AUCS 340: Ethics in the Professions Individual Written Assignment #1 Medical Ethics: Historical names, dates and ethical theories assignment As you read chapters 1 and 2 in the “Ethics and Basic Law for Medical Imaging Professionals” textbook you will be responsible for identifying and explaining each of the following items from the list below. You will respond in paragraph format with correct spelling and grammar expected for each paragraph. Feel free to have more than one paragraph for each item, although in most instances a single paragraph response is sufficient. If you reference material in addition to what is available in the textbook it must be appropriately cited in your work using either APA or MLA including a references cited page. The use of Wikipedia.com is not a recognized peer reviewed source so please do not use that as a reference. When responding about individuals it is necessary to indicate a year or time period that the person discussed/developed their particular ethical theory so that you can look at and appreciate the historical background to the development of ethical theories and decision making. Respond to the following sixteen items. (They are in random order from your reading) 1. Francis Bacon 2. Isaac Newton 3. Prima Facie Duties – Why do they exist? LIST AND DEFINE ALL TERMS 4. Hippocrates 5. W.D. Ross – what do the initials stand for in his name and what was his contribution to the study of ethics? 6. Microallocation – define the term and provide an example separate from the book example (You should develop your own example rather than looking for an online example; this will use your critical thinking skills. Consider an application to your own profession as microallocation is NOT limited to the medical field.) 7. Deontology – Discuss at length the basic types/concepts of this theory 8. Thomas Aquinas – 1) Discuss the ethical theory developed by Aquinas, 2) his religious affiliation, 3) why that was so important to his ethical premise and 4) discuss the type of ethical issues resolved to this day using this theory. 9. Macroallocation – define and provide an example separate from the book example (You should develop your own example rather than looking for an online example; this will use your critical thinking skills. Consider an application to your own profession as macroallocation is NOT limited to the medical field.) 10. David Hume 11. Rodericus Castro 12. Plato and “The Republic” 13. Pythagoras 14. Teleology – Discuss at length the basic types/concepts of this theory 15. Core Values – Why do they exist? LIST AND DEFINE ALL TERMS 16. Develop a timeline that reflects the ethical theories as developed by the INDIVIDUALS presented in this assignment. This assignment is due Saturday March 14th at NOON and is graded as a homework assignment. Grading: Paragraph Formation = 20% of grade (bulleted lists are acceptable for some answers) Answers inclusive of major material for answer = 40% of grade Creation of Timeline = 10% of grade Sentence structure, application of correct spelling and grammar = 20% of grade References (if utilized) = 10% of grade; references should be submitted on a separate references cited page. Otherwise this 10% of the assignment grade will be considered under the sentence structure component for 30% of the grade. It is expected that the finished assignment will be two – three pages of text, double spaced, using 12 font and standard page margins.

AUCS 340: Ethics in the Professions Individual Written Assignment #1 Medical Ethics: Historical names, dates and ethical theories assignment As you read chapters 1 and 2 in the “Ethics and Basic Law for Medical Imaging Professionals” textbook you will be responsible for identifying and explaining each of the following items from the list below. You will respond in paragraph format with correct spelling and grammar expected for each paragraph. Feel free to have more than one paragraph for each item, although in most instances a single paragraph response is sufficient. If you reference material in addition to what is available in the textbook it must be appropriately cited in your work using either APA or MLA including a references cited page. The use of Wikipedia.com is not a recognized peer reviewed source so please do not use that as a reference. When responding about individuals it is necessary to indicate a year or time period that the person discussed/developed their particular ethical theory so that you can look at and appreciate the historical background to the development of ethical theories and decision making. Respond to the following sixteen items. (They are in random order from your reading) 1. Francis Bacon 2. Isaac Newton 3. Prima Facie Duties – Why do they exist? LIST AND DEFINE ALL TERMS 4. Hippocrates 5. W.D. Ross – what do the initials stand for in his name and what was his contribution to the study of ethics? 6. Microallocation – define the term and provide an example separate from the book example (You should develop your own example rather than looking for an online example; this will use your critical thinking skills. Consider an application to your own profession as microallocation is NOT limited to the medical field.) 7. Deontology – Discuss at length the basic types/concepts of this theory 8. Thomas Aquinas – 1) Discuss the ethical theory developed by Aquinas, 2) his religious affiliation, 3) why that was so important to his ethical premise and 4) discuss the type of ethical issues resolved to this day using this theory. 9. Macroallocation – define and provide an example separate from the book example (You should develop your own example rather than looking for an online example; this will use your critical thinking skills. Consider an application to your own profession as macroallocation is NOT limited to the medical field.) 10. David Hume 11. Rodericus Castro 12. Plato and “The Republic” 13. Pythagoras 14. Teleology – Discuss at length the basic types/concepts of this theory 15. Core Values – Why do they exist? LIST AND DEFINE ALL TERMS 16. Develop a timeline that reflects the ethical theories as developed by the INDIVIDUALS presented in this assignment. This assignment is due Saturday March 14th at NOON and is graded as a homework assignment. Grading: Paragraph Formation = 20% of grade (bulleted lists are acceptable for some answers) Answers inclusive of major material for answer = 40% of grade Creation of Timeline = 10% of grade Sentence structure, application of correct spelling and grammar = 20% of grade References (if utilized) = 10% of grade; references should be submitted on a separate references cited page. Otherwise this 10% of the assignment grade will be considered under the sentence structure component for 30% of the grade. It is expected that the finished assignment will be two – three pages of text, double spaced, using 12 font and standard page margins.

Francis Bacon was a 16th century ethical theorist who was … Read More...
SECTION A: CASE STUDY In-text citation and references (or sources) are required using the Harvard referencing style This section is based on the following case study which can be accessed via the CIS3…CIS2005 Principles of Information Security – Assignment 3 Description Marks out of Weighting Due date Assignment 3 Report and Presentation based on CASE STUDY: BCX.COM (A fictitious analysis of a secu…HA 2022 INTRODUCTION TO BUSINESS LAW Assessment 2 Individual Report PLEASE NOTE THE FOLLOWING INSTRUCTIONS: Candidates are required to write 2000 words on the topic given below. Your argument, must b…BAO5734 – FINANCIAL ANALYSIS Analysts’ report group project Guidelines Due: end of week 12 Weight: 25% Submission: electronic Length: 4 000 words (excluding bibliography, appendix, and cover page), ab…Task Team Project Management Plan Due Date Week 11 – Fri, October 24, 2014, 5:00 pm – Team Project Management Plan Week 11 – Fri, October 24, 2014, 5:00 pm – Individual Report Worth 20% (60 marks) Cou…The focus of this assignment is to draw upon your analysis of national culture of two countries in Assignment 1 to develop an assessment of Description/Focus: similarities and differences in manageria…PRMB022 Organisational Behaviour Assignment #2 Case Study ASSIGNMENT 2 – TASK AND GUIDANCE Stimulus Article Scenario Task Purpose Guidance The article on which this assignment is based, ‘WA Police do…Show All Questions

SECTION A: CASE STUDY In-text citation and references (or sources) are required using the Harvard referencing style This section is based on the following case study which can be accessed via the CIS3…CIS2005 Principles of Information Security – Assignment 3 Description Marks out of Weighting Due date Assignment 3 Report and Presentation based on CASE STUDY: BCX.COM (A fictitious analysis of a secu…HA 2022 INTRODUCTION TO BUSINESS LAW Assessment 2 Individual Report PLEASE NOTE THE FOLLOWING INSTRUCTIONS: Candidates are required to write 2000 words on the topic given below. Your argument, must b…BAO5734 – FINANCIAL ANALYSIS Analysts’ report group project Guidelines Due: end of week 12 Weight: 25% Submission: electronic Length: 4 000 words (excluding bibliography, appendix, and cover page), ab…Task Team Project Management Plan Due Date Week 11 – Fri, October 24, 2014, 5:00 pm – Team Project Management Plan Week 11 – Fri, October 24, 2014, 5:00 pm – Individual Report Worth 20% (60 marks) Cou…The focus of this assignment is to draw upon your analysis of national culture of two countries in Assignment 1 to develop an assessment of Description/Focus: similarities and differences in manageria…PRMB022 Organisational Behaviour Assignment #2 Case Study ASSIGNMENT 2 – TASK AND GUIDANCE Stimulus Article Scenario Task Purpose Guidance The article on which this assignment is based, ‘WA Police do…Show All Questions

info@checkyourstudy.com
Q9 In general is concrete a brittle or ductile failur ? Draw a figure of the load versus displacement curve of a given specimen ?

Q9 In general is concrete a brittle or ductile failur ? Draw a figure of the load versus displacement curve of a given specimen ?

Q9  In general is concrete a brittle or ductile failur … Read More...
10. Thinking back upon this course’s content, please discuss the authors’ assertion: “The logistics manager of the future will be much more of a change leader and much less of a technician.”

10. Thinking back upon this course’s content, please discuss the authors’ assertion: “The logistics manager of the future will be much more of a change leader and much less of a technician.”

The logistical management dare is to climb above a conventional … Read More...
1 IN2009: Language Processors Coursework Part 3: The Interpreter Introduction This is the 3rd and final part of the coursework. In the second part of the coursework you created a parser for the Moopl grammar which, given a syntactically correct Moopl program as input, builds an AST representation of the program. In Part 3 you will develop an interpreter which executes Moopl programs by visiting their AST representations. For this part of the coursework we provide functional code (with limitations, see below) for parsing, building a symbol table, type checking and variable allocation. Marks This part of the coursework is worth 12 of the 30 coursework marks for the Language Processors module. This part of the coursework is marked out of 12. Submission deadline This part of the coursework should be handed in before 5pm on Sunday 9th April 2017. In line with school policy, late submissions will be awarded no marks. Return & Feedback Marks and feedback will be available as soon as possible, certainly on or before Wed 3rd May 2017. Plagiarism If you copy the work of others (either that of fellow students or of a third party), with or without their permission, you will score no marks and further disciplinary action will be taken against you. Group working You will be working in the same groups as for the previous parts of the coursework except where group changes have already been approved. Submission: Submit a zip archive (not a rar file) of all your source code (the src folder of your project). We do not want the other parts of your NetBeans project, only the source code. Note 1: Submissions which do not compile will get zero marks. Note 2: You must not change the names or types of any of the existing packages, classes or public methods. 2 Getting started Download either moopl-interp.zip or moopl-interp.tgz from Moodle and extract all files. Key contents to be aware of: • A fully implemented Moopl parser (also implements a parser for the interpreter command language; see below). • A partially implemented Moopl type checker. • Test harnesses for the type checker and interpreter. • A directory of a few example Moopl programs (see Testing below). • Folder interp containing prototype interpreter code. The type-checker is only partially implemented but a more complete implementation will be provided following Session 6. That version is still not fully complete because it doesn’t support inheritance. Part d) below asks you to remove this restriction. The VarAllocator visitor in the interp package uses a simple implementation which only works for methods in which all parameter and local variable names are different. Part e) below asks you to remove this restriction. The three parts below should be attempted in sequence. When you have completed one part you should make a back-up copy of the work and keep it safe, in case you break it in your attempt at the next part. Be sure to test old functionality as well as new (regression testing). We will not assess multiple versions so, if your attempt at part d) or e) breaks previously working code, you may gain a better mark by submitting the earlier version for assessment. c) [8 marks] The Basic Interpreter: complete the implementation of the Interpreter visitor in the interp package. d) [2 marks] Inheritance: extend the type-checker, variable allocator and interpreter to support inheritance. e) [2 marks] Variable Allocation: extend the variable allocator to fully support blockstructure and lexical scoping, removing the requirement that all parameter and local variable names are different. Aim to minimise the number of local variable slots allocated in a stack frame. Note: variable and parameter names declared at the same scope level are still required to be different from each other (a method cannot have two different parameters called x, for example) and this is enforced by the existing typechecking code. But variables declared in different blocks (even when nested) can have the same name. Exceptions Your interpreter will only ever be run on Moopl code which is type-correct (and free from uninitialised local variables). But it is still possible that the Moopl code contains logical errors which may cause runtime errors (such as null-reference or array-bound errors). Your interpreter should throw a MooplRunTimeException with an appropriate error message in these cases. The only kind of exception your interpreter should ever throw is a MooplRunTimeException. 3 Testing The examples folder does not contain a comprehensive test-suite. You need to invent and run your own tests. The document Moopl compared with Java gives a concise summary of how Moopl programs are supposed to behave. You can (and should) also compare the behaviour of your interpreter with that of the online tool: https://smcse.city.ac.uk/student/sj353/langproc/Moopl.html (Note: the online tool checks for uninitialised local variables. Your implementation is not expected to do this.) To test your work, run the top-level Interpret harness, providing the name of a Moopl source file as a command-line argument. When run on a type-correct Moopl source file, Interpret will pretty-print the Moopl program then display a command prompt (>) at which you can enter one of the following commands: :quit This will quit the interpreter. :call main() This will call the top-level proc main, interpreted in the context defined by the Moopl program. (Any top-level proc can be called this way). :eval Exp ; This will evaluate expression Exp, interpreted in the context defined by the Moopl program, and print the result. Note the required terminating semi-colon. Testing your Expression visitors To unit-test your Exp visit methods, run the top-level Interpret harness on a complete Moopl program (though it can be trivial) and use the :eval command. For example, to test your visit methods for the Boolean-literals (ExpTrue and ExpFalse), you would enter the commands > :eval true ; > :eval false ; which should output 1 and 0, respectively. For the most basic cases, the Moopl program is essentially irrelevant (a single top-level proc with empty body may be sufficient). For other cases you will need to write programs containing class definitions (in order, for example, to test object creation and method call). Testing your Statement visitors To unit-test your Stm visit methods, write very simple Moopl programs, each with a top-level proc main() containing just a few lines of code. Run the top-level Interpret harness on these simple programs and enter the command > :call main() You will find a few examples to get you started in the folder examples/unittests. As for the Exp tests, simple cases can be tested using Moopl programs with just a main proc but for the more complex tests you will need to write Moopl programs containing class definitions. 4 Grading criteria Solutions will be graded according to their functional correctness, and the elegance of their implementation. Below are criteria that guide the award of marks. 70 – 100 [1st class] Work that meets all the requirements in full, constructed and presented to a professional standard. Showing evidence of independent reading, thinking and analysis. 60 – 69 [2:1] Work that makes a good attempt to address the requirements, realising all to some extent and most well. Well-structured and well presented. 50 – 59 [2:2] Work that attempts to address requirements realising all to some extent and some well but perhaps also including irrelevant or underdeveloped material. Structure and presentation may not always be clear. 40 – 49 [3rd class] Work that attempts to address the requirements but only realises them to some extent and may not include important elements or be completely accurate. Structure and presentation may lack clarity. 0 – 39 [fail] Unsatisfactory work that does not adequately address the requirements. Structure and presentation may be confused or incoherent.

1 IN2009: Language Processors Coursework Part 3: The Interpreter Introduction This is the 3rd and final part of the coursework. In the second part of the coursework you created a parser for the Moopl grammar which, given a syntactically correct Moopl program as input, builds an AST representation of the program. In Part 3 you will develop an interpreter which executes Moopl programs by visiting their AST representations. For this part of the coursework we provide functional code (with limitations, see below) for parsing, building a symbol table, type checking and variable allocation. Marks This part of the coursework is worth 12 of the 30 coursework marks for the Language Processors module. This part of the coursework is marked out of 12. Submission deadline This part of the coursework should be handed in before 5pm on Sunday 9th April 2017. In line with school policy, late submissions will be awarded no marks. Return & Feedback Marks and feedback will be available as soon as possible, certainly on or before Wed 3rd May 2017. Plagiarism If you copy the work of others (either that of fellow students or of a third party), with or without their permission, you will score no marks and further disciplinary action will be taken against you. Group working You will be working in the same groups as for the previous parts of the coursework except where group changes have already been approved. Submission: Submit a zip archive (not a rar file) of all your source code (the src folder of your project). We do not want the other parts of your NetBeans project, only the source code. Note 1: Submissions which do not compile will get zero marks. Note 2: You must not change the names or types of any of the existing packages, classes or public methods. 2 Getting started Download either moopl-interp.zip or moopl-interp.tgz from Moodle and extract all files. Key contents to be aware of: • A fully implemented Moopl parser (also implements a parser for the interpreter command language; see below). • A partially implemented Moopl type checker. • Test harnesses for the type checker and interpreter. • A directory of a few example Moopl programs (see Testing below). • Folder interp containing prototype interpreter code. The type-checker is only partially implemented but a more complete implementation will be provided following Session 6. That version is still not fully complete because it doesn’t support inheritance. Part d) below asks you to remove this restriction. The VarAllocator visitor in the interp package uses a simple implementation which only works for methods in which all parameter and local variable names are different. Part e) below asks you to remove this restriction. The three parts below should be attempted in sequence. When you have completed one part you should make a back-up copy of the work and keep it safe, in case you break it in your attempt at the next part. Be sure to test old functionality as well as new (regression testing). We will not assess multiple versions so, if your attempt at part d) or e) breaks previously working code, you may gain a better mark by submitting the earlier version for assessment. c) [8 marks] The Basic Interpreter: complete the implementation of the Interpreter visitor in the interp package. d) [2 marks] Inheritance: extend the type-checker, variable allocator and interpreter to support inheritance. e) [2 marks] Variable Allocation: extend the variable allocator to fully support blockstructure and lexical scoping, removing the requirement that all parameter and local variable names are different. Aim to minimise the number of local variable slots allocated in a stack frame. Note: variable and parameter names declared at the same scope level are still required to be different from each other (a method cannot have two different parameters called x, for example) and this is enforced by the existing typechecking code. But variables declared in different blocks (even when nested) can have the same name. Exceptions Your interpreter will only ever be run on Moopl code which is type-correct (and free from uninitialised local variables). But it is still possible that the Moopl code contains logical errors which may cause runtime errors (such as null-reference or array-bound errors). Your interpreter should throw a MooplRunTimeException with an appropriate error message in these cases. The only kind of exception your interpreter should ever throw is a MooplRunTimeException. 3 Testing The examples folder does not contain a comprehensive test-suite. You need to invent and run your own tests. The document Moopl compared with Java gives a concise summary of how Moopl programs are supposed to behave. You can (and should) also compare the behaviour of your interpreter with that of the online tool: https://smcse.city.ac.uk/student/sj353/langproc/Moopl.html (Note: the online tool checks for uninitialised local variables. Your implementation is not expected to do this.) To test your work, run the top-level Interpret harness, providing the name of a Moopl source file as a command-line argument. When run on a type-correct Moopl source file, Interpret will pretty-print the Moopl program then display a command prompt (>) at which you can enter one of the following commands: :quit This will quit the interpreter. :call main() This will call the top-level proc main, interpreted in the context defined by the Moopl program. (Any top-level proc can be called this way). :eval Exp ; This will evaluate expression Exp, interpreted in the context defined by the Moopl program, and print the result. Note the required terminating semi-colon. Testing your Expression visitors To unit-test your Exp visit methods, run the top-level Interpret harness on a complete Moopl program (though it can be trivial) and use the :eval command. For example, to test your visit methods for the Boolean-literals (ExpTrue and ExpFalse), you would enter the commands > :eval true ; > :eval false ; which should output 1 and 0, respectively. For the most basic cases, the Moopl program is essentially irrelevant (a single top-level proc with empty body may be sufficient). For other cases you will need to write programs containing class definitions (in order, for example, to test object creation and method call). Testing your Statement visitors To unit-test your Stm visit methods, write very simple Moopl programs, each with a top-level proc main() containing just a few lines of code. Run the top-level Interpret harness on these simple programs and enter the command > :call main() You will find a few examples to get you started in the folder examples/unittests. As for the Exp tests, simple cases can be tested using Moopl programs with just a main proc but for the more complex tests you will need to write Moopl programs containing class definitions. 4 Grading criteria Solutions will be graded according to their functional correctness, and the elegance of their implementation. Below are criteria that guide the award of marks. 70 – 100 [1st class] Work that meets all the requirements in full, constructed and presented to a professional standard. Showing evidence of independent reading, thinking and analysis. 60 – 69 [2:1] Work that makes a good attempt to address the requirements, realising all to some extent and most well. Well-structured and well presented. 50 – 59 [2:2] Work that attempts to address requirements realising all to some extent and some well but perhaps also including irrelevant or underdeveloped material. Structure and presentation may not always be clear. 40 – 49 [3rd class] Work that attempts to address the requirements but only realises them to some extent and may not include important elements or be completely accurate. Structure and presentation may lack clarity. 0 – 39 [fail] Unsatisfactory work that does not adequately address the requirements. Structure and presentation may be confused or incoherent.

checkyourstudy.com Whatsapp +919911743277
Describe the Maxwell model with the aid of sketches. What are its strengths and limitations?

Describe the Maxwell model with the aid of sketches. What are its strengths and limitations?

Maxwell Model             In the Maxwell model, the material is … Read More...
Proof  = E exp(-Et/)

Proof  = E exp(-Et/)

Maxwell Model: (Spring and Dashpot in Series)   Maxwell Model … Read More...