A 15 cm long solenoid has 2000 turns of wire and is designed to cancel the earth’s magnetic field of near its center. How large must be the current through the wire? A. 0.01 mA B. 7.0 mA C. 14 mA + D. 21 mA E. 28 mA

## A 15 cm long solenoid has 2000 turns of wire and is designed to cancel the earth’s magnetic field of near its center. How large must be the current through the wire? A. 0.01 mA B. 7.0 mA C. 14 mA + D. 21 mA E. 28 mA

info@checkyourstudy.com   A 15 cm long solenoid has 2000 turns … Read More...
Question 1, chap 33, sect 3. part 1 of 2 10 points The compound eyes of bees and other insects are highly sensitive to light in the ultraviolet portion of the spectrum, particularly light with frequencies between 7.5 × 1014 Hz and 1.0 × 1015 Hz. The speed of light is 3 × 108 m/s. What is the largest wavelength to which these frequencies correspond? Question 3, chap 33, sect 3. part 1 of 3 10 points A plane electromagnetic sinusoidal wave of frequency 10.7 MHz travels in free space. The speed of light is 2.99792 × 108 m/s. Determine the wavelength of the wave. Question 4, chap 33, sect 3. part 2 of 3 10 points Find the period of the wave. Question 2, chap 33, sect 3. part 2 of 2 10 points What is the smallest wavelength? Question 5, chap 33, sect 3. part 3 of 3 10 points At some point and some instant, the electric field has has a value of 998 N/C. Calculate the magnitude of the magnetic field at this point and this instant. Question 6, chap 33, sect 3. part 1 of 2 10 points A plane electromagnetic sinusoidal wave of frequency 10.7 MHz travels in free space. The speed of light is 2.99792 × 108 m/s. Determine the wavelength of the wave. Question 8, chap 33, sect 3. part 1 of 1 10 points The magnetic field amplitude of an electromagnetic wave is 9.9 × 10−6 T. The speed of light is 2.99792 × 108 m/s . Calculate the amplitude of the electric field if the wave is traveling in free space. Question 7, chap 33, sect 3. part 2 of 2 10 points At some point and some instant, the electric field has has a value of 998 V/m. Calculate the magnitude of the magnetic field at this point and this instant. Question 9, chap 33, sect 5. part 1 of 1 10 points The cable is carrying the current I(t). at the surface of a long transmission cable of resistivity ρ, length ℓ and radius a, using the expression ~S = 1 μ0 ~E × ~B . Question 10, chap 33, sect 5. part 1 of 1 10 points In 1965 Penzias and Wilson discovered the cosmic microwave radiation left over from the Big Bang expansion of the universe. The energy density of this radiation is 7.64 × 10−14 J/m3. The speed of light 2.99792 × 108 m/s and the permeability of free space is 4π × 10−7 N/A2. Determine the corresponding electric field amplQuestion 11, chap 33, sect 5. part 1 of 5 10 points Consider a monochromatic electromagnetic plane wave propagating in the x direction. At a particular point in space, the magnitude of the electric field has an instantaneous value of 998 V/m in the positive y-direction. The wave is traveling in the positive x-direction. x y z E wave propagation The speed of light is 2.99792×108 m/s, the permeability of free space is 4π×10−7 T ・ N/A and the permittivity of free space 8.85419 × 10−12 C2/N ・ m2. Compute the instantaneous magnitude of the magnetic field at the same point and time.itude. Question 12, chap 33, sect 5. part 2 of 5 10 points What is the instantaneous magnitude of the Poynting vector at the same point and time? Question 13, chap 33, sect 5. part 3 of 5 10 points What are the directions of the instantaneous magnetic field and theQuestion 14, chap 33, sect 5. part 4 of 5 10 points What is the instantaneous value of the energy density of the electric field? Question 16, chap 33, sect 6. part 1 of 4 10 points Consider an electromagnetic plane wave with time average intensity 104 W/m2 . The speed of light is 2.99792 × 108 m/s and the permeability of free space is 4 π × 10−7 T・m/A. What is its maximum electric field? What is the instantaneous value of the energy density of the magnetic field? Question 17, chap 33, sect 6. part 2 of 4 10 points What is the the maximum magnetic field? Question 19, chap 33, sect 6. part 4 of 4 10 points Consider an electromagnetic wave pattern as shown in the figure below. Question 18, chap 33, sect 6. part 3 of 4 10 points What is the pressure on a surface which is perpendicular to the beam and is totally reflective? Question 20, chap 33, sect 8. part 1 of 1 10 points A coin is at the bottom of a beaker. The beaker is filled with 1.6 cm of water (n1 = 1.33) covered by 2.1 cm of liquid (n2 = 1.4) floating on the water. How deep does the coin appear to be from the upper surface of the liquid (near the top of the beaker)? An cylindrical opaque drinking glass has a diameter 3 cm and height h, as shown in the figure. An observer’s eye is placed as shown (the observer is just barely looking over the rim of the glass). When empty, the observer can just barely see the edge of the bottom of the glass. When filled to the brim with a transparent liquid, the observer can just barely see the center of the bottom of the glass. The liquid in the drinking glass has an index of refraction of 1.4 . θi h d θr eye Calculate the angle θr . Question 22, chap 33, sect 8. part 2 of 2 10 points Calculate the height h of the glass.

## Question 1, chap 33, sect 3. part 1 of 2 10 points The compound eyes of bees and other insects are highly sensitive to light in the ultraviolet portion of the spectrum, particularly light with frequencies between 7.5 × 1014 Hz and 1.0 × 1015 Hz. The speed of light is 3 × 108 m/s. What is the largest wavelength to which these frequencies correspond? Question 3, chap 33, sect 3. part 1 of 3 10 points A plane electromagnetic sinusoidal wave of frequency 10.7 MHz travels in free space. The speed of light is 2.99792 × 108 m/s. Determine the wavelength of the wave. Question 4, chap 33, sect 3. part 2 of 3 10 points Find the period of the wave. Question 2, chap 33, sect 3. part 2 of 2 10 points What is the smallest wavelength? Question 5, chap 33, sect 3. part 3 of 3 10 points At some point and some instant, the electric field has has a value of 998 N/C. Calculate the magnitude of the magnetic field at this point and this instant. Question 6, chap 33, sect 3. part 1 of 2 10 points A plane electromagnetic sinusoidal wave of frequency 10.7 MHz travels in free space. The speed of light is 2.99792 × 108 m/s. Determine the wavelength of the wave. Question 8, chap 33, sect 3. part 1 of 1 10 points The magnetic field amplitude of an electromagnetic wave is 9.9 × 10−6 T. The speed of light is 2.99792 × 108 m/s . Calculate the amplitude of the electric field if the wave is traveling in free space. Question 7, chap 33, sect 3. part 2 of 2 10 points At some point and some instant, the electric field has has a value of 998 V/m. Calculate the magnitude of the magnetic field at this point and this instant. Question 9, chap 33, sect 5. part 1 of 1 10 points The cable is carrying the current I(t). at the surface of a long transmission cable of resistivity ρ, length ℓ and radius a, using the expression ~S = 1 μ0 ~E × ~B . Question 10, chap 33, sect 5. part 1 of 1 10 points In 1965 Penzias and Wilson discovered the cosmic microwave radiation left over from the Big Bang expansion of the universe. The energy density of this radiation is 7.64 × 10−14 J/m3. The speed of light 2.99792 × 108 m/s and the permeability of free space is 4π × 10−7 N/A2. Determine the corresponding electric field amplQuestion 11, chap 33, sect 5. part 1 of 5 10 points Consider a monochromatic electromagnetic plane wave propagating in the x direction. At a particular point in space, the magnitude of the electric field has an instantaneous value of 998 V/m in the positive y-direction. The wave is traveling in the positive x-direction. x y z E wave propagation The speed of light is 2.99792×108 m/s, the permeability of free space is 4π×10−7 T ・ N/A and the permittivity of free space 8.85419 × 10−12 C2/N ・ m2. Compute the instantaneous magnitude of the magnetic field at the same point and time.itude. Question 12, chap 33, sect 5. part 2 of 5 10 points What is the instantaneous magnitude of the Poynting vector at the same point and time? Question 13, chap 33, sect 5. part 3 of 5 10 points What are the directions of the instantaneous magnetic field and theQuestion 14, chap 33, sect 5. part 4 of 5 10 points What is the instantaneous value of the energy density of the electric field? Question 16, chap 33, sect 6. part 1 of 4 10 points Consider an electromagnetic plane wave with time average intensity 104 W/m2 . The speed of light is 2.99792 × 108 m/s and the permeability of free space is 4 π × 10−7 T・m/A. What is its maximum electric field? What is the instantaneous value of the energy density of the magnetic field? Question 17, chap 33, sect 6. part 2 of 4 10 points What is the the maximum magnetic field? Question 19, chap 33, sect 6. part 4 of 4 10 points Consider an electromagnetic wave pattern as shown in the figure below. Question 18, chap 33, sect 6. part 3 of 4 10 points What is the pressure on a surface which is perpendicular to the beam and is totally reflective? Question 20, chap 33, sect 8. part 1 of 1 10 points A coin is at the bottom of a beaker. The beaker is filled with 1.6 cm of water (n1 = 1.33) covered by 2.1 cm of liquid (n2 = 1.4) floating on the water. How deep does the coin appear to be from the upper surface of the liquid (near the top of the beaker)? An cylindrical opaque drinking glass has a diameter 3 cm and height h, as shown in the figure. An observer’s eye is placed as shown (the observer is just barely looking over the rim of the glass). When empty, the observer can just barely see the edge of the bottom of the glass. When filled to the brim with a transparent liquid, the observer can just barely see the center of the bottom of the glass. The liquid in the drinking glass has an index of refraction of 1.4 . θi h d θr eye Calculate the angle θr . Question 22, chap 33, sect 8. part 2 of 2 10 points Calculate the height h of the glass.

Aristotle’s breadth of knowledge and exploration is amazing. Some of his most interesting ideas center around the ideas of happiness and virtue. What do you think about Aristotle’s suggestions for the happy life and the cultivation of virtue. Choose a virtue (e.g., courage, moderation, patience, responsibility, etc.) and also determine the excess and deficiency. Explore the meaning of this virtue and practice it through the week. As you hit the “mean” do you find yourself more happy?

## Aristotle’s breadth of knowledge and exploration is amazing. Some of his most interesting ideas center around the ideas of happiness and virtue. What do you think about Aristotle’s suggestions for the happy life and the cultivation of virtue. Choose a virtue (e.g., courage, moderation, patience, responsibility, etc.) and also determine the excess and deficiency. Explore the meaning of this virtue and practice it through the week. As you hit the “mean” do you find yourself more happy?

“Happiness depends on ourselves.” additional than anyone else, Aristotle preserve … Read More...
Drop Tower NASA operates a 2.2-second drop tower at the Glen Research Center in Cleveland, Ohio. At this facility, experimental packages are dropped from the top of the tower, on the eighth floor of the building. During their 2.2 seconds of free fall, experiments experience a microgravity environment similar to a spacecraft in orbit. a) What is the drop distance of a 2.2-s tower?

## Drop Tower NASA operates a 2.2-second drop tower at the Glen Research Center in Cleveland, Ohio. At this facility, experimental packages are dropped from the top of the tower, on the eighth floor of the building. During their 2.2 seconds of free fall, experiments experience a microgravity environment similar to a spacecraft in orbit. a) What is the drop distance of a 2.2-s tower?

To find the distance in 2.2 s use the following … Read More...

This content is for CheckYourstudy.com Members members only.Kindly register or … Read More...
6. Elon Corporation manufactures parts for an aircraft company. It uses a computerized numerical controlled (CNC) machining center to produce a specific part that has a design (nominal) target of 1.275 inches with tolerances of ±.024 inch. The CNC process that manufacturers these parts has a mean of 1.281 inches and a standard deviation of 0.008 inch. Determine the proportion of parts outside the specifications. Assume Normal Distribution.

## 6. Elon Corporation manufactures parts for an aircraft company. It uses a computerized numerical controlled (CNC) machining center to produce a specific part that has a design (nominal) target of 1.275 inches with tolerances of ±.024 inch. The CNC process that manufacturers these parts has a mean of 1.281 inches and a standard deviation of 0.008 inch. Determine the proportion of parts outside the specifications. Assume Normal Distribution.

P(defect) = P(X<1.251) + P(X>1.299) = P(X<1.251) +1- P(X<1.299) = … Read More...
Chapter 13 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, May 16, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy A Matter of Some Gravity Learning Goal: To understand Newton’s law of gravitation and the distinction between inertial and gravitational masses. In this problem, you will practice using Newton’s law of gravitation. According to that law, the magnitude of the gravitational force between two small particles of masses and , separated by a distance , is given by , where is the universal gravitational constant, whose numerical value (in SI units) is . This formula applies not only to small particles, but also to spherical objects. In fact, the gravitational force between two uniform spheres is the same as if we concentrated all the mass of each sphere at its center. Thus, by modeling the Earth and the Moon as uniform spheres, you can use the particle approximation when calculating the force of gravity between them. Be careful in using Newton’s law to choose the correct value for . To calculate the force of gravitational attraction between two uniform spheres, the distance in the equation for Newton’s law of gravitation is the distance between the centers of the spheres. For instance, if a small object such as an elephant is located on the surface of the Earth, the radius of the Earth would be used in the equation. Note that the force of gravity acting on an object located near the surface of a planet is often called weight. Also note that in situations involving satellites, you are often given the altitude of the satellite, that is, the distance from the satellite to the surface of the planet; this is not the distance to be used in the formula for the law of gravitation. There is a potentially confusing issue involving mass. Mass is defined as a measure of an object’s inertia, that is, its ability to resist acceleration. Newton’s second law demonstrates the relationship between mass, acceleration, and the net force acting on an object: . We can now refer to this measure of inertia more precisely as the inertial mass. On the other hand, the masses of the particles that appear in the expression for the law of gravity seem to have nothing to do with inertia: Rather, they serve as a measure of the strength of gravitational interactions. It would be reasonable to call such a property gravitational mass. Does this mean that every object has two different masses? Generally speaking, yes. However, the good news is that according to the latest, highly precise, measurements, the inertial and the gravitational mass of an object are, in fact, equal to each other; it is an established consensus among physicists that there is only one mass after all, which is a measure of both the object’s inertia and its ability to engage in gravitational interactions. Note that this consensus, like everything else in science, is open to possible amendments in the future. In this problem, you will answer several questions that require the use of Newton’s law of gravitation. Part A Two particles are separated by a certain distance. The force of gravitational interaction between them is . Now the separation between the particles is tripled. Find the new force of gravitational Fg m1 m2 r Fg = G m1m2 r2 G 6.67 × 10−11 N m2 kg2 r r rEarth F  = m net a F0