In a voltaic cell, electrons flow from the __________ to the __________. A) salt bride, anode B) anode, salt bridge C) cathode, anode D) salt bridge, cathode E) anode, cathode

In a voltaic cell, electrons flow from the __________ to the __________. A) salt bride, anode B) anode, salt bridge C) cathode, anode D) salt bridge, cathode E) anode, cathode

E) anode, cathode In a voltaic cell, electrons flow from … Read More...
What is the prime purpose of selecting a composite material over material from the other family groups? MODULE 3 – STRUCTURE OF SOLID MATERIALS The ability of a material to exist in different space lattices is called a. Allotropic b. Crystalline c. Solvent d. Amorphous Amorphous metals develop their microstructure as a result of ___________. a. Dendrites b. Directional solidification c. Slip d. Extremely rapid cooling In an alloy, the material that dissolves the alloying element is the ___________. a. Solute b. Solvent c. Matrix d. Allotrope What is the coordination number (CN) for the fcc structure formed by ions of sodium and chlorine that is in the chemical compound NaCl (salt) ? a. 6 b. 8 c. 14 d. 16 What pressure is normally used in constructing a phase diagram? a. 100 psi b. Depends on material c. Ambient d. Normal atmospheric pressure What line on a binary diagram indicates the upper limit of the solid solution phase? a. Liquidus b. Eutectic c. Eutectoid d. Solidus What holds the atoms (ions) together in a compound such as NaCl are electrostatic forces between ___________. a. Atom and ion b. Covalent bonds c. Electrons and nuclei d. Neutrons Diffusion of atoms through a solid takes place by two main mechanisms. One is diffusion through vacancies in the atomic structure. Another method of diffusion is ___________. a. Cold b. APF c. Substitutional d. Interstitial Give a brief explanation of the Lever rule (P117) Grain boundaries ___________ movement of dislocations through a solid. a. Improve b. Inhibit c. Do not affect Iron can be alloyed with carbon because it is ___________. a. Crystalline b. Amorphous c. A mixture d. Allotropic Metals can be cooled only to crystalline solids. a. T (true) b. F (false) Sketch an fcc unit cell. Metals are classified as crystalline materials. Name one metal that is an amorphous solid and name at least one recent application in which its use is saving energy or providing greater strength and/or corrosion resistance. MODULE 4 – MECHANICAL PROPERTIES Give two examples of a mechanical property. a. Thermal resistance b. Wear resistance c. Hardness d. Strength Scissors used in the home cut material by concentrating forces that ultimately produce a certain type of stress within the material. Identify this stress. a. Bearing stress b. Shearing stress c. Compressive stress An aluminum rod 1 in. in diameter (E =10.4 x 106psi) experiences an elastic tensile strain of 0.0048 in./in. Calculate the stress in the rod. a. 49,920 ksi b. 49,920 psi c. 49,920 msi A 1-in.-diameter steel circular rod is subject to a tensile load that reduces its cross-sectional area to 0.64 in2. Express the rod’s ductility using a standard unit of measure. a. 18.5% b. 1.85% c. 18.5 d. (a) and (c) What term is used to describe the low-temperature creep of polymerics? a. Springback b. Creep rupture c. Cold flow d. Creep forming MODULE 7 – TESTING, FAILURE ANALYSIS, STANDARDS, & INSPECTION Factors of safety are defined either in terms of the ultimate strength of a material or its yield strength. In other words, by the use of a suitable factor, the ultimate or yield strength is reduced in size to what is known as the design stress or safe working stress. Which factor of safety would be more appropriate for a material that will be subjected to repetitious, suddenly applied loads? Product liability court cases have risen sharply in recent years because of poor procedures in selecting materials for particular applications. Assuming that a knowledge of a material’s properties is a valid step in the selection process, cite two examples where such lack of knowledge could or did lead to failure or unsatisfactory performance. Make a sketch and fully dimension an Izod impact test specimen. Which agency publishes the Annual Book of standard test methods used worldwide for evaluation of materials? a. NASA b. NIST c. ASTM d. SPE

What is the prime purpose of selecting a composite material over material from the other family groups? MODULE 3 – STRUCTURE OF SOLID MATERIALS The ability of a material to exist in different space lattices is called a. Allotropic b. Crystalline c. Solvent d. Amorphous Amorphous metals develop their microstructure as a result of ___________. a. Dendrites b. Directional solidification c. Slip d. Extremely rapid cooling In an alloy, the material that dissolves the alloying element is the ___________. a. Solute b. Solvent c. Matrix d. Allotrope What is the coordination number (CN) for the fcc structure formed by ions of sodium and chlorine that is in the chemical compound NaCl (salt) ? a. 6 b. 8 c. 14 d. 16 What pressure is normally used in constructing a phase diagram? a. 100 psi b. Depends on material c. Ambient d. Normal atmospheric pressure What line on a binary diagram indicates the upper limit of the solid solution phase? a. Liquidus b. Eutectic c. Eutectoid d. Solidus What holds the atoms (ions) together in a compound such as NaCl are electrostatic forces between ___________. a. Atom and ion b. Covalent bonds c. Electrons and nuclei d. Neutrons Diffusion of atoms through a solid takes place by two main mechanisms. One is diffusion through vacancies in the atomic structure. Another method of diffusion is ___________. a. Cold b. APF c. Substitutional d. Interstitial Give a brief explanation of the Lever rule (P117) Grain boundaries ___________ movement of dislocations through a solid. a. Improve b. Inhibit c. Do not affect Iron can be alloyed with carbon because it is ___________. a. Crystalline b. Amorphous c. A mixture d. Allotropic Metals can be cooled only to crystalline solids. a. T (true) b. F (false) Sketch an fcc unit cell. Metals are classified as crystalline materials. Name one metal that is an amorphous solid and name at least one recent application in which its use is saving energy or providing greater strength and/or corrosion resistance. MODULE 4 – MECHANICAL PROPERTIES Give two examples of a mechanical property. a. Thermal resistance b. Wear resistance c. Hardness d. Strength Scissors used in the home cut material by concentrating forces that ultimately produce a certain type of stress within the material. Identify this stress. a. Bearing stress b. Shearing stress c. Compressive stress An aluminum rod 1 in. in diameter (E =10.4 x 106psi) experiences an elastic tensile strain of 0.0048 in./in. Calculate the stress in the rod. a. 49,920 ksi b. 49,920 psi c. 49,920 msi A 1-in.-diameter steel circular rod is subject to a tensile load that reduces its cross-sectional area to 0.64 in2. Express the rod’s ductility using a standard unit of measure. a. 18.5% b. 1.85% c. 18.5 d. (a) and (c) What term is used to describe the low-temperature creep of polymerics? a. Springback b. Creep rupture c. Cold flow d. Creep forming MODULE 7 – TESTING, FAILURE ANALYSIS, STANDARDS, & INSPECTION Factors of safety are defined either in terms of the ultimate strength of a material or its yield strength. In other words, by the use of a suitable factor, the ultimate or yield strength is reduced in size to what is known as the design stress or safe working stress. Which factor of safety would be more appropriate for a material that will be subjected to repetitious, suddenly applied loads? Product liability court cases have risen sharply in recent years because of poor procedures in selecting materials for particular applications. Assuming that a knowledge of a material’s properties is a valid step in the selection process, cite two examples where such lack of knowledge could or did lead to failure or unsatisfactory performance. Make a sketch and fully dimension an Izod impact test specimen. Which agency publishes the Annual Book of standard test methods used worldwide for evaluation of materials? a. NASA b. NIST c. ASTM d. SPE

info@checkyourstudy.com
When a cell incorporates DNA from another organism, and expresses the genes on this DNA, it is said to be transformed transcripted translated corrupted juvenile

When a cell incorporates DNA from another organism, and expresses the genes on this DNA, it is said to be transformed transcripted translated corrupted juvenile

When a cell incorporates DNA from another organism, and expresses … Read More...
Packing efficiency is the percentage of space occupied by atoms in a unit cell. Calculate the packing efficiency of a face centered cubic unit cell. (The lattice constant should drop out of your calculations.) The packing efficiency of a diamond lattice is 34%. Why is this not the same as for fcc, even though diamond lattice is based on fcc? (Think about what is where … and isn’t where)

Packing efficiency is the percentage of space occupied by atoms in a unit cell. Calculate the packing efficiency of a face centered cubic unit cell. (The lattice constant should drop out of your calculations.) The packing efficiency of a diamond lattice is 34%. Why is this not the same as for fcc, even though diamond lattice is based on fcc? (Think about what is where … and isn’t where)

No expert has answered this question yet. You can browse … Read More...
1 15325 Pre-work assignment Preparing your conflict scenario (four copies of your scenario must be brought to the workshop) Dear Participant, This letter introduces some pre-course work that is essential for you to complete before arriving at the workshop for the subject Negotiations and Conflict Management: 15325 – in which you are enrolled. The workshop will combine theory and practice in a manner intended to use the wisdom in the room to bring together our thinking about enacting the practices you will learn about. You will bring with you a scenario to work through during the workshop. This letter explains how to write that. 1 The situation (you can give it a title if that helps to frame it for you) Your first task is to identify a situation that is (or in your opinion is) unresolved and has potential to escalate into a matter causing stress, tension, delay or confusion. This may be something at work or in a context where you have the power to take action. You will use fictional names and disguise other facts to ensure confidentiality, but it is essential that this is a real situation – not a hypothetical or fictional one. 2 The Details To enable others to understand the context you will need to describe the following – A The people. Describe each person using the following items – Name – Use a fictional name for each person and do not include more than four others apart from yourself. You can use your own name if you wish or also disguise that as well. General facts about each person – gender, age range, role title, marital status (if relevant) work/life location (if other than yours) Personal characteristics – select at least 5 key words/phrases chosen from the list at the end of this letter Relationship to others in the scenario – boss, subordinate, peer, family member, relative etc. B The context. Type of business or other relevant information to provide a general setting for the moment you will use to describe the unresolved issue. C The event (moment in time). This can be at least partly imagined in that you will need to summarise a lot of information and it might be easier to do so if you write it as conversation even if that has not happened. 2 A sample example written in this way follows. This is a real scenario written by a person who will not be attending the workshop. It took 40 minutes to write. That involved 10 minutes to collect thoughts, select words and frame the setting and then 30 minutes to put it into the words you are reading. The advice is to allow yourself at least this amount of time and also to find a quiet space and time to write your scenario. Example Case Study Title – Where is that space? Setting – a Sydney residential street, in a smallish inner city suburb. There is a main road at one end of the street and a large schoolyard at the other end. At the corner of the street and the main road is a temporary church site whose owners are seeking to extend and develop the site. On the opposite corner is a second hand car yard with the imaginative title of “Junk your Jalopy” (JyJ). Aside from a block of six flats next to the home Eva has lived in for 12 years, all the other residences are single storey homes most built in the first two decades of the 20th century. Most residents have at least one car – often two. Umberto works at JyJ and may be a part owner. He doesn’t live nearby. On a recent occasion Eva, who is reasonably laid back but can be forgetful, was moved to anger by the presence, in the street outside her front door, of a very old and battered panel van that she knew did not belong to any of the residents. It has been there for nearly two weeks and meant that she was parking her car out of sight in a side lane, on land owned by the church. This is not official parking for the street and is often blocked off by the church. Walking to the corner one morning she saw Umberto taking photos of a motorbike and went to raise the issue of the van with him. He is not particularly interested in others’ concerns about the lack of parking and merely wants to make a success of the business. If that means parking extra cars in the street and annoying a few residents he’s opportunistic enough to do so without compunction. Although she is usually fearful of conflict Eva was determined to do something to try and put a stop to JYJ’s habit of parking cars illegally in the residential area. She opened the conversation by asking if Umberto knew anything about the van. He denied all knowledge of it and became quite aggressive (or at least it seemed that way to Eva) about the matter of cars in the street, denying that any were from JyJ, suggesting she talk to the owners of the spare parts yard facing the main road. As Eva tried to ask him to consider the needs and rights of residents, Umberto became ever more inflexible disregarding her issue and suggesting she leave his premises. Although she is quite creative, and has worked for 30 years in a variety of roles Eva is not always able to speak her mind easily, and his denials were not helping. He even began whinging about having to ‘cop the s—t’ for the spare parts yard but resisted the idea of marking his cars so residents could see those parked illegally were not his. 3 As she walked away Eva heard herself say “well if you do nothing about it, then you’ll have to continue copping the s—t, and I hope it hurts”, realising as she did so that she would not be any better off for her efforts. When she got home that night the van was gone – but a different one had arrived within four days. The issue is unresolved. Words to describe the people in your scenario accurate inquisitive empire building adaptable knowledgeable erratic analytical logical fearful of conflict broad in outlook loyal forgetful calm & confident observant frightened of failure caring opportunistic fussy challenging original impatient clever outgoing impulsive competitive outspoken indecisive conscientious perfectionist inflexible conscious of priorities persistent insular consultative persuasive laid back 4 co-operative practical manipulative creative professionally dedicated not interested in others diplomatic Marking Criteria for the Case Study How to get the maximum marks for the case study! For 10 marks – the case study – Accurately uses more than the required number of suggested words to describe the people in the scenario. That is the words used to describe the people are descriptive and placed appropriately to ensure a reader is able to create an informative word picture of each person. The sequence of events is presented in a manner that ensures the current situation, and possible consequences of any future actions, are easily understood by a reader not familiar with the context. Includes enough information to ensure that a stranger does not need to ask additional questions to affirm understanding of the situation as described in the case study. For 8 – 9 marks – the case study – Uses the set minimum number of words. The words are used correctly. The sequence is reasonably ordered, but readers find they need to ask one or two questions about the actual context, order of events. There is less that a sufficient amount of information to ensure that a stranger will quickly understand the nature of issues that remain unresolved. For 5 – 7 – the case study – Uses the set minimum number of words. Not all words are used appropriately in the context, but a stranger is able to gain an impression of the people. The sequence of events – as presented in the case study text – needs some re-ordering in response to questions from other readers to enable them to understand the issues. Strangers will need to seek additional information before they feel able to understand the issue and/or the context. For F = less than 5 – the case study – Uses fewer than the set minimum number of words. They do not add to the information about the people. 5 The sequence of events is unclear and does not represent the issue/s in a manner that can be understood by a stranger. A good deal of additional information is required before a stranger can understand the nature of the issues and context.

1 15325 Pre-work assignment Preparing your conflict scenario (four copies of your scenario must be brought to the workshop) Dear Participant, This letter introduces some pre-course work that is essential for you to complete before arriving at the workshop for the subject Negotiations and Conflict Management: 15325 – in which you are enrolled. The workshop will combine theory and practice in a manner intended to use the wisdom in the room to bring together our thinking about enacting the practices you will learn about. You will bring with you a scenario to work through during the workshop. This letter explains how to write that. 1 The situation (you can give it a title if that helps to frame it for you) Your first task is to identify a situation that is (or in your opinion is) unresolved and has potential to escalate into a matter causing stress, tension, delay or confusion. This may be something at work or in a context where you have the power to take action. You will use fictional names and disguise other facts to ensure confidentiality, but it is essential that this is a real situation – not a hypothetical or fictional one. 2 The Details To enable others to understand the context you will need to describe the following – A The people. Describe each person using the following items – Name – Use a fictional name for each person and do not include more than four others apart from yourself. You can use your own name if you wish or also disguise that as well. General facts about each person – gender, age range, role title, marital status (if relevant) work/life location (if other than yours) Personal characteristics – select at least 5 key words/phrases chosen from the list at the end of this letter Relationship to others in the scenario – boss, subordinate, peer, family member, relative etc. B The context. Type of business or other relevant information to provide a general setting for the moment you will use to describe the unresolved issue. C The event (moment in time). This can be at least partly imagined in that you will need to summarise a lot of information and it might be easier to do so if you write it as conversation even if that has not happened. 2 A sample example written in this way follows. This is a real scenario written by a person who will not be attending the workshop. It took 40 minutes to write. That involved 10 minutes to collect thoughts, select words and frame the setting and then 30 minutes to put it into the words you are reading. The advice is to allow yourself at least this amount of time and also to find a quiet space and time to write your scenario. Example Case Study Title – Where is that space? Setting – a Sydney residential street, in a smallish inner city suburb. There is a main road at one end of the street and a large schoolyard at the other end. At the corner of the street and the main road is a temporary church site whose owners are seeking to extend and develop the site. On the opposite corner is a second hand car yard with the imaginative title of “Junk your Jalopy” (JyJ). Aside from a block of six flats next to the home Eva has lived in for 12 years, all the other residences are single storey homes most built in the first two decades of the 20th century. Most residents have at least one car – often two. Umberto works at JyJ and may be a part owner. He doesn’t live nearby. On a recent occasion Eva, who is reasonably laid back but can be forgetful, was moved to anger by the presence, in the street outside her front door, of a very old and battered panel van that she knew did not belong to any of the residents. It has been there for nearly two weeks and meant that she was parking her car out of sight in a side lane, on land owned by the church. This is not official parking for the street and is often blocked off by the church. Walking to the corner one morning she saw Umberto taking photos of a motorbike and went to raise the issue of the van with him. He is not particularly interested in others’ concerns about the lack of parking and merely wants to make a success of the business. If that means parking extra cars in the street and annoying a few residents he’s opportunistic enough to do so without compunction. Although she is usually fearful of conflict Eva was determined to do something to try and put a stop to JYJ’s habit of parking cars illegally in the residential area. She opened the conversation by asking if Umberto knew anything about the van. He denied all knowledge of it and became quite aggressive (or at least it seemed that way to Eva) about the matter of cars in the street, denying that any were from JyJ, suggesting she talk to the owners of the spare parts yard facing the main road. As Eva tried to ask him to consider the needs and rights of residents, Umberto became ever more inflexible disregarding her issue and suggesting she leave his premises. Although she is quite creative, and has worked for 30 years in a variety of roles Eva is not always able to speak her mind easily, and his denials were not helping. He even began whinging about having to ‘cop the s—t’ for the spare parts yard but resisted the idea of marking his cars so residents could see those parked illegally were not his. 3 As she walked away Eva heard herself say “well if you do nothing about it, then you’ll have to continue copping the s—t, and I hope it hurts”, realising as she did so that she would not be any better off for her efforts. When she got home that night the van was gone – but a different one had arrived within four days. The issue is unresolved. Words to describe the people in your scenario accurate inquisitive empire building adaptable knowledgeable erratic analytical logical fearful of conflict broad in outlook loyal forgetful calm & confident observant frightened of failure caring opportunistic fussy challenging original impatient clever outgoing impulsive competitive outspoken indecisive conscientious perfectionist inflexible conscious of priorities persistent insular consultative persuasive laid back 4 co-operative practical manipulative creative professionally dedicated not interested in others diplomatic Marking Criteria for the Case Study How to get the maximum marks for the case study! For 10 marks – the case study – Accurately uses more than the required number of suggested words to describe the people in the scenario. That is the words used to describe the people are descriptive and placed appropriately to ensure a reader is able to create an informative word picture of each person. The sequence of events is presented in a manner that ensures the current situation, and possible consequences of any future actions, are easily understood by a reader not familiar with the context. Includes enough information to ensure that a stranger does not need to ask additional questions to affirm understanding of the situation as described in the case study. For 8 – 9 marks – the case study – Uses the set minimum number of words. The words are used correctly. The sequence is reasonably ordered, but readers find they need to ask one or two questions about the actual context, order of events. There is less that a sufficient amount of information to ensure that a stranger will quickly understand the nature of issues that remain unresolved. For 5 – 7 – the case study – Uses the set minimum number of words. Not all words are used appropriately in the context, but a stranger is able to gain an impression of the people. The sequence of events – as presented in the case study text – needs some re-ordering in response to questions from other readers to enable them to understand the issues. Strangers will need to seek additional information before they feel able to understand the issue and/or the context. For F = less than 5 – the case study – Uses fewer than the set minimum number of words. They do not add to the information about the people. 5 The sequence of events is unclear and does not represent the issue/s in a manner that can be understood by a stranger. A good deal of additional information is required before a stranger can understand the nature of the issues and context.

(Conflict scenario) Title – Who steal the gold?   Setting: … Read More...
Project Part 1 Objective Our objective, in this Part 1 of our Project, is to practise solving a problem by composing and testing a Python program using all that we have learnt so far and discovering new things, such as lists of lists, on the way. Project – Hunting worms in our garden! No more turtles! In this project, we shall move on to worms. Indeed, our project is a game in which the player hunts for worms in our garden. Once our garden has been displayed, the player tries to guess where the worms are located by entering the coordinates of a cell in our garden. When the player has located all the worms, the game is over! Of course there are ways of making this game more exciting (hence complicated), but considering that we have 2 weeks for Part 1 and 2 weeks for Part 2, keeping it simple will be our goal. We will implement our game in two parts. In Part 1, we write code that constructs and tests our data structures i.e., our variables. In Part 2, we write code that allows the player to play a complete “worm hunting” game! ? Project – Part 1 – Description Data Structures (variables): As stated above, in Part 1, we write code that constructs our data structures i.e., our variables. In our game program, we will need data structures (variables) to represent: 1. Our garden that is displayed to the player (suggestion: list of lists), 2. The garden that contains all the worms (suggestion: another list of lists), Garden: Our garden in Part 1 of our Project will have a width and a height of 10. Warning: The width and the height of our garden may change in Part 2 of our Project. So, it may be a good idea to create 2 variables and assign the width and the height of our garden to these 2 variables. 3. Our worms and their information. For each worm, we may want to keep the following information: a. worm number, b. the location of the worm, for example, either the coordinates of the cells containing the worm OR the coordinate of the first cell containing the worm, its length and whether the worm is laying horizontally or vertically. Worms: We will create 6 worms of length 3. 4. And other variables as needed. Testing our data structures: ? Suggestion: as we create a data structure (the “displayed” garden, the garden containing the worms, each worm, etc…), print it with a “debug print statement”. Once we are certain the data structure is well constructed, comment out the “debug print statement”. Code: In Part 1, the code we write must include functions and it must include the main section of our program. In other words, in Part 1, the code we write must be a complete program. In terms of functions, here is a list of suggestions. We may have functions that … ? creates a garden (i.e., a garden data structure), ? creates the worms (i.e., the worm data structure), ? places a worm in the garden that is to hold the worms (i.e., another garden data structure), ? displays the garden on the screen for the player to see, ? displays a worm in the displayed garden, ? etc… ? Finally, in Part 1, the code we write must implement the following algorithm: Algorithm: Here is the algorithm for the main section of our game program: ? Welcome the player ? Create an empty “displayed” garden, (“displayed” because this is the garden we display to the player) ? Create the worms (worms’ information) ? Create an empty “hidden” garden Note 1: “hidden” because one can keep track of the worms in this “hidden” garden, which we do not show to the player. This is why it is called “hidden”. Note 2: One can keep track of worm’s locations using a different mechanism or data structure. It does not have to be a list of lists representing a “hidden” garden. We are free to choose how we want to keep track of where our worms are located in our garden. ? Place each worm in the “hidden” garden (or whatever mechanism or data structure we decide to use) ? Display the “displayed” garden on the screen for the player to see ? While the player wants to play, ask the player for a worm number (1 to 6), read this worm number and display this worm on the “displayed” garden. This is not the game. Remember, we shall implement the game itself in Part 2. Here, in this step, we make sure our code works properly, i.e., it can retrieve worm information and display worms properly. Displaying worms properly: Note that when we create worms and display them, it may be the case that worms overlap with other worms and that worms wrap around the garden. These 2 situations are illustrated in the 3 Sample Runs discussed below. At this point, we are ready for Part 2 of our Project. Sample Runs: In order to illustrate the explanations given above of what we are to do in this Part 1 of our Project, 3 sample runs have been posted below the description of this Part 1 of our Project on our course web site. Have a look at these 3 sample runs. The code we create for this Part 1 of our Project must produce exactly the same output as the one shown in these 3 sample runs. Of course, the position of our worms will be different but everything else should be the same. What we see in each of these 3 sample runs is 1 execution of the code we are to create for this Part 1 of our Project. Note about Sample Run 1: In this Sample Run, the player enters the numbers 1 to 8 sequentially. Wrap around: Worm 2 wraps around: it starts at (row 7, column B), (row 7, column A) then wraps around to (row 7, column J). Worm 6 also wraps around: it starts at (row 2, column E), (row 1, column E) then wraps around to (row 10, column E). Overlap: There are some overlapping worms: worms 5 and 6 overlap at (row 1, column E). Note about Sample Run 2: In this Sample Run, the player enters the numbers 1 to 8 sequentially. Wrap around: Worm 3 wraps around: it starts at (row 1, column B) then wraps around to (row 10, column B) and (row 9, column B). Worm 6 also wraps around: it starts at (row 1, column D) then wraps around to (row 10, column D) and (row 9, column D). Overlap: There are some overlapping worms: worms 2 and 4 overlap at (row 3, column H), worms 1 and 2 overlap at (row 3, column G) and worms 2 and 5 overlap at (row 3, column E). Note about Sample Run 3: In this Sample Run, the player enters the numbers in the following sequence: 3, 2, 6, 4, 5, 1, 7, 8. Wrap around: Worm 3 wraps around: it starts at (row 2, column C), (row 1, column C) then wraps around to (row 10, column C). Worm 1 also wraps around: it starts at (row 2, column B), (row 2, column A) then wraps around to (row 2, column J). Overlap: There are some overlapping worms: worms 6 and 3 overlap at (row 1, column C) and (row 2, column C). Other Requirements: Here are a few more requirements the code we are to create for this Part 1 of our Project must satisfy. 1. The location of each worm in the garden must be determined randomly. 2. Whether a worm is lying horizontally or vertically must also be determined randomly. 3. It is acceptable in Part 1 of our Project if worms overlap each other (see Sample Runs) 4. When placing a worm in a garden, the worm must “wrap around” the garden. See Sample Runs for examples of what “wrapping around” signifies. How will we implement this wrapping around? Hint: wrapping around can be achieved using an arithmetic operator we have already seen. 5. We must make use of docstring when we implement our functions (have a look at our textbook for an explanation and an example). 6. Every time we encounter the word must in this description of Part 1 of our Project, we shall look upon that sentence as another requirement. For example, the sentence “The code we create for this Part 1 of our Project must produce exactly the same output as the one shown in these 3 sample runs.”, even though it is not listed below the Other Requirements heading, is also a requirement because of its must.

Project Part 1 Objective Our objective, in this Part 1 of our Project, is to practise solving a problem by composing and testing a Python program using all that we have learnt so far and discovering new things, such as lists of lists, on the way. Project – Hunting worms in our garden! No more turtles! In this project, we shall move on to worms. Indeed, our project is a game in which the player hunts for worms in our garden. Once our garden has been displayed, the player tries to guess where the worms are located by entering the coordinates of a cell in our garden. When the player has located all the worms, the game is over! Of course there are ways of making this game more exciting (hence complicated), but considering that we have 2 weeks for Part 1 and 2 weeks for Part 2, keeping it simple will be our goal. We will implement our game in two parts. In Part 1, we write code that constructs and tests our data structures i.e., our variables. In Part 2, we write code that allows the player to play a complete “worm hunting” game! ? Project – Part 1 – Description Data Structures (variables): As stated above, in Part 1, we write code that constructs our data structures i.e., our variables. In our game program, we will need data structures (variables) to represent: 1. Our garden that is displayed to the player (suggestion: list of lists), 2. The garden that contains all the worms (suggestion: another list of lists), Garden: Our garden in Part 1 of our Project will have a width and a height of 10. Warning: The width and the height of our garden may change in Part 2 of our Project. So, it may be a good idea to create 2 variables and assign the width and the height of our garden to these 2 variables. 3. Our worms and their information. For each worm, we may want to keep the following information: a. worm number, b. the location of the worm, for example, either the coordinates of the cells containing the worm OR the coordinate of the first cell containing the worm, its length and whether the worm is laying horizontally or vertically. Worms: We will create 6 worms of length 3. 4. And other variables as needed. Testing our data structures: ? Suggestion: as we create a data structure (the “displayed” garden, the garden containing the worms, each worm, etc…), print it with a “debug print statement”. Once we are certain the data structure is well constructed, comment out the “debug print statement”. Code: In Part 1, the code we write must include functions and it must include the main section of our program. In other words, in Part 1, the code we write must be a complete program. In terms of functions, here is a list of suggestions. We may have functions that … ? creates a garden (i.e., a garden data structure), ? creates the worms (i.e., the worm data structure), ? places a worm in the garden that is to hold the worms (i.e., another garden data structure), ? displays the garden on the screen for the player to see, ? displays a worm in the displayed garden, ? etc… ? Finally, in Part 1, the code we write must implement the following algorithm: Algorithm: Here is the algorithm for the main section of our game program: ? Welcome the player ? Create an empty “displayed” garden, (“displayed” because this is the garden we display to the player) ? Create the worms (worms’ information) ? Create an empty “hidden” garden Note 1: “hidden” because one can keep track of the worms in this “hidden” garden, which we do not show to the player. This is why it is called “hidden”. Note 2: One can keep track of worm’s locations using a different mechanism or data structure. It does not have to be a list of lists representing a “hidden” garden. We are free to choose how we want to keep track of where our worms are located in our garden. ? Place each worm in the “hidden” garden (or whatever mechanism or data structure we decide to use) ? Display the “displayed” garden on the screen for the player to see ? While the player wants to play, ask the player for a worm number (1 to 6), read this worm number and display this worm on the “displayed” garden. This is not the game. Remember, we shall implement the game itself in Part 2. Here, in this step, we make sure our code works properly, i.e., it can retrieve worm information and display worms properly. Displaying worms properly: Note that when we create worms and display them, it may be the case that worms overlap with other worms and that worms wrap around the garden. These 2 situations are illustrated in the 3 Sample Runs discussed below. At this point, we are ready for Part 2 of our Project. Sample Runs: In order to illustrate the explanations given above of what we are to do in this Part 1 of our Project, 3 sample runs have been posted below the description of this Part 1 of our Project on our course web site. Have a look at these 3 sample runs. The code we create for this Part 1 of our Project must produce exactly the same output as the one shown in these 3 sample runs. Of course, the position of our worms will be different but everything else should be the same. What we see in each of these 3 sample runs is 1 execution of the code we are to create for this Part 1 of our Project. Note about Sample Run 1: In this Sample Run, the player enters the numbers 1 to 8 sequentially. Wrap around: Worm 2 wraps around: it starts at (row 7, column B), (row 7, column A) then wraps around to (row 7, column J). Worm 6 also wraps around: it starts at (row 2, column E), (row 1, column E) then wraps around to (row 10, column E). Overlap: There are some overlapping worms: worms 5 and 6 overlap at (row 1, column E). Note about Sample Run 2: In this Sample Run, the player enters the numbers 1 to 8 sequentially. Wrap around: Worm 3 wraps around: it starts at (row 1, column B) then wraps around to (row 10, column B) and (row 9, column B). Worm 6 also wraps around: it starts at (row 1, column D) then wraps around to (row 10, column D) and (row 9, column D). Overlap: There are some overlapping worms: worms 2 and 4 overlap at (row 3, column H), worms 1 and 2 overlap at (row 3, column G) and worms 2 and 5 overlap at (row 3, column E). Note about Sample Run 3: In this Sample Run, the player enters the numbers in the following sequence: 3, 2, 6, 4, 5, 1, 7, 8. Wrap around: Worm 3 wraps around: it starts at (row 2, column C), (row 1, column C) then wraps around to (row 10, column C). Worm 1 also wraps around: it starts at (row 2, column B), (row 2, column A) then wraps around to (row 2, column J). Overlap: There are some overlapping worms: worms 6 and 3 overlap at (row 1, column C) and (row 2, column C). Other Requirements: Here are a few more requirements the code we are to create for this Part 1 of our Project must satisfy. 1. The location of each worm in the garden must be determined randomly. 2. Whether a worm is lying horizontally or vertically must also be determined randomly. 3. It is acceptable in Part 1 of our Project if worms overlap each other (see Sample Runs) 4. When placing a worm in a garden, the worm must “wrap around” the garden. See Sample Runs for examples of what “wrapping around” signifies. How will we implement this wrapping around? Hint: wrapping around can be achieved using an arithmetic operator we have already seen. 5. We must make use of docstring when we implement our functions (have a look at our textbook for an explanation and an example). 6. Every time we encounter the word must in this description of Part 1 of our Project, we shall look upon that sentence as another requirement. For example, the sentence “The code we create for this Part 1 of our Project must produce exactly the same output as the one shown in these 3 sample runs.”, even though it is not listed below the Other Requirements heading, is also a requirement because of its must.

info@checkyourstudy.com
Which of the following statements is NOT true about flowering plants? Select one: Sporophyte generation produces spores. Gametophyte generation produces gametes. Ovules contain the microspore mother cell. Microspores undergo mitosis to produce pollen grains. Megaspores undergo mitosis to produce an embryo sac.

Which of the following statements is NOT true about flowering plants? Select one: Sporophyte generation produces spores. Gametophyte generation produces gametes. Ovules contain the microspore mother cell. Microspores undergo mitosis to produce pollen grains. Megaspores undergo mitosis to produce an embryo sac.

Which of the following statements is NOT true about flowering … Read More...
Which of the following is NOT true about oncogenes? Select one: They are normal genes that have undergone a mutation. They cause growth factors or growth factor receptors on a cell to malfunction. When mutated oncogenes turn into proto-oncogenes. They cause a cell to divide repeatedly. They are not alien to the cell.

Which of the following is NOT true about oncogenes? Select one: They are normal genes that have undergone a mutation. They cause growth factors or growth factor receptors on a cell to malfunction. When mutated oncogenes turn into proto-oncogenes. They cause a cell to divide repeatedly. They are not alien to the cell.

Which of the following is NOT true about oncogenes? Select … Read More...
1) If a superalloy jet engine is heated so that its length in each direction expands by 1%, what is its percentage change in volume (assume it is roughly cubic)? Hint: Calculate its volume before and after heating, assuming that its length, height, and width are the same, i.e., a cubic engine. 2) Calculate the density of Al in g/cm3, given that it forms an FCC crystal structure with an atomic radius of 0.143 nm (10-7 cm) and a mass of 27 g/mole. Avogadro’s number is 6.02 x 1023 atoms/mole. Hint: calculate the number of atoms in each cell carefully. 3) Calculate the vacancy concentration in aluminum at 50%, 70%, and 90% of TMP=923 K. Gvf = 0.66 eV, and k = 8.62 x 10-5 eV/K. Calculate ln (nv/N) and 1/T, and plot on a linear scale (hint: should be a straight line). 4) a) If the vacancy concentration in Cu is measured to be 10-5 at 1300K (near its melting point), what is Evf? (assume the pre-exponential factor is 1; ie, nv/N = exp (-Evf/kT) b) What would be the concentration at 650 K? 5) Determine the largest size of an interstitial hole in FCC Fe. RFe = 0.124 nm. Would a C atom sit in an interstitial or substitutional site (rC = 0.077 nm)?

1) If a superalloy jet engine is heated so that its length in each direction expands by 1%, what is its percentage change in volume (assume it is roughly cubic)? Hint: Calculate its volume before and after heating, assuming that its length, height, and width are the same, i.e., a cubic engine. 2) Calculate the density of Al in g/cm3, given that it forms an FCC crystal structure with an atomic radius of 0.143 nm (10-7 cm) and a mass of 27 g/mole. Avogadro’s number is 6.02 x 1023 atoms/mole. Hint: calculate the number of atoms in each cell carefully. 3) Calculate the vacancy concentration in aluminum at 50%, 70%, and 90% of TMP=923 K. Gvf = 0.66 eV, and k = 8.62 x 10-5 eV/K. Calculate ln (nv/N) and 1/T, and plot on a linear scale (hint: should be a straight line). 4) a) If the vacancy concentration in Cu is measured to be 10-5 at 1300K (near its melting point), what is Evf? (assume the pre-exponential factor is 1; ie, nv/N = exp (-Evf/kT) b) What would be the concentration at 650 K? 5) Determine the largest size of an interstitial hole in FCC Fe. RFe = 0.124 nm. Would a C atom sit in an interstitial or substitutional site (rC = 0.077 nm)?

info@checkyourstudy.com