. Pt 1. Making Observations (Introduction) Write a brief, introductory paragraph that includes general observations related to the topic. You may consider information from the news, media (tv, movies), social media, popular views, ideas from the general public, or your personal experiences. Your paragraph should specifically mention three (3) observations related to this topic and be sure to cite your sources. You should also include your thoughts on why this topic is of interest to you or relevant to society (i.e. what is the significance?). Pt 2. Apply The Content Choose five (5) terms or concepts that we have covered in this unit that are related to the chosen topic. Define each term in your own words and then write one (1) sentence that explains how it is related to the topic. The concept are: Define evolution. What was Darwin’s role in establishing the theory of evolution? What does the phrase “descent with modification” mean? How are fossils, anatomical studies, and molecular biology used to provide evidence for the theory of evolution? What is “fitness” in a biological organism? What role do mutations have in natural selection? What are the types of natural selection? How do they effect the genetic variation in a population? What is genetic drift? gene flow? How do they effect the genetic variation in a population? What forces can lead to adaptive evolution? What is the biological definition of a species? What are the three domains of living organisms? What are the six kingdoms? For each kingdom you should be able to describe the cellular structure, means of reproduction, ways of getting nutrients/food, general/adaptive features, and an example organism. How does Helicobacter pylori avoid competition? What extreme environment does a hermoacidophile occupy? What is unique about the Volvox compared to other protists? How do pitcher plants thrive in low nutrient environments? How does the puffball mushroom achieve reproductive success? What adaptations allowed plants to live on the land? What major adaptations occurred in the animal kingdom? In vertebrates? What domain, kingdom, phylum, sub phylum, and class do humans belong to? What do we share with organisms in these groups? What are the ecological levels of the biological hierarchy? What are the elements of a habitat? What are the criteria used by ecologists to measure and observe populations? What common patterns of population distribution are seen in nature? Compare the three kinds of survivorship curves? What do they show? What kind of reproductive behaviors lead to type I, II, and III survivorship curves? How does idealized population growth differ from how actual populations grow? What are factors that affect the growth of a population? How do density-dependent factors affect population growth? What are examples of density-independent factors that can affect population growth? What is a population boom? What is a population bust? Describe the boom and bust cycles often observed in nature. What kinds of competition occur in a habitat? What kinds of symbiotic relationships occur in a habitat? How do organisms avoid predation? What are the levels in a trophic structure? How can plants and animals avoid being eaten? Why is a food web a more accurate representation of the organisms in a community compared to a food chain? Why are most food chains limited to only three or four trophic levels.What are some common threats to biodiversity? What are common types of pollution? Explain why we must be concerned about even small levels of polluting chemicals in the environment. What is sustainability? How can we contribute to the sustainability of life on our planet? Pt 3. Form A Claim Write a claim statement related to the chosen topic. Consider the major question that you are addressing and then develop a statement that will guide your research and writing as you develop your scientific explanation (in Pt 4). Pt 4. Construct a Scientific Explanation Write a scientific explanation that includes evidence and reasoning to support your claim. Your explanation should demonstrate your understanding of the chosen topic using discussion and content from this course as a starting point. Your explanation should include information from a minimum of three (3) sources and one (1) of these sources must be a peer-reviewed scientific article or a review of a scientific study or studies (i.e. a primary or secondary source). You should cite your sources within the body of your explanation and include a list of references at the end (any standard formatting method is acceptable).

. Pt 1. Making Observations (Introduction) Write a brief, introductory paragraph that includes general observations related to the topic. You may consider information from the news, media (tv, movies), social media, popular views, ideas from the general public, or your personal experiences. Your paragraph should specifically mention three (3) observations related to this topic and be sure to cite your sources. You should also include your thoughts on why this topic is of interest to you or relevant to society (i.e. what is the significance?). Pt 2. Apply The Content Choose five (5) terms or concepts that we have covered in this unit that are related to the chosen topic. Define each term in your own words and then write one (1) sentence that explains how it is related to the topic. The concept are: Define evolution. What was Darwin’s role in establishing the theory of evolution? What does the phrase “descent with modification” mean? How are fossils, anatomical studies, and molecular biology used to provide evidence for the theory of evolution? What is “fitness” in a biological organism? What role do mutations have in natural selection? What are the types of natural selection? How do they effect the genetic variation in a population? What is genetic drift? gene flow? How do they effect the genetic variation in a population? What forces can lead to adaptive evolution? What is the biological definition of a species? What are the three domains of living organisms? What are the six kingdoms? For each kingdom you should be able to describe the cellular structure, means of reproduction, ways of getting nutrients/food, general/adaptive features, and an example organism. How does Helicobacter pylori avoid competition? What extreme environment does a hermoacidophile occupy? What is unique about the Volvox compared to other protists? How do pitcher plants thrive in low nutrient environments? How does the puffball mushroom achieve reproductive success? What adaptations allowed plants to live on the land? What major adaptations occurred in the animal kingdom? In vertebrates? What domain, kingdom, phylum, sub phylum, and class do humans belong to? What do we share with organisms in these groups? What are the ecological levels of the biological hierarchy? What are the elements of a habitat? What are the criteria used by ecologists to measure and observe populations? What common patterns of population distribution are seen in nature? Compare the three kinds of survivorship curves? What do they show? What kind of reproductive behaviors lead to type I, II, and III survivorship curves? How does idealized population growth differ from how actual populations grow? What are factors that affect the growth of a population? How do density-dependent factors affect population growth? What are examples of density-independent factors that can affect population growth? What is a population boom? What is a population bust? Describe the boom and bust cycles often observed in nature. What kinds of competition occur in a habitat? What kinds of symbiotic relationships occur in a habitat? How do organisms avoid predation? What are the levels in a trophic structure? How can plants and animals avoid being eaten? Why is a food web a more accurate representation of the organisms in a community compared to a food chain? Why are most food chains limited to only three or four trophic levels.What are some common threats to biodiversity? What are common types of pollution? Explain why we must be concerned about even small levels of polluting chemicals in the environment. What is sustainability? How can we contribute to the sustainability of life on our planet? Pt 3. Form A Claim Write a claim statement related to the chosen topic. Consider the major question that you are addressing and then develop a statement that will guide your research and writing as you develop your scientific explanation (in Pt 4). Pt 4. Construct a Scientific Explanation Write a scientific explanation that includes evidence and reasoning to support your claim. Your explanation should demonstrate your understanding of the chosen topic using discussion and content from this course as a starting point. Your explanation should include information from a minimum of three (3) sources and one (1) of these sources must be a peer-reviewed scientific article or a review of a scientific study or studies (i.e. a primary or secondary source). You should cite your sources within the body of your explanation and include a list of references at the end (any standard formatting method is acceptable).

No expert has answered this question yet. You can browse … Read More...
Chapter 9 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, April 18, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Momentum and Internal Forces Learning Goal: To understand the concept of total momentum for a system of objects and the effect of the internal forces on the total momentum. We begin by introducing the following terms: System: Any collection of objects, either pointlike or extended. In many momentum-related problems, you have a certain freedom in choosing the objects to be considered as your system. Making a wise choice is often a crucial step in solving the problem. Internal force: Any force interaction between two objects belonging to the chosen system. Let us stress that both interacting objects must belong to the system. External force: Any force interaction between objects at least one of which does not belong to the chosen system; in other words, at least one of the objects is external to the system. Closed system: a system that is not subject to any external forces. Total momentum: The vector sum of the individual momenta of all objects constituting the system. In this problem, you will analyze a system composed of two blocks, 1 and 2, of respective masses and . To simplify the analysis, we will make several assumptions: The blocks can move in only one dimension, namely, 1. along the x axis. 2. The masses of the blocks remain constant. 3. The system is closed. At time , the x components of the velocity and the acceleration of block 1 are denoted by and . Similarly, the x components of the velocity and acceleration of block 2 are denoted by and . In this problem, you will show that the total momentum of the system is not changed by the presence of internal forces. m1 m2 t v1(t) a1 (t) v2 (t) a2 (t) Part A Find , the x component of the total momentum of the system at time . Express your answer in terms of , , , and . ANSWER: Part B Find the time derivative of the x component of the system’s total momentum. Express your answer in terms of , , , and . You did not open hints for this part. ANSWER: Why did we bother with all this math? The expression for the derivative of momentum that we just obtained will be useful in reaching our desired conclusion, if only for this very special case. Part C The quantity (mass times acceleration) is dimensionally equivalent to which of the following? ANSWER: p(t) t m1 m2 v1 (t) v2 (t) p(t) = dp(t)/dt a1 (t) a2 (t) m1 m2 dp(t)/dt = ma Part D Acceleration is due to which of the following physical quantities? ANSWER: Part E Since we have assumed that the system composed of blocks 1 and 2 is closed, what could be the reason for the acceleration of block 1? You did not open hints for this part. ANSWER: momentum energy force acceleration inertia velocity speed energy momentum force Part F This question will be shown after you complete previous question(s). Part G Let us denote the x component of the force exerted by block 1 on block 2 by , and the x component of the force exerted by block 2 on block 1 by . Which of the following pairs equalities is a direct consequence of Newton’s second law? ANSWER: Part H Let us recall that we have denoted the force exerted by block 1 on block 2 by , and the force exerted by block 2 on block 1 by . If we suppose that is greater than , which of the following statements about forces is true? You did not open hints for this part. the large mass of block 1 air resistance Earth’s gravitational attraction a force exerted by block 2 on block 1 a force exerted by block 1 on block 2 F12 F21 and and and and F12 = m2a2 F21 = m1a1 F12 = m1a1 F21 = m2a2 F12 = m1a2 F21 = m2a1 F12 = m2a1 F21 = m1a2 F12 F21 m1 m2 ANSWER: Part I Now recall the expression for the time derivative of the x component of the system’s total momentum: . Considering the information that you now have, choose the best alternative for an equivalent expression to . You did not open hints for this part. ANSWER: Impulse and Momentum Ranking Task Six automobiles are initially traveling at the indicated velocities. The automobiles have different masses and velocities. The drivers step on the brakes and all automobiles are brought to rest. Part A Rank these automobiles based on the magnitude of their momentum before the brakes are applied, from largest to smallest. Rank from largest to smallest. To rank items as equivalent, overlap them. If the ranking cannot be determined, check the box below. ANSWER: Both forces have equal magnitudes. |F12 | > |F21| |F21 | > |F12| dpx(t)/dt = Fx dpx(t)/dt 0 nonzero constant kt kt2 Part B Rank these automobiles based on the magnitude of the impulse needed to stop them, from largest to smallest. Rank from largest to smallest. To rank items as equivalent, overlap them. If the ranking cannot be determined, check the box below. You did not open hints for this part. ANSWER: Part C Rank the automobiles based on the magnitude of the force needed to stop them, from largest to smallest. Rank from largest to smallest. To rank items as equivalent, overlap them. If the ranking cannot be determined, check the box below. You did not open hints for this part. ANSWER: A Game of Frictionless Catch Chuck and Jackie stand on separate carts, both of which can slide without friction. The combined mass of Chuck and his cart, , is identical to the combined mass of Jackie and her cart. Initially, Chuck and Jackie and their carts are at rest. Chuck then picks up a ball of mass and throws it to Jackie, who catches it. Assume that the ball travels in a straight line parallel to the ground (ignore the effect of gravity). After Chuck throws the ball, his speed relative to the ground is . The speed of the thrown ball relative to the ground is . Jackie catches the ball when it reaches her, and she and her cart begin to move. Jackie’s speed relative to the ground after she catches the ball is . When answering the questions in this problem, keep the following in mind: The original mass of Chuck and his cart does not include the 1. mass of the ball. 2. The speed of an object is the magnitude of its velocity. An object’s speed will always be a nonnegative quantity. mcart mball vc vb vj mcart Part A Find the relative speed between Chuck and the ball after Chuck has thrown the ball. Express the speed in terms of and . You did not open hints for this part. ANSWER: Part B What is the speed of the ball (relative to the ground) while it is in the air? Express your answer in terms of , , and . You did not open hints for this part. ANSWER: Part C What is Chuck’s speed (relative to the ground) after he throws the ball? Express your answer in terms of , , and . u vc vb u = vb mball mcart u vb = vc mball mcart u You did not open hints for this part. ANSWER: Part D Find Jackie’s speed (relative to the ground) after she catches the ball, in terms of . Express in terms of , , and . You did not open hints for this part. ANSWER: Part E Find Jackie’s speed (relative to the ground) after she catches the ball, in terms of . Express in terms of , , and . You did not open hints for this part. ANSWER: vc = vj vb vj mball mcart vb vj = vj u vj mball mcart u Momentum in an Explosion A giant “egg” explodes as part of a fireworks display. The egg is at rest before the explosion, and after the explosion, it breaks into two pieces, with the masses indicated in the diagram, traveling in opposite directions. Part A What is the momentum of piece A before the explosion? Express your answer numerically in kilogram meters per second. You did not open hints for this part. ANSWER: vj = pA,i Part B During the explosion, is the force of piece A on piece B greater than, less than, or equal to the force of piece B on piece A? You did not open hints for this part. ANSWER: Part C The momentum of piece B is measured to be 500 after the explosion. Find the momentum of piece A after the explosion. Enter your answer numerically in kilogram meters per second. You did not open hints for this part. ANSWER: pA,i = kg  m/s greater than less than equal to cannot be determined kg  m/s pA,f pA,f = kg  m/s ± PSS 9.1 Conservation of Momentum Learning Goal: To practice Problem-Solving Strategy 9.1 for conservation of momentum problems. An 80- quarterback jumps straight up in the air right before throwing a 0.43- football horizontally at 15 . How fast will he be moving backward just after releasing the ball? PROBLEM-SOLVING STRATEGY 9.1 Conservation of momentum MODEL: Clearly define the system. If possible, choose a system that is isolated ( ) or within which the interactions are sufficiently short and intense that you can ignore external forces for the duration of the interaction (the impulse approximation). Momentum is conserved. If it is not possible to choose an isolated system, try to divide the problem into parts such that momentum is conserved during one segment of the motion. Other segments of the motion can be analyzed using Newton’s laws or, as you will learn later, conservation of energy. VISUALIZE: Draw a before-and-after pictorial representation. Define symbols that will be used in the problem, list known values, and identify what you are trying to find. SOLVE: The mathematical representation is based on the law of conservation of momentum: . In component form, this is ASSESS: Check that your result has the correct units, is reasonable, and answers the question. Model The interaction at study in this problem is the action of throwing the ball, performed by the quarterback while being off the ground. To apply conservation of momentum to this interaction, you will need to clearly define a system that is isolated or within which the impulse approximation can be applied. Part A Sort the following objects as part of the system or not. Drag the appropriate objects to their respective bins. ANSWER: kg kg m/s F = net 0 P = f P  i (pfx + ( + ( += ( + ( + ( + )1 pfx)2 pfx)3 pix)1 pix)2 pix)3 (pfy + ( + ( += ( + ( + ( + )1 pfy)2 pfy)3 piy)1 piy)2 piy)3 Part B This question will be shown after you complete previous question(s). Visualize Solve Part C This question will be shown after you complete previous question(s). Assess Part D This question will be shown after you complete previous question(s). Conservation of Momentum in Inelastic Collisions Learning Goal: To understand the vector nature of momentum in the case in which two objects collide and stick together. In this problem we will consider a collision of two moving objects such that after the collision, the objects stick together and travel off as a single unit. The collision is therefore completely inelastic. You have probably learned that “momentum is conserved” in an inelastic collision. But how does this fact help you to solve collision problems? The following questions should help you to clarify the meaning and implications of the statement “momentum is conserved.” Part A What physical quantities are conserved in this collision? ANSWER: Part B Two cars of equal mass collide inelastically and stick together after the collision. Before the collision, their speeds are and . What is the speed of the two-car system after the collision? the magnitude of the momentum only the net momentum (considered as a vector) only the momentum of each object considered individually v1 v2 You did not open hints for this part. ANSWER: Part C Two cars collide inelastically and stick together after the collision. Before the collision, the magnitudes of their momenta are and . After the collision, what is the magnitude of their combined momentum? You did not open hints for this part. ANSWER: The answer depends on the directions in which the cars were moving before the collision. v1 + v2 v1 − v2 v2 − v1 v1v2 −−−− ” v1+v2 2 v1 + 2 v2 2 −−−−−−−  p1 p2 Part D Two cars collide inelastically and stick together after the collision. Before the collision, their momenta are and . After the collision, their combined momentum is . Of what can one be certain? You did not open hints for this part. ANSWER: Part E Two cars collide inelastically and stick together after the collision. Before the collision, the magnitudes of their momenta are and . After the collision, the magnitude of their combined momentum is . Of what can one be certain? The answer depends on the directions in which the cars were moving before the collision. p1 + p2 p1 − p2 p2 − p1 p1p2 −−−− ” p1+p2 2 p1 + 2 p2 2 −−−−−−−  p 1 p 2 p p = p1 + # p2 # p = p1 − # p2 # p = p2 − # p1 # p1 p2 p You did not open hints for this part. ANSWER: Colliding Cars In this problem we will consider the collision of two cars initially moving at right angles. We assume that after the collision the cars stick together and travel off as a single unit. The collision is therefore completely inelastic. Two cars of masses and collide at an intersection. Before the collision, car 1 was traveling eastward at a speed of , and car 2 was traveling northward at a speed of . After the collision, the two cars stick together and travel off in the direction shown. Part A p1 + p2 $ p $ p1p2 −−−− ” p1 +p2 $ p $ p1+p2 2 p1 + p2 $ p $ |p1 − p2 | p1 + p2 $ p $ p1 + 2 p2 2 −−−−−−−  m1 m2 v1 v2 First, find the magnitude of , that is, the speed of the two-car unit after the collision. Express in terms of , , and the cars’ initial speeds and . You did not open hints for this part. ANSWER: Part B Find the tangent of the angle . Express your answer in terms of the momenta of the two cars, and . ANSWER: Part C Suppose that after the collision, ; in other words, is . This means that before the collision: ANSWER: v v v m1 m2 v1 v2 v = p1 p2 tan( ) = tan = 1 45′ The magnitudes of the momenta of the cars were equal. The masses of the cars were equal. The velocities of the cars were equal. ± Catching a Ball on Ice Olaf is standing on a sheet of ice that covers the football stadium parking lot in Buffalo, New York; there is negligible friction between his feet and the ice. A friend throws Olaf a ball of mass 0.400 that is traveling horizontally at 11.2 . Olaf’s mass is 67.1 . Part A If Olaf catches the ball, with what speed do Olaf and the ball move afterward? Express your answer numerically in meters per second. You did not open hints for this part. ANSWER: Part B kg m/s kg vf vf = m/s If the ball hits Olaf and bounces off his chest horizontally at 8.00 in the opposite direction, what is his speed after the collision? Express your answer numerically in meters per second. You did not open hints for this part. ANSWER: A One-Dimensional Inelastic Collision Block 1, of mass = 2.90 , moves along a frictionless air track with speed = 25.0 . It collides with block 2, of mass = 17.0 , which was initially at rest. The blocks stick together after the collision. Part A Find the magnitude of the total initial momentum of the two-block system. Express your answer numerically. m/s vf vf = m/s m1 kg v1 m/s m2 kg pi You did not open hints for this part. ANSWER: Part B Find , the magnitude of the final velocity of the two-block system. Express your answer numerically. You did not open hints for this part. ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. pi = kg  m/s vf vf = m/s

Chapter 9 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, April 18, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Momentum and Internal Forces Learning Goal: To understand the concept of total momentum for a system of objects and the effect of the internal forces on the total momentum. We begin by introducing the following terms: System: Any collection of objects, either pointlike or extended. In many momentum-related problems, you have a certain freedom in choosing the objects to be considered as your system. Making a wise choice is often a crucial step in solving the problem. Internal force: Any force interaction between two objects belonging to the chosen system. Let us stress that both interacting objects must belong to the system. External force: Any force interaction between objects at least one of which does not belong to the chosen system; in other words, at least one of the objects is external to the system. Closed system: a system that is not subject to any external forces. Total momentum: The vector sum of the individual momenta of all objects constituting the system. In this problem, you will analyze a system composed of two blocks, 1 and 2, of respective masses and . To simplify the analysis, we will make several assumptions: The blocks can move in only one dimension, namely, 1. along the x axis. 2. The masses of the blocks remain constant. 3. The system is closed. At time , the x components of the velocity and the acceleration of block 1 are denoted by and . Similarly, the x components of the velocity and acceleration of block 2 are denoted by and . In this problem, you will show that the total momentum of the system is not changed by the presence of internal forces. m1 m2 t v1(t) a1 (t) v2 (t) a2 (t) Part A Find , the x component of the total momentum of the system at time . Express your answer in terms of , , , and . ANSWER: Part B Find the time derivative of the x component of the system’s total momentum. Express your answer in terms of , , , and . You did not open hints for this part. ANSWER: Why did we bother with all this math? The expression for the derivative of momentum that we just obtained will be useful in reaching our desired conclusion, if only for this very special case. Part C The quantity (mass times acceleration) is dimensionally equivalent to which of the following? ANSWER: p(t) t m1 m2 v1 (t) v2 (t) p(t) = dp(t)/dt a1 (t) a2 (t) m1 m2 dp(t)/dt = ma Part D Acceleration is due to which of the following physical quantities? ANSWER: Part E Since we have assumed that the system composed of blocks 1 and 2 is closed, what could be the reason for the acceleration of block 1? You did not open hints for this part. ANSWER: momentum energy force acceleration inertia velocity speed energy momentum force Part F This question will be shown after you complete previous question(s). Part G Let us denote the x component of the force exerted by block 1 on block 2 by , and the x component of the force exerted by block 2 on block 1 by . Which of the following pairs equalities is a direct consequence of Newton’s second law? ANSWER: Part H Let us recall that we have denoted the force exerted by block 1 on block 2 by , and the force exerted by block 2 on block 1 by . If we suppose that is greater than , which of the following statements about forces is true? You did not open hints for this part. the large mass of block 1 air resistance Earth’s gravitational attraction a force exerted by block 2 on block 1 a force exerted by block 1 on block 2 F12 F21 and and and and F12 = m2a2 F21 = m1a1 F12 = m1a1 F21 = m2a2 F12 = m1a2 F21 = m2a1 F12 = m2a1 F21 = m1a2 F12 F21 m1 m2 ANSWER: Part I Now recall the expression for the time derivative of the x component of the system’s total momentum: . Considering the information that you now have, choose the best alternative for an equivalent expression to . You did not open hints for this part. ANSWER: Impulse and Momentum Ranking Task Six automobiles are initially traveling at the indicated velocities. The automobiles have different masses and velocities. The drivers step on the brakes and all automobiles are brought to rest. Part A Rank these automobiles based on the magnitude of their momentum before the brakes are applied, from largest to smallest. Rank from largest to smallest. To rank items as equivalent, overlap them. If the ranking cannot be determined, check the box below. ANSWER: Both forces have equal magnitudes. |F12 | > |F21| |F21 | > |F12| dpx(t)/dt = Fx dpx(t)/dt 0 nonzero constant kt kt2 Part B Rank these automobiles based on the magnitude of the impulse needed to stop them, from largest to smallest. Rank from largest to smallest. To rank items as equivalent, overlap them. If the ranking cannot be determined, check the box below. You did not open hints for this part. ANSWER: Part C Rank the automobiles based on the magnitude of the force needed to stop them, from largest to smallest. Rank from largest to smallest. To rank items as equivalent, overlap them. If the ranking cannot be determined, check the box below. You did not open hints for this part. ANSWER: A Game of Frictionless Catch Chuck and Jackie stand on separate carts, both of which can slide without friction. The combined mass of Chuck and his cart, , is identical to the combined mass of Jackie and her cart. Initially, Chuck and Jackie and their carts are at rest. Chuck then picks up a ball of mass and throws it to Jackie, who catches it. Assume that the ball travels in a straight line parallel to the ground (ignore the effect of gravity). After Chuck throws the ball, his speed relative to the ground is . The speed of the thrown ball relative to the ground is . Jackie catches the ball when it reaches her, and she and her cart begin to move. Jackie’s speed relative to the ground after she catches the ball is . When answering the questions in this problem, keep the following in mind: The original mass of Chuck and his cart does not include the 1. mass of the ball. 2. The speed of an object is the magnitude of its velocity. An object’s speed will always be a nonnegative quantity. mcart mball vc vb vj mcart Part A Find the relative speed between Chuck and the ball after Chuck has thrown the ball. Express the speed in terms of and . You did not open hints for this part. ANSWER: Part B What is the speed of the ball (relative to the ground) while it is in the air? Express your answer in terms of , , and . You did not open hints for this part. ANSWER: Part C What is Chuck’s speed (relative to the ground) after he throws the ball? Express your answer in terms of , , and . u vc vb u = vb mball mcart u vb = vc mball mcart u You did not open hints for this part. ANSWER: Part D Find Jackie’s speed (relative to the ground) after she catches the ball, in terms of . Express in terms of , , and . You did not open hints for this part. ANSWER: Part E Find Jackie’s speed (relative to the ground) after she catches the ball, in terms of . Express in terms of , , and . You did not open hints for this part. ANSWER: vc = vj vb vj mball mcart vb vj = vj u vj mball mcart u Momentum in an Explosion A giant “egg” explodes as part of a fireworks display. The egg is at rest before the explosion, and after the explosion, it breaks into two pieces, with the masses indicated in the diagram, traveling in opposite directions. Part A What is the momentum of piece A before the explosion? Express your answer numerically in kilogram meters per second. You did not open hints for this part. ANSWER: vj = pA,i Part B During the explosion, is the force of piece A on piece B greater than, less than, or equal to the force of piece B on piece A? You did not open hints for this part. ANSWER: Part C The momentum of piece B is measured to be 500 after the explosion. Find the momentum of piece A after the explosion. Enter your answer numerically in kilogram meters per second. You did not open hints for this part. ANSWER: pA,i = kg  m/s greater than less than equal to cannot be determined kg  m/s pA,f pA,f = kg  m/s ± PSS 9.1 Conservation of Momentum Learning Goal: To practice Problem-Solving Strategy 9.1 for conservation of momentum problems. An 80- quarterback jumps straight up in the air right before throwing a 0.43- football horizontally at 15 . How fast will he be moving backward just after releasing the ball? PROBLEM-SOLVING STRATEGY 9.1 Conservation of momentum MODEL: Clearly define the system. If possible, choose a system that is isolated ( ) or within which the interactions are sufficiently short and intense that you can ignore external forces for the duration of the interaction (the impulse approximation). Momentum is conserved. If it is not possible to choose an isolated system, try to divide the problem into parts such that momentum is conserved during one segment of the motion. Other segments of the motion can be analyzed using Newton’s laws or, as you will learn later, conservation of energy. VISUALIZE: Draw a before-and-after pictorial representation. Define symbols that will be used in the problem, list known values, and identify what you are trying to find. SOLVE: The mathematical representation is based on the law of conservation of momentum: . In component form, this is ASSESS: Check that your result has the correct units, is reasonable, and answers the question. Model The interaction at study in this problem is the action of throwing the ball, performed by the quarterback while being off the ground. To apply conservation of momentum to this interaction, you will need to clearly define a system that is isolated or within which the impulse approximation can be applied. Part A Sort the following objects as part of the system or not. Drag the appropriate objects to their respective bins. ANSWER: kg kg m/s F = net 0 P = f P  i (pfx + ( + ( += ( + ( + ( + )1 pfx)2 pfx)3 pix)1 pix)2 pix)3 (pfy + ( + ( += ( + ( + ( + )1 pfy)2 pfy)3 piy)1 piy)2 piy)3 Part B This question will be shown after you complete previous question(s). Visualize Solve Part C This question will be shown after you complete previous question(s). Assess Part D This question will be shown after you complete previous question(s). Conservation of Momentum in Inelastic Collisions Learning Goal: To understand the vector nature of momentum in the case in which two objects collide and stick together. In this problem we will consider a collision of two moving objects such that after the collision, the objects stick together and travel off as a single unit. The collision is therefore completely inelastic. You have probably learned that “momentum is conserved” in an inelastic collision. But how does this fact help you to solve collision problems? The following questions should help you to clarify the meaning and implications of the statement “momentum is conserved.” Part A What physical quantities are conserved in this collision? ANSWER: Part B Two cars of equal mass collide inelastically and stick together after the collision. Before the collision, their speeds are and . What is the speed of the two-car system after the collision? the magnitude of the momentum only the net momentum (considered as a vector) only the momentum of each object considered individually v1 v2 You did not open hints for this part. ANSWER: Part C Two cars collide inelastically and stick together after the collision. Before the collision, the magnitudes of their momenta are and . After the collision, what is the magnitude of their combined momentum? You did not open hints for this part. ANSWER: The answer depends on the directions in which the cars were moving before the collision. v1 + v2 v1 − v2 v2 − v1 v1v2 −−−− ” v1+v2 2 v1 + 2 v2 2 −−−−−−−  p1 p2 Part D Two cars collide inelastically and stick together after the collision. Before the collision, their momenta are and . After the collision, their combined momentum is . Of what can one be certain? You did not open hints for this part. ANSWER: Part E Two cars collide inelastically and stick together after the collision. Before the collision, the magnitudes of their momenta are and . After the collision, the magnitude of their combined momentum is . Of what can one be certain? The answer depends on the directions in which the cars were moving before the collision. p1 + p2 p1 − p2 p2 − p1 p1p2 −−−− ” p1+p2 2 p1 + 2 p2 2 −−−−−−−  p 1 p 2 p p = p1 + # p2 # p = p1 − # p2 # p = p2 − # p1 # p1 p2 p You did not open hints for this part. ANSWER: Colliding Cars In this problem we will consider the collision of two cars initially moving at right angles. We assume that after the collision the cars stick together and travel off as a single unit. The collision is therefore completely inelastic. Two cars of masses and collide at an intersection. Before the collision, car 1 was traveling eastward at a speed of , and car 2 was traveling northward at a speed of . After the collision, the two cars stick together and travel off in the direction shown. Part A p1 + p2 $ p $ p1p2 −−−− ” p1 +p2 $ p $ p1+p2 2 p1 + p2 $ p $ |p1 − p2 | p1 + p2 $ p $ p1 + 2 p2 2 −−−−−−−  m1 m2 v1 v2 First, find the magnitude of , that is, the speed of the two-car unit after the collision. Express in terms of , , and the cars’ initial speeds and . You did not open hints for this part. ANSWER: Part B Find the tangent of the angle . Express your answer in terms of the momenta of the two cars, and . ANSWER: Part C Suppose that after the collision, ; in other words, is . This means that before the collision: ANSWER: v v v m1 m2 v1 v2 v = p1 p2 tan( ) = tan = 1 45′ The magnitudes of the momenta of the cars were equal. The masses of the cars were equal. The velocities of the cars were equal. ± Catching a Ball on Ice Olaf is standing on a sheet of ice that covers the football stadium parking lot in Buffalo, New York; there is negligible friction between his feet and the ice. A friend throws Olaf a ball of mass 0.400 that is traveling horizontally at 11.2 . Olaf’s mass is 67.1 . Part A If Olaf catches the ball, with what speed do Olaf and the ball move afterward? Express your answer numerically in meters per second. You did not open hints for this part. ANSWER: Part B kg m/s kg vf vf = m/s If the ball hits Olaf and bounces off his chest horizontally at 8.00 in the opposite direction, what is his speed after the collision? Express your answer numerically in meters per second. You did not open hints for this part. ANSWER: A One-Dimensional Inelastic Collision Block 1, of mass = 2.90 , moves along a frictionless air track with speed = 25.0 . It collides with block 2, of mass = 17.0 , which was initially at rest. The blocks stick together after the collision. Part A Find the magnitude of the total initial momentum of the two-block system. Express your answer numerically. m/s vf vf = m/s m1 kg v1 m/s m2 kg pi You did not open hints for this part. ANSWER: Part B Find , the magnitude of the final velocity of the two-block system. Express your answer numerically. You did not open hints for this part. ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. pi = kg  m/s vf vf = m/s

please email info@checkyourstudy.com
Chapter 9 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, April 18, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Momentum and Internal Forces Learning Goal: To understand the concept of total momentum for a system of objects and the effect of the internal forces on the total momentum. We begin by introducing the following terms: System: Any collection of objects, either pointlike or extended. In many momentum-related problems, you have a certain freedom in choosing the objects to be considered as your system. Making a wise choice is often a crucial step in solving the problem. Internal force: Any force interaction between two objects belonging to the chosen system. Let us stress that both interacting objects must belong to the system. External force: Any force interaction between objects at least one of which does not belong to the chosen system; in other words, at least one of the objects is external to the system. Closed system: a system that is not subject to any external forces. Total momentum: The vector sum of the individual momenta of all objects constituting the system. In this problem, you will analyze a system composed of two blocks, 1 and 2, of respective masses and . To simplify the analysis, we will make several assumptions: The blocks can move in only one dimension, namely, 1. along the x axis. 2. The masses of the blocks remain constant. 3. The system is closed. At time , the x components of the velocity and the acceleration of block 1 are denoted by and . Similarly, the x components of the velocity and acceleration of block 2 are denoted by and . In this problem, you will show that the total momentum of the system is not changed by the presence of internal forces. m1 m2 t v1(t) a1 (t) v2 (t) a2 (t)

Chapter 9 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, April 18, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Momentum and Internal Forces Learning Goal: To understand the concept of total momentum for a system of objects and the effect of the internal forces on the total momentum. We begin by introducing the following terms: System: Any collection of objects, either pointlike or extended. In many momentum-related problems, you have a certain freedom in choosing the objects to be considered as your system. Making a wise choice is often a crucial step in solving the problem. Internal force: Any force interaction between two objects belonging to the chosen system. Let us stress that both interacting objects must belong to the system. External force: Any force interaction between objects at least one of which does not belong to the chosen system; in other words, at least one of the objects is external to the system. Closed system: a system that is not subject to any external forces. Total momentum: The vector sum of the individual momenta of all objects constituting the system. In this problem, you will analyze a system composed of two blocks, 1 and 2, of respective masses and . To simplify the analysis, we will make several assumptions: The blocks can move in only one dimension, namely, 1. along the x axis. 2. The masses of the blocks remain constant. 3. The system is closed. At time , the x components of the velocity and the acceleration of block 1 are denoted by and . Similarly, the x components of the velocity and acceleration of block 2 are denoted by and . In this problem, you will show that the total momentum of the system is not changed by the presence of internal forces. m1 m2 t v1(t) a1 (t) v2 (t) a2 (t)

please email info@checkyourstudy.com
Sex, Gender, and Popular Culture Spring 2015 Look through popular magazines, and see if you can find advertisements that objectify women in order to sell a product. Alternately, you may use an advertisement on television (but make sure to provide a link to the ad so I can see it!). Study these images then write a paper about objectification that deals with all or some of the following: • What effect(s), if any, do you think the objectification of women’s bodies has on our culture? • Jean Kilbourne states “turning a human being into a thing is almost always the first step toward justifying violence against that person.” What do you think she means by this? Do you agree with her reasoning? Why or why not? • Some people would argue that depicting a woman’s body as an object is a form of art. What is your opinion of this point of view? Explain your reasoning. • Why do you think that women are objectified more often than men are? • How does sexualization and objectification play out differently across racial lines? • Kilbourne explains that the consequences of being objectified are different – and more serious – for women than for men. Do you agree? How is the world different for women than it is for men? How do objectified images of women interact with those in our culture differently from the way images of men do? Why is it important to look at images in the context of the culture? • What is the difference between sexual objectification and sexual subjectification? (Ros Gill ) • How do ads construct violent white masculinity and how does that vision of masculinity hurt both men and women? Throughout your written analysis, be sure to make clear and specific reference to the images you selected, and please submit these images with your paper. Make sure you engage with and reference to at least 4 of the following authors: Kilbourne, Bordo, Hunter & Soto, Rose, Durham, Gill, Katz, Schuchardt, Ono and Buescher. Guidelines:  Keep your content focused on structural, systemic, institutional factors rather than the individual: BE ANALYTICAL NOT ANECDOTAL.  Avoid using the first person or including personal stories/reactions. You must make sure to actively engage with your readings: these essays need to be informed and framed by the theoretical material you have been reading this semester.  Keep within the 4-6 page limit; use 12-point font, double spacing and 1-inch margins.  Use formal writing conventions (introduction/thesis statement, body, conclusion) and correct grammar. Resources may be cited within the text of your paper, i.e. (Walters, 2013).

Sex, Gender, and Popular Culture Spring 2015 Look through popular magazines, and see if you can find advertisements that objectify women in order to sell a product. Alternately, you may use an advertisement on television (but make sure to provide a link to the ad so I can see it!). Study these images then write a paper about objectification that deals with all or some of the following: • What effect(s), if any, do you think the objectification of women’s bodies has on our culture? • Jean Kilbourne states “turning a human being into a thing is almost always the first step toward justifying violence against that person.” What do you think she means by this? Do you agree with her reasoning? Why or why not? • Some people would argue that depicting a woman’s body as an object is a form of art. What is your opinion of this point of view? Explain your reasoning. • Why do you think that women are objectified more often than men are? • How does sexualization and objectification play out differently across racial lines? • Kilbourne explains that the consequences of being objectified are different – and more serious – for women than for men. Do you agree? How is the world different for women than it is for men? How do objectified images of women interact with those in our culture differently from the way images of men do? Why is it important to look at images in the context of the culture? • What is the difference between sexual objectification and sexual subjectification? (Ros Gill ) • How do ads construct violent white masculinity and how does that vision of masculinity hurt both men and women? Throughout your written analysis, be sure to make clear and specific reference to the images you selected, and please submit these images with your paper. Make sure you engage with and reference to at least 4 of the following authors: Kilbourne, Bordo, Hunter & Soto, Rose, Durham, Gill, Katz, Schuchardt, Ono and Buescher. Guidelines:  Keep your content focused on structural, systemic, institutional factors rather than the individual: BE ANALYTICAL NOT ANECDOTAL.  Avoid using the first person or including personal stories/reactions. You must make sure to actively engage with your readings: these essays need to be informed and framed by the theoretical material you have been reading this semester.  Keep within the 4-6 page limit; use 12-point font, double spacing and 1-inch margins.  Use formal writing conventions (introduction/thesis statement, body, conclusion) and correct grammar. Resources may be cited within the text of your paper, i.e. (Walters, 2013).

The objectification of women has been a very controversial topic … Read More...
Applications of Regular Expressions

Applications of Regular Expressions

A regular expression is a picture of the patter which … Read More...
TEXT The sole text is Daniel Bonevac’s Today’s Moral Issues. This is an extremely accessible work that organizes the subject matter of ethics into well-structured units involving both general principles and focused ethical dilemmas. The instructor will guide the students through the pertinent readings and discussion topics. Exam #3: WAR ECONOMIC EQUALITY 1. Aquinas 5. Mill 2. Grotius 6. Hospers 3. Clausewitz 7. Anderson 4. Gandhi CONCERNING THE SHORT PAPER Choose one of our dilemma topics from our book as the focus of your short paper. If you have another topic in mind, please consult with me for permission. —length: 4 to 5 pages — format: typed —number of points: 10 — submission via Bb, under “Assignments” — Format: Microsoft Word — Line Spacing: Double-Spaced —Print: Black The following is merely a suggestion for the organization of the paper, but it might be useful as an indication of how it could look: a) Initial statement of your position concerning the moral dilemma; how to resolve it, how you plan to argue for/against it. b) Amplification of your position; your main points or position. c) Backup: some cited references and supporting evidence for your position. d) Your criticisms of alternative or contrary points of view. e) Your conclusion/summing up. Plagiarism is a serious breach of academic integrity. If you submit plagiarized materials you will receive a zero on the assignment. If you need an extension of the due date for the paper, please consult with me.

TEXT The sole text is Daniel Bonevac’s Today’s Moral Issues. This is an extremely accessible work that organizes the subject matter of ethics into well-structured units involving both general principles and focused ethical dilemmas. The instructor will guide the students through the pertinent readings and discussion topics. Exam #3: WAR ECONOMIC EQUALITY 1. Aquinas 5. Mill 2. Grotius 6. Hospers 3. Clausewitz 7. Anderson 4. Gandhi CONCERNING THE SHORT PAPER Choose one of our dilemma topics from our book as the focus of your short paper. If you have another topic in mind, please consult with me for permission. —length: 4 to 5 pages — format: typed —number of points: 10 — submission via Bb, under “Assignments” — Format: Microsoft Word — Line Spacing: Double-Spaced —Print: Black The following is merely a suggestion for the organization of the paper, but it might be useful as an indication of how it could look: a) Initial statement of your position concerning the moral dilemma; how to resolve it, how you plan to argue for/against it. b) Amplification of your position; your main points or position. c) Backup: some cited references and supporting evidence for your position. d) Your criticisms of alternative or contrary points of view. e) Your conclusion/summing up. Plagiarism is a serious breach of academic integrity. If you submit plagiarized materials you will receive a zero on the assignment. If you need an extension of the due date for the paper, please consult with me.

Non-violence as a rule of love   The mainly essential … Read More...
Do an internet search to find the weirdest animal ( 25 animals) Information need included: 1- name of animals. 2-description. (Your own words) 3-why do you thing it’s weird?

Do an internet search to find the weirdest animal ( 25 animals) Information need included: 1- name of animals. 2-description. (Your own words) 3-why do you thing it’s weird?

S.no Name of the animal Description and Reasons of thinking … Read More...
Essay – Athlete’s high salaries. Should they be paid that amount or not?

Essay – Athlete’s high salaries. Should they be paid that amount or not?

Athlete’s high salaries: Should they be paid that amount or … Read More...