Lab Report Name Simple Harmonic motion Date: Objective or purpose: The main objective of this lab is to find the value of the spring constant (k) according to Hooke’s law. This lab also teaches us curve fitting and its application here in this lab.

Lab Report Name Simple Harmonic motion Date: Objective or purpose: The main objective of this lab is to find the value of the spring constant (k) according to Hooke’s law. This lab also teaches us curve fitting and its application here in this lab.

Name Simple Harmonic motion Date:           … Read More...
Question 1 1. The ________________________ presents the movement in cash and bank balances over a period. 1 points Question 2 1. Which of the following departments is not a support center? marketing telecommunications guest transportation human resources 1 points Question 3 1. The distinction between operating and nonoperating income relates to: Continuity of income. Primary activities of the reporting entity. Consistency of income stream. Reliability of measurements. 1 points Question 4 1. Change statements include a: Retained earnings statement, balance sheet, and cash flow statement. Balance sheet, cash flow statement, and income statement. Cash flow statement, income statement, and retained earnings statement. Retained earnings statement, balance sheet, and income statement. 1 points Question 5 1. Pro forma earnings: Could be considered management’s view of permanent earnings. Are needed for the correction of errors. Are standardized under generally accepted accounting principles Are useful to compare two different firms’ performance. 1 points Question 6 1. The purpose of the statement of retained earnings is to show: the lifetime earnings retained by the corporation. the lifetime cash flow. the lifetime sales. all of the above. 1 points Question 7 1. The study of an individual financial statement item over several accounting periods is called: Ratio analysis. Vertical analysis. Horizontal analysis. Time and motion analysis. 1 points Question 8 1. Which of the following is not an example of an internal user of a company’s financial statements? member of the board of directors department head stockholder top-level manager 1 points Question 9 1. The accounting principle that requires revenue to be reported when earned is the: Matching principle Revenue recognition principle Time period principle Accrual reporting principle Going-concern principle 1 points Question 10 1. Which of the following questions can not be answered by analyzing information presented on a monthly income statement? How profitable was the hospitality operation at the end of the month? How much was spent last month to market the operation’s services? How much cash was on hand at the end of the month? What was the cost of sales for the month? 1 points Question 11 1. The sources of hotel revenue might be: profits and sales. sales, interest income, and dividend income. net income. all of the above. 1 points Question 12 1. Vertical analysis is a tool to evaluate individual financial statement items or groups of items in terms of a specific base amount. True False 1 points Question 13 1. The following is a portion of a comparative analysis: This Year Change Cost of Sales $400,000 (30,000) The cost of sales last year was: $370,000. $430,000. $30,000. $60,000. 1 points Question 14 1. Since everyone knows what an income statement is, there is no need to put a heading on this report. True False 1 points Question 15 1. An analytical procedure in which each income statement amount is stated as a percentage of a base amount, in this case, net sales. 1 points Question 16 1. Groups outside the business who require accounting and financial information. This includes suppliers, bankers, stockholders, and investors. 1 points Question 17 1. Interpretation of data shown on a common-size income statement can be simplified by: zeroing out the income statement bookkeeping accounts. classifying dividends as a business expense. restating the percentages as a component of the sales dollar. redesigning the statement. 1 points Question 18 1. The following information is provided: Dividends paid this year $ 30,000 Dividends declared this year 40,000 Net income this year 100,000 Retained earnings, start of year 150,000 The retained earnings at the end of this year are: $180,000. $220,000. $210,000. $260,000. 1 points Question 19 1. Horizontal analysis is also known as: Liquidity analysis. Absolute analysis. Revenue analysis. Trend analysis. 1 points Question 20 1. At the end of Year 1, the income statement for the Roadside Inn showed net income at $50,000. At the end of Year 2, the income statement showed $100,000 in net income. A horizontal analysis of the income statements would show the relative difference between the two years as: $50,000. $20,000. 100%. 50%. 1 points Question 21 1. Financial statement analysis is the application of analytical tools to general-purpose financial statements and related data for making business decisions. True False 1 points Question 22 1. Following is a portion of an income statement: 20X8 20X7 Sales $180,000 $190,000 In a comparative analysis, the percentage change from 20X7 to 20X8 is: A 105% decrease. A 94.7% Decrease A 5.6% Decrease A 5.3% Decrease 1 points Question 23 1. A fiscal year consists of any twelve consecutive months. True False 1 points Question 24 1. Financial statements intended for internal users. These statements present detailed information on each responsibility area ant the hotel as a whole. 1 points Question 25 1. Financial statements are usually prepared at the end of each fiscal period. True False

Question 1 1. The ________________________ presents the movement in cash and bank balances over a period. 1 points Question 2 1. Which of the following departments is not a support center? marketing telecommunications guest transportation human resources 1 points Question 3 1. The distinction between operating and nonoperating income relates to: Continuity of income. Primary activities of the reporting entity. Consistency of income stream. Reliability of measurements. 1 points Question 4 1. Change statements include a: Retained earnings statement, balance sheet, and cash flow statement. Balance sheet, cash flow statement, and income statement. Cash flow statement, income statement, and retained earnings statement. Retained earnings statement, balance sheet, and income statement. 1 points Question 5 1. Pro forma earnings: Could be considered management’s view of permanent earnings. Are needed for the correction of errors. Are standardized under generally accepted accounting principles Are useful to compare two different firms’ performance. 1 points Question 6 1. The purpose of the statement of retained earnings is to show: the lifetime earnings retained by the corporation. the lifetime cash flow. the lifetime sales. all of the above. 1 points Question 7 1. The study of an individual financial statement item over several accounting periods is called: Ratio analysis. Vertical analysis. Horizontal analysis. Time and motion analysis. 1 points Question 8 1. Which of the following is not an example of an internal user of a company’s financial statements? member of the board of directors department head stockholder top-level manager 1 points Question 9 1. The accounting principle that requires revenue to be reported when earned is the: Matching principle Revenue recognition principle Time period principle Accrual reporting principle Going-concern principle 1 points Question 10 1. Which of the following questions can not be answered by analyzing information presented on a monthly income statement? How profitable was the hospitality operation at the end of the month? How much was spent last month to market the operation’s services? How much cash was on hand at the end of the month? What was the cost of sales for the month? 1 points Question 11 1. The sources of hotel revenue might be: profits and sales. sales, interest income, and dividend income. net income. all of the above. 1 points Question 12 1. Vertical analysis is a tool to evaluate individual financial statement items or groups of items in terms of a specific base amount. True False 1 points Question 13 1. The following is a portion of a comparative analysis: This Year Change Cost of Sales $400,000 (30,000) The cost of sales last year was: $370,000. $430,000. $30,000. $60,000. 1 points Question 14 1. Since everyone knows what an income statement is, there is no need to put a heading on this report. True False 1 points Question 15 1. An analytical procedure in which each income statement amount is stated as a percentage of a base amount, in this case, net sales. 1 points Question 16 1. Groups outside the business who require accounting and financial information. This includes suppliers, bankers, stockholders, and investors. 1 points Question 17 1. Interpretation of data shown on a common-size income statement can be simplified by: zeroing out the income statement bookkeeping accounts. classifying dividends as a business expense. restating the percentages as a component of the sales dollar. redesigning the statement. 1 points Question 18 1. The following information is provided: Dividends paid this year $ 30,000 Dividends declared this year 40,000 Net income this year 100,000 Retained earnings, start of year 150,000 The retained earnings at the end of this year are: $180,000. $220,000. $210,000. $260,000. 1 points Question 19 1. Horizontal analysis is also known as: Liquidity analysis. Absolute analysis. Revenue analysis. Trend analysis. 1 points Question 20 1. At the end of Year 1, the income statement for the Roadside Inn showed net income at $50,000. At the end of Year 2, the income statement showed $100,000 in net income. A horizontal analysis of the income statements would show the relative difference between the two years as: $50,000. $20,000. 100%. 50%. 1 points Question 21 1. Financial statement analysis is the application of analytical tools to general-purpose financial statements and related data for making business decisions. True False 1 points Question 22 1. Following is a portion of an income statement: 20X8 20X7 Sales $180,000 $190,000 In a comparative analysis, the percentage change from 20X7 to 20X8 is: A 105% decrease. A 94.7% Decrease A 5.6% Decrease A 5.3% Decrease 1 points Question 23 1. A fiscal year consists of any twelve consecutive months. True False 1 points Question 24 1. Financial statements intended for internal users. These statements present detailed information on each responsibility area ant the hotel as a whole. 1 points Question 25 1. Financial statements are usually prepared at the end of each fiscal period. True False

info@checkyourstudy.com Whatsapp +919911743277
Annotated Bibliography Annotated Bibliography. For each of the tasks which are undertaken as part of this portfolio you will normally be expected to “read round” the subject area. It isn’t really sufficient just to read the relevant chapter in the textbook; you will also find information in periodicals, magazines, quality newspapers etc etc and certainly by searching the Internet. Just as in any other assignment in UWBS you are expected to identify your sources in a bibliography using Harvard referencing. An annotated bibliography is the same as a conventional bibliography but includes comments on what you found particularly useful in each of the texts that you cite. On this page you will present your annotated bibliography. You can either write the assignment here or upload it as a word document. Some of you may be using Endnote in preparation your dissertation, and in that case you could create a new endnote library for this assignment and then upload the bibliography from that endnote library. During the briefing sessions you will be shown how to upload a file and create a link. You can also find help if you click on the large ? on the Pebble beach opening page. Once you have finished, delete the red text.

Annotated Bibliography Annotated Bibliography. For each of the tasks which are undertaken as part of this portfolio you will normally be expected to “read round” the subject area. It isn’t really sufficient just to read the relevant chapter in the textbook; you will also find information in periodicals, magazines, quality newspapers etc etc and certainly by searching the Internet. Just as in any other assignment in UWBS you are expected to identify your sources in a bibliography using Harvard referencing. An annotated bibliography is the same as a conventional bibliography but includes comments on what you found particularly useful in each of the texts that you cite. On this page you will present your annotated bibliography. You can either write the assignment here or upload it as a word document. Some of you may be using Endnote in preparation your dissertation, and in that case you could create a new endnote library for this assignment and then upload the bibliography from that endnote library. During the briefing sessions you will be shown how to upload a file and create a link. You can also find help if you click on the large ? on the Pebble beach opening page. Once you have finished, delete the red text.

Annotated Bibliography:   Mayaavi.com, (2015). Strategy, Innovation and Entrepreneurship: : … Read More...
MIS 3000 – Introduction to Management Information Systems Excel Tutorial #5 (Spring 2014) Healthy Cooking Grading Criteria Do “Case Problem 3” on pages EX 322-323 of your Excel book. See details below. When you are done, turn in your Excel spreadsheet: Item Points Download the Cooking workbook (available on Pilot). Save your Workbook as HealthyCookingXXX (where XXX are your initials). Complete the Documentation Sheet: 1 – Fill in the Documentation Sheet, as directed Correct the Order Amount Filter Worksheet: ……..………………………………………………………………………….. 2 – Correct the errors in the filter (Step 3) Create the Sort Worksheet: 3 – Create a custom sort on the specified criteria – Use conditional formatting as directed in Step 8 Correct the Customer Type Subtotal Worksheet: 5 – Correct the Customer Type Subtotal Worksheet (step 11) – Complete step 12 to insert a count of orders for customer type Create the Pivot Table per Step 13: 4 – Use a slicer to filter the Pivot Table per Step 14 – Format the slicer to match the Pivot Table style Create the Pivot Chart as directed in Step 16: ……..…………………………………………………………………………..4 – Move the Pivot Chart to row 3 – Change the Chart Title as directed – Change the axis and fill colors as directed

MIS 3000 – Introduction to Management Information Systems Excel Tutorial #5 (Spring 2014) Healthy Cooking Grading Criteria Do “Case Problem 3” on pages EX 322-323 of your Excel book. See details below. When you are done, turn in your Excel spreadsheet: Item Points Download the Cooking workbook (available on Pilot). Save your Workbook as HealthyCookingXXX (where XXX are your initials). Complete the Documentation Sheet: 1 – Fill in the Documentation Sheet, as directed Correct the Order Amount Filter Worksheet: ……..………………………………………………………………………….. 2 – Correct the errors in the filter (Step 3) Create the Sort Worksheet: 3 – Create a custom sort on the specified criteria – Use conditional formatting as directed in Step 8 Correct the Customer Type Subtotal Worksheet: 5 – Correct the Customer Type Subtotal Worksheet (step 11) – Complete step 12 to insert a count of orders for customer type Create the Pivot Table per Step 13: 4 – Use a slicer to filter the Pivot Table per Step 14 – Format the slicer to match the Pivot Table style Create the Pivot Chart as directed in Step 16: ……..…………………………………………………………………………..4 – Move the Pivot Chart to row 3 – Change the Chart Title as directed – Change the axis and fill colors as directed

info@checkyourstudy.com
Chapter 11 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, April 18, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Understanding Work and Kinetic Energy Learning Goal: To learn about the Work-Energy Theorem and its basic applications. In this problem, you will learn about the relationship between the work done on an object and the kinetic energy of that object. The kinetic energy of an object of mass moving at a speed is defined as . It seems reasonable to say that the speed of an object–and, therefore, its kinetic energy–can be changed by performing work on the object. In this problem, we will explore the mathematical relationship between the work done on an object and the change in the kinetic energy of that object. First, let us consider a sled of mass being pulled by a constant, horizontal force of magnitude along a rough, horizontal surface. The sled is speeding up. Part A How many forces are acting on the sled? ANSWER: Part B This question will be shown after you complete previous question(s). Part C K m v K = (1/2)mv2 m F one two three four This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). Part I Typesetting math: 91% This question will be shown after you complete previous question(s). Part J This question will be shown after you complete previous question(s). Part K This question will be shown after you complete previous question(s). Work-Energy Theorem Reviewed Learning Goal: Review the work-energy theorem and apply it to a simple problem. If you push a particle of mass in the direction in which it is already moving, you expect the particle’s speed to increase. If you push with a constant force , then the particle will accelerate with acceleration (from Newton’s 2nd law). Part A Enter a one- or two-word answer that correctly completes the following statement. If the constant force is applied for a fixed interval of time , then the _____ of the particle will increase by an amount . You did not open hints for this part. ANSWER: M F a = F/M t at Typesetting math: 91% Part B Enter a one- or two-word answer that correctly completes the following statement. If the constant force is applied over a given distance , along the path of the particle, then the _____ of the particle will increase by . ANSWER: Part C If the initial kinetic energy of the particle is , and its final kinetic energy is , express in terms of and the work done on the particle. ANSWER: Part D In general, the work done by a force is written as . Now, consider whether the following statements are true or false: The dot product assures that the integrand is always nonnegative. The dot product indicates that only the component of the force perpendicular to the path contributes to the integral. The dot product indicates that only the component of the force parallel to the path contributes to the integral. Enter t for true or f for false for each statement. Separate your responses with commas (e.g., t,f,t). ANSWER: D FD Ki Kf Kf Ki W Kf = F W =  ( ) d f i F r r Typesetting math: 91% Part E Assume that the particle has initial speed . Find its final kinetic energy in terms of , , , and . You did not open hints for this part. ANSWER: Part F What is the final speed of the particle? Express your answer in terms of and . ANSWER: ± The Work Done in Pulling a Supertanker Two tugboats pull a disabled supertanker. Each tug exerts a constant force of 2.20×106 , one at an angle 10.0 west of north, and the other at an angle 10.0 east of north, as they pull the tanker a distance 0.660 toward the north. Part A What is the total work done by the two tugboats on the supertanker? Express your answer in joules, to three significant figures. vi Kf vi M F D Kf = Kf M vf = N km Typesetting math: 91% You did not open hints for this part. ANSWER: Energy Required to Lift a Heavy Box As you are trying to move a heavy box of mass , you realize that it is too heavy for you to lift by yourself. There is no one around to help, so you attach an ideal pulley to the box and a massless rope to the ceiling, which you wrap around the pulley. You pull up on the rope to lift the box. Use for the magnitude of the acceleration due to gravity and neglect friction forces. Part A Once you have pulled hard enough to start the box moving upward, what is the magnitude of the upward force you must apply to the rope to start raising the box with constant velocity? Express the magnitude of the force in terms of , the mass of the box. J m g F m Typesetting math: 91% You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Pulling a Block on an Incline with Friction A block of weight sits on an inclined plane as shown. A force of magnitude is applied to pull the block up the incline at constant speed. The coefficient of kinetic friction between the plane and the block is . Part A F = mg F μ Typesetting math: 91% What is the total work done on the block by the force of friction as the block moves a distance up the incline? Express the work done by friction in terms of any or all of the variables , , , , , and . You did not open hints for this part. ANSWER: Part B What is the total work done on the block by the applied force as the block moves a distance up the incline? Express your answer in terms of any or all of the variables , , , , , and . ANSWER: Now the applied force is changed so that instead of pulling the block up the incline, the force pulls the block down the incline at a constant speed. Wfric L μ m g  L F Wfric = WF F L μ m g  L F WF = Typesetting math: 91% Part C What is the total work done on the block by the force of friction as the block moves a distance down the incline? Express your answer in terms of any or all of the variables , , , , , and . ANSWER: Part D What is the total work done on the box by the appled force in this case? Express your answer in terms of any or all of the variables , , , , , and . ANSWER: When Push Comes to Shove Two forces, of magnitudes = 75.0 and = 25.0 , act in opposite directions on a block, which sits atop a frictionless surface, as shown in the figure. Initially, the center of the block is at position = -1.00 . At some later time, the block has moved to the right, and its center is at a new position, = 1.00 . Wfric L μ m g  L F Wfric = WF μ m g  L F WF = F1 N F2 N xi cm xf cm Typesetting math: 91% Part A Find the work done on the block by the force of magnitude = 75.0 as the block moves from = -1.00 to = 1.00 . Express your answer numerically, in joules. You did not open hints for this part. ANSWER: Part B Find the work done by the force of magnitude = 25.0 as the block moves from = -1.00 to = 1.00 . Express your answer numerically, in joules. You did not open hints for this part. ANSWER: W1 F1 N xi cm xf cm W1 = J W2 F2 N xi cm xf cm Typesetting math: 91% Part C What is the net work done on the block by the two forces? Express your answer numerically, in joules. ANSWER: Part D Determine the change in the kinetic energy of the block as it moves from = -1.00 to = 1.00 . Express your answer numerically, in joules. You did not open hints for this part. ANSWER: Work from a Constant Force Learning Goal: W2 = J Wnet Wnet = J Kf − Ki xi cm xf cm Kf − Ki = J Typesetting math: 91% To understand how to compute the work done by a constant force acting on a particle that moves in a straight line. In this problem, you will calculate the work done by a constant force. A force is considered constant if is independent of . This is the most frequently encountered situation in elementary Newtonian mechanics. Part A Consider a particle moving in a straight line from initial point B to final point A, acted upon by a constant force . The force (think of it as a field, having a magnitude and direction at every position ) is indicated by a series of identical vectors pointing to the left, parallel to the horizontal axis. The vectors are all identical only because the force is constant along the path. The magnitude of the force is , and the displacement vector from point B to point A is (of magnitude , making and angle (radians) with the positive x axis). Find , the work that the force performs on the particle as it moves from point B to point A. Express the work in terms of , , and . Remember to use radians, not degrees, for any angles that appear in your answer. You did not open hints for this part. ANSWER: Part B Now consider the same force acting on a particle that travels from point A to point B. The displacement vector now points in the opposite direction as it did in Part A. Find the work done by in this case. Express your answer in terms of , , and . F( r) r F r F L L  WBA F L F  WBA = F L WAB F Typesetting math: 91% L F  You did not open hints for this part. ANSWER: ± Vector Dot Product Let vectors , , and . Calculate the following: Part A You did not open hints for this part. ANSWER: WAB = A = (2, 1,−4) B = (−3, 0, 1) C = (−1,−1, 2) Typesetting math: 91% Part B What is the angle between and ? Express your answer using one significant figure. You did not open hints for this part. ANSWER: Part C ANSWER: Part D ANSWER: A B = AB A B AB = radians 2B 3C = Typesetting math: 91% Part E Which of the following can be computed? You did not open hints for this part. ANSWER: and are different vectors with lengths and respectively. Find the following: Part F Express your answer in terms of You did not open hints for this part. ANSWER: 2(B 3C) = A B C A (B C) A (B + C) 3 A V 1 V 2 V1 V2 V1 Typesetting math: 91% Part G If and are perpendicular, You did not open hints for this part. ANSWER: Part H If and are parallel, Express your answer in terms of and . You did not open hints for this part. ANSWER: ± Tactics Box 11.1 Calculating the Work Done by a Constant Force V = 1 V 1 V 1 V 2 V = 1 V 2 V 1 V 2 V1 V2 V = 1 V 2 Typesetting math: 91% Learning Goal: To practice Tactics Box 11.1 Calculating the Work Done by a Constant Force. Recall that the work done by a constant force at an angle to the displacement is . The vector magnitudes and are always positive, so the sign of is determined entirely by the angle between the force and the displacement. W F  d W = Fd cos  F d W  Typesetting math: 91% TACTICS BOX 11.1 Calculating the work done by a constant force Force and displacement Work Sign of Energy transfer Energy is transferred into the system. The particle speeds up. increases. No energy is transferred. Speed and are constant. Energy is transferred out of the system. The particle slows down. decreases. A box has weight of magnitude = 2.00 accelerates down a rough plane that is inclined at an angle = 30.0 above the horizontal, as shown at left. The normal force acting on the box has a magnitude = 1.732 , the coefficient of kinetic friction between the box and the plane is = 0.300, and the displacement of the box is 1.80 down the inclined plane.  W W 0 F(“r) + K < 90 F("r) cos  + 90 0 0 K > 90 F(“r) cos  − K 180 −F(“r) − FG N  n N μk d m Typesetting math: 91% Part A What is the work done on the box by gravity? Express your answers in joules to two significant figures. You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Wgrav Wgrav = J Typesetting math: 91% Work and Potential Energy on a Sliding Block with Friction A block of weight sits on a plane inclined at an angle as shown. The coefficient of kinetic friction between the plane and the block is . A force is applied to push the block up the incline at constant speed. Part A What is the work done on the block by the force of friction as the block moves a distance up the incline? Express your answer in terms of some or all of the following: , , , . You did not open hints for this part. ANSWER: w  μ F Wf L μ w  L Wf = Typesetting math: 91% Part B What is the work done by the applied force of magnitude ? Express your answer in terms of some or all of the following: , , , . ANSWER: Part C What is the change in the potential energy of the block, , after it has been pushed a distance up the incline? Express your answer in terms of some or all of the following: , , , . ANSWER: Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). W F μ w  L W = “U L μ w  L “U = Typesetting math: 91% Part F This question will be shown after you complete previous question(s). Where’s the Energy? Learning Goal: To understand how to apply the law of conservation of energy to situations with and without nonconservative forces acting. The law of conservation of energy states the following: In an isolated system the total energy remains constant. If the objects within the system interact through gravitational and elastic forces only, then the total mechanical energy is conserved. The mechanical energy of a system is defined as the sum of kinetic energy and potential energy . For such systems where no forces other than the gravitational and elastic forces do work, the law of conservation of energy can be written as , where the quantities with subscript “i” refer to the “initial” moment and those with subscript “f” refer to the final moment. A wise choice of initial and final moments, which is not always obvious, may significantly simplify the solution. The kinetic energy of an object that has mass \texttip{m}{m} and velocity \texttip{v}{v} is given by \large{K=\frac{1}{2}mv^2}. Potential energy, instead, has many forms. The two forms that you will be dealing with most often in this chapter are the gravitational and elastic potential energy. Gravitational potential energy is the energy possessed by elevated objects. For small heights, it can be found as U_{\rm g}=mgh, where \texttip{m}{m} is the mass of the object, \texttip{g}{g} is the acceleration due to gravity, and \texttip{h}{h} is the elevation of the object above the zero level. The zero level is the elevation at which the gravitational potential energy is assumed to be (you guessed it) zero. The choice of the zero level is dictated by convenience; typically (but not necessarily), it is selected to coincide with the lowest position of the object during the motion explored in the problem. Elastic potential energy is associated with stretched or compressed elastic objects such as springs. For a spring with a force constant \texttip{k}{k}, stretched or compressed a distance \texttip{x}{x}, the associated elastic potential energy is \large{U_{\rm e}=\frac{1}{2}kx^2}. When all three types of energy change, the law of conservation of energy for an object of mass \texttip{m}{m} can be written as K U Ki + Ui = Kf + Uf Typesetting math: 91% \large{\frac{1}{2}mv_{\rm i}^2+mgh_{\rm i}+\frac{1}{2}kx_{\rm i}^2=\frac{1}{2}mv_{\rm f \hspace{1 pt}}^2+mgh_{\rm f \hspace{1 pt}}+\frac{1}{2}kx_{\rm f \hspace{1 pt}}^2}. The gravitational force and the elastic force are two examples of conservative forces. What if nonconservative forces, such as friction, also act within the system? In that case, the total mechanical energy would change. The law of conservation of energy is then written as \large{\frac{1}{2}mv_{\rm i}^2+mgh_{\rm i}+\frac{1}{2}kx_{\rm i}^2+W_{\rm nc}=\frac{1}{2}mv_{\rm f \hspace{1 pt}}^2+mgh_{\rm f \hspace{1 pt}}+\frac{1}{2}kx_{\rm f \hspace{1 pt}}^2}, where \texttip{W_{\rm nc}}{W_nc} represents the work done by the nonconservative forces acting on the object between the initial and the final moments. The work \texttip{W_{\rm nc}}{W_nc} is usually negative; that is, the nonconservative forces tend to decrease, or dissipate, the mechanical energy of the system. In this problem, we will consider the following situation as depicted in the diagram : A block of mass \texttip{m}{m} slides at a speed \texttip{v}{v} along a horizontal, smooth table. It next slides down a smooth ramp, descending a height \texttip{h}{h}, and then slides along a horizontal rough floor, stopping eventually. Assume that the block slides slowly enough so that it does not lose contact with the supporting surfaces (table, ramp, or floor). You will analyze the motion of the block at different moments using the law of conservation of energy. Part A Which word in the statement of this problem allows you to assume that the table is frictionless? ANSWER: Part B straight smooth horizontal Typesetting math: 91% This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Part H Typesetting math: 91% This question will be shown after you complete previous question(s). Part I This question will be shown after you complete previous question(s). Part J This question will be shown after you complete previous question(s). Part K This question will be shown after you complete previous question(s). Sliding In Socks Suppose that the coefficient of kinetic friction between Zak’s feet and the floor, while wearing socks, is 0.250. Knowing this, Zak decides to get a running start and then slide across the floor. Part A If Zak’s speed is 3.00 \rm m/s when he starts to slide, what distance \texttip{d}{d} will he slide before stopping? Express your answer in meters. ANSWER: Typesetting math: 91% Part B This question will be shown after you complete previous question(s). Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. \rm m Typesetting math: 91%

Chapter 11 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, April 18, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Understanding Work and Kinetic Energy Learning Goal: To learn about the Work-Energy Theorem and its basic applications. In this problem, you will learn about the relationship between the work done on an object and the kinetic energy of that object. The kinetic energy of an object of mass moving at a speed is defined as . It seems reasonable to say that the speed of an object–and, therefore, its kinetic energy–can be changed by performing work on the object. In this problem, we will explore the mathematical relationship between the work done on an object and the change in the kinetic energy of that object. First, let us consider a sled of mass being pulled by a constant, horizontal force of magnitude along a rough, horizontal surface. The sled is speeding up. Part A How many forces are acting on the sled? ANSWER: Part B This question will be shown after you complete previous question(s). Part C K m v K = (1/2)mv2 m F one two three four This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). Part I Typesetting math: 91% This question will be shown after you complete previous question(s). Part J This question will be shown after you complete previous question(s). Part K This question will be shown after you complete previous question(s). Work-Energy Theorem Reviewed Learning Goal: Review the work-energy theorem and apply it to a simple problem. If you push a particle of mass in the direction in which it is already moving, you expect the particle’s speed to increase. If you push with a constant force , then the particle will accelerate with acceleration (from Newton’s 2nd law). Part A Enter a one- or two-word answer that correctly completes the following statement. If the constant force is applied for a fixed interval of time , then the _____ of the particle will increase by an amount . You did not open hints for this part. ANSWER: M F a = F/M t at Typesetting math: 91% Part B Enter a one- or two-word answer that correctly completes the following statement. If the constant force is applied over a given distance , along the path of the particle, then the _____ of the particle will increase by . ANSWER: Part C If the initial kinetic energy of the particle is , and its final kinetic energy is , express in terms of and the work done on the particle. ANSWER: Part D In general, the work done by a force is written as . Now, consider whether the following statements are true or false: The dot product assures that the integrand is always nonnegative. The dot product indicates that only the component of the force perpendicular to the path contributes to the integral. The dot product indicates that only the component of the force parallel to the path contributes to the integral. Enter t for true or f for false for each statement. Separate your responses with commas (e.g., t,f,t). ANSWER: D FD Ki Kf Kf Ki W Kf = F W =  ( ) d f i F r r Typesetting math: 91% Part E Assume that the particle has initial speed . Find its final kinetic energy in terms of , , , and . You did not open hints for this part. ANSWER: Part F What is the final speed of the particle? Express your answer in terms of and . ANSWER: ± The Work Done in Pulling a Supertanker Two tugboats pull a disabled supertanker. Each tug exerts a constant force of 2.20×106 , one at an angle 10.0 west of north, and the other at an angle 10.0 east of north, as they pull the tanker a distance 0.660 toward the north. Part A What is the total work done by the two tugboats on the supertanker? Express your answer in joules, to three significant figures. vi Kf vi M F D Kf = Kf M vf = N km Typesetting math: 91% You did not open hints for this part. ANSWER: Energy Required to Lift a Heavy Box As you are trying to move a heavy box of mass , you realize that it is too heavy for you to lift by yourself. There is no one around to help, so you attach an ideal pulley to the box and a massless rope to the ceiling, which you wrap around the pulley. You pull up on the rope to lift the box. Use for the magnitude of the acceleration due to gravity and neglect friction forces. Part A Once you have pulled hard enough to start the box moving upward, what is the magnitude of the upward force you must apply to the rope to start raising the box with constant velocity? Express the magnitude of the force in terms of , the mass of the box. J m g F m Typesetting math: 91% You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Pulling a Block on an Incline with Friction A block of weight sits on an inclined plane as shown. A force of magnitude is applied to pull the block up the incline at constant speed. The coefficient of kinetic friction between the plane and the block is . Part A F = mg F μ Typesetting math: 91% What is the total work done on the block by the force of friction as the block moves a distance up the incline? Express the work done by friction in terms of any or all of the variables , , , , , and . You did not open hints for this part. ANSWER: Part B What is the total work done on the block by the applied force as the block moves a distance up the incline? Express your answer in terms of any or all of the variables , , , , , and . ANSWER: Now the applied force is changed so that instead of pulling the block up the incline, the force pulls the block down the incline at a constant speed. Wfric L μ m g  L F Wfric = WF F L μ m g  L F WF = Typesetting math: 91% Part C What is the total work done on the block by the force of friction as the block moves a distance down the incline? Express your answer in terms of any or all of the variables , , , , , and . ANSWER: Part D What is the total work done on the box by the appled force in this case? Express your answer in terms of any or all of the variables , , , , , and . ANSWER: When Push Comes to Shove Two forces, of magnitudes = 75.0 and = 25.0 , act in opposite directions on a block, which sits atop a frictionless surface, as shown in the figure. Initially, the center of the block is at position = -1.00 . At some later time, the block has moved to the right, and its center is at a new position, = 1.00 . Wfric L μ m g  L F Wfric = WF μ m g  L F WF = F1 N F2 N xi cm xf cm Typesetting math: 91% Part A Find the work done on the block by the force of magnitude = 75.0 as the block moves from = -1.00 to = 1.00 . Express your answer numerically, in joules. You did not open hints for this part. ANSWER: Part B Find the work done by the force of magnitude = 25.0 as the block moves from = -1.00 to = 1.00 . Express your answer numerically, in joules. You did not open hints for this part. ANSWER: W1 F1 N xi cm xf cm W1 = J W2 F2 N xi cm xf cm Typesetting math: 91% Part C What is the net work done on the block by the two forces? Express your answer numerically, in joules. ANSWER: Part D Determine the change in the kinetic energy of the block as it moves from = -1.00 to = 1.00 . Express your answer numerically, in joules. You did not open hints for this part. ANSWER: Work from a Constant Force Learning Goal: W2 = J Wnet Wnet = J Kf − Ki xi cm xf cm Kf − Ki = J Typesetting math: 91% To understand how to compute the work done by a constant force acting on a particle that moves in a straight line. In this problem, you will calculate the work done by a constant force. A force is considered constant if is independent of . This is the most frequently encountered situation in elementary Newtonian mechanics. Part A Consider a particle moving in a straight line from initial point B to final point A, acted upon by a constant force . The force (think of it as a field, having a magnitude and direction at every position ) is indicated by a series of identical vectors pointing to the left, parallel to the horizontal axis. The vectors are all identical only because the force is constant along the path. The magnitude of the force is , and the displacement vector from point B to point A is (of magnitude , making and angle (radians) with the positive x axis). Find , the work that the force performs on the particle as it moves from point B to point A. Express the work in terms of , , and . Remember to use radians, not degrees, for any angles that appear in your answer. You did not open hints for this part. ANSWER: Part B Now consider the same force acting on a particle that travels from point A to point B. The displacement vector now points in the opposite direction as it did in Part A. Find the work done by in this case. Express your answer in terms of , , and . F( r) r F r F L L  WBA F L F  WBA = F L WAB F Typesetting math: 91% L F  You did not open hints for this part. ANSWER: ± Vector Dot Product Let vectors , , and . Calculate the following: Part A You did not open hints for this part. ANSWER: WAB = A = (2, 1,−4) B = (−3, 0, 1) C = (−1,−1, 2) Typesetting math: 91% Part B What is the angle between and ? Express your answer using one significant figure. You did not open hints for this part. ANSWER: Part C ANSWER: Part D ANSWER: A B = AB A B AB = radians 2B 3C = Typesetting math: 91% Part E Which of the following can be computed? You did not open hints for this part. ANSWER: and are different vectors with lengths and respectively. Find the following: Part F Express your answer in terms of You did not open hints for this part. ANSWER: 2(B 3C) = A B C A (B C) A (B + C) 3 A V 1 V 2 V1 V2 V1 Typesetting math: 91% Part G If and are perpendicular, You did not open hints for this part. ANSWER: Part H If and are parallel, Express your answer in terms of and . You did not open hints for this part. ANSWER: ± Tactics Box 11.1 Calculating the Work Done by a Constant Force V = 1 V 1 V 1 V 2 V = 1 V 2 V 1 V 2 V1 V2 V = 1 V 2 Typesetting math: 91% Learning Goal: To practice Tactics Box 11.1 Calculating the Work Done by a Constant Force. Recall that the work done by a constant force at an angle to the displacement is . The vector magnitudes and are always positive, so the sign of is determined entirely by the angle between the force and the displacement. W F  d W = Fd cos  F d W  Typesetting math: 91% TACTICS BOX 11.1 Calculating the work done by a constant force Force and displacement Work Sign of Energy transfer Energy is transferred into the system. The particle speeds up. increases. No energy is transferred. Speed and are constant. Energy is transferred out of the system. The particle slows down. decreases. A box has weight of magnitude = 2.00 accelerates down a rough plane that is inclined at an angle = 30.0 above the horizontal, as shown at left. The normal force acting on the box has a magnitude = 1.732 , the coefficient of kinetic friction between the box and the plane is = 0.300, and the displacement of the box is 1.80 down the inclined plane.  W W 0 F(“r) + K < 90 F("r) cos  + 90 0 0 K > 90 F(“r) cos  − K 180 −F(“r) − FG N  n N μk d m Typesetting math: 91% Part A What is the work done on the box by gravity? Express your answers in joules to two significant figures. You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Wgrav Wgrav = J Typesetting math: 91% Work and Potential Energy on a Sliding Block with Friction A block of weight sits on a plane inclined at an angle as shown. The coefficient of kinetic friction between the plane and the block is . A force is applied to push the block up the incline at constant speed. Part A What is the work done on the block by the force of friction as the block moves a distance up the incline? Express your answer in terms of some or all of the following: , , , . You did not open hints for this part. ANSWER: w  μ F Wf L μ w  L Wf = Typesetting math: 91% Part B What is the work done by the applied force of magnitude ? Express your answer in terms of some or all of the following: , , , . ANSWER: Part C What is the change in the potential energy of the block, , after it has been pushed a distance up the incline? Express your answer in terms of some or all of the following: , , , . ANSWER: Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). W F μ w  L W = “U L μ w  L “U = Typesetting math: 91% Part F This question will be shown after you complete previous question(s). Where’s the Energy? Learning Goal: To understand how to apply the law of conservation of energy to situations with and without nonconservative forces acting. The law of conservation of energy states the following: In an isolated system the total energy remains constant. If the objects within the system interact through gravitational and elastic forces only, then the total mechanical energy is conserved. The mechanical energy of a system is defined as the sum of kinetic energy and potential energy . For such systems where no forces other than the gravitational and elastic forces do work, the law of conservation of energy can be written as , where the quantities with subscript “i” refer to the “initial” moment and those with subscript “f” refer to the final moment. A wise choice of initial and final moments, which is not always obvious, may significantly simplify the solution. The kinetic energy of an object that has mass \texttip{m}{m} and velocity \texttip{v}{v} is given by \large{K=\frac{1}{2}mv^2}. Potential energy, instead, has many forms. The two forms that you will be dealing with most often in this chapter are the gravitational and elastic potential energy. Gravitational potential energy is the energy possessed by elevated objects. For small heights, it can be found as U_{\rm g}=mgh, where \texttip{m}{m} is the mass of the object, \texttip{g}{g} is the acceleration due to gravity, and \texttip{h}{h} is the elevation of the object above the zero level. The zero level is the elevation at which the gravitational potential energy is assumed to be (you guessed it) zero. The choice of the zero level is dictated by convenience; typically (but not necessarily), it is selected to coincide with the lowest position of the object during the motion explored in the problem. Elastic potential energy is associated with stretched or compressed elastic objects such as springs. For a spring with a force constant \texttip{k}{k}, stretched or compressed a distance \texttip{x}{x}, the associated elastic potential energy is \large{U_{\rm e}=\frac{1}{2}kx^2}. When all three types of energy change, the law of conservation of energy for an object of mass \texttip{m}{m} can be written as K U Ki + Ui = Kf + Uf Typesetting math: 91% \large{\frac{1}{2}mv_{\rm i}^2+mgh_{\rm i}+\frac{1}{2}kx_{\rm i}^2=\frac{1}{2}mv_{\rm f \hspace{1 pt}}^2+mgh_{\rm f \hspace{1 pt}}+\frac{1}{2}kx_{\rm f \hspace{1 pt}}^2}. The gravitational force and the elastic force are two examples of conservative forces. What if nonconservative forces, such as friction, also act within the system? In that case, the total mechanical energy would change. The law of conservation of energy is then written as \large{\frac{1}{2}mv_{\rm i}^2+mgh_{\rm i}+\frac{1}{2}kx_{\rm i}^2+W_{\rm nc}=\frac{1}{2}mv_{\rm f \hspace{1 pt}}^2+mgh_{\rm f \hspace{1 pt}}+\frac{1}{2}kx_{\rm f \hspace{1 pt}}^2}, where \texttip{W_{\rm nc}}{W_nc} represents the work done by the nonconservative forces acting on the object between the initial and the final moments. The work \texttip{W_{\rm nc}}{W_nc} is usually negative; that is, the nonconservative forces tend to decrease, or dissipate, the mechanical energy of the system. In this problem, we will consider the following situation as depicted in the diagram : A block of mass \texttip{m}{m} slides at a speed \texttip{v}{v} along a horizontal, smooth table. It next slides down a smooth ramp, descending a height \texttip{h}{h}, and then slides along a horizontal rough floor, stopping eventually. Assume that the block slides slowly enough so that it does not lose contact with the supporting surfaces (table, ramp, or floor). You will analyze the motion of the block at different moments using the law of conservation of energy. Part A Which word in the statement of this problem allows you to assume that the table is frictionless? ANSWER: Part B straight smooth horizontal Typesetting math: 91% This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Part H Typesetting math: 91% This question will be shown after you complete previous question(s). Part I This question will be shown after you complete previous question(s). Part J This question will be shown after you complete previous question(s). Part K This question will be shown after you complete previous question(s). Sliding In Socks Suppose that the coefficient of kinetic friction between Zak’s feet and the floor, while wearing socks, is 0.250. Knowing this, Zak decides to get a running start and then slide across the floor. Part A If Zak’s speed is 3.00 \rm m/s when he starts to slide, what distance \texttip{d}{d} will he slide before stopping? Express your answer in meters. ANSWER: Typesetting math: 91% Part B This question will be shown after you complete previous question(s). Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. \rm m Typesetting math: 91%

please email info@checkyourstudy.com
Homework 1 Create a Solution for a Decision-making Process. Scenario: You’re a manager for Super Joe’s Cars that operates car dealerships throughout Kansas. SJ’s just recently acquired/merged local dealerships and now needs to ‘normalize’ their employee salaries. SJ’s now employs 30 employees that are each labeled as one of the following: Sales Representative , Senior Sales Representative, and Sales Executive. Due to different dealerships paying different salaries, these salaries are all different. SJ’s merger was a success, and has $100,000 to distribute raises to employees in order to realign them and have them close as possible to the industry average. Top management would like you to design a solution that will distribute this money to employees, with the top priority of moving as many employees as possible closer to the industry average. They have provided you with the data below (yes, it’s limited data) in order to do this. They also request that each employee gets a raise of some sort. Problem: What’s the ‘best’ way to allocate these dollars to your employees? Task: Use the data to create a SPREADSHEET that distributes the $100,000 to current employees. It should be well presented (FORMAT), and automate the process – so if the $100,000 is changed, the spreadsheet updates automatically (FORMULAS). This spreadsheet should also show other important information such as: Total salaries, current average salary per rank, new salary per rank, current deviation from the industry average, new deviation from industry average (DATA). **MUST BE DONE IN MICROSOFT EXCEL!! Shane’s Tips and Tricks: Identify your goal. In this case, you are essentially coming up with a solution to ‘who gets the raise’. There are many ways to create the solution, just choose what you feel is the best way. Identify numbers! Use $ and % signs, etc. USE FORMULAS. It’s pointless to create a spreadsheet that doesn’t calculate. A good spreadsheet allows users to change the data points and test different scenarios. If you have trouble, check out Atomic Learning on the FHSU website to view tutorials if needed. Make it pretty! Your spreadsheet should be clean, concise, and formatted nicely. Ideally, I could copy your spreadsheet and present it to others without modification. Highlight important information so it can easily be found. Use an assumption table. Your formulas should not contain numbers, but instead references to cells. An assumption table holds key information that will be used in multiple areas. You should be able to make one formula, ‘pull it down or across’, and it will work for all items. Typically when you use a number from the assumption table, you want it to be an absolute reference (meaning it doesn’t change when the formula is dragged across multiple rows). To do this, simply hit the F4 key. An assumption table can be located anywhere in the spreadsheet, but should be separate from spreadsheet data. How you are graded: Refer to the rubric with the assignment for more information on how you will be graded. Data Company Sales Employee Ranks Industry Average Salary Sales Representative $50,000 Senior Sales Representative $60,000 Sales Executive $75,000 Sales Representatives Salary Davidson Kaye 55,000 Corovic,Jose 43,000 Lane, Brandon 62,000 Wei, Guang 35,000 Drew, Richard 50,000 Adams, James 33,000 Spenser, William 51,000 Ray, Tony 41,000 Ryan, Mark 38,000 Warrem, Jason 53,000 Senior Sales Representatives Salary Ashley, Jane 53,000 Corning,Sandra 46,000 Scott, Rex 56,000 Duong,Linda 52,000 Bosa, Victor 37,000 UTran,Diem Thi 45,000 Dixon, James T 53,000 Goston, Sayeh 48,000 Jordan, Matthew 38,000 Menstell,Lori Lee 65,000 Sales Executives Salary Ching, Kam Hoong 57,000 Collins,Giovanni 75,000 Dixon,Eleonor 65,000 Lee,Brandon 60,000 Lunden,Haley 55,000 Rikki, Nicole 75,000 Scott, Bryan 67,000 Angel, Kathy 88,000 Quigly, James 59,000 Pham,Mary 80,000

Homework 1 Create a Solution for a Decision-making Process. Scenario: You’re a manager for Super Joe’s Cars that operates car dealerships throughout Kansas. SJ’s just recently acquired/merged local dealerships and now needs to ‘normalize’ their employee salaries. SJ’s now employs 30 employees that are each labeled as one of the following: Sales Representative , Senior Sales Representative, and Sales Executive. Due to different dealerships paying different salaries, these salaries are all different. SJ’s merger was a success, and has $100,000 to distribute raises to employees in order to realign them and have them close as possible to the industry average. Top management would like you to design a solution that will distribute this money to employees, with the top priority of moving as many employees as possible closer to the industry average. They have provided you with the data below (yes, it’s limited data) in order to do this. They also request that each employee gets a raise of some sort. Problem: What’s the ‘best’ way to allocate these dollars to your employees? Task: Use the data to create a SPREADSHEET that distributes the $100,000 to current employees. It should be well presented (FORMAT), and automate the process – so if the $100,000 is changed, the spreadsheet updates automatically (FORMULAS). This spreadsheet should also show other important information such as: Total salaries, current average salary per rank, new salary per rank, current deviation from the industry average, new deviation from industry average (DATA). **MUST BE DONE IN MICROSOFT EXCEL!! Shane’s Tips and Tricks: Identify your goal. In this case, you are essentially coming up with a solution to ‘who gets the raise’. There are many ways to create the solution, just choose what you feel is the best way. Identify numbers! Use $ and % signs, etc. USE FORMULAS. It’s pointless to create a spreadsheet that doesn’t calculate. A good spreadsheet allows users to change the data points and test different scenarios. If you have trouble, check out Atomic Learning on the FHSU website to view tutorials if needed. Make it pretty! Your spreadsheet should be clean, concise, and formatted nicely. Ideally, I could copy your spreadsheet and present it to others without modification. Highlight important information so it can easily be found. Use an assumption table. Your formulas should not contain numbers, but instead references to cells. An assumption table holds key information that will be used in multiple areas. You should be able to make one formula, ‘pull it down or across’, and it will work for all items. Typically when you use a number from the assumption table, you want it to be an absolute reference (meaning it doesn’t change when the formula is dragged across multiple rows). To do this, simply hit the F4 key. An assumption table can be located anywhere in the spreadsheet, but should be separate from spreadsheet data. How you are graded: Refer to the rubric with the assignment for more information on how you will be graded. Data Company Sales Employee Ranks Industry Average Salary Sales Representative $50,000 Senior Sales Representative $60,000 Sales Executive $75,000 Sales Representatives Salary Davidson Kaye 55,000 Corovic,Jose 43,000 Lane, Brandon 62,000 Wei, Guang 35,000 Drew, Richard 50,000 Adams, James 33,000 Spenser, William 51,000 Ray, Tony 41,000 Ryan, Mark 38,000 Warrem, Jason 53,000 Senior Sales Representatives Salary Ashley, Jane 53,000 Corning,Sandra 46,000 Scott, Rex 56,000 Duong,Linda 52,000 Bosa, Victor 37,000 UTran,Diem Thi 45,000 Dixon, James T 53,000 Goston, Sayeh 48,000 Jordan, Matthew 38,000 Menstell,Lori Lee 65,000 Sales Executives Salary Ching, Kam Hoong 57,000 Collins,Giovanni 75,000 Dixon,Eleonor 65,000 Lee,Brandon 60,000 Lunden,Haley 55,000 Rikki, Nicole 75,000 Scott, Bryan 67,000 Angel, Kathy 88,000 Quigly, James 59,000 Pham,Mary 80,000

For any additional help, please contact: info@checkyourstudy.com Call and Whatsapp … Read More...
1 IN2009: Language Processors Coursework Part 3: The Interpreter Introduction This is the 3rd and final part of the coursework. In the second part of the coursework you created a parser for the Moopl grammar which, given a syntactically correct Moopl program as input, builds an AST representation of the program. In Part 3 you will develop an interpreter which executes Moopl programs by visiting their AST representations. For this part of the coursework we provide functional code (with limitations, see below) for parsing, building a symbol table, type checking and variable allocation. Marks This part of the coursework is worth 12 of the 30 coursework marks for the Language Processors module. This part of the coursework is marked out of 12. Submission deadline This part of the coursework should be handed in before 5pm on Sunday 9th April 2017. In line with school policy, late submissions will be awarded no marks. Return & Feedback Marks and feedback will be available as soon as possible, certainly on or before Wed 3rd May 2017. Plagiarism If you copy the work of others (either that of fellow students or of a third party), with or without their permission, you will score no marks and further disciplinary action will be taken against you. Group working You will be working in the same groups as for the previous parts of the coursework except where group changes have already been approved. Submission: Submit a zip archive (not a rar file) of all your source code (the src folder of your project). We do not want the other parts of your NetBeans project, only the source code. Note 1: Submissions which do not compile will get zero marks. Note 2: You must not change the names or types of any of the existing packages, classes or public methods. 2 Getting started Download either moopl-interp.zip or moopl-interp.tgz from Moodle and extract all files. Key contents to be aware of: • A fully implemented Moopl parser (also implements a parser for the interpreter command language; see below). • A partially implemented Moopl type checker. • Test harnesses for the type checker and interpreter. • A directory of a few example Moopl programs (see Testing below). • Folder interp containing prototype interpreter code. The type-checker is only partially implemented but a more complete implementation will be provided following Session 6. That version is still not fully complete because it doesn’t support inheritance. Part d) below asks you to remove this restriction. The VarAllocator visitor in the interp package uses a simple implementation which only works for methods in which all parameter and local variable names are different. Part e) below asks you to remove this restriction. The three parts below should be attempted in sequence. When you have completed one part you should make a back-up copy of the work and keep it safe, in case you break it in your attempt at the next part. Be sure to test old functionality as well as new (regression testing). We will not assess multiple versions so, if your attempt at part d) or e) breaks previously working code, you may gain a better mark by submitting the earlier version for assessment. c) [8 marks] The Basic Interpreter: complete the implementation of the Interpreter visitor in the interp package. d) [2 marks] Inheritance: extend the type-checker, variable allocator and interpreter to support inheritance. e) [2 marks] Variable Allocation: extend the variable allocator to fully support blockstructure and lexical scoping, removing the requirement that all parameter and local variable names are different. Aim to minimise the number of local variable slots allocated in a stack frame. Note: variable and parameter names declared at the same scope level are still required to be different from each other (a method cannot have two different parameters called x, for example) and this is enforced by the existing typechecking code. But variables declared in different blocks (even when nested) can have the same name. Exceptions Your interpreter will only ever be run on Moopl code which is type-correct (and free from uninitialised local variables). But it is still possible that the Moopl code contains logical errors which may cause runtime errors (such as null-reference or array-bound errors). Your interpreter should throw a MooplRunTimeException with an appropriate error message in these cases. The only kind of exception your interpreter should ever throw is a MooplRunTimeException. 3 Testing The examples folder does not contain a comprehensive test-suite. You need to invent and run your own tests. The document Moopl compared with Java gives a concise summary of how Moopl programs are supposed to behave. You can (and should) also compare the behaviour of your interpreter with that of the online tool: https://smcse.city.ac.uk/student/sj353/langproc/Moopl.html (Note: the online tool checks for uninitialised local variables. Your implementation is not expected to do this.) To test your work, run the top-level Interpret harness, providing the name of a Moopl source file as a command-line argument. When run on a type-correct Moopl source file, Interpret will pretty-print the Moopl program then display a command prompt (>) at which you can enter one of the following commands: :quit This will quit the interpreter. :call main() This will call the top-level proc main, interpreted in the context defined by the Moopl program. (Any top-level proc can be called this way). :eval Exp ; This will evaluate expression Exp, interpreted in the context defined by the Moopl program, and print the result. Note the required terminating semi-colon. Testing your Expression visitors To unit-test your Exp visit methods, run the top-level Interpret harness on a complete Moopl program (though it can be trivial) and use the :eval command. For example, to test your visit methods for the Boolean-literals (ExpTrue and ExpFalse), you would enter the commands > :eval true ; > :eval false ; which should output 1 and 0, respectively. For the most basic cases, the Moopl program is essentially irrelevant (a single top-level proc with empty body may be sufficient). For other cases you will need to write programs containing class definitions (in order, for example, to test object creation and method call). Testing your Statement visitors To unit-test your Stm visit methods, write very simple Moopl programs, each with a top-level proc main() containing just a few lines of code. Run the top-level Interpret harness on these simple programs and enter the command > :call main() You will find a few examples to get you started in the folder examples/unittests. As for the Exp tests, simple cases can be tested using Moopl programs with just a main proc but for the more complex tests you will need to write Moopl programs containing class definitions. 4 Grading criteria Solutions will be graded according to their functional correctness, and the elegance of their implementation. Below are criteria that guide the award of marks. 70 – 100 [1st class] Work that meets all the requirements in full, constructed and presented to a professional standard. Showing evidence of independent reading, thinking and analysis. 60 – 69 [2:1] Work that makes a good attempt to address the requirements, realising all to some extent and most well. Well-structured and well presented. 50 – 59 [2:2] Work that attempts to address requirements realising all to some extent and some well but perhaps also including irrelevant or underdeveloped material. Structure and presentation may not always be clear. 40 – 49 [3rd class] Work that attempts to address the requirements but only realises them to some extent and may not include important elements or be completely accurate. Structure and presentation may lack clarity. 0 – 39 [fail] Unsatisfactory work that does not adequately address the requirements. Structure and presentation may be confused or incoherent.

1 IN2009: Language Processors Coursework Part 3: The Interpreter Introduction This is the 3rd and final part of the coursework. In the second part of the coursework you created a parser for the Moopl grammar which, given a syntactically correct Moopl program as input, builds an AST representation of the program. In Part 3 you will develop an interpreter which executes Moopl programs by visiting their AST representations. For this part of the coursework we provide functional code (with limitations, see below) for parsing, building a symbol table, type checking and variable allocation. Marks This part of the coursework is worth 12 of the 30 coursework marks for the Language Processors module. This part of the coursework is marked out of 12. Submission deadline This part of the coursework should be handed in before 5pm on Sunday 9th April 2017. In line with school policy, late submissions will be awarded no marks. Return & Feedback Marks and feedback will be available as soon as possible, certainly on or before Wed 3rd May 2017. Plagiarism If you copy the work of others (either that of fellow students or of a third party), with or without their permission, you will score no marks and further disciplinary action will be taken against you. Group working You will be working in the same groups as for the previous parts of the coursework except where group changes have already been approved. Submission: Submit a zip archive (not a rar file) of all your source code (the src folder of your project). We do not want the other parts of your NetBeans project, only the source code. Note 1: Submissions which do not compile will get zero marks. Note 2: You must not change the names or types of any of the existing packages, classes or public methods. 2 Getting started Download either moopl-interp.zip or moopl-interp.tgz from Moodle and extract all files. Key contents to be aware of: • A fully implemented Moopl parser (also implements a parser for the interpreter command language; see below). • A partially implemented Moopl type checker. • Test harnesses for the type checker and interpreter. • A directory of a few example Moopl programs (see Testing below). • Folder interp containing prototype interpreter code. The type-checker is only partially implemented but a more complete implementation will be provided following Session 6. That version is still not fully complete because it doesn’t support inheritance. Part d) below asks you to remove this restriction. The VarAllocator visitor in the interp package uses a simple implementation which only works for methods in which all parameter and local variable names are different. Part e) below asks you to remove this restriction. The three parts below should be attempted in sequence. When you have completed one part you should make a back-up copy of the work and keep it safe, in case you break it in your attempt at the next part. Be sure to test old functionality as well as new (regression testing). We will not assess multiple versions so, if your attempt at part d) or e) breaks previously working code, you may gain a better mark by submitting the earlier version for assessment. c) [8 marks] The Basic Interpreter: complete the implementation of the Interpreter visitor in the interp package. d) [2 marks] Inheritance: extend the type-checker, variable allocator and interpreter to support inheritance. e) [2 marks] Variable Allocation: extend the variable allocator to fully support blockstructure and lexical scoping, removing the requirement that all parameter and local variable names are different. Aim to minimise the number of local variable slots allocated in a stack frame. Note: variable and parameter names declared at the same scope level are still required to be different from each other (a method cannot have two different parameters called x, for example) and this is enforced by the existing typechecking code. But variables declared in different blocks (even when nested) can have the same name. Exceptions Your interpreter will only ever be run on Moopl code which is type-correct (and free from uninitialised local variables). But it is still possible that the Moopl code contains logical errors which may cause runtime errors (such as null-reference or array-bound errors). Your interpreter should throw a MooplRunTimeException with an appropriate error message in these cases. The only kind of exception your interpreter should ever throw is a MooplRunTimeException. 3 Testing The examples folder does not contain a comprehensive test-suite. You need to invent and run your own tests. The document Moopl compared with Java gives a concise summary of how Moopl programs are supposed to behave. You can (and should) also compare the behaviour of your interpreter with that of the online tool: https://smcse.city.ac.uk/student/sj353/langproc/Moopl.html (Note: the online tool checks for uninitialised local variables. Your implementation is not expected to do this.) To test your work, run the top-level Interpret harness, providing the name of a Moopl source file as a command-line argument. When run on a type-correct Moopl source file, Interpret will pretty-print the Moopl program then display a command prompt (>) at which you can enter one of the following commands: :quit This will quit the interpreter. :call main() This will call the top-level proc main, interpreted in the context defined by the Moopl program. (Any top-level proc can be called this way). :eval Exp ; This will evaluate expression Exp, interpreted in the context defined by the Moopl program, and print the result. Note the required terminating semi-colon. Testing your Expression visitors To unit-test your Exp visit methods, run the top-level Interpret harness on a complete Moopl program (though it can be trivial) and use the :eval command. For example, to test your visit methods for the Boolean-literals (ExpTrue and ExpFalse), you would enter the commands > :eval true ; > :eval false ; which should output 1 and 0, respectively. For the most basic cases, the Moopl program is essentially irrelevant (a single top-level proc with empty body may be sufficient). For other cases you will need to write programs containing class definitions (in order, for example, to test object creation and method call). Testing your Statement visitors To unit-test your Stm visit methods, write very simple Moopl programs, each with a top-level proc main() containing just a few lines of code. Run the top-level Interpret harness on these simple programs and enter the command > :call main() You will find a few examples to get you started in the folder examples/unittests. As for the Exp tests, simple cases can be tested using Moopl programs with just a main proc but for the more complex tests you will need to write Moopl programs containing class definitions. 4 Grading criteria Solutions will be graded according to their functional correctness, and the elegance of their implementation. Below are criteria that guide the award of marks. 70 – 100 [1st class] Work that meets all the requirements in full, constructed and presented to a professional standard. Showing evidence of independent reading, thinking and analysis. 60 – 69 [2:1] Work that makes a good attempt to address the requirements, realising all to some extent and most well. Well-structured and well presented. 50 – 59 [2:2] Work that attempts to address requirements realising all to some extent and some well but perhaps also including irrelevant or underdeveloped material. Structure and presentation may not always be clear. 40 – 49 [3rd class] Work that attempts to address the requirements but only realises them to some extent and may not include important elements or be completely accurate. Structure and presentation may lack clarity. 0 – 39 [fail] Unsatisfactory work that does not adequately address the requirements. Structure and presentation may be confused or incoherent.

checkyourstudy.com Whatsapp +919911743277
AUCS 340: Ethics in the Professions Individual Written Assignment #1 Medical Ethics: Historical names, dates and ethical theories assignment As you read chapters 1 and 2 in the “Ethics and Basic Law for Medical Imaging Professionals” textbook you will be responsible for identifying and explaining each of the following items from the list below. You will respond in paragraph format with correct spelling and grammar expected for each paragraph. Feel free to have more than one paragraph for each item, although in most instances a single paragraph response is sufficient. If you reference material in addition to what is available in the textbook it must be appropriately cited in your work using either APA or MLA including a references cited page. The use of Wikipedia.com is not a recognized peer reviewed source so please do not use that as a reference. When responding about individuals it is necessary to indicate a year or time period that the person discussed/developed their particular ethical theory so that you can look at and appreciate the historical background to the development of ethical theories and decision making. Respond to the following sixteen items. (They are in random order from your reading) 1. Francis Bacon 2. Isaac Newton 3. Prima Facie Duties – Why do they exist? LIST AND DEFINE ALL TERMS 4. Hippocrates 5. W.D. Ross – what do the initials stand for in his name and what was his contribution to the study of ethics? 6. Microallocation – define the term and provide an example separate from the book example (You should develop your own example rather than looking for an online example; this will use your critical thinking skills. Consider an application to your own profession as microallocation is NOT limited to the medical field.) 7. Deontology – Discuss at length the basic types/concepts of this theory 8. Thomas Aquinas – 1) Discuss the ethical theory developed by Aquinas, 2) his religious affiliation, 3) why that was so important to his ethical premise and 4) discuss the type of ethical issues resolved to this day using this theory. 9. Macroallocation – define and provide an example separate from the book example (You should develop your own example rather than looking for an online example; this will use your critical thinking skills. Consider an application to your own profession as macroallocation is NOT limited to the medical field.) 10. David Hume 11. Rodericus Castro 12. Plato and “The Republic” 13. Pythagoras 14. Teleology – Discuss at length the basic types/concepts of this theory 15. Core Values – Why do they exist? LIST AND DEFINE ALL TERMS 16. Develop a timeline that reflects the ethical theories as developed by the INDIVIDUALS presented in this assignment. This assignment is due Saturday March 14th at NOON and is graded as a homework assignment. Grading: Paragraph Formation = 20% of grade (bulleted lists are acceptable for some answers) Answers inclusive of major material for answer = 40% of grade Creation of Timeline = 10% of grade Sentence structure, application of correct spelling and grammar = 20% of grade References (if utilized) = 10% of grade; references should be submitted on a separate references cited page. Otherwise this 10% of the assignment grade will be considered under the sentence structure component for 30% of the grade. It is expected that the finished assignment will be two – three pages of text, double spaced, using 12 font and standard page margins.

AUCS 340: Ethics in the Professions Individual Written Assignment #1 Medical Ethics: Historical names, dates and ethical theories assignment As you read chapters 1 and 2 in the “Ethics and Basic Law for Medical Imaging Professionals” textbook you will be responsible for identifying and explaining each of the following items from the list below. You will respond in paragraph format with correct spelling and grammar expected for each paragraph. Feel free to have more than one paragraph for each item, although in most instances a single paragraph response is sufficient. If you reference material in addition to what is available in the textbook it must be appropriately cited in your work using either APA or MLA including a references cited page. The use of Wikipedia.com is not a recognized peer reviewed source so please do not use that as a reference. When responding about individuals it is necessary to indicate a year or time period that the person discussed/developed their particular ethical theory so that you can look at and appreciate the historical background to the development of ethical theories and decision making. Respond to the following sixteen items. (They are in random order from your reading) 1. Francis Bacon 2. Isaac Newton 3. Prima Facie Duties – Why do they exist? LIST AND DEFINE ALL TERMS 4. Hippocrates 5. W.D. Ross – what do the initials stand for in his name and what was his contribution to the study of ethics? 6. Microallocation – define the term and provide an example separate from the book example (You should develop your own example rather than looking for an online example; this will use your critical thinking skills. Consider an application to your own profession as microallocation is NOT limited to the medical field.) 7. Deontology – Discuss at length the basic types/concepts of this theory 8. Thomas Aquinas – 1) Discuss the ethical theory developed by Aquinas, 2) his religious affiliation, 3) why that was so important to his ethical premise and 4) discuss the type of ethical issues resolved to this day using this theory. 9. Macroallocation – define and provide an example separate from the book example (You should develop your own example rather than looking for an online example; this will use your critical thinking skills. Consider an application to your own profession as macroallocation is NOT limited to the medical field.) 10. David Hume 11. Rodericus Castro 12. Plato and “The Republic” 13. Pythagoras 14. Teleology – Discuss at length the basic types/concepts of this theory 15. Core Values – Why do they exist? LIST AND DEFINE ALL TERMS 16. Develop a timeline that reflects the ethical theories as developed by the INDIVIDUALS presented in this assignment. This assignment is due Saturday March 14th at NOON and is graded as a homework assignment. Grading: Paragraph Formation = 20% of grade (bulleted lists are acceptable for some answers) Answers inclusive of major material for answer = 40% of grade Creation of Timeline = 10% of grade Sentence structure, application of correct spelling and grammar = 20% of grade References (if utilized) = 10% of grade; references should be submitted on a separate references cited page. Otherwise this 10% of the assignment grade will be considered under the sentence structure component for 30% of the grade. It is expected that the finished assignment will be two – three pages of text, double spaced, using 12 font and standard page margins.

Francis Bacon was a 16th century ethical theorist who was … Read More...