When the sheep Dolly was successfully cloned, it was produced by growing an in vitro fertilized egg where the normal egg nucleus had been removed and replaced by a nucleus from an adult. Since this nucleus is from an old mature animal, we would expect it to ______. Interestingly, tests show that this did not happen, a fact that currently puzzles researchers. Select one: have additional Barr bodies be mutated have shorter telomeres have longer telomeres express transcription and translation more rapidly

When the sheep Dolly was successfully cloned, it was produced by growing an in vitro fertilized egg where the normal egg nucleus had been removed and replaced by a nucleus from an adult. Since this nucleus is from an old mature animal, we would expect it to ______. Interestingly, tests show that this did not happen, a fact that currently puzzles researchers. Select one: have additional Barr bodies be mutated have shorter telomeres have longer telomeres express transcription and translation more rapidly

When the sheep Dolly was successfully cloned, it was produced … Read More...
Question 1 1. When males reach puberty, _________ increases their muscle mass and skeletal development. A. prolactin B. protein C. androgen D. adipose tissue E. estrogen 3 points Question 2 1. Which of the following is the only 100percent effective method of fertility control and STI protection? A. Abstinence B. Condoms and spermicide together C. Condoms and a hormonal contraceptive together D. Oral contraceptives E. Condoms 3 points Question 3 1. The efficacy rate for implants is less than ________ pregnancy per 100 users per year. A. 1 B. 10 C. 11 D. 17 E. 4 3 points Question 4 1. Over-the-counter medications are ________ A. sold legally without a prescription. B. safe for pregnant women to use. C. sold illegally without a prescription. D. the safest drugs for self-medication purposes. E. harmful even when approved by the pregnant women’s physician. 3 points Question 5 1. The ________ activates the autonomic nervous system and the endocrine system through messages sent via nerves or substances released into the bloodstream. A. cerebral cortex B. pons C. thalamus D. subcortex E. hypothalamus 3 points Question 6 1. Ovulation methods center around ______ A. a female’s basal body temperature. B. a female’s cervical secretions. C. a female tracking her menstrual cycle by using a calendar. D. A and B. E. A and C. 3 points Question 7 1. Emergency contraception ______ A. can be used as a regular contraception method. B. provides protection against STDs. C. is the only method available if unprotected intercourse has occurred when fertility is likely. D. is significantly more effective than other contraceptive methods. E. All of the above 3 points Question 8 1. Although a simultaneous orgasm between sexual partners is an exciting event, it _______ A. is a relatively uncommon event and can actually detract from the coital experience if one is preoccupied by sharing this experience. B. is common and should be a priority as far as coitus is concerned. C. is of no particular importance. D. is immensely overrated. E. None of the above 3 points Question 9 1. Cervical caps are similar to ________, but the cervical cap is smaller. A. IUDs B. diaphragms C. Norplant D. oral contraceptives E. Depo-Provera 3 points Question 10 1. Which of the following increases the risk of having a low-birth-weight baby? A. The mother does not eat well during pregnancy. B. The mother does not take care of herself. C. The mother does not receive comprehensive prenatal care. D. The mother smokes. E. All of the above 3 points Question 11 1. An advantage to using IUDs and IUSs is that they ______ A. remain in place, so planning before sexual intercourse is unnecessary. B. have a high level of effectiveness. C. allow fertility to return immediately after they are removed. D. can remain in place during a woman’s period. E. all of the above 3 points Question 12 1. Contraception is the means of preventing _______ from occurring during sexual intercourse. A. conception B. pain C. infertility D. STDs E. pleasure 3 points Question 13 1. ________ is the contraceptive method of removing the penis from the vagina before ejaculation. A. Abstinence B. Sterilization C. Avoidance D. Withdrawal E. Monogamy 3 points Question 14 1. Compared to men, women employed full time __________ A. spend fewer hours on household tasks. B. work more hours in the workplace. C. work a proportionate number of hours on household tasks. D. spend more hours on household tasks. E. work fewer hours in the workplace. 3 points Question 15 1. At ________, the female central nervous system (CNS) is typically more advanced than the male CNS. A. birth B. conception C. adolescence D. adulthood E. puberty 3 points Question 16 1. Females sometimes experience a sexual response cycle similar to that of males, EXCEPT A. when they are menstruating. B. they can have multiple orgasms without a refractory period. C. they can have multiple orgasms with a refractory period. D. the resolution phase is shorter in duration than in males. E. they generally move from excitement to plateau and then to orgasm. 3 points Question 17 1. Fertilization normally takes place in the ________ A. ovary. B. cervix. C. vagina. D. uterus. E. fallopian tubes. 3 points Question 18 1. ________ come in the form of foam, gels, films, suppositories, creams, sponges, and tablets. A. Condoms B. Diaphragms C. Spermicides D. IUDs E. Sterilization agents 3 points Question 19 1. The three major settings in the United States where labor and delivery occur are ________ A. the hospital, health-care clinics, and the home. B. the home, the hospital, and the birthing room. C. free-standing birth centers, the home, and health-care clinics. D. the hospital, the home, and free-standing birth centers. E. the birthing room, the hospital, and free-standing birth centers. 3 points Question 20 1. Mode, a fashion magazine, _______ A. was developed for women who wear normal and large sizes. B. was developed for women who wear over a size 16. C. shows only pictures of clothing, with no models. D. was sued by a group of women who claimed the magazine contributed to their bouts with eating disorders. E. none of the above 3 points Question 21 1. All of the following are advantages to breastfeeding EXCEPT that: A. over-the-counter medications do not affect breast milk. B. babies are less likely to contract respiratory infection. C. mothers’ milk provides antibodies against disease. D. encourages bonding of infant and mother. E. breast milk is cheaper than formula. 3 points Question 22 1. Kaplan’s Triphasic Model consists of the A. excitement, plateau, and resolution phases. B. desire, plateau, and orgasm phases. C. plateau, orgasm, and resolution phases. D. desire, excitement, and resolution phases. E. desire, excitement, and orgasm phases. 3 points Question 23 1. The unique component of Kaplan’s triphasic model is the ______phase—a psychological, prephysical sexual response stage. A. excitement B. desire C. resolution D. plateau E. None of the above 3 points Question 24 1. Together, the ________ and the ______ form the lifeline between the mother and the fetus. A. placenta, cervix B. cervix, uterus C. umbilical cord, vagina D. fallopiantubes, vagina E. placenta, umbilical cord 3 points Question 25 1. When an employee switches genders, which of the following is a difficult issue that employers may face? A. How clients might react B. How others will handle a transitioning employee using the restroom C. How an employee informs coworkers about switching genders D. All of the above E. None of the above 3 points Question 26 1. In men, sex flush occurs during the ________ phase, whereas in women it occurs during the ________ phase. A. refractory, excitement B. excitement, resolution C. excitement, plateau D. plateau, excitement E. plateau, resolution 3 points Question 27 1. The process that results in vaginal lubrication during the excitement phase is: A. myotonia. B. uterine orgasm. C. orgasmic platform. D. transudation. E. tachycardia. 3 points Question 28 1. The ________ is the waxy protective substance that coats the fetus. A. amniotic sac B. amniocentesis C. amniotic fluid D. vernixcaseosa. E. chorionic fluid 3 points Question 29 1. ________ adolescent females seem to be happier with their bodies and less likely to diet than ________ adolescent females. A. Hispanic, European Americans B. Asian American; African American C. African American, European American D. European American, Hispanic 3 points Question 30 1. Intrauterine devices (IUDs) and intrauterine systems (IUSs) are ______ methods of contraception. A. not B. permanent C. effective D. reversible E. both c and d 3 points Question 31 1. In early adolescence, girls outperform boys at which of the following types of tasks? A. Visual-spatial B. Math C. Physical D. Language and verbal E. None of the above 3 points Question 32 1. Which of the following are common signs that a person may have an eating disorder? A. The person wears tight clothes to show off his or her “new” body. B. A female may quit menstruating C. Excessive exercise D. B and C E. A and C 3 points Question 33 1. The ________ is the valve that prevents urine from entering the urethra and sperm from entering the bladder during ejaculation. A. orgasmic platform B. vasocongestive valve C. sex flush D. internal urethral sphincter E. None of the above 3 points Question 34 1. Which of the following statements reflect gender bias? A. Boys in school will “act out.” B. Girls in school will be docile. C. Girls are neat. D. All of the above. E. None of the above 3 points Question 35 1. The calendar method and ovulation methods are examples of ______ A. natural planning. B. fertility awareness methods. C. natural family planning. D. fertility planning. E. both B and C 3 points Question 36 1. Dieting during pregnancy can be harmful because the breakdown of fat produces toxic substances called ______ A. fibers. B. pheromones. C. ketones. D. monosaccharides. E. hormones. 3 points Question 37 1. Oral contraceptives _____ A. suppress ovulation. B. mimic the changes that occur in pregnancy. C. can be taken by both males and females. D. A and B E. A and C 3 points Question 38 1. According to Fisher (2001), men usually _______, whereas women ________. A. cut straight to the point, see issues as a part of a larger whole B. discuss their feelings, are more stoic C. mull things over, tend to speak their mind D. waiver while making decisions, mull things over E. None of the above 3 points Question 39 1. The increase in heart rate that occurs during sexual activity is known as _______ A. hyperventilation. B. vasocongestion. C. myotonia. D. tachycardia. E. sex flush. 3 points Question 40 1. Women earned about _________ of all college degrees in 2008. A. 10% B. 35% C. 57% D. 85% E. None of the above

Question 1 1. When males reach puberty, _________ increases their muscle mass and skeletal development. A. prolactin B. protein C. androgen D. adipose tissue E. estrogen 3 points Question 2 1. Which of the following is the only 100percent effective method of fertility control and STI protection? A. Abstinence B. Condoms and spermicide together C. Condoms and a hormonal contraceptive together D. Oral contraceptives E. Condoms 3 points Question 3 1. The efficacy rate for implants is less than ________ pregnancy per 100 users per year. A. 1 B. 10 C. 11 D. 17 E. 4 3 points Question 4 1. Over-the-counter medications are ________ A. sold legally without a prescription. B. safe for pregnant women to use. C. sold illegally without a prescription. D. the safest drugs for self-medication purposes. E. harmful even when approved by the pregnant women’s physician. 3 points Question 5 1. The ________ activates the autonomic nervous system and the endocrine system through messages sent via nerves or substances released into the bloodstream. A. cerebral cortex B. pons C. thalamus D. subcortex E. hypothalamus 3 points Question 6 1. Ovulation methods center around ______ A. a female’s basal body temperature. B. a female’s cervical secretions. C. a female tracking her menstrual cycle by using a calendar. D. A and B. E. A and C. 3 points Question 7 1. Emergency contraception ______ A. can be used as a regular contraception method. B. provides protection against STDs. C. is the only method available if unprotected intercourse has occurred when fertility is likely. D. is significantly more effective than other contraceptive methods. E. All of the above 3 points Question 8 1. Although a simultaneous orgasm between sexual partners is an exciting event, it _______ A. is a relatively uncommon event and can actually detract from the coital experience if one is preoccupied by sharing this experience. B. is common and should be a priority as far as coitus is concerned. C. is of no particular importance. D. is immensely overrated. E. None of the above 3 points Question 9 1. Cervical caps are similar to ________, but the cervical cap is smaller. A. IUDs B. diaphragms C. Norplant D. oral contraceptives E. Depo-Provera 3 points Question 10 1. Which of the following increases the risk of having a low-birth-weight baby? A. The mother does not eat well during pregnancy. B. The mother does not take care of herself. C. The mother does not receive comprehensive prenatal care. D. The mother smokes. E. All of the above 3 points Question 11 1. An advantage to using IUDs and IUSs is that they ______ A. remain in place, so planning before sexual intercourse is unnecessary. B. have a high level of effectiveness. C. allow fertility to return immediately after they are removed. D. can remain in place during a woman’s period. E. all of the above 3 points Question 12 1. Contraception is the means of preventing _______ from occurring during sexual intercourse. A. conception B. pain C. infertility D. STDs E. pleasure 3 points Question 13 1. ________ is the contraceptive method of removing the penis from the vagina before ejaculation. A. Abstinence B. Sterilization C. Avoidance D. Withdrawal E. Monogamy 3 points Question 14 1. Compared to men, women employed full time __________ A. spend fewer hours on household tasks. B. work more hours in the workplace. C. work a proportionate number of hours on household tasks. D. spend more hours on household tasks. E. work fewer hours in the workplace. 3 points Question 15 1. At ________, the female central nervous system (CNS) is typically more advanced than the male CNS. A. birth B. conception C. adolescence D. adulthood E. puberty 3 points Question 16 1. Females sometimes experience a sexual response cycle similar to that of males, EXCEPT A. when they are menstruating. B. they can have multiple orgasms without a refractory period. C. they can have multiple orgasms with a refractory period. D. the resolution phase is shorter in duration than in males. E. they generally move from excitement to plateau and then to orgasm. 3 points Question 17 1. Fertilization normally takes place in the ________ A. ovary. B. cervix. C. vagina. D. uterus. E. fallopian tubes. 3 points Question 18 1. ________ come in the form of foam, gels, films, suppositories, creams, sponges, and tablets. A. Condoms B. Diaphragms C. Spermicides D. IUDs E. Sterilization agents 3 points Question 19 1. The three major settings in the United States where labor and delivery occur are ________ A. the hospital, health-care clinics, and the home. B. the home, the hospital, and the birthing room. C. free-standing birth centers, the home, and health-care clinics. D. the hospital, the home, and free-standing birth centers. E. the birthing room, the hospital, and free-standing birth centers. 3 points Question 20 1. Mode, a fashion magazine, _______ A. was developed for women who wear normal and large sizes. B. was developed for women who wear over a size 16. C. shows only pictures of clothing, with no models. D. was sued by a group of women who claimed the magazine contributed to their bouts with eating disorders. E. none of the above 3 points Question 21 1. All of the following are advantages to breastfeeding EXCEPT that: A. over-the-counter medications do not affect breast milk. B. babies are less likely to contract respiratory infection. C. mothers’ milk provides antibodies against disease. D. encourages bonding of infant and mother. E. breast milk is cheaper than formula. 3 points Question 22 1. Kaplan’s Triphasic Model consists of the A. excitement, plateau, and resolution phases. B. desire, plateau, and orgasm phases. C. plateau, orgasm, and resolution phases. D. desire, excitement, and resolution phases. E. desire, excitement, and orgasm phases. 3 points Question 23 1. The unique component of Kaplan’s triphasic model is the ______phase—a psychological, prephysical sexual response stage. A. excitement B. desire C. resolution D. plateau E. None of the above 3 points Question 24 1. Together, the ________ and the ______ form the lifeline between the mother and the fetus. A. placenta, cervix B. cervix, uterus C. umbilical cord, vagina D. fallopiantubes, vagina E. placenta, umbilical cord 3 points Question 25 1. When an employee switches genders, which of the following is a difficult issue that employers may face? A. How clients might react B. How others will handle a transitioning employee using the restroom C. How an employee informs coworkers about switching genders D. All of the above E. None of the above 3 points Question 26 1. In men, sex flush occurs during the ________ phase, whereas in women it occurs during the ________ phase. A. refractory, excitement B. excitement, resolution C. excitement, plateau D. plateau, excitement E. plateau, resolution 3 points Question 27 1. The process that results in vaginal lubrication during the excitement phase is: A. myotonia. B. uterine orgasm. C. orgasmic platform. D. transudation. E. tachycardia. 3 points Question 28 1. The ________ is the waxy protective substance that coats the fetus. A. amniotic sac B. amniocentesis C. amniotic fluid D. vernixcaseosa. E. chorionic fluid 3 points Question 29 1. ________ adolescent females seem to be happier with their bodies and less likely to diet than ________ adolescent females. A. Hispanic, European Americans B. Asian American; African American C. African American, European American D. European American, Hispanic 3 points Question 30 1. Intrauterine devices (IUDs) and intrauterine systems (IUSs) are ______ methods of contraception. A. not B. permanent C. effective D. reversible E. both c and d 3 points Question 31 1. In early adolescence, girls outperform boys at which of the following types of tasks? A. Visual-spatial B. Math C. Physical D. Language and verbal E. None of the above 3 points Question 32 1. Which of the following are common signs that a person may have an eating disorder? A. The person wears tight clothes to show off his or her “new” body. B. A female may quit menstruating C. Excessive exercise D. B and C E. A and C 3 points Question 33 1. The ________ is the valve that prevents urine from entering the urethra and sperm from entering the bladder during ejaculation. A. orgasmic platform B. vasocongestive valve C. sex flush D. internal urethral sphincter E. None of the above 3 points Question 34 1. Which of the following statements reflect gender bias? A. Boys in school will “act out.” B. Girls in school will be docile. C. Girls are neat. D. All of the above. E. None of the above 3 points Question 35 1. The calendar method and ovulation methods are examples of ______ A. natural planning. B. fertility awareness methods. C. natural family planning. D. fertility planning. E. both B and C 3 points Question 36 1. Dieting during pregnancy can be harmful because the breakdown of fat produces toxic substances called ______ A. fibers. B. pheromones. C. ketones. D. monosaccharides. E. hormones. 3 points Question 37 1. Oral contraceptives _____ A. suppress ovulation. B. mimic the changes that occur in pregnancy. C. can be taken by both males and females. D. A and B E. A and C 3 points Question 38 1. According to Fisher (2001), men usually _______, whereas women ________. A. cut straight to the point, see issues as a part of a larger whole B. discuss their feelings, are more stoic C. mull things over, tend to speak their mind D. waiver while making decisions, mull things over E. None of the above 3 points Question 39 1. The increase in heart rate that occurs during sexual activity is known as _______ A. hyperventilation. B. vasocongestion. C. myotonia. D. tachycardia. E. sex flush. 3 points Question 40 1. Women earned about _________ of all college degrees in 2008. A. 10% B. 35% C. 57% D. 85% E. None of the above

info@checkyourstudy.com
Chapter 7 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, March 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy A Book on a Table A book weighing 5 N rests on top of a table. Part A A downward force of magnitude 5 N is exerted on the book by the force of ANSWER: Part B An upward force of magnitude _____ is exerted on the _____ by the table. the table gravity inertia . ANSWER: Part C Do the downward force in Part A and the upward force in Part B constitute a 3rd law pair? You did not open hints for this part. ANSWER: Part D The reaction to the force in Part A is a force of magnitude _____, exerted on the _____ by the _____. Its direction is _____ . You did not open hints for this part. ANSWER: 6 N / table 5 N / table 5 N / book 6 N / book yes no Part E The reaction to the force in Part B is a force of magnitude _____, exerted on the _____ by the _____. Its direction is _____. ANSWER: Part F Which of Newton’s laws dictates that the forces in Parts A and B are equal and opposite? ANSWER: Part G Which of Newton’s laws dictates that the forces in Parts B and E are equal and opposite? ANSWER: 5 N / earth / book / upward 5 N / book / table / upward 5 N / book / earth / upward 5 N / earth / book / downward 5 N / table / book / upward 5 N / table / earth / upward 5 N / book / table / upward 5 N / table / book / downward 5 N / earth / book / downward Newton’s 1st or 2nd law Newton’s 3rd law Blocks in an Elevator Ranking Task Three blocks are stacked on top of each other inside an elevator as shown in the figure. Answer the following questions with reference to the eight forces defined as follows. the force of the 3 block on the 2 block, , the force of the 2 block on the 3 block, , the force of the 3 block on the 1 block, , the force of the 1 block on the 3 block, , the force of the 2 block on the 1 block, , the force of the 1 block on the 2 block, , the force of the 1 block on the floor, , and the force of the floor on the 1 block, . Part A Assume the elevator is at rest. Rank the magnitude of the forces. Rank from largest to smallest. To rank items as equivalent, overlap them. You did not open hints for this part. ANSWER: Newton’s 1st or 2nd law Newton’s 3rd law kg kg F3 on 2 kg kg F2 on 3 kg kg F3 on 1 kg kg F1 on 3 kg kg F2 on 1 kg kg F1 on 2 kg F1 on floor kg Ffloor on 1 Part B This question will be shown after you complete previous question(s). Newton’s 3rd Law Discussed Learning Goal: To understand Newton’s 3rd law, which states that a physical interaction always generates a pair of forces on the two interacting bodies. In Principia, Newton wrote: To every action there is always opposed an equal reaction: or, the mutual actions of two bodies upon each other are always equal, and directed to contrary parts. (translation by Cajori) The phrase after the colon (often omitted from textbooks) makes it clear that this is a statement about the nature of force. The central idea is that physical interactions (e.g., due to gravity, bodies touching, or electric forces) cause forces to arise between pairs of bodies. Each pairwise interaction produces a pair of opposite forces, one acting on each body. In summary, each physical interaction between two bodies generates a pair of forces. Whatever the physical cause of the interaction, the force on body A from body B is equal in magnitude and opposite in direction to the force on body B from body A. Incidentally, Newton states that the word “action” denotes both (a) the force due to an interaction and (b) the changes in momentum that it imparts to the two interacting bodies. If you haven’t learned about momentum, don’t worry; for now this is just a statement about the origin of forces. Mark each of the following statements as true or false. If a statement refers to “two bodies” interacting via some force, you are not to assume that these two bodies have the same mass. Part A Every force has one and only one 3rd law pair force. ANSWER: Part B The two forces in each pair act in opposite directions. ANSWER: Part C The two forces in each pair can either both act on the same body or they can act on different bodies. ANSWER: true false true false Part D The two forces in each pair may have different physical origins (for instance, one of the forces could be due to gravity, and its pair force could be due to friction or electric charge). ANSWER: Part E The two forces of a 3rd law pair always act on different bodies. ANSWER: Part F Given that two bodies interact via some force, the accelerations of these two bodies have the same magnitude but opposite directions. (Assume no other forces act on either body.) You did not open hints for this part. ANSWER: true false true false true false Part G According to Newton’s 3rd law, the force on the (smaller) moon due to the (larger) earth is ANSWER: Pulling Three Blocks Three identical blocks connected by ideal strings are being pulled along a horizontal frictionless surface by a horizontal force . The magnitude of the tension in the string between blocks B and C is = 3.00 . Assume that each block has mass = 0.400 . true false greater in magnitude and antiparallel to the force on the earth due to the moon. greater in magnitude and parallel to the force on the earth due to the moon. equal in magnitude but antiparallel to the force on the earth due to the moon. equal in magnitude and parallel to the force on the earth due to the moon. smaller in magnitude and antiparallel to the force on the earth due to the moon. smaller in magnitude and parallel to the force on the earth due to the moon. F T N m kg Part A What is the magnitude of the force? Express your answer numerically in newtons. You did not open hints for this part. ANSWER: Part B What is the tension in the string between block A and block B? Express your answer numerically in newtons You did not open hints for this part. ANSWER: Pulling Two Blocks In the situation shown in the figure, a person is pulling with a constant, nonzero force on string 1, which is attached to block A. Block A is also attached to block B via string 2, as shown. For this problem, assume that neither string stretches and that friction is negligible. Both blocks have finite (nonzero) mass. F F = N TAB TAB = N F Part A Which one of the following statements correctly descibes the relationship between the accelerations of blocks A and B? You did not open hints for this part. ANSWER: Part B How does the magnitude of the tension in string 1, , compare with the tension in string 2, ? You did not open hints for this part. Block A has a larger acceleration than block B. Block B has a larger acceleration than block A. Both blocks have the same acceleration. More information is needed to determine the relationship between the accelerations. T1 T2 ANSWER: Tension in a Massless Rope Learning Goal: To understand the concept of tension and the relationship between tension and force. This problem introduces the concept of tension. The example is a rope, oriented vertically, that is being pulled from both ends. Let and (with u for up and d for down) represent the magnitude of the forces acting on the top and bottom of the rope, respectively. Assume that the rope is massless, so that its weight is negligible compared with the tension. (This is not a ridiculous approximation–modern rope materials such as Kevlar can carry tensions thousands of times greater than the weight of tens of meters of such rope.) Consider the three sections of rope labeled a, b, and c in the figure. At point 1, a downward force of magnitude acts on section a. At point 1, an upward force of magnitude acts on section b. At point 1, the tension in the rope is . At point 2, a downward force of magnitude acts on section b. At point 2, an upward force of magnitude acts on section c. At point 2, the tension in the rope is . Assume, too, that the rope is at equilibrium. Part A What is the magnitude of the downward force on section a? Express your answer in terms of the tension . ANSWER: More information is needed to determine the relationship between and . T1 > T2 T1 = T2 T1 < T2 T1 T2 Fu Fd Fad Fbu T1 Fbd Fcu T2 Fad T1 Part B What is the magnitude of the upward force on section b? Express your answer in terms of the tension . ANSWER: Part C The magnitude of the upward force on c, , and the magnitude of the downward force on b, , are equal because of which of Newton's laws? ANSWER: Part D The magnitude of the force is ____ . ANSWER: Fad = Fbu T1 Fbu = Fcu Fbd 1st 2nd 3rd Fbu Fbd Part E Now consider the forces on the ends of the rope. What is the relationship between the magnitudes of these two forces? You did not open hints for this part. ANSWER: Part F The ends of a massless rope are attached to two stationary objects (e.g., two trees or two cars) so that the rope makes a straight line. For this situation, which of the following statements are true? Check all that apply. ANSWER: less than greater than equal to Fu > Fd Fu = Fd Fu < Fd The tension in the rope is everywhere the same. The magnitudes of the forces exerted on the two objects by the rope are the same. The forces exerted on the two objects by the rope must be in opposite directions. The forces exerted on the two objects by the rope must be in the direction of the rope. Two Hanging Masses Two blocks with masses and hang one under the other. For this problem, take the positive direction to be upward, and use for the magnitude of the acceleration due to gravity. Case 1: Blocks at rest For Parts A and B assume the blocks are at rest. Part A Find , the tension in the lower rope. Express your answer in terms of some or all of the variables , , and . You did not open hints for this part. ANSWER: M1 M2 g T2 M1 M2 g Part B Find , the tension in the upper rope. Express your answer in terms of some or all of the variables , , and . You did not open hints for this part. ANSWER: Case 2: Accelerating blocks For Parts C and D the blocks are now accelerating upward (due to the tension in the strings) with acceleration of magnitude . Part C Find , the tension in the lower rope. Express your answer in terms of some or all of the variables , , , and . You did not open hints for this part. ANSWER: T2 = T1 M1 M2 g T1 = a T2 M1 M2 a g Part D Find , the tension in the upper rope. Express your answer in terms of some or all of the variables , , , and . You did not open hints for this part. ANSWER: Video Tutor: Suspended Balls: Which String Breaks? First, launch the video below. You will be asked to use your knowledge of physics to predict the outcome of an experiment. Then, close the video window and answer the question at right. You can watch the video again at any point. T2 = T1 M1 M2 a g T1 = Part A A heavy crate is attached to the wall by a light rope, as shown in the figure. Another rope hangs off the opposite edge of the box. If you slowly increase the force on the free rope by pulling on it in a horizontal direction, which rope will break? Ignore friction and the mass of the ropes. You did not open hints for this part. ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. The rope attached to the wall will break. The rope that you are pulling on will break. Both ropes are equally likely to break.

Chapter 7 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, March 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy A Book on a Table A book weighing 5 N rests on top of a table. Part A A downward force of magnitude 5 N is exerted on the book by the force of ANSWER: Part B An upward force of magnitude _____ is exerted on the _____ by the table. the table gravity inertia . ANSWER: Part C Do the downward force in Part A and the upward force in Part B constitute a 3rd law pair? You did not open hints for this part. ANSWER: Part D The reaction to the force in Part A is a force of magnitude _____, exerted on the _____ by the _____. Its direction is _____ . You did not open hints for this part. ANSWER: 6 N / table 5 N / table 5 N / book 6 N / book yes no Part E The reaction to the force in Part B is a force of magnitude _____, exerted on the _____ by the _____. Its direction is _____. ANSWER: Part F Which of Newton’s laws dictates that the forces in Parts A and B are equal and opposite? ANSWER: Part G Which of Newton’s laws dictates that the forces in Parts B and E are equal and opposite? ANSWER: 5 N / earth / book / upward 5 N / book / table / upward 5 N / book / earth / upward 5 N / earth / book / downward 5 N / table / book / upward 5 N / table / earth / upward 5 N / book / table / upward 5 N / table / book / downward 5 N / earth / book / downward Newton’s 1st or 2nd law Newton’s 3rd law Blocks in an Elevator Ranking Task Three blocks are stacked on top of each other inside an elevator as shown in the figure. Answer the following questions with reference to the eight forces defined as follows. the force of the 3 block on the 2 block, , the force of the 2 block on the 3 block, , the force of the 3 block on the 1 block, , the force of the 1 block on the 3 block, , the force of the 2 block on the 1 block, , the force of the 1 block on the 2 block, , the force of the 1 block on the floor, , and the force of the floor on the 1 block, . Part A Assume the elevator is at rest. Rank the magnitude of the forces. Rank from largest to smallest. To rank items as equivalent, overlap them. You did not open hints for this part. ANSWER: Newton’s 1st or 2nd law Newton’s 3rd law kg kg F3 on 2 kg kg F2 on 3 kg kg F3 on 1 kg kg F1 on 3 kg kg F2 on 1 kg kg F1 on 2 kg F1 on floor kg Ffloor on 1 Part B This question will be shown after you complete previous question(s). Newton’s 3rd Law Discussed Learning Goal: To understand Newton’s 3rd law, which states that a physical interaction always generates a pair of forces on the two interacting bodies. In Principia, Newton wrote: To every action there is always opposed an equal reaction: or, the mutual actions of two bodies upon each other are always equal, and directed to contrary parts. (translation by Cajori) The phrase after the colon (often omitted from textbooks) makes it clear that this is a statement about the nature of force. The central idea is that physical interactions (e.g., due to gravity, bodies touching, or electric forces) cause forces to arise between pairs of bodies. Each pairwise interaction produces a pair of opposite forces, one acting on each body. In summary, each physical interaction between two bodies generates a pair of forces. Whatever the physical cause of the interaction, the force on body A from body B is equal in magnitude and opposite in direction to the force on body B from body A. Incidentally, Newton states that the word “action” denotes both (a) the force due to an interaction and (b) the changes in momentum that it imparts to the two interacting bodies. If you haven’t learned about momentum, don’t worry; for now this is just a statement about the origin of forces. Mark each of the following statements as true or false. If a statement refers to “two bodies” interacting via some force, you are not to assume that these two bodies have the same mass. Part A Every force has one and only one 3rd law pair force. ANSWER: Part B The two forces in each pair act in opposite directions. ANSWER: Part C The two forces in each pair can either both act on the same body or they can act on different bodies. ANSWER: true false true false Part D The two forces in each pair may have different physical origins (for instance, one of the forces could be due to gravity, and its pair force could be due to friction or electric charge). ANSWER: Part E The two forces of a 3rd law pair always act on different bodies. ANSWER: Part F Given that two bodies interact via some force, the accelerations of these two bodies have the same magnitude but opposite directions. (Assume no other forces act on either body.) You did not open hints for this part. ANSWER: true false true false true false Part G According to Newton’s 3rd law, the force on the (smaller) moon due to the (larger) earth is ANSWER: Pulling Three Blocks Three identical blocks connected by ideal strings are being pulled along a horizontal frictionless surface by a horizontal force . The magnitude of the tension in the string between blocks B and C is = 3.00 . Assume that each block has mass = 0.400 . true false greater in magnitude and antiparallel to the force on the earth due to the moon. greater in magnitude and parallel to the force on the earth due to the moon. equal in magnitude but antiparallel to the force on the earth due to the moon. equal in magnitude and parallel to the force on the earth due to the moon. smaller in magnitude and antiparallel to the force on the earth due to the moon. smaller in magnitude and parallel to the force on the earth due to the moon. F T N m kg Part A What is the magnitude of the force? Express your answer numerically in newtons. You did not open hints for this part. ANSWER: Part B What is the tension in the string between block A and block B? Express your answer numerically in newtons You did not open hints for this part. ANSWER: Pulling Two Blocks In the situation shown in the figure, a person is pulling with a constant, nonzero force on string 1, which is attached to block A. Block A is also attached to block B via string 2, as shown. For this problem, assume that neither string stretches and that friction is negligible. Both blocks have finite (nonzero) mass. F F = N TAB TAB = N F Part A Which one of the following statements correctly descibes the relationship between the accelerations of blocks A and B? You did not open hints for this part. ANSWER: Part B How does the magnitude of the tension in string 1, , compare with the tension in string 2, ? You did not open hints for this part. Block A has a larger acceleration than block B. Block B has a larger acceleration than block A. Both blocks have the same acceleration. More information is needed to determine the relationship between the accelerations. T1 T2 ANSWER: Tension in a Massless Rope Learning Goal: To understand the concept of tension and the relationship between tension and force. This problem introduces the concept of tension. The example is a rope, oriented vertically, that is being pulled from both ends. Let and (with u for up and d for down) represent the magnitude of the forces acting on the top and bottom of the rope, respectively. Assume that the rope is massless, so that its weight is negligible compared with the tension. (This is not a ridiculous approximation–modern rope materials such as Kevlar can carry tensions thousands of times greater than the weight of tens of meters of such rope.) Consider the three sections of rope labeled a, b, and c in the figure. At point 1, a downward force of magnitude acts on section a. At point 1, an upward force of magnitude acts on section b. At point 1, the tension in the rope is . At point 2, a downward force of magnitude acts on section b. At point 2, an upward force of magnitude acts on section c. At point 2, the tension in the rope is . Assume, too, that the rope is at equilibrium. Part A What is the magnitude of the downward force on section a? Express your answer in terms of the tension . ANSWER: More information is needed to determine the relationship between and . T1 > T2 T1 = T2 T1 < T2 T1 T2 Fu Fd Fad Fbu T1 Fbd Fcu T2 Fad T1 Part B What is the magnitude of the upward force on section b? Express your answer in terms of the tension . ANSWER: Part C The magnitude of the upward force on c, , and the magnitude of the downward force on b, , are equal because of which of Newton's laws? ANSWER: Part D The magnitude of the force is ____ . ANSWER: Fad = Fbu T1 Fbu = Fcu Fbd 1st 2nd 3rd Fbu Fbd Part E Now consider the forces on the ends of the rope. What is the relationship between the magnitudes of these two forces? You did not open hints for this part. ANSWER: Part F The ends of a massless rope are attached to two stationary objects (e.g., two trees or two cars) so that the rope makes a straight line. For this situation, which of the following statements are true? Check all that apply. ANSWER: less than greater than equal to Fu > Fd Fu = Fd Fu < Fd The tension in the rope is everywhere the same. The magnitudes of the forces exerted on the two objects by the rope are the same. The forces exerted on the two objects by the rope must be in opposite directions. The forces exerted on the two objects by the rope must be in the direction of the rope. Two Hanging Masses Two blocks with masses and hang one under the other. For this problem, take the positive direction to be upward, and use for the magnitude of the acceleration due to gravity. Case 1: Blocks at rest For Parts A and B assume the blocks are at rest. Part A Find , the tension in the lower rope. Express your answer in terms of some or all of the variables , , and . You did not open hints for this part. ANSWER: M1 M2 g T2 M1 M2 g Part B Find , the tension in the upper rope. Express your answer in terms of some or all of the variables , , and . You did not open hints for this part. ANSWER: Case 2: Accelerating blocks For Parts C and D the blocks are now accelerating upward (due to the tension in the strings) with acceleration of magnitude . Part C Find , the tension in the lower rope. Express your answer in terms of some or all of the variables , , , and . You did not open hints for this part. ANSWER: T2 = T1 M1 M2 g T1 = a T2 M1 M2 a g Part D Find , the tension in the upper rope. Express your answer in terms of some or all of the variables , , , and . You did not open hints for this part. ANSWER: Video Tutor: Suspended Balls: Which String Breaks? First, launch the video below. You will be asked to use your knowledge of physics to predict the outcome of an experiment. Then, close the video window and answer the question at right. You can watch the video again at any point. T2 = T1 M1 M2 a g T1 = Part A A heavy crate is attached to the wall by a light rope, as shown in the figure. Another rope hangs off the opposite edge of the box. If you slowly increase the force on the free rope by pulling on it in a horizontal direction, which rope will break? Ignore friction and the mass of the ropes. You did not open hints for this part. ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. The rope attached to the wall will break. The rope that you are pulling on will break. Both ropes are equally likely to break.

please email info@checkyourstudy.com
Assignment 1 Due: 11:59pm on Wednesday, February 5, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 1.6 Part A Determine the sign (positive or negative) of the position for the particle in the figure. ANSWER: Correct Part B Determine the sign (positive or negative) of the velocity for the particle in the figure. ANSWER: Correct Positive Negative Negative Positive Part C Determine the sign (positive or negative) of the acceleration for the particle in the figure. ANSWER: Correct Conceptual Question 1.7 Part A Determine the sign (positive or negative) of the position for the particle in the figure. ANSWER: Positive Negative Correct Part B Determine the sign (positive or negative) of the velocity for the particle in the figure. ANSWER: Correct Part C Determine the sign (positive or negative) of the acceleration for the particle in the figure. ANSWER: Correct Enhanced EOC: Problem 1.18 The figure shows the motion diagram of a drag racer. The camera took one frame every 2 . Positive Negative Positive Negative Negative Positive s You may want to review ( pages 16 – 19) . For help with math skills, you may want to review: Plotting Points on a Graph Part A Make a position-versus-time graph for the drag racer. Hint 1. How to approach the problem Based on Table 1.1 in the book/e-text, what two observables are associated with each point? Which position or point of the drag racer occurs first? Which position occurs last? If you label the first point as happening at , at what time does the next point occur? At what time does the last position point occur? What is the position of a point halfway in between and ? Can you think of a way to estimate the positions of the points using a ruler? ANSWER: t = 0 s x = 0 m x = 200 m Correct Motion of Two Rockets Learning Goal: To learn to use images of an object in motion to determine velocity and acceleration. Two toy rockets are traveling in the same direction (taken to be the x axis). A diagram is shown of a time-exposure image where a stroboscope has illuminated the rockets at the uniform time intervals indicated. Part A At what time(s) do the rockets have the same velocity? Hint 1. How to determine the velocity The diagram shows position, not velocity. You can’t find instantaneous velocity from this diagram, but you can determine the average velocity between two times and : . Note that no position values are given in the diagram; you will need to estimate these based on the distance between successive positions of the rockets. ANSWER: Correct t1 t2 vavg[t1, t2] = x(t2)−x(t1) t2−t1 at time only at time only at times and at some instant in time between and at no time shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 Part B At what time(s) do the rockets have the same x position? ANSWER: Correct Part C At what time(s) do the two rockets have the same acceleration? Hint 1. How to determine the acceleration The velocity is related to the spacing between images in a stroboscopic diagram. Since acceleration is the rate at which velocity changes, the acceleration is related to the how much this spacing changes from one interval to the next. ANSWER: at time only at time only at times and at some instant in time between and at no time shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 at time only at time only at times and at some instant in time between and at no time shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 Correct Part D The motion of the rocket labeled A is an example of motion with uniform (i.e., constant) __________. ANSWER: Correct Part E The motion of the rocket labeled B is an example of motion with uniform (i.e., constant) __________. ANSWER: Correct Part F At what time(s) is rocket A ahead of rocket B? and nonzero acceleration velocity displacement time and nonzero acceleration velocity displacement time Hint 1. Use the diagram You can answer this question by looking at the diagram and identifying the time(s) when rocket A is to the right of rocket B. ANSWER: Correct Dimensions of Physical Quantities Learning Goal: To introduce the idea of physical dimensions and to learn how to find them. Physical quantities are generally not purely numerical: They have a particular dimension or combination of dimensions associated with them. Thus, your height is not 74, but rather 74 inches, often expressed as 6 feet 2 inches. Although feet and inches are different units they have the same dimension–length. Part A In classical mechanics there are three base dimensions. Length is one of them. What are the other two? Hint 1. MKS system The current system of units is called the International System (abbreviated SI from the French Système International). In the past this system was called the mks system for its base units: meter, kilogram, and second. What are the dimensions of these quantities? ANSWER: before only after only before and after between and at no time(s) shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 Correct There are three dimensions used in mechanics: length ( ), mass ( ), and time ( ). A combination of these three dimensions suffices to express any physical quantity, because when a new physical quantity is needed (e.g., velocity), it always obeys an equation that permits it to be expressed in terms of the units used for these three dimensions. One then derives a unit to measure the new physical quantity from that equation, and often its unit is given a special name. Such new dimensions are called derived dimensions and the units they are measured in are called derived units. For example, area has derived dimensions . (Note that “dimensions of variable ” is symbolized as .) You can find these dimensions by looking at the formula for the area of a square , where is the length of a side of the square. Clearly . Plugging this into the equation gives . Part B Find the dimensions of volume. Express your answer as powers of length ( ), mass ( ), and time ( ). Hint 1. Equation for volume You have likely learned many formulas for the volume of various shapes in geometry. Any of these equations will give you the dimensions for volume. You can find the dimensions most easily from the volume of a cube , where is the length of the edge of the cube. ANSWER: acceleration and mass acceleration and time acceleration and charge mass and time mass and charge time and charge l m t A [A] = l2 x [x] A = s2 s [s] = l [A] = [s] = 2 l2 [V ] l m t V = e3 e [V ] = l3 Correct Part C Find the dimensions of speed. Express your answer as powers of length ( ), mass ( ), and time ( ). Hint 1. Equation for speed Speed is defined in terms of distance and time as . Therefore, . Hint 2. Familiar units for speed You are probably accustomed to hearing speeds in miles per hour (or possibly kilometers per hour). Think about the dimensions for miles and hours. If you divide the dimensions for miles by the dimensions for hours, you will have the dimensions for speed. ANSWER: Correct The dimensions of a quantity are not changed by addition or subtraction of another quantity with the same dimensions. This means that , which comes from subtracting two speeds, has the same dimensions as speed. It does not make physical sense to add or subtract two quanitites that have different dimensions, like length plus time. You can add quantities that have different units, like miles per hour and kilometers per hour, as long as you convert both quantities to the same set of units before you actually compute the sum. You can use this rule to check your answers to any physics problem you work. If the answer involves the sum or difference of two quantities with different dimensions, then it must be incorrect. This rule also ensures that the dimensions of any physical quantity will never involve sums or differences of the base dimensions. (As in the preceeding example, is not a valid dimension for a [v] l m t v d t v = d t [v] = [d]/[t] [v] = lt−1 v l + t physical quantitiy.) A valid dimension will only involve the product or ratio of powers of the base dimensions (e.g. ). Part D Find the dimensions of acceleration. Express your answer as powers of length ( ), mass ( ), and time ( ). Hint 1. Equation for acceleration In physics, acceleration is defined as the change in velocity in a certain time. This is shown by the equation . The is a symbol that means “the change in.” ANSWER: Correct Consistency of Units In physics, every physical quantity is measured with respect to a unit. Time is measured in seconds, length is measured in meters, and mass is measured in kilograms. Knowing the units of physical quantities will help you solve problems in physics. Part A Gravity causes objects to be attracted to one another. This attraction keeps our feet firmly planted on the ground and causes the moon to orbit the earth. The force of gravitational attraction is represented by the equation , where is the magnitude of the gravitational attraction on either body, and are the masses of the bodies, is the distance between them, and is the gravitational constant. In SI units, the units of force are , the units of mass are , and the units of distance are . For this equation to have consistent units, the units of must be which of the following? Hint 1. How to approach the problem To solve this problem, we start with the equation m2/3 l2 t−2 [a] l m t a a = v/t  [a] = lt−2 F = Gm1m2 r2 F m1 m2 r G kg  m/s2 kg m G . For each symbol whose units we know, we replace the symbol with those units. For example, we replace with . We now solve this equation for . ANSWER: Correct Part B One consequence of Einstein’s theory of special relativity is that mass is a form of energy. This mass-energy relationship is perhaps the most famous of all physics equations: , where is mass, is the speed of the light, and is the energy. In SI units, the units of speed are . For the preceding equation to have consistent units (the same units on both sides of the equation), the units of must be which of the following? Hint 1. How to approach the problem To solve this problem, we start with the equation . For each symbol whose units we know, we replace the symbol with those units. For example, we replace with . We now solve this equation for . ANSWER: F = Gm1m2 r2 m1 kg G kg3 ms2 kgs2 m3 m3 kgs2 m kgs2 E = mc2 m c E m/s E E = mc2 m kg E Correct To solve the types of problems typified by these examples, we start with the given equation. For each symbol whose units we know, we replace the symbol with those units. For example, we replace with . We now solve this equation for the units of the unknown variable. Problem 1.24 Convert the following to SI units: Part A 5.0 Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B 54 Express your answer to two significant figures and include the appropriate units. kgm s kgm2 s2 kgs2 m2 kgm2 s m kg in 0.13 m ft/s ANSWER: Correct Part C 72 Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part D 17 Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 1.55 The figure shows a motion diagram of a car traveling down a street. The camera took one frame every 10 . A distance scale is provided. 16 ms mph 32 ms in2 1.1×10−2 m2 s Part A Make a position-versus-time graph for the car. ANSWER: Incorrect; Try Again ± Moving at the Speed of Light Part A How many nanoseconds does it take light to travel a distance of 4.40 in vacuum? Express your answer numerically in nanoseconds. Hint 1. How to approach the problem Light travels at a constant speed; therefore, you can use the formula for the distance traveled in a certain amount of time by an object moving at constant speed. Before performing any calculations, it is often recommended, although it is not strictly necessary, to convert all quantities to their fundamental units rather than to multiples of the fundamental unit. km Hint 2. Find how many seconds it takes light to travel the given distance Given that the speed of light in vacuum is , how many seconds does it take light to travel a distance of 4.40 ? Express your answer numerically in seconds. Hint 1. Find the time it takes light to travel a certain distance How long does it take light to travel a distance ? Let be the speed of light. Hint 1. The speed of an object The equation that relates the distance traveled by an object with constant speed in a time is . ANSWER: Correct Hint 2. Convert the given distance to meters Convert = 4.40 to meters. Express your answer numerically in meters. Hint 1. Conversion of kilometers to meters Recall that . 3.00 × 108 m/s km r c s v t s = vt r  c r c c r d km 1 km = 103 m ANSWER: Correct ANSWER: Correct Now convert the time into nanoseconds. Recall that . ANSWER: Correct Score Summary: Your score on this assignment is 84.7%. You received 50.84 out of a possible total of 60 points. 4.40km = 4400 m 1.47×10−5 s 1 ns = 10−9 s 1.47×104 ns

Assignment 1 Due: 11:59pm on Wednesday, February 5, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 1.6 Part A Determine the sign (positive or negative) of the position for the particle in the figure. ANSWER: Correct Part B Determine the sign (positive or negative) of the velocity for the particle in the figure. ANSWER: Correct Positive Negative Negative Positive Part C Determine the sign (positive or negative) of the acceleration for the particle in the figure. ANSWER: Correct Conceptual Question 1.7 Part A Determine the sign (positive or negative) of the position for the particle in the figure. ANSWER: Positive Negative Correct Part B Determine the sign (positive or negative) of the velocity for the particle in the figure. ANSWER: Correct Part C Determine the sign (positive or negative) of the acceleration for the particle in the figure. ANSWER: Correct Enhanced EOC: Problem 1.18 The figure shows the motion diagram of a drag racer. The camera took one frame every 2 . Positive Negative Positive Negative Negative Positive s You may want to review ( pages 16 – 19) . For help with math skills, you may want to review: Plotting Points on a Graph Part A Make a position-versus-time graph for the drag racer. Hint 1. How to approach the problem Based on Table 1.1 in the book/e-text, what two observables are associated with each point? Which position or point of the drag racer occurs first? Which position occurs last? If you label the first point as happening at , at what time does the next point occur? At what time does the last position point occur? What is the position of a point halfway in between and ? Can you think of a way to estimate the positions of the points using a ruler? ANSWER: t = 0 s x = 0 m x = 200 m Correct Motion of Two Rockets Learning Goal: To learn to use images of an object in motion to determine velocity and acceleration. Two toy rockets are traveling in the same direction (taken to be the x axis). A diagram is shown of a time-exposure image where a stroboscope has illuminated the rockets at the uniform time intervals indicated. Part A At what time(s) do the rockets have the same velocity? Hint 1. How to determine the velocity The diagram shows position, not velocity. You can’t find instantaneous velocity from this diagram, but you can determine the average velocity between two times and : . Note that no position values are given in the diagram; you will need to estimate these based on the distance between successive positions of the rockets. ANSWER: Correct t1 t2 vavg[t1, t2] = x(t2)−x(t1) t2−t1 at time only at time only at times and at some instant in time between and at no time shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 Part B At what time(s) do the rockets have the same x position? ANSWER: Correct Part C At what time(s) do the two rockets have the same acceleration? Hint 1. How to determine the acceleration The velocity is related to the spacing between images in a stroboscopic diagram. Since acceleration is the rate at which velocity changes, the acceleration is related to the how much this spacing changes from one interval to the next. ANSWER: at time only at time only at times and at some instant in time between and at no time shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 at time only at time only at times and at some instant in time between and at no time shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 Correct Part D The motion of the rocket labeled A is an example of motion with uniform (i.e., constant) __________. ANSWER: Correct Part E The motion of the rocket labeled B is an example of motion with uniform (i.e., constant) __________. ANSWER: Correct Part F At what time(s) is rocket A ahead of rocket B? and nonzero acceleration velocity displacement time and nonzero acceleration velocity displacement time Hint 1. Use the diagram You can answer this question by looking at the diagram and identifying the time(s) when rocket A is to the right of rocket B. ANSWER: Correct Dimensions of Physical Quantities Learning Goal: To introduce the idea of physical dimensions and to learn how to find them. Physical quantities are generally not purely numerical: They have a particular dimension or combination of dimensions associated with them. Thus, your height is not 74, but rather 74 inches, often expressed as 6 feet 2 inches. Although feet and inches are different units they have the same dimension–length. Part A In classical mechanics there are three base dimensions. Length is one of them. What are the other two? Hint 1. MKS system The current system of units is called the International System (abbreviated SI from the French Système International). In the past this system was called the mks system for its base units: meter, kilogram, and second. What are the dimensions of these quantities? ANSWER: before only after only before and after between and at no time(s) shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 Correct There are three dimensions used in mechanics: length ( ), mass ( ), and time ( ). A combination of these three dimensions suffices to express any physical quantity, because when a new physical quantity is needed (e.g., velocity), it always obeys an equation that permits it to be expressed in terms of the units used for these three dimensions. One then derives a unit to measure the new physical quantity from that equation, and often its unit is given a special name. Such new dimensions are called derived dimensions and the units they are measured in are called derived units. For example, area has derived dimensions . (Note that “dimensions of variable ” is symbolized as .) You can find these dimensions by looking at the formula for the area of a square , where is the length of a side of the square. Clearly . Plugging this into the equation gives . Part B Find the dimensions of volume. Express your answer as powers of length ( ), mass ( ), and time ( ). Hint 1. Equation for volume You have likely learned many formulas for the volume of various shapes in geometry. Any of these equations will give you the dimensions for volume. You can find the dimensions most easily from the volume of a cube , where is the length of the edge of the cube. ANSWER: acceleration and mass acceleration and time acceleration and charge mass and time mass and charge time and charge l m t A [A] = l2 x [x] A = s2 s [s] = l [A] = [s] = 2 l2 [V ] l m t V = e3 e [V ] = l3 Correct Part C Find the dimensions of speed. Express your answer as powers of length ( ), mass ( ), and time ( ). Hint 1. Equation for speed Speed is defined in terms of distance and time as . Therefore, . Hint 2. Familiar units for speed You are probably accustomed to hearing speeds in miles per hour (or possibly kilometers per hour). Think about the dimensions for miles and hours. If you divide the dimensions for miles by the dimensions for hours, you will have the dimensions for speed. ANSWER: Correct The dimensions of a quantity are not changed by addition or subtraction of another quantity with the same dimensions. This means that , which comes from subtracting two speeds, has the same dimensions as speed. It does not make physical sense to add or subtract two quanitites that have different dimensions, like length plus time. You can add quantities that have different units, like miles per hour and kilometers per hour, as long as you convert both quantities to the same set of units before you actually compute the sum. You can use this rule to check your answers to any physics problem you work. If the answer involves the sum or difference of two quantities with different dimensions, then it must be incorrect. This rule also ensures that the dimensions of any physical quantity will never involve sums or differences of the base dimensions. (As in the preceeding example, is not a valid dimension for a [v] l m t v d t v = d t [v] = [d]/[t] [v] = lt−1 v l + t physical quantitiy.) A valid dimension will only involve the product or ratio of powers of the base dimensions (e.g. ). Part D Find the dimensions of acceleration. Express your answer as powers of length ( ), mass ( ), and time ( ). Hint 1. Equation for acceleration In physics, acceleration is defined as the change in velocity in a certain time. This is shown by the equation . The is a symbol that means “the change in.” ANSWER: Correct Consistency of Units In physics, every physical quantity is measured with respect to a unit. Time is measured in seconds, length is measured in meters, and mass is measured in kilograms. Knowing the units of physical quantities will help you solve problems in physics. Part A Gravity causes objects to be attracted to one another. This attraction keeps our feet firmly planted on the ground and causes the moon to orbit the earth. The force of gravitational attraction is represented by the equation , where is the magnitude of the gravitational attraction on either body, and are the masses of the bodies, is the distance between them, and is the gravitational constant. In SI units, the units of force are , the units of mass are , and the units of distance are . For this equation to have consistent units, the units of must be which of the following? Hint 1. How to approach the problem To solve this problem, we start with the equation m2/3 l2 t−2 [a] l m t a a = v/t  [a] = lt−2 F = Gm1m2 r2 F m1 m2 r G kg  m/s2 kg m G . For each symbol whose units we know, we replace the symbol with those units. For example, we replace with . We now solve this equation for . ANSWER: Correct Part B One consequence of Einstein’s theory of special relativity is that mass is a form of energy. This mass-energy relationship is perhaps the most famous of all physics equations: , where is mass, is the speed of the light, and is the energy. In SI units, the units of speed are . For the preceding equation to have consistent units (the same units on both sides of the equation), the units of must be which of the following? Hint 1. How to approach the problem To solve this problem, we start with the equation . For each symbol whose units we know, we replace the symbol with those units. For example, we replace with . We now solve this equation for . ANSWER: F = Gm1m2 r2 m1 kg G kg3 ms2 kgs2 m3 m3 kgs2 m kgs2 E = mc2 m c E m/s E E = mc2 m kg E Correct To solve the types of problems typified by these examples, we start with the given equation. For each symbol whose units we know, we replace the symbol with those units. For example, we replace with . We now solve this equation for the units of the unknown variable. Problem 1.24 Convert the following to SI units: Part A 5.0 Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B 54 Express your answer to two significant figures and include the appropriate units. kgm s kgm2 s2 kgs2 m2 kgm2 s m kg in 0.13 m ft/s ANSWER: Correct Part C 72 Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part D 17 Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 1.55 The figure shows a motion diagram of a car traveling down a street. The camera took one frame every 10 . A distance scale is provided. 16 ms mph 32 ms in2 1.1×10−2 m2 s Part A Make a position-versus-time graph for the car. ANSWER: Incorrect; Try Again ± Moving at the Speed of Light Part A How many nanoseconds does it take light to travel a distance of 4.40 in vacuum? Express your answer numerically in nanoseconds. Hint 1. How to approach the problem Light travels at a constant speed; therefore, you can use the formula for the distance traveled in a certain amount of time by an object moving at constant speed. Before performing any calculations, it is often recommended, although it is not strictly necessary, to convert all quantities to their fundamental units rather than to multiples of the fundamental unit. km Hint 2. Find how many seconds it takes light to travel the given distance Given that the speed of light in vacuum is , how many seconds does it take light to travel a distance of 4.40 ? Express your answer numerically in seconds. Hint 1. Find the time it takes light to travel a certain distance How long does it take light to travel a distance ? Let be the speed of light. Hint 1. The speed of an object The equation that relates the distance traveled by an object with constant speed in a time is . ANSWER: Correct Hint 2. Convert the given distance to meters Convert = 4.40 to meters. Express your answer numerically in meters. Hint 1. Conversion of kilometers to meters Recall that . 3.00 × 108 m/s km r c s v t s = vt r  c r c c r d km 1 km = 103 m ANSWER: Correct ANSWER: Correct Now convert the time into nanoseconds. Recall that . ANSWER: Correct Score Summary: Your score on this assignment is 84.7%. You received 50.84 out of a possible total of 60 points. 4.40km = 4400 m 1.47×10−5 s 1 ns = 10−9 s 1.47×104 ns

please email info@checkyourstudy.com
Sex, Gender, and Popular Culture Spring 2015 Look through popular magazines, and see if you can find advertisements that objectify women in order to sell a product. Alternately, you may use an advertisement on television (but make sure to provide a link to the ad so I can see it!). Study these images then write a paper about objectification that deals with all or some of the following: • What effect(s), if any, do you think the objectification of women’s bodies has on our culture? • Jean Kilbourne states “turning a human being into a thing is almost always the first step toward justifying violence against that person.” What do you think she means by this? Do you agree with her reasoning? Why or why not? • Some people would argue that depicting a woman’s body as an object is a form of art. What is your opinion of this point of view? Explain your reasoning. • Why do you think that women are objectified more often than men are? • How does sexualization and objectification play out differently across racial lines? • Kilbourne explains that the consequences of being objectified are different – and more serious – for women than for men. Do you agree? How is the world different for women than it is for men? How do objectified images of women interact with those in our culture differently from the way images of men do? Why is it important to look at images in the context of the culture? • What is the difference between sexual objectification and sexual subjectification? (Ros Gill ) • How do ads construct violent white masculinity and how does that vision of masculinity hurt both men and women? Throughout your written analysis, be sure to make clear and specific reference to the images you selected, and please submit these images with your paper. Make sure you engage with and reference to at least 4 of the following authors: Kilbourne, Bordo, Hunter & Soto, Rose, Durham, Gill, Katz, Schuchardt, Ono and Buescher. Guidelines:  Keep your content focused on structural, systemic, institutional factors rather than the individual: BE ANALYTICAL NOT ANECDOTAL.  Avoid using the first person or including personal stories/reactions. You must make sure to actively engage with your readings: these essays need to be informed and framed by the theoretical material you have been reading this semester.  Keep within the 4-6 page limit; use 12-point font, double spacing and 1-inch margins.  Use formal writing conventions (introduction/thesis statement, body, conclusion) and correct grammar. Resources may be cited within the text of your paper, i.e. (Walters, 2013).

Sex, Gender, and Popular Culture Spring 2015 Look through popular magazines, and see if you can find advertisements that objectify women in order to sell a product. Alternately, you may use an advertisement on television (but make sure to provide a link to the ad so I can see it!). Study these images then write a paper about objectification that deals with all or some of the following: • What effect(s), if any, do you think the objectification of women’s bodies has on our culture? • Jean Kilbourne states “turning a human being into a thing is almost always the first step toward justifying violence against that person.” What do you think she means by this? Do you agree with her reasoning? Why or why not? • Some people would argue that depicting a woman’s body as an object is a form of art. What is your opinion of this point of view? Explain your reasoning. • Why do you think that women are objectified more often than men are? • How does sexualization and objectification play out differently across racial lines? • Kilbourne explains that the consequences of being objectified are different – and more serious – for women than for men. Do you agree? How is the world different for women than it is for men? How do objectified images of women interact with those in our culture differently from the way images of men do? Why is it important to look at images in the context of the culture? • What is the difference between sexual objectification and sexual subjectification? (Ros Gill ) • How do ads construct violent white masculinity and how does that vision of masculinity hurt both men and women? Throughout your written analysis, be sure to make clear and specific reference to the images you selected, and please submit these images with your paper. Make sure you engage with and reference to at least 4 of the following authors: Kilbourne, Bordo, Hunter & Soto, Rose, Durham, Gill, Katz, Schuchardt, Ono and Buescher. Guidelines:  Keep your content focused on structural, systemic, institutional factors rather than the individual: BE ANALYTICAL NOT ANECDOTAL.  Avoid using the first person or including personal stories/reactions. You must make sure to actively engage with your readings: these essays need to be informed and framed by the theoretical material you have been reading this semester.  Keep within the 4-6 page limit; use 12-point font, double spacing and 1-inch margins.  Use formal writing conventions (introduction/thesis statement, body, conclusion) and correct grammar. Resources may be cited within the text of your paper, i.e. (Walters, 2013).

The objectification of women has been a very controversial topic … Read More...
Assignment 5 Due: 11:59pm on Wednesday, March 5, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 6.13 A hand presses down on the book in the figure. Part A Is the normal force of the table on the book larger than, smaller than, or equal to ? ANSWER: Correct mg Equal to Larger than Smaller than mg mg mg Problem 6.2 The three ropes in the figure are tied to a small, very light ring. Two of these ropes are anchored to walls at right angles with the tensions shown in the figure. Part A What is the magnitude of the tension in the third rope? Express your answer using two significant figures. ANSWER: Correct Part B What is the direction of the tension in the third rope? Express your answer using two significant figures. T  3 T3 = 94 N T  3 Typesetting math: 100% ANSWER: Correct The Normal Force When an object rests on a surface, there is always a force perpendicular to the surface; we call this the normal force, denoted by . The two questions to the right will explore the normal force. Part A A man attempts to pick up his suitcase of weight by pulling straight up on the handle. However, he is unable to lift the suitcase from the floor. Which statement about the magnitude of the normal force acting on the suitcase is true during the time that the man pulls upward on the suitcase? Hint 1. How to approach this problem First, identify the forces that act on the suitcase and draw a free-body diagram. Then use the fact that the suitcase is in equilibrium, , to examine how the forces acting on the suitcase relate to each other. Hint 2. Identify the correct free-body diagram Which of the figures represents the free-body diagram of the suitcase while the man is pulling on the handle with a force of magnitude ? = 58   below horizontal n ws n F = 0 fpull Typesetting math: 100% ANSWER: ANSWER: Correct Part B A B C D The magnitude of the normal force is equal to the magnitude of the weight of the suitcase. The magnitude of the normal force is equal to the magnitude of the weight of the suitcase minus the magnitude of the force of the pull. The magnitude of the normal force is equal to the sum of the magnitude of the force of the pull and the magnitude of the suitcase’s weight. The magnitude of the normal force is greater than the magnitude of the weight of the suitcase. Typesetting math: 100% Now assume that the man of weight is tired and decides to sit on his suitcase. Which statement about the magnitude of the normal force acting on the suitcase is true during the time that the man is sitting on the suitcase? Hint 1. Identify the correct free-body diagram. Which of the figures represents the free-body diagram while the man is sitting atop the suitcase? Here the vector labeled is a force that has the same magnitude as the man’s weight. ANSWER: wm n wm Typesetting math: 100% ANSWER: Correct Recognize that the normal force acting on an object is not always equal to the weight of that object. This is an important point to understand. Problem 6.5 A construction worker with a weight of 880 stands on a roof that is sloped at 18 . Part A What is the magnitude of the normal force of the roof on the worker? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct A B C D The magnitude of the normal force is equal to the magnitude of the suitcase’s weight. The magnitude of the normal force is equal to the magnitude of the suitcase’s weight minus the magnitude of the man’s weight. The magnitude of the normal force is equal to the sum of the magnitude of the man’s weight and the magnitude of the suitcase’s weight. The magnitude of the normal force is less than the magnitude of the suitcase’s weight. N  n = 840 N Typesetting math: 100% Problem 6.6 In each of the two free-body diagrams, the forces are acting on a 3.0 object. Part A For diagram , find the value of , the -component of the acceleration. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B For diagram the part A, find the value of the -component of the acceleration. Express your answer to two significant figures and include the appropriate units. ANSWER: kg ax x ax = -0.67 m s2 ay, y Typesetting math: 100% Correct Part C For diagram , find the value of , the -component of the acceleration. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part D For diagram the part C, find the value of , the -component of the acceleration. Express your answer to two significant figures and include the appropriate units. ANSWER: ay = 0 m s2 ax x ax = 0.67 m s2 ay y Typesetting math: 100% Correct Problem 6.7 In each of the two free-body diagrams, the forces are acting on a 3.0 object. Part A Find the value of , the component of the acceleration in diagram (a). Express your answer to two significant figures and include the appropriate units. ANSWER: Correct ay = 0 m s2 kg ax x ax = 0.99 m s2 Typesetting math: 100% Part B Find the value of , the component of the acceleration in diagram (a). Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C Find the value of , the component of the acceleration in diagram (b). Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part D Find the value of , the component of the acceleration in diagram (b). Express your answer to two significant figures and include the appropriate units. ANSWER: Correct ay y ay = 0 m s2 ax x ax = -0.18 m s2 ay y ay = 0 m s2 Typesetting math: 100% Problem 6.10 A horizontal rope is tied to a 53.0 box on frictionless ice. What is the tension in the rope if: Part A The box is at rest? Express your answer as an integer and include the appropriate units. ANSWER: Correct Part B The box moves at a steady = 4.80 ? Express your answer as an integer and include the appropriate units. ANSWER: Correct Part C The box = 4.80 and = 4.60 ? Express your answer to three significant figures and include the appropriate units. ANSWER: kg T = 0 N vx m/s T = 0 N vx m/s ax m/s2 Typesetting math: 100% Correct Problem 6.14 It takes the elevator in a skyscraper 4.5 to reach its cruising speed of 11 . A 60 passenger gets aboard on the ground floor. Part A What is the passenger’s weight before the elevator starts moving? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the passenger’s weight while the elevator is speeding up? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the passenger’s weight after the elevator reaches its cruising speed? T = 244 N s m/s kg w = 590 N w = 730 N Typesetting math: 100% Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Block on an Incline A block lies on a plane raised an angle from the horizontal. Three forces act upon the block: , the force of gravity; , the normal force; and , the force of friction. The coefficient of friction is large enough to prevent the block from sliding . Part A Consider coordinate system a, with the x axis along the plane. Which forces lie along the axes? ANSWER: w = 590 N  F  w F n F  f Typesetting math: 100% Correct Part B Which forces lie along the axes of the coordinate system b, in which the y axis is vertical? ANSWER: Correct only only only and and and and and F  f F  n F  w F  f F  n F  f F  w F  n F w F  f F  n F w only only only and and and and and F  f F  n F  w F  f F  n F  f F  w F  n F w F  f F  n F w Typesetting math: 100% Usually the best advice is to choose coordinate system so that the acceleration of the system is directly along one of the coordinate axes. If the system isn’t accelerating, then you are better off choosing the coordinate system with the most vectors along the coordinate axes. But now you are going to ignore that advice. You will find the normal force, , using vertical coordinate system b. In these coordinates you will find the magnitude appearing in both the x and y equations, each multiplied by a trigonometric function. Part C Because the block is not moving, the sum of the y components of the forces acting on the block must be zero. Find an expression for the sum of the y components of the forces acting on the block, using coordinate system b. Express your answer in terms of some or all of the variables , , , and . Hint 1. Find the y component of Write an expression for , the y component of the force , using coordinate system b. Express your answer in terms of and . Hint 1. Some geometry help – a useful angle The smaller angle between and the y-axis is also , as shown in the figure. ANSWER: F  n Fn Fn Ff Fw  F n Fny F  n Fn  F  n  Typesetting math: 100% Hint 2. Find the y component of Write an expression for , the y component of the force , using coordinate system b. Express your answer in terms of and . Hint 1. Some geometry help – a useful angle The smaller angle between and the x-axis is also , as shown in the figure. ANSWER: ANSWER: Fny = Fncos() F f Ffy F f Ff  F  f  Ffy = Ffsin() Fy = 0 = Fncos() + Ffsin() − Fw Typesetting math: 100% Correct Part D Because the block is not moving, the sum of the x components of the forces acting on the block must be zero. Find an expression for the sum of the x components of the forces acting on the block, using coordinate system b. Express your answer in terms of some or all of the variables , , , and . Hint 1. Find the x component of Write an expression for , the x component of the force , using coordinate system b. Express your answer in terms of and . ANSWER: ANSWER: Correct Part E To find the magnitude of the normal force, you must express in terms of since is an unknown. Using the equations you found in the two previous parts, find an expression for involving and but not . Hint 1. How to approach the problem From your answers to the previous two parts you should have two force equations ( and ). Combine these equations to eliminate . The key is to multiply the Fn Ff Fw  F n Fnx F  n Fn  Fnx = −Fnsin() Fx = 0 = −Fnsin() + Ffcos() Fn Fw Ff Fn Fw  Ff Typesetting math: 100% Fy = 0 Fx = 0 Ff equation for the y components by and the equation for the x components by , then add or subtract the two equations to eliminate the term . An alternative motivation for the algebra is to eliminate the trig functions in front of by using the trig identity . At the very least this would result in an equation that is simple to solve for . ANSWER: Correct Congratulations on working this through. Now realize that in coordinate system a, which is aligned with the plane, the y-coordinate equation is , which leads immediately to the result obtained here for . CONCLUSION: A thoughtful examination of which coordinate system to choose can save a lot of algebra. Contact Forces Introduced Learning Goal: To introduce contact forces (normal and friction forces) and to understand that, except for friction forces under certain circumstances, these forces must be determined from: net Force = ma. Two solid objects cannot occupy the same space at the same time. Indeed, when the objects touch, they exert repulsive normal forces on each other, as well as frictional forces that resist their slipping relative to each other. These contact forces arise from a complex interplay between the electrostatic forces between the electrons and ions in the objects and the laws of quantum mechanics. As two surfaces are pushed together these forces increase exponentially over an atomic distance scale, easily becoming strong enough to distort the bulk material in the objects if they approach too close. In everyday experience, contact forces are limited by the deformation or acceleration of the objects, rather than by the fundamental interatomic forces. Hence, we can conclude the following: The magnitude of contact forces is determined by , that is, by the other forces on, and acceleration of, the contacting bodies. The only exception is that the frictional forces cannot exceed (although they can be smaller than this or even zero). Normal and friction forces Two types of contact forces operate in typical mechanics problems, the normal and frictional forces, usually designated by and (or , or something similar) respectively. These are the components of the overall contact force: perpendicular to and parallel to the plane of contact. Kinetic friction when surfaces slide cos  sin  Ff cos() sin() Fn sin2() + cos2 () = 1 Fn Fn = Fwcos() Fy = Fn − FW cos() = 0 Fn F = ma μn n f Ffric n f Typesetting math: 100% When one surface is sliding past the other, experiments show three things about the friction force (denoted ): The frictional force opposes the relative motion at the 1. point of contact, 2. is proportional to the normal force, and 3. the ratio of the magnitude of the frictional force to that of the normal force is fairly constant over a wide range of speeds. The constant of proportionality is called the coefficient of kinetic friction, often designated . As long as the sliding continues, the frictional force is then (valid when the surfaces slide by each other). Static friction when surfaces don’t slide When there is no relative motion of the surfaces, the frictional force can assume any value from zero up to a maximum , where is the coefficient of static friction. Invariably, is larger than , in agreement with the observation that when a force is large enough that something breaks loose and starts to slide, it often accelerates. The frictional force for surfaces with no relative motion is therefore (valid when the contacting surfaces have no relative motion). The actual magnitude and direction of the static friction force are such that it (together with other forces on the object) causes the object to remain motionless with respect to the contacting surface as long as the static friction force required does not exceed . The equation is valid only when the surfaces are on the verge of sliding. Part A When two objects slide by one another, which of the following statements about the force of friction between them, is true? ANSWER: Correct Part B fk fk μk fk = μkn μsn μs μs μk fs ! μsn μsn fs = μsn The frictional force is always equal to . The frictional force is always less than . The frictional force is determined by other forces on the objects so it can be either equal to or less than . μkn μkn μkn Typesetting math: 100% When two objects are in contact with no relative motion, which of the following statements about the frictional force between them, is true? ANSWER: Correct For static friction, the actual magnitude and direction of the friction force are such that it, together with any other forces present, will cause the object to have the observed acceleration. The magnitude of the force cannot exceed . If the magnitude of static friction needed to keep acceleration equal to zero exceeds , then the object will slide subject to the resistance of kinetic friction. Do not automatically assume that unless you are considering a situation in which the magnitude of the static friction force is as large as possible (i.e., when determining at what point an object will just begin to slip). Whether the actual magnitude of the friction force is 0, less than , or equal to depends on the magnitude of the other forces (if any) as well as the acceleration of the object through . Part C When a board with a box on it is slowly tilted to larger and larger angle, common experience shows that the box will at some point “break loose” and start to accelerate down the board. The box begins to slide once the component of gravity acting parallel to the board just begins to exceeds the maximum force of static friction. Which of the following is the most general explanation for why the box accelerates down the board? ANSWER: The frictional force is always equal to . The frictional force is always less than . The frictional force is determined by other forces on the objects so it can be either equal to or less than . μsn μsn μsn μsn μsn fs = μsn μsn μsn F = ma Fg The force of kinetic friction is smaller than that of maximum static friction, but remains the same. Once the box is moving, is smaller than the force of maximum static friction but larger than the force of kinetic friction. Once the box is moving, is larger than the force of maximum static friction. When the box is stationary, equals the force of static friction, but once the box starts moving, the sliding reduces the normal force, which in turn reduces the friction. Fg Fg Fg Fg Typesetting math: 100% Correct At the point when the box finally does “break loose,” you know that the component of the box’s weight that is parallel to the board just exceeds (i.e., this component of gravitational force on the box has just reached a magnitude such that the force of static friction, which has a maximum value of , can no longer oppose it.) For the box to then accelerate, there must be a net force on the box along the board. Thus, the component of the box’s weight parallel to the board must be greater than the force of kinetic friction. Therefore the force of kinetic friction must be less than the force of static friction which implies , as expected. Part D Consider a problem in which a car of mass is on a road tilted at an angle . The normal force Select the best answer. ANSWER: Correct The key point is that contact forces must be determined from Newton’s equation. In the problem described above, there is not enough information given to determine the normal force (e.g., the acceleration is unknown). Each of the answer options is valid under some conditions ( , the car is sliding down an icy incline, or the car is going around a banked turn), but in fact none is likely to be correct if there are other forces on the car or if the car is accelerating. Do not memorize values for the normal force valid in different problems–you must determine from . Problem 6.17 Bonnie and Clyde are sliding a 323 bank safe across the floor to their getaway car. The safe slides with a constant speed if Clyde pushes from behind with 375 of force while Bonnie pulls forward on a rope with 335 of force. μsn μsn μkn μsn μk < μs M  is found using n = Mg n = Mg cos() n = Mg cos() F  = Ma  = 0 n F = ma kg N N Typesetting math: 100% Part A What is the safe's coefficient of kinetic friction on the bank floor? ANSWER: Correct Problem 6.19 A crate is placed on a horizontal conveyor belt. The materials are such that and . Part A Draw a free-body diagram showing all the forces on the crate if the conveyer belt runs at constant speed. Draw the force vectors with their tails at the dot. The orientation of your vectors will be graded. The exact length of your vectors will not be graded but the relative length of one to the other will be graded. ANSWER: 0.224 10 kg μs = 0.5 μk = 0.3 Typesetting math: 100% Correct Part B Draw a free-body diagram showing all the forces on the crate if the conveyer belt is speeding up. Draw the force vectors with their tails at the dot. The orientation of your vectors will be graded. The exact length of your vectors will not be graded but the relative length of one to the other will be graded. ANSWER: Typesetting math: 100% Correct Part C What is the maximum acceleration the belt can have without the crate slipping? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct amax = 4.9 m s2 Typesetting math: 100% Problem 6.28 A 1100 steel beam is supported by two ropes. Part A What is the tension in rope 1? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the tension in rope 2? Express your answer to two significant figures and include the appropriate units. ANSWER: kg T1 = 7000 N Typesetting math: 100% Correct Problem 6.35 The position of a 1.4 mass is given by , where is in seconds. Part A What is the net horizontal force on the mass at ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the net horizontal force on the mass at ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 6.39 T2 = 4800 N kg x = (2t3 − 3t2 )m t t = 0 s F = -8.4 N t = 1 s F = 8.4 N Typesetting math: 100% A rifle with a barrel length of 61 fires a 8 bullet with a horizontal speed of 400 . The bullet strikes a block of wood and penetrates to a depth of 11 . Part A What resistive force (assumed to be constant) does the wood exert on the bullet? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B How long does it take the bullet to come to rest after entering the wood? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 6.45 You and your friend Peter are putting new shingles on a roof pitched at 21 . You're sitting on the very top of the roof when Peter, who is at the edge of the roof directly below you, 5.0 away, asks you for the box of nails. Rather than carry the 2.0 box of nails down to Peter, you decide to give the box a push and have it slide down to him. Part A If the coefficient of kinetic friction between the box and the roof is 0.55, with what speed should you push the box to have it gently come to rest right at the edge of the roof? Express your answer to two significant figures and include the appropriate units. cm g m/s cm fk = 5800 N = 5.5×10−4 t s  m kg Typesetting math: 100% ANSWER: Correct Problem 6.54 The 2.0 wood box in the figure slides down a vertical wood wall while you push on it at a 45 angle. Part A What magnitude of force should you apply to cause the box to slide down at a constant speed? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct v = 3.9 ms kg  F = 23 N Typesetting math: 100% Score Summary: Your score on this assignment is 98.8%. You received 114.57 out of a possible total of 116 points. Typesetting math: 100%

Assignment 5 Due: 11:59pm on Wednesday, March 5, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 6.13 A hand presses down on the book in the figure. Part A Is the normal force of the table on the book larger than, smaller than, or equal to ? ANSWER: Correct mg Equal to Larger than Smaller than mg mg mg Problem 6.2 The three ropes in the figure are tied to a small, very light ring. Two of these ropes are anchored to walls at right angles with the tensions shown in the figure. Part A What is the magnitude of the tension in the third rope? Express your answer using two significant figures. ANSWER: Correct Part B What is the direction of the tension in the third rope? Express your answer using two significant figures. T  3 T3 = 94 N T  3 Typesetting math: 100% ANSWER: Correct The Normal Force When an object rests on a surface, there is always a force perpendicular to the surface; we call this the normal force, denoted by . The two questions to the right will explore the normal force. Part A A man attempts to pick up his suitcase of weight by pulling straight up on the handle. However, he is unable to lift the suitcase from the floor. Which statement about the magnitude of the normal force acting on the suitcase is true during the time that the man pulls upward on the suitcase? Hint 1. How to approach this problem First, identify the forces that act on the suitcase and draw a free-body diagram. Then use the fact that the suitcase is in equilibrium, , to examine how the forces acting on the suitcase relate to each other. Hint 2. Identify the correct free-body diagram Which of the figures represents the free-body diagram of the suitcase while the man is pulling on the handle with a force of magnitude ? = 58   below horizontal n ws n F = 0 fpull Typesetting math: 100% ANSWER: ANSWER: Correct Part B A B C D The magnitude of the normal force is equal to the magnitude of the weight of the suitcase. The magnitude of the normal force is equal to the magnitude of the weight of the suitcase minus the magnitude of the force of the pull. The magnitude of the normal force is equal to the sum of the magnitude of the force of the pull and the magnitude of the suitcase’s weight. The magnitude of the normal force is greater than the magnitude of the weight of the suitcase. Typesetting math: 100% Now assume that the man of weight is tired and decides to sit on his suitcase. Which statement about the magnitude of the normal force acting on the suitcase is true during the time that the man is sitting on the suitcase? Hint 1. Identify the correct free-body diagram. Which of the figures represents the free-body diagram while the man is sitting atop the suitcase? Here the vector labeled is a force that has the same magnitude as the man’s weight. ANSWER: wm n wm Typesetting math: 100% ANSWER: Correct Recognize that the normal force acting on an object is not always equal to the weight of that object. This is an important point to understand. Problem 6.5 A construction worker with a weight of 880 stands on a roof that is sloped at 18 . Part A What is the magnitude of the normal force of the roof on the worker? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct A B C D The magnitude of the normal force is equal to the magnitude of the suitcase’s weight. The magnitude of the normal force is equal to the magnitude of the suitcase’s weight minus the magnitude of the man’s weight. The magnitude of the normal force is equal to the sum of the magnitude of the man’s weight and the magnitude of the suitcase’s weight. The magnitude of the normal force is less than the magnitude of the suitcase’s weight. N  n = 840 N Typesetting math: 100% Problem 6.6 In each of the two free-body diagrams, the forces are acting on a 3.0 object. Part A For diagram , find the value of , the -component of the acceleration. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B For diagram the part A, find the value of the -component of the acceleration. Express your answer to two significant figures and include the appropriate units. ANSWER: kg ax x ax = -0.67 m s2 ay, y Typesetting math: 100% Correct Part C For diagram , find the value of , the -component of the acceleration. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part D For diagram the part C, find the value of , the -component of the acceleration. Express your answer to two significant figures and include the appropriate units. ANSWER: ay = 0 m s2 ax x ax = 0.67 m s2 ay y Typesetting math: 100% Correct Problem 6.7 In each of the two free-body diagrams, the forces are acting on a 3.0 object. Part A Find the value of , the component of the acceleration in diagram (a). Express your answer to two significant figures and include the appropriate units. ANSWER: Correct ay = 0 m s2 kg ax x ax = 0.99 m s2 Typesetting math: 100% Part B Find the value of , the component of the acceleration in diagram (a). Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C Find the value of , the component of the acceleration in diagram (b). Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part D Find the value of , the component of the acceleration in diagram (b). Express your answer to two significant figures and include the appropriate units. ANSWER: Correct ay y ay = 0 m s2 ax x ax = -0.18 m s2 ay y ay = 0 m s2 Typesetting math: 100% Problem 6.10 A horizontal rope is tied to a 53.0 box on frictionless ice. What is the tension in the rope if: Part A The box is at rest? Express your answer as an integer and include the appropriate units. ANSWER: Correct Part B The box moves at a steady = 4.80 ? Express your answer as an integer and include the appropriate units. ANSWER: Correct Part C The box = 4.80 and = 4.60 ? Express your answer to three significant figures and include the appropriate units. ANSWER: kg T = 0 N vx m/s T = 0 N vx m/s ax m/s2 Typesetting math: 100% Correct Problem 6.14 It takes the elevator in a skyscraper 4.5 to reach its cruising speed of 11 . A 60 passenger gets aboard on the ground floor. Part A What is the passenger’s weight before the elevator starts moving? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the passenger’s weight while the elevator is speeding up? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the passenger’s weight after the elevator reaches its cruising speed? T = 244 N s m/s kg w = 590 N w = 730 N Typesetting math: 100% Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Block on an Incline A block lies on a plane raised an angle from the horizontal. Three forces act upon the block: , the force of gravity; , the normal force; and , the force of friction. The coefficient of friction is large enough to prevent the block from sliding . Part A Consider coordinate system a, with the x axis along the plane. Which forces lie along the axes? ANSWER: w = 590 N  F  w F n F  f Typesetting math: 100% Correct Part B Which forces lie along the axes of the coordinate system b, in which the y axis is vertical? ANSWER: Correct only only only and and and and and F  f F  n F  w F  f F  n F  f F  w F  n F w F  f F  n F w only only only and and and and and F  f F  n F  w F  f F  n F  f F  w F  n F w F  f F  n F w Typesetting math: 100% Usually the best advice is to choose coordinate system so that the acceleration of the system is directly along one of the coordinate axes. If the system isn’t accelerating, then you are better off choosing the coordinate system with the most vectors along the coordinate axes. But now you are going to ignore that advice. You will find the normal force, , using vertical coordinate system b. In these coordinates you will find the magnitude appearing in both the x and y equations, each multiplied by a trigonometric function. Part C Because the block is not moving, the sum of the y components of the forces acting on the block must be zero. Find an expression for the sum of the y components of the forces acting on the block, using coordinate system b. Express your answer in terms of some or all of the variables , , , and . Hint 1. Find the y component of Write an expression for , the y component of the force , using coordinate system b. Express your answer in terms of and . Hint 1. Some geometry help – a useful angle The smaller angle between and the y-axis is also , as shown in the figure. ANSWER: F  n Fn Fn Ff Fw  F n Fny F  n Fn  F  n  Typesetting math: 100% Hint 2. Find the y component of Write an expression for , the y component of the force , using coordinate system b. Express your answer in terms of and . Hint 1. Some geometry help – a useful angle The smaller angle between and the x-axis is also , as shown in the figure. ANSWER: ANSWER: Fny = Fncos() F f Ffy F f Ff  F  f  Ffy = Ffsin() Fy = 0 = Fncos() + Ffsin() − Fw Typesetting math: 100% Correct Part D Because the block is not moving, the sum of the x components of the forces acting on the block must be zero. Find an expression for the sum of the x components of the forces acting on the block, using coordinate system b. Express your answer in terms of some or all of the variables , , , and . Hint 1. Find the x component of Write an expression for , the x component of the force , using coordinate system b. Express your answer in terms of and . ANSWER: ANSWER: Correct Part E To find the magnitude of the normal force, you must express in terms of since is an unknown. Using the equations you found in the two previous parts, find an expression for involving and but not . Hint 1. How to approach the problem From your answers to the previous two parts you should have two force equations ( and ). Combine these equations to eliminate . The key is to multiply the Fn Ff Fw  F n Fnx F  n Fn  Fnx = −Fnsin() Fx = 0 = −Fnsin() + Ffcos() Fn Fw Ff Fn Fw  Ff Typesetting math: 100% Fy = 0 Fx = 0 Ff equation for the y components by and the equation for the x components by , then add or subtract the two equations to eliminate the term . An alternative motivation for the algebra is to eliminate the trig functions in front of by using the trig identity . At the very least this would result in an equation that is simple to solve for . ANSWER: Correct Congratulations on working this through. Now realize that in coordinate system a, which is aligned with the plane, the y-coordinate equation is , which leads immediately to the result obtained here for . CONCLUSION: A thoughtful examination of which coordinate system to choose can save a lot of algebra. Contact Forces Introduced Learning Goal: To introduce contact forces (normal and friction forces) and to understand that, except for friction forces under certain circumstances, these forces must be determined from: net Force = ma. Two solid objects cannot occupy the same space at the same time. Indeed, when the objects touch, they exert repulsive normal forces on each other, as well as frictional forces that resist their slipping relative to each other. These contact forces arise from a complex interplay between the electrostatic forces between the electrons and ions in the objects and the laws of quantum mechanics. As two surfaces are pushed together these forces increase exponentially over an atomic distance scale, easily becoming strong enough to distort the bulk material in the objects if they approach too close. In everyday experience, contact forces are limited by the deformation or acceleration of the objects, rather than by the fundamental interatomic forces. Hence, we can conclude the following: The magnitude of contact forces is determined by , that is, by the other forces on, and acceleration of, the contacting bodies. The only exception is that the frictional forces cannot exceed (although they can be smaller than this or even zero). Normal and friction forces Two types of contact forces operate in typical mechanics problems, the normal and frictional forces, usually designated by and (or , or something similar) respectively. These are the components of the overall contact force: perpendicular to and parallel to the plane of contact. Kinetic friction when surfaces slide cos  sin  Ff cos() sin() Fn sin2() + cos2 () = 1 Fn Fn = Fwcos() Fy = Fn − FW cos() = 0 Fn F = ma μn n f Ffric n f Typesetting math: 100% When one surface is sliding past the other, experiments show three things about the friction force (denoted ): The frictional force opposes the relative motion at the 1. point of contact, 2. is proportional to the normal force, and 3. the ratio of the magnitude of the frictional force to that of the normal force is fairly constant over a wide range of speeds. The constant of proportionality is called the coefficient of kinetic friction, often designated . As long as the sliding continues, the frictional force is then (valid when the surfaces slide by each other). Static friction when surfaces don’t slide When there is no relative motion of the surfaces, the frictional force can assume any value from zero up to a maximum , where is the coefficient of static friction. Invariably, is larger than , in agreement with the observation that when a force is large enough that something breaks loose and starts to slide, it often accelerates. The frictional force for surfaces with no relative motion is therefore (valid when the contacting surfaces have no relative motion). The actual magnitude and direction of the static friction force are such that it (together with other forces on the object) causes the object to remain motionless with respect to the contacting surface as long as the static friction force required does not exceed . The equation is valid only when the surfaces are on the verge of sliding. Part A When two objects slide by one another, which of the following statements about the force of friction between them, is true? ANSWER: Correct Part B fk fk μk fk = μkn μsn μs μs μk fs ! μsn μsn fs = μsn The frictional force is always equal to . The frictional force is always less than . The frictional force is determined by other forces on the objects so it can be either equal to or less than . μkn μkn μkn Typesetting math: 100% When two objects are in contact with no relative motion, which of the following statements about the frictional force between them, is true? ANSWER: Correct For static friction, the actual magnitude and direction of the friction force are such that it, together with any other forces present, will cause the object to have the observed acceleration. The magnitude of the force cannot exceed . If the magnitude of static friction needed to keep acceleration equal to zero exceeds , then the object will slide subject to the resistance of kinetic friction. Do not automatically assume that unless you are considering a situation in which the magnitude of the static friction force is as large as possible (i.e., when determining at what point an object will just begin to slip). Whether the actual magnitude of the friction force is 0, less than , or equal to depends on the magnitude of the other forces (if any) as well as the acceleration of the object through . Part C When a board with a box on it is slowly tilted to larger and larger angle, common experience shows that the box will at some point “break loose” and start to accelerate down the board. The box begins to slide once the component of gravity acting parallel to the board just begins to exceeds the maximum force of static friction. Which of the following is the most general explanation for why the box accelerates down the board? ANSWER: The frictional force is always equal to . The frictional force is always less than . The frictional force is determined by other forces on the objects so it can be either equal to or less than . μsn μsn μsn μsn μsn fs = μsn μsn μsn F = ma Fg The force of kinetic friction is smaller than that of maximum static friction, but remains the same. Once the box is moving, is smaller than the force of maximum static friction but larger than the force of kinetic friction. Once the box is moving, is larger than the force of maximum static friction. When the box is stationary, equals the force of static friction, but once the box starts moving, the sliding reduces the normal force, which in turn reduces the friction. Fg Fg Fg Fg Typesetting math: 100% Correct At the point when the box finally does “break loose,” you know that the component of the box’s weight that is parallel to the board just exceeds (i.e., this component of gravitational force on the box has just reached a magnitude such that the force of static friction, which has a maximum value of , can no longer oppose it.) For the box to then accelerate, there must be a net force on the box along the board. Thus, the component of the box’s weight parallel to the board must be greater than the force of kinetic friction. Therefore the force of kinetic friction must be less than the force of static friction which implies , as expected. Part D Consider a problem in which a car of mass is on a road tilted at an angle . The normal force Select the best answer. ANSWER: Correct The key point is that contact forces must be determined from Newton’s equation. In the problem described above, there is not enough information given to determine the normal force (e.g., the acceleration is unknown). Each of the answer options is valid under some conditions ( , the car is sliding down an icy incline, or the car is going around a banked turn), but in fact none is likely to be correct if there are other forces on the car or if the car is accelerating. Do not memorize values for the normal force valid in different problems–you must determine from . Problem 6.17 Bonnie and Clyde are sliding a 323 bank safe across the floor to their getaway car. The safe slides with a constant speed if Clyde pushes from behind with 375 of force while Bonnie pulls forward on a rope with 335 of force. μsn μsn μkn μsn μk < μs M  is found using n = Mg n = Mg cos() n = Mg cos() F  = Ma  = 0 n F = ma kg N N Typesetting math: 100% Part A What is the safe's coefficient of kinetic friction on the bank floor? ANSWER: Correct Problem 6.19 A crate is placed on a horizontal conveyor belt. The materials are such that and . Part A Draw a free-body diagram showing all the forces on the crate if the conveyer belt runs at constant speed. Draw the force vectors with their tails at the dot. The orientation of your vectors will be graded. The exact length of your vectors will not be graded but the relative length of one to the other will be graded. ANSWER: 0.224 10 kg μs = 0.5 μk = 0.3 Typesetting math: 100% Correct Part B Draw a free-body diagram showing all the forces on the crate if the conveyer belt is speeding up. Draw the force vectors with their tails at the dot. The orientation of your vectors will be graded. The exact length of your vectors will not be graded but the relative length of one to the other will be graded. ANSWER: Typesetting math: 100% Correct Part C What is the maximum acceleration the belt can have without the crate slipping? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct amax = 4.9 m s2 Typesetting math: 100% Problem 6.28 A 1100 steel beam is supported by two ropes. Part A What is the tension in rope 1? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the tension in rope 2? Express your answer to two significant figures and include the appropriate units. ANSWER: kg T1 = 7000 N Typesetting math: 100% Correct Problem 6.35 The position of a 1.4 mass is given by , where is in seconds. Part A What is the net horizontal force on the mass at ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the net horizontal force on the mass at ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 6.39 T2 = 4800 N kg x = (2t3 − 3t2 )m t t = 0 s F = -8.4 N t = 1 s F = 8.4 N Typesetting math: 100% A rifle with a barrel length of 61 fires a 8 bullet with a horizontal speed of 400 . The bullet strikes a block of wood and penetrates to a depth of 11 . Part A What resistive force (assumed to be constant) does the wood exert on the bullet? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B How long does it take the bullet to come to rest after entering the wood? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 6.45 You and your friend Peter are putting new shingles on a roof pitched at 21 . You're sitting on the very top of the roof when Peter, who is at the edge of the roof directly below you, 5.0 away, asks you for the box of nails. Rather than carry the 2.0 box of nails down to Peter, you decide to give the box a push and have it slide down to him. Part A If the coefficient of kinetic friction between the box and the roof is 0.55, with what speed should you push the box to have it gently come to rest right at the edge of the roof? Express your answer to two significant figures and include the appropriate units. cm g m/s cm fk = 5800 N = 5.5×10−4 t s  m kg Typesetting math: 100% ANSWER: Correct Problem 6.54 The 2.0 wood box in the figure slides down a vertical wood wall while you push on it at a 45 angle. Part A What magnitude of force should you apply to cause the box to slide down at a constant speed? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct v = 3.9 ms kg  F = 23 N Typesetting math: 100% Score Summary: Your score on this assignment is 98.8%. You received 114.57 out of a possible total of 116 points. Typesetting math: 100%

Assignment 5 Due: 11:59pm on Wednesday, March 5, 2014 You … Read More...