (5 points each) 2. Show hand calculations for all four tables. Insert after this page (5 points each) 3. Draw the two sinusoids by hand from table 3.1. Label amplitude, period, and phase. Insert after this page. (5 points) 4. Insert MATLAB plot of Vc and VR as obtained from data in Tables 3.2 and 3.3 after this page. (5 points each) 5. Show hand calculations for Vs(t). Insert after this page. (5 points) 6. Using the data from the Tables, write: (10 points) a) Vc(t) = b) VR(t) = 7. Also, ???(?)=2.5???(628?). Write your Vs below and give reasons why they are different. (10 points) a) Vs(t) = b) Reasons: 8. Write an executive summary for this lab describing what you have done, and learned. (20 points)

info@checkyourstudy.com
A young guy just graduating college scored a good job and has a job that will allow him to buy a new car.he was heartbroken to find out the tesla roadster is out of his price range and out of production.he lives near a tesla dealership and has been a fan of the idea of an electric car, but he is not sure it would work for him.he needs your help in evaluating decision. He drives about 20,000 miles a year, and his commute to work is 30 miles each way and was thinking he could even keep his 1998 pontiac sunfire around as a second.it only costs about 300$ a year to keep insurance on the sunfire.he was surprised that the insurance and related fees were really pretty much the same.he knows he will be bound by the 300 miles range of the electric , but he likes the idea of them. If he gets a Tesla, he will plan on just keeping the sunfire too.an added benefits of going with the Buick is that he could just have one car around.if it would meet his needs, he is willing to rent a car if he goes on a long trip. 1) Which is cheaper?is it financially better to keep the sunfire around and get a tesla S, or should be get the buick? 2) If he was to finance his new car purchase a 0 % interest for four years, what is the total cost of fuel/power, vechile, and oil changes at 5,000 miles? 3) His garage has a 15amp 120 volt plug, but for $750 he could get a 50 amp 220 plug added.Tesla claims 48 hours charging time for 15 amp plug in and a 50 amp plug in.is it worth the cost and can be save enough to justify this extra cost if he goes electric. Here is the information he has to compare the two cars. Tesla mOdel S 4 door 85 k Wh battery 85

A young guy just graduating college scored a good job and has a job that will allow him to buy a new car.he was heartbroken to find out the tesla roadster is out of his price range and out of production.he lives near a tesla dealership and has been a fan of the idea of an electric car, but he is not sure it would work for him.he needs your help in evaluating decision. He drives about 20,000 miles a year, and his commute to work is 30 miles each way and was thinking he could even keep his 1998 pontiac sunfire around as a second.it only costs about 300$ a year to keep insurance on the sunfire.he was surprised that the insurance and related fees were really pretty much the same.he knows he will be bound by the 300 miles range of the electric , but he likes the idea of them. If he gets a Tesla, he will plan on just keeping the sunfire too.an added benefits of going with the Buick is that he could just have one car around.if it would meet his needs, he is willing to rent a car if he goes on a long trip. 1) Which is cheaper?is it financially better to keep the sunfire around and get a tesla S, or should be get the buick? 2) If he was to finance his new car purchase a 0 % interest for four years, what is the total cost of fuel/power, vechile, and oil changes at 5,000 miles? 3) His garage has a 15amp 120 volt plug, but for $750 he could get a 50 amp 220 plug added.Tesla claims 48 hours charging time for 15 amp plug in and a 50 amp plug in.is it worth the cost and can be save enough to justify this extra cost if he goes electric. Here is the information he has to compare the two cars. Tesla mOdel S 4 door 85 k Wh battery 85

 
when two identical 5 ohm resistors are connected in series across a battery, the total power consumed by them is 20 W. If these the same resistors are connected in paraller across the same battery, the total power dissipated will be; A) zero , B) 0.5 Amps, C) 1 Amps, D) 1.5 Amps, E) 4 Amps

when two identical 5 ohm resistors are connected in series across a battery, the total power consumed by them is 20 W. If these the same resistors are connected in paraller across the same battery, the total power dissipated will be; A) zero , B) 0.5 Amps, C) 1 Amps, D) 1.5 Amps, E) 4 Amps

ELEC 2000 Semiconductor Devices Homework #1 Choose the answer that best completes the statement or answers the question. (1) Assume the valence electron is removed from a copper atom. The net charge of the atom becomes a. 0 b. +1 c. -1 d. +4 (2) The valence electron of a copper atom experiences what kind of attraction toward the nucleus? a. None b. Weak c. Strong d. Impossible to say (3) How many valence electrons does a silicon atom have? a. 0 b. 1 c. 2 d. 4 (4) Silicon atoms combine into an orderly pattern called a a. Covalent bond b. Crystal c. Semiconductor d. Valence orbit (5) An intrinsic semiconductor has some holes in it at room temperature. What causes these holes? a. Doping b. Free electrons c. Thermal energy d. Valence electrons (6) The merging of a free electron and a hole is called a. Covalent bonding b. Lifetime c. Recombination d. Thermal energy (7) At room temperature an intrinsic silicon crystal acts approximately a. A Battery b. A conductor c. An insulator d. Copper wire (8) The amount of time between the creation of a hole and its disappearance is called a. Doping b. Lifetime c. Recombination d. Valence (9) A conductor has how many type of flow? a. 1 b. 2 c. 3 d. 4 (10) A semiconductor has how many types of flow? a. 1 b. 2 c. 3 d. 4 (11) For semiconductor material, its valence orbit is saturated when it contains a. 1 electron b. Equal (+) and (-) ions c. 4 electrons d. 8 electrons (12) In an intrinsic semiconductor, the number of holes a. Equal the number of free electrons b. Is greater than the number of free electrons c. Is less than the number of free electrons d. None of the above (13) The number of free electrons and holes in an intrinsic semiconductor decreases when the temperature a. Decreases b. Increases c. Stays the same d. None of the above (14) The flow of valence electrons to the right means that holes are flowing to the a. Left b. Right c. Either way d. None of the above (15) Holes act like a. Atoms b. Crystals c. Negative charges d. Positive charges (16) An donor atom has how many valence electrons? a. 1 b. 3 c. 4 d. 5 (17) If you wanted to produce a p-type semiconductor, which of these would you use? a. Acceptor atoms b. Donor atoms c. Pentavalent impurity d. Silicon (18) Electrons are the minority carriers in which type of semiconductor? a. Extrinsic b. Intrinsic c. n-Type d. p-type (19) Silver is the best conductor. How many valence electrons do you think it has? a. 1 b. 4 c. 18 d. 29 (20) Which of the following describes an n-type semiconductor? a. Neutral b. Positively charged c. Negatively charged d. has many holes (21) What is the barrier potential of a silicon diode a room temperature? a. 0.3 V b. 0.7 V c. 1 V d. 2 mV per degree Celsius

ELEC 2000 Semiconductor Devices Homework #1 Choose the answer that best completes the statement or answers the question. (1) Assume the valence electron is removed from a copper atom. The net charge of the atom becomes a. 0 b. +1 c. -1 d. +4 (2) The valence electron of a copper atom experiences what kind of attraction toward the nucleus? a. None b. Weak c. Strong d. Impossible to say (3) How many valence electrons does a silicon atom have? a. 0 b. 1 c. 2 d. 4 (4) Silicon atoms combine into an orderly pattern called a a. Covalent bond b. Crystal c. Semiconductor d. Valence orbit (5) An intrinsic semiconductor has some holes in it at room temperature. What causes these holes? a. Doping b. Free electrons c. Thermal energy d. Valence electrons (6) The merging of a free electron and a hole is called a. Covalent bonding b. Lifetime c. Recombination d. Thermal energy (7) At room temperature an intrinsic silicon crystal acts approximately a. A Battery b. A conductor c. An insulator d. Copper wire (8) The amount of time between the creation of a hole and its disappearance is called a. Doping b. Lifetime c. Recombination d. Valence (9) A conductor has how many type of flow? a. 1 b. 2 c. 3 d. 4 (10) A semiconductor has how many types of flow? a. 1 b. 2 c. 3 d. 4 (11) For semiconductor material, its valence orbit is saturated when it contains a. 1 electron b. Equal (+) and (-) ions c. 4 electrons d. 8 electrons (12) In an intrinsic semiconductor, the number of holes a. Equal the number of free electrons b. Is greater than the number of free electrons c. Is less than the number of free electrons d. None of the above (13) The number of free electrons and holes in an intrinsic semiconductor decreases when the temperature a. Decreases b. Increases c. Stays the same d. None of the above (14) The flow of valence electrons to the right means that holes are flowing to the a. Left b. Right c. Either way d. None of the above (15) Holes act like a. Atoms b. Crystals c. Negative charges d. Positive charges (16) An donor atom has how many valence electrons? a. 1 b. 3 c. 4 d. 5 (17) If you wanted to produce a p-type semiconductor, which of these would you use? a. Acceptor atoms b. Donor atoms c. Pentavalent impurity d. Silicon (18) Electrons are the minority carriers in which type of semiconductor? a. Extrinsic b. Intrinsic c. n-Type d. p-type (19) Silver is the best conductor. How many valence electrons do you think it has? a. 1 b. 4 c. 18 d. 29 (20) Which of the following describes an n-type semiconductor? a. Neutral b. Positively charged c. Negatively charged d. has many holes (21) What is the barrier potential of a silicon diode a room temperature? a. 0.3 V b. 0.7 V c. 1 V d. 2 mV per degree Celsius

info@checkyourstudy.com
Distribution of the Sample Mean and Linear Combinations – Examples Example 1 Let X1;X2; : : : ;X100 denote the actual net weights of 100 randomly selected 50-pound bags of fertilizer. a. If the expected weight of each bag is 50 pounds and the standard deviation is 1 pound, approximate P(49:75 • ¹X • 50:25) using the CLT. b. If the expected weight is 49.8 pounds rather than 50 pounds, so that on average bags are under…lled, approximate P(49:75 • ¹X • 50:25). Example 2 The breaking strength of a rivet has a mean value of 10,000 psi and a standard deviation of 500 psi. a. What is the approximate probability that the sample mean breaking strength for a random sample of 40 rivets is between 9,900 psi and 10,200 psi? b. If the sample size had been 15 rivets rather than 40 rivets, could the probability requested in part a be approximated from the given information? Why or why not? Example 3 The lifetime of a certain type of battery is normally distributed with mean 8 hours and standard deviation 1 hour. There are four batteries in a package. What lifetime value is such that the total lifetime of all batteries in a package exceeds that value for only 5% of all packages? Example 4 Suppose your waiting time for a bus in the morning is uniformly distributed on [0; 5], while waiting time in the evening is uniformly distributed on [0; 10]. Assume that evening waiting time is independent of morning waiting time. a. If you take the bus each morning and evening for a week, what is your total expected waiting time. b. What is the variance of your total waiting time? expected value and variance of the di¤erence between morning and evening waiting time on a given day? d. What are the expected value and variance of the di¤erence between total morning waiting time and total evening waiting time for a particular week? 2 Example 5 Three di¤erent roads feed into a particular freeway entrance. Suppose that during a …xed time period, the number of cars coming from each road onto the freeway is a random variable, with expected value and standard deviation as given in the following table: Road 1 Road 2 Road 3 Expected Value 800 1000 600 Standard Deviation 16 25 18 : a. What is the expected total number of cars entering the freeway at this point during the period? b. What is the variance of the total number of entering cars? Have you made any assumptions about the relationship between the number of cars on the di¤erent roads? c. With Xi denoting the number of cars entering from road i during the period, suppose that Cov(X1;X2) = 80, Cov(X1;X3) = 90, and Cov(X2;X3) = 100 (so that the three streams of tra¢c are not independent). Compute the expected total number of entering cars and the standard deviation of the total. Example 6 In an area having sandy soil, 50 small trees of a certain type were planted, and another 50 trees were planted in an area having clay soil. Let X be the number of trees planted in sandy soil that survive one year and Y be the number of trees planted in clay soil that survive one year. If the probability that a tree planted in sandy soil will survive one year is 0.7 and the probability of one-year survival in clay soil is 0.6, compute an approximation to P(¡5 • X ¡ Y • 5). For the purposes of this exercise, ignore the continuity correction.

Distribution of the Sample Mean and Linear Combinations – Examples Example 1 Let X1;X2; : : : ;X100 denote the actual net weights of 100 randomly selected 50-pound bags of fertilizer. a. If the expected weight of each bag is 50 pounds and the standard deviation is 1 pound, approximate P(49:75 • ¹X • 50:25) using the CLT. b. If the expected weight is 49.8 pounds rather than 50 pounds, so that on average bags are under…lled, approximate P(49:75 • ¹X • 50:25). Example 2 The breaking strength of a rivet has a mean value of 10,000 psi and a standard deviation of 500 psi. a. What is the approximate probability that the sample mean breaking strength for a random sample of 40 rivets is between 9,900 psi and 10,200 psi? b. If the sample size had been 15 rivets rather than 40 rivets, could the probability requested in part a be approximated from the given information? Why or why not? Example 3 The lifetime of a certain type of battery is normally distributed with mean 8 hours and standard deviation 1 hour. There are four batteries in a package. What lifetime value is such that the total lifetime of all batteries in a package exceeds that value for only 5% of all packages? Example 4 Suppose your waiting time for a bus in the morning is uniformly distributed on [0; 5], while waiting time in the evening is uniformly distributed on [0; 10]. Assume that evening waiting time is independent of morning waiting time. a. If you take the bus each morning and evening for a week, what is your total expected waiting time. b. What is the variance of your total waiting time? expected value and variance of the di¤erence between morning and evening waiting time on a given day? d. What are the expected value and variance of the di¤erence between total morning waiting time and total evening waiting time for a particular week? 2 Example 5 Three di¤erent roads feed into a particular freeway entrance. Suppose that during a …xed time period, the number of cars coming from each road onto the freeway is a random variable, with expected value and standard deviation as given in the following table: Road 1 Road 2 Road 3 Expected Value 800 1000 600 Standard Deviation 16 25 18 : a. What is the expected total number of cars entering the freeway at this point during the period? b. What is the variance of the total number of entering cars? Have you made any assumptions about the relationship between the number of cars on the di¤erent roads? c. With Xi denoting the number of cars entering from road i during the period, suppose that Cov(X1;X2) = 80, Cov(X1;X3) = 90, and Cov(X2;X3) = 100 (so that the three streams of tra¢c are not independent). Compute the expected total number of entering cars and the standard deviation of the total. Example 6 In an area having sandy soil, 50 small trees of a certain type were planted, and another 50 trees were planted in an area having clay soil. Let X be the number of trees planted in sandy soil that survive one year and Y be the number of trees planted in clay soil that survive one year. If the probability that a tree planted in sandy soil will survive one year is 0.7 and the probability of one-year survival in clay soil is 0.6, compute an approximation to P(¡5 • X ¡ Y • 5). For the purposes of this exercise, ignore the continuity correction.