Essay Assignment: Due December 6th, on Blackboard by 11:59 PM. Note: At least one draft (hardcopy, handed up in class) should be given to the instructor one week before due date (last date to give instructor draft is 1st December). If draft is not given, 20% will be taken off final grade for essay. Assignment Objective: This assignment is intended to provide you with the opportunity to reflect upon the course and material over the semester. Instructions: In this essay you will need think back prior to the semester and construct how you would have described ‘the self.’ Consider as your guide the many ways that the self has been studied over the course of the semester. For instance, you might consider the ways we have discussed: (1) the nature of the soul, (2) personal identity, (3) the relationship to others, (4) the ‘racial’ or ‘gendered’ self, (5) the self and freedom, (6) the social influences (economics, technology, and consumerism, for example) upon your self-development, etc. You should select one to two dimensions of the self and provide a description of what you thought about those prior to the course. Then, give a description of what you think about that or those dimension(s) of the self now. Be sure to reference the course material, either through the literature, or an author, or a driving concept from the course that you can explain in reference to the concept(s) you now hold. Within your discussion provide a comparison of what you thought prior to the course to what you now think of those dimension(s) of the self. In what ways has your conception of the ‘self’ changed, stayed the same, become enriched (or not). Be sure to give some explanation as to what has changed, or has not changed, and in what ways. Format: The paper should be in Times New Roman font, size 12, and double spaced. It should be about 1,200 words (approx. 4-5 pages). You will be required to have a bibliography and a cover page which includes the following: 1) The title of your paper. 2) Your name. 3) Your Student ID number. Citations: The recommended style of citation is Chicago (please see Blackboard for guidelines). You can use other styles if you like but the most important thing is to remain clear and consistent in the referencing style that you use. Please use at least 2-3 citations. Instruction for upload: Please upload it online onto Blackboard on the tab on the left hand side, entitled ‘Final Essay’ before midnight on December 6th. No hard copy is needed, but, as stated above, you will be required to give a hard copy of the draft at least one week before to the instructor. Grading: The final essay will be graded on: (1) how the instructions of the assignment were followed, (2) the accurateness and clarity in descriptions of course material (authors, core concepts, arguments, etc.), (3) the precision/correctness of writing, and (4) accuracy of referencing style.

Essay Assignment: Due December 6th, on Blackboard by 11:59 PM. Note: At least one draft (hardcopy, handed up in class) should be given to the instructor one week before due date (last date to give instructor draft is 1st December). If draft is not given, 20% will be taken off final grade for essay. Assignment Objective: This assignment is intended to provide you with the opportunity to reflect upon the course and material over the semester. Instructions: In this essay you will need think back prior to the semester and construct how you would have described ‘the self.’ Consider as your guide the many ways that the self has been studied over the course of the semester. For instance, you might consider the ways we have discussed: (1) the nature of the soul, (2) personal identity, (3) the relationship to others, (4) the ‘racial’ or ‘gendered’ self, (5) the self and freedom, (6) the social influences (economics, technology, and consumerism, for example) upon your self-development, etc. You should select one to two dimensions of the self and provide a description of what you thought about those prior to the course. Then, give a description of what you think about that or those dimension(s) of the self now. Be sure to reference the course material, either through the literature, or an author, or a driving concept from the course that you can explain in reference to the concept(s) you now hold. Within your discussion provide a comparison of what you thought prior to the course to what you now think of those dimension(s) of the self. In what ways has your conception of the ‘self’ changed, stayed the same, become enriched (or not). Be sure to give some explanation as to what has changed, or has not changed, and in what ways. Format: The paper should be in Times New Roman font, size 12, and double spaced. It should be about 1,200 words (approx. 4-5 pages). You will be required to have a bibliography and a cover page which includes the following: 1) The title of your paper. 2) Your name. 3) Your Student ID number. Citations: The recommended style of citation is Chicago (please see Blackboard for guidelines). You can use other styles if you like but the most important thing is to remain clear and consistent in the referencing style that you use. Please use at least 2-3 citations. Instruction for upload: Please upload it online onto Blackboard on the tab on the left hand side, entitled ‘Final Essay’ before midnight on December 6th. No hard copy is needed, but, as stated above, you will be required to give a hard copy of the draft at least one week before to the instructor. Grading: The final essay will be graded on: (1) how the instructions of the assignment were followed, (2) the accurateness and clarity in descriptions of course material (authors, core concepts, arguments, etc.), (3) the precision/correctness of writing, and (4) accuracy of referencing style.

No expert has answered this question yet. You can browse … Read More...
COMM 1311: Written Communication Assignment 5 Argumentation Essay (Chapter 10, pp. 218-232, Arlov) Purpose of Assignment • The purpose of this assignment is to enable the student to write an essay with a compelling argumentation that shows critical thinking. A persuasive essay is a writer’s attempt to convince readers of the validity of a particular opinion on a controversial issue. Objectives • The student will be able to correctly structure an essay and bring forward a compelling thesis and argument. • The student will understand the creativity of the writing process and use his own ideas. • The student will be able to craft a compelling essay and show critical thinking. • The student will show that he is able to argue both sides of a topic and is willing to acknowledge a different opinion. Instructions 1. Establish a subject Choose a topic that interests you. An argument does not have to be a burning issue, but it must be a debatable topic. It can be anything you feel strongly about but it has to be approved by the instructor. 2. Present a clear thesis and identify the controversy Your thesis should inform readers of your purpose and how you will proceed in your argumentation. 3. Follow an organizational pattern and provide support The body paragraphs of the essay should provide specific support. These supports may include personal experience, statistics, facts, or experts’ opinions. They may be garnered from scientific journals, magazines, books, newspapers, textbooks, studies, or interviews. Select only the facts that are relevant. 4. Consider differing opinions A persuasive essay may be strengthened by acknowledging conflict viewpoints and discussing them. 4. Draw a conclusion Restate your position in different words from the introduction. Do not introduce new material in the conclusion. You may want to conclude by encouraging some specific call to action. Requirements The essay topic must meet the approval of the instructor: • Have a complete cover page • have at least 500 words • use full sentences (and no bullet points) • must have page numbers • must have a reference page Example writing (not a complete essay): Boxing: Countdown to Injury A left hook smashes into the fighter’s jaw. A following right slams his head the opposite direction. An uppercut to the jaw snaps his head back, momentarily stopping the blood flow to his brain. The boxer drops, hitting the mat with a thud. His brain bounces off his skull for the second time in a matter of seconds. Is this what we should call a sport? Because of injuries, neurological damage, and ring deaths, the rules of professional boxing should be changed. Boxing has always been a brutal sport. The ancient Greeks used gloves studded with metal spikes, which slashed the face and body and split skulls. Although gloves are no longer spiked, boxers today sustain injuries ranging from cuts and bruises to broken bones. It is not uncommon to see a boxer leave the ring with a cut on his face, an eye swollen shut, and a nose enlarged and bloody. Often, healing in is incomplete because these areas receive the same blows again and again in other matches. In fact, repeated blows almost cost Sugar Ray Leonard his sight when his retina detached in his left eye. Besides superficial injuries, boxers suffer short-term neurological damage as a result of staggering blows to the head. A knockout punch, for example, is often delivered with such force that the brain smashes against the skull, tearing nerve fibers and blood vessels, resulting in a concussion. Even a blow to the neck can close the carotid artery, the main artery to the brain, whereby oxygen and blood to the brain are disrupted, resulting in dizziness and confusion. Later, the boxers often have no memory of the moments before or after a knockout blow. Submission Criteria Due Date: Sunday, December 6, 2015. Late assignments will receive an automatic ZERO grade. Where to deliver hard copies: In class Assessment Criteria CRITERIA Assessment Rubric Argumentation Essay SCORES Introduction Introduces the issue and its importance, says what your essay will cover 2 Organization The sound structure of the essay 1 Expression Sentences, phrases, metaphors, verbs etc. The strength of the language used 4 Conclusion Restate the issue, summarizes the strength of the arguments in the essays, gives your opinion about which essay is the strongest with supporting reasons 1 Mechanics Followed guidelines, professional format, punctuation, spelling, and capitalization are correct, use of headings, no bullet points 2 TOTAL 10% Plagiarism, copying from the internet or any other sources without citation will result in an automatic ZERO grade and a procedure of Academic Misconduct will filed against you. The complete essay has to be created and written by you alone. Prior assignments CAN NOT be used.

COMM 1311: Written Communication Assignment 5 Argumentation Essay (Chapter 10, pp. 218-232, Arlov) Purpose of Assignment • The purpose of this assignment is to enable the student to write an essay with a compelling argumentation that shows critical thinking. A persuasive essay is a writer’s attempt to convince readers of the validity of a particular opinion on a controversial issue. Objectives • The student will be able to correctly structure an essay and bring forward a compelling thesis and argument. • The student will understand the creativity of the writing process and use his own ideas. • The student will be able to craft a compelling essay and show critical thinking. • The student will show that he is able to argue both sides of a topic and is willing to acknowledge a different opinion. Instructions 1. Establish a subject Choose a topic that interests you. An argument does not have to be a burning issue, but it must be a debatable topic. It can be anything you feel strongly about but it has to be approved by the instructor. 2. Present a clear thesis and identify the controversy Your thesis should inform readers of your purpose and how you will proceed in your argumentation. 3. Follow an organizational pattern and provide support The body paragraphs of the essay should provide specific support. These supports may include personal experience, statistics, facts, or experts’ opinions. They may be garnered from scientific journals, magazines, books, newspapers, textbooks, studies, or interviews. Select only the facts that are relevant. 4. Consider differing opinions A persuasive essay may be strengthened by acknowledging conflict viewpoints and discussing them. 4. Draw a conclusion Restate your position in different words from the introduction. Do not introduce new material in the conclusion. You may want to conclude by encouraging some specific call to action. Requirements The essay topic must meet the approval of the instructor: • Have a complete cover page • have at least 500 words • use full sentences (and no bullet points) • must have page numbers • must have a reference page Example writing (not a complete essay): Boxing: Countdown to Injury A left hook smashes into the fighter’s jaw. A following right slams his head the opposite direction. An uppercut to the jaw snaps his head back, momentarily stopping the blood flow to his brain. The boxer drops, hitting the mat with a thud. His brain bounces off his skull for the second time in a matter of seconds. Is this what we should call a sport? Because of injuries, neurological damage, and ring deaths, the rules of professional boxing should be changed. Boxing has always been a brutal sport. The ancient Greeks used gloves studded with metal spikes, which slashed the face and body and split skulls. Although gloves are no longer spiked, boxers today sustain injuries ranging from cuts and bruises to broken bones. It is not uncommon to see a boxer leave the ring with a cut on his face, an eye swollen shut, and a nose enlarged and bloody. Often, healing in is incomplete because these areas receive the same blows again and again in other matches. In fact, repeated blows almost cost Sugar Ray Leonard his sight when his retina detached in his left eye. Besides superficial injuries, boxers suffer short-term neurological damage as a result of staggering blows to the head. A knockout punch, for example, is often delivered with such force that the brain smashes against the skull, tearing nerve fibers and blood vessels, resulting in a concussion. Even a blow to the neck can close the carotid artery, the main artery to the brain, whereby oxygen and blood to the brain are disrupted, resulting in dizziness and confusion. Later, the boxers often have no memory of the moments before or after a knockout blow. Submission Criteria Due Date: Sunday, December 6, 2015. Late assignments will receive an automatic ZERO grade. Where to deliver hard copies: In class Assessment Criteria CRITERIA Assessment Rubric Argumentation Essay SCORES Introduction Introduces the issue and its importance, says what your essay will cover 2 Organization The sound structure of the essay 1 Expression Sentences, phrases, metaphors, verbs etc. The strength of the language used 4 Conclusion Restate the issue, summarizes the strength of the arguments in the essays, gives your opinion about which essay is the strongest with supporting reasons 1 Mechanics Followed guidelines, professional format, punctuation, spelling, and capitalization are correct, use of headings, no bullet points 2 TOTAL 10% Plagiarism, copying from the internet or any other sources without citation will result in an automatic ZERO grade and a procedure of Academic Misconduct will filed against you. The complete essay has to be created and written by you alone. Prior assignments CAN NOT be used.

No expert has answered this question yet. You can browse … Read More...
HST 102: Paper 7 Formal essay, due in class on the day of the debate No late papers will be accepted. Answer the following inquiry in a typed (and stapled) 2 page essay in the five-paragraph format. Present and describe three of your arguments that you will use to defend your position concerning eugenics. Each argument must be unique (don’t describe the same argument twice from a different angle). Each argument must include at least one quotation from the texts to support your position (a minimum of 3 total). You may discuss your positions and arguments with other people on your side (but not your opponents); however, each student must write their own essay in their own words. Do not copy sentences or paragraphs from another student’s paper, this is plagiarism and will result in a failing grade for the assignment. HST 102: Debate 4 Eugenics For or Against? Basics of the debate: The term ‘Eugenics’ was derived from two Greek words and literally means ‘good genes’. Eugenics is the social philosophy or practice of engineering society based on genes, or promoting the reproduction of good genes while reducing (or prohibiting) the reproduction of bad genes. Your group will argue either for or against the adoption of eugenic policies in your society. Key Terms: Eugenics – The study of or belief in the possibility of improving the qualities of the human species or a human population, especially by such means as discouraging reproduction by persons having genetic defects or presumed to have inheritable undesirable traits (negative eugenics) or encouraging reproduction by persons presumed to have inheritable desirable traits (positive eugenics). Darwinism – The Darwinian theory that species originate by descent, with variation, from parent forms, through the natural selection of those individuals best adapted for the reproductive success of their kind. Social Darwinism – A 19th-century theory, inspired by Darwinism, by which the social order is accounted as the product of natural selection of those persons best suited to existing living conditions. Mendelian Inheritance – Theory proposed by Gregor Johann Mendal in 1865 that became the first theory of genetic inheritance derived from experiments with peas. Birth Control – Any means to artificially prevent biological conception. Euthanasia – A policy of ending the life of an individual for their betterment (for example, because of excessive pain, brain dead, etc.) or society’s benefit. Genocide – A policy of murdering all members of a specific group of people who share a common characteristic. Deductive Logic – Deriving a specific conclusion based on a set of general definitions. Inductive Logic – Deriving a general conclusion based on a number of specific examples. Brief Historical Background: Eugenics was first proposed by Francis Galton in his 1883 work, Inquiries into Human Faculty and its Development. Galton was a cousin of Charles Darwin and an early supporter of Darwin’s theories of natural selection and evolution. Galton defined eugenics as the study of all agencies under human control which can improve or impair the racial quality of future generations. Galton’s work utilized a number of other scientific pursuits at the time including the study of heredity, genes, chromosomes, evolution, social Darwinism, zoology, birth control, sociology, psychology, chemistry, atomic theory and electrodynamics. The number of significant scientific advances was accelerating throughout the 19th century altering what science was and what its role in society could and should be. Galton’s work had a significant influence throughout all areas of society, from scientific communities to politics, culture and literature. A number of organizations were created to explore the science of eugenics and its possible applications to society. Ultimately, eugenics became a means by which to improve society through policies based on scientific study. Most of these policies related to reproductive practices within a society, specifically who could or should not reproduce. Throughout the late 1800s and early 1900s a number of policies were enacted at various levels throughout Europe and the United States aimed at controlling procreation. Some specific policies included compulsory sterilization laws (usually concerning criminals and the mentally ill) as well as banning interracial marriages to prevent ‘cross-racial’ breeding. In the United States a number of individuals and foundations supported the exploration of eugenics as a means to positively influence society, including: the Rockefeller Foundation, the Carnegie Institution, the Race Betterment Foundation of Battle Creek, MI, the Eugenics Record Office, the American Breeders Association, the Euthanasia Society of America; and individuals such as Charles Davenport, Madison Grant, Alexander Graham Bell, Irving Fisher, John D. Rockefeller, Margaret Sanger, Marie Stopes, David Starr Jordan, Vernon Kellogg, H. G. Wells (though he later changed sides) Winston Churchill, George Bernard Shaw, John Maynard Keynes, Supreme Court Justice Oliver Wendell Holmes and Presidents Woodrow Wilson, Herbert Hoover and Theodore Roosevelt. Some early critics of eugenics included: Dr. John Haycroft, Halliday Sutherland, Lancelot Hogben, Franz Boaz, Lester Ward, G. K. Chesterton, J. B. S. Haldane, and R. A. Fisher. In 1911 the Carnegie Institute recommended constructing gas chambers around the country to euthanize certain elements of the American population (primarily the poor and criminals) considered to be harmful to the future of society as a possible eugenic solution. President Woodrow Wilson signed the first Sterilization Act in US history. In the 1920s and 30s, 30 states passed various eugenics laws, some of which were overturned by the Supreme Court. Eugenics of various forms was a founding principle of the Progressive Party, strongly supported by the first progressive president Theodore Roosevelt, and would continue to play an important part in influencing progressive policies into at least the 1940s. Many American individuals and societies supported German research on eugenics that would eventually be used to develop and justify the policies utilized by the NAZI party against minority groups including Jews, Africans, gypsies and others that ultimately led to programs of genocide and the holocaust. Following WWII and worldwide exposure of the holocaust eugenics generally fell out of favor among the public, though various lesser forms of eugenics are still advocated for today by such individuals as Dottie Lamm, Geoffrey Miller, Justice Ruth Bader Ginsberg, John Glad and Richard Dawson. Eugenics still influences many modern debates including: capital punishment, over-population, global warming, medicine (disease control and genetic disorders), birth control, abortion, artificial insemination, evolution, social engineering, and education. Key Points to discuss during the debate: • Individual rights vs. collective rights • The pros and cons of genetically engineering society • The practicality of genetically engineering society • Methods used to determine ‘good traits’ and ‘bad traits’ • Who determines which people are ‘fit’ or ‘unfit’ for future society • The role of science in society • Methods used to derive scientific conclusions • Ability of scientists to determine the future hereditary conditions of individuals • The value/accuracy of scientific conclusions • The role of the government to implement eugenic policies • Some possible eugenic political policies or laws • The ways these policies may be used effectively or abused • The relationship between eugenics and individual rights • The role of ethics in science and eugenics Strategies: 1. Use this guide to help you (particularly the key points). 2. Read all of the texts. 3. If needed, read secondary analysis concerning eugenics. 4. Identify key quotations as you read each text. Perhaps make a list of them to print out and/or group quotes by topic or point. 5. Develop multiple arguments to defend your position. 6. Prioritize your arguments from most persuasive to least persuasive and from most evidence to least evidence. 7. Anticipate the arguments of your opponents and develop counter-arguments for them. 8. Anticipate counter-arguments to your own arguments and develop responses to them.

HST 102: Paper 7 Formal essay, due in class on the day of the debate No late papers will be accepted. Answer the following inquiry in a typed (and stapled) 2 page essay in the five-paragraph format. Present and describe three of your arguments that you will use to defend your position concerning eugenics. Each argument must be unique (don’t describe the same argument twice from a different angle). Each argument must include at least one quotation from the texts to support your position (a minimum of 3 total). You may discuss your positions and arguments with other people on your side (but not your opponents); however, each student must write their own essay in their own words. Do not copy sentences or paragraphs from another student’s paper, this is plagiarism and will result in a failing grade for the assignment. HST 102: Debate 4 Eugenics For or Against? Basics of the debate: The term ‘Eugenics’ was derived from two Greek words and literally means ‘good genes’. Eugenics is the social philosophy or practice of engineering society based on genes, or promoting the reproduction of good genes while reducing (or prohibiting) the reproduction of bad genes. Your group will argue either for or against the adoption of eugenic policies in your society. Key Terms: Eugenics – The study of or belief in the possibility of improving the qualities of the human species or a human population, especially by such means as discouraging reproduction by persons having genetic defects or presumed to have inheritable undesirable traits (negative eugenics) or encouraging reproduction by persons presumed to have inheritable desirable traits (positive eugenics). Darwinism – The Darwinian theory that species originate by descent, with variation, from parent forms, through the natural selection of those individuals best adapted for the reproductive success of their kind. Social Darwinism – A 19th-century theory, inspired by Darwinism, by which the social order is accounted as the product of natural selection of those persons best suited to existing living conditions. Mendelian Inheritance – Theory proposed by Gregor Johann Mendal in 1865 that became the first theory of genetic inheritance derived from experiments with peas. Birth Control – Any means to artificially prevent biological conception. Euthanasia – A policy of ending the life of an individual for their betterment (for example, because of excessive pain, brain dead, etc.) or society’s benefit. Genocide – A policy of murdering all members of a specific group of people who share a common characteristic. Deductive Logic – Deriving a specific conclusion based on a set of general definitions. Inductive Logic – Deriving a general conclusion based on a number of specific examples. Brief Historical Background: Eugenics was first proposed by Francis Galton in his 1883 work, Inquiries into Human Faculty and its Development. Galton was a cousin of Charles Darwin and an early supporter of Darwin’s theories of natural selection and evolution. Galton defined eugenics as the study of all agencies under human control which can improve or impair the racial quality of future generations. Galton’s work utilized a number of other scientific pursuits at the time including the study of heredity, genes, chromosomes, evolution, social Darwinism, zoology, birth control, sociology, psychology, chemistry, atomic theory and electrodynamics. The number of significant scientific advances was accelerating throughout the 19th century altering what science was and what its role in society could and should be. Galton’s work had a significant influence throughout all areas of society, from scientific communities to politics, culture and literature. A number of organizations were created to explore the science of eugenics and its possible applications to society. Ultimately, eugenics became a means by which to improve society through policies based on scientific study. Most of these policies related to reproductive practices within a society, specifically who could or should not reproduce. Throughout the late 1800s and early 1900s a number of policies were enacted at various levels throughout Europe and the United States aimed at controlling procreation. Some specific policies included compulsory sterilization laws (usually concerning criminals and the mentally ill) as well as banning interracial marriages to prevent ‘cross-racial’ breeding. In the United States a number of individuals and foundations supported the exploration of eugenics as a means to positively influence society, including: the Rockefeller Foundation, the Carnegie Institution, the Race Betterment Foundation of Battle Creek, MI, the Eugenics Record Office, the American Breeders Association, the Euthanasia Society of America; and individuals such as Charles Davenport, Madison Grant, Alexander Graham Bell, Irving Fisher, John D. Rockefeller, Margaret Sanger, Marie Stopes, David Starr Jordan, Vernon Kellogg, H. G. Wells (though he later changed sides) Winston Churchill, George Bernard Shaw, John Maynard Keynes, Supreme Court Justice Oliver Wendell Holmes and Presidents Woodrow Wilson, Herbert Hoover and Theodore Roosevelt. Some early critics of eugenics included: Dr. John Haycroft, Halliday Sutherland, Lancelot Hogben, Franz Boaz, Lester Ward, G. K. Chesterton, J. B. S. Haldane, and R. A. Fisher. In 1911 the Carnegie Institute recommended constructing gas chambers around the country to euthanize certain elements of the American population (primarily the poor and criminals) considered to be harmful to the future of society as a possible eugenic solution. President Woodrow Wilson signed the first Sterilization Act in US history. In the 1920s and 30s, 30 states passed various eugenics laws, some of which were overturned by the Supreme Court. Eugenics of various forms was a founding principle of the Progressive Party, strongly supported by the first progressive president Theodore Roosevelt, and would continue to play an important part in influencing progressive policies into at least the 1940s. Many American individuals and societies supported German research on eugenics that would eventually be used to develop and justify the policies utilized by the NAZI party against minority groups including Jews, Africans, gypsies and others that ultimately led to programs of genocide and the holocaust. Following WWII and worldwide exposure of the holocaust eugenics generally fell out of favor among the public, though various lesser forms of eugenics are still advocated for today by such individuals as Dottie Lamm, Geoffrey Miller, Justice Ruth Bader Ginsberg, John Glad and Richard Dawson. Eugenics still influences many modern debates including: capital punishment, over-population, global warming, medicine (disease control and genetic disorders), birth control, abortion, artificial insemination, evolution, social engineering, and education. Key Points to discuss during the debate: • Individual rights vs. collective rights • The pros and cons of genetically engineering society • The practicality of genetically engineering society • Methods used to determine ‘good traits’ and ‘bad traits’ • Who determines which people are ‘fit’ or ‘unfit’ for future society • The role of science in society • Methods used to derive scientific conclusions • Ability of scientists to determine the future hereditary conditions of individuals • The value/accuracy of scientific conclusions • The role of the government to implement eugenic policies • Some possible eugenic political policies or laws • The ways these policies may be used effectively or abused • The relationship between eugenics and individual rights • The role of ethics in science and eugenics Strategies: 1. Use this guide to help you (particularly the key points). 2. Read all of the texts. 3. If needed, read secondary analysis concerning eugenics. 4. Identify key quotations as you read each text. Perhaps make a list of them to print out and/or group quotes by topic or point. 5. Develop multiple arguments to defend your position. 6. Prioritize your arguments from most persuasive to least persuasive and from most evidence to least evidence. 7. Anticipate the arguments of your opponents and develop counter-arguments for them. 8. Anticipate counter-arguments to your own arguments and develop responses to them.

What does the author mean when he says the me is the epistemological self? The me can be manipulated and changed. The me is logical and rational. The me is an object that can be described. The me is a subjective entity.

What does the author mean when he says the me is the epistemological self? The me can be manipulated and changed. The me is logical and rational. The me is an object that can be described. The me is a subjective entity.

What does the author mean when he says the me … Read More...
Sex, Gender, and Popular Culture Spring 2015 Look through popular magazines, and see if you can find advertisements that objectify women in order to sell a product. Alternately, you may use an advertisement on television (but make sure to provide a link to the ad so I can see it!). Study these images then write a paper about objectification that deals with all or some of the following: • What effect(s), if any, do you think the objectification of women’s bodies has on our culture? • Jean Kilbourne states “turning a human being into a thing is almost always the first step toward justifying violence against that person.” What do you think she means by this? Do you agree with her reasoning? Why or why not? • Some people would argue that depicting a woman’s body as an object is a form of art. What is your opinion of this point of view? Explain your reasoning. • Why do you think that women are objectified more often than men are? • How does sexualization and objectification play out differently across racial lines? • Kilbourne explains that the consequences of being objectified are different – and more serious – for women than for men. Do you agree? How is the world different for women than it is for men? How do objectified images of women interact with those in our culture differently from the way images of men do? Why is it important to look at images in the context of the culture? • What is the difference between sexual objectification and sexual subjectification? (Ros Gill ) • How do ads construct violent white masculinity and how does that vision of masculinity hurt both men and women? Throughout your written analysis, be sure to make clear and specific reference to the images you selected, and please submit these images with your paper. Make sure you engage with and reference to at least 4 of the following authors: Kilbourne, Bordo, Hunter & Soto, Rose, Durham, Gill, Katz, Schuchardt, Ono and Buescher. Guidelines:  Keep your content focused on structural, systemic, institutional factors rather than the individual: BE ANALYTICAL NOT ANECDOTAL.  Avoid using the first person or including personal stories/reactions. You must make sure to actively engage with your readings: these essays need to be informed and framed by the theoretical material you have been reading this semester.  Keep within the 4-6 page limit; use 12-point font, double spacing and 1-inch margins.  Use formal writing conventions (introduction/thesis statement, body, conclusion) and correct grammar. Resources may be cited within the text of your paper, i.e. (Walters, 2013).

Sex, Gender, and Popular Culture Spring 2015 Look through popular magazines, and see if you can find advertisements that objectify women in order to sell a product. Alternately, you may use an advertisement on television (but make sure to provide a link to the ad so I can see it!). Study these images then write a paper about objectification that deals with all or some of the following: • What effect(s), if any, do you think the objectification of women’s bodies has on our culture? • Jean Kilbourne states “turning a human being into a thing is almost always the first step toward justifying violence against that person.” What do you think she means by this? Do you agree with her reasoning? Why or why not? • Some people would argue that depicting a woman’s body as an object is a form of art. What is your opinion of this point of view? Explain your reasoning. • Why do you think that women are objectified more often than men are? • How does sexualization and objectification play out differently across racial lines? • Kilbourne explains that the consequences of being objectified are different – and more serious – for women than for men. Do you agree? How is the world different for women than it is for men? How do objectified images of women interact with those in our culture differently from the way images of men do? Why is it important to look at images in the context of the culture? • What is the difference between sexual objectification and sexual subjectification? (Ros Gill ) • How do ads construct violent white masculinity and how does that vision of masculinity hurt both men and women? Throughout your written analysis, be sure to make clear and specific reference to the images you selected, and please submit these images with your paper. Make sure you engage with and reference to at least 4 of the following authors: Kilbourne, Bordo, Hunter & Soto, Rose, Durham, Gill, Katz, Schuchardt, Ono and Buescher. Guidelines:  Keep your content focused on structural, systemic, institutional factors rather than the individual: BE ANALYTICAL NOT ANECDOTAL.  Avoid using the first person or including personal stories/reactions. You must make sure to actively engage with your readings: these essays need to be informed and framed by the theoretical material you have been reading this semester.  Keep within the 4-6 page limit; use 12-point font, double spacing and 1-inch margins.  Use formal writing conventions (introduction/thesis statement, body, conclusion) and correct grammar. Resources may be cited within the text of your paper, i.e. (Walters, 2013).

The objectification of women has been a very controversial topic … Read More...
1) During the late 19th century, the nature of work changed for Americans and has never been the same since. Facets of work which we take for granted today such as working long hours and working by the clock, working with machines, and feeling like a very small part of a very large company or corporation, were alien to workers of the late 19th century. Scholars have long debated this transition in the workplace, and have attempted to assess whether the change was beneficial or not for the worker. Using your own personal experience if you wish, but also using specific historical examples discussed in the text and lesson, do you feel the changes the American worker experienced in the 19th century were beneficial or not? Would you rather work in a pre-industrial workplace, not governed by the clock, or has the advent of machines and machinery allowed American workers more freedom? Or has it made them robots? Also, why do you think we don’t have violent labor conflicts in this country like there were in the 19th century? Are workers happier? Or just used to a system now that they have no choice but to accept?

1) During the late 19th century, the nature of work changed for Americans and has never been the same since. Facets of work which we take for granted today such as working long hours and working by the clock, working with machines, and feeling like a very small part of a very large company or corporation, were alien to workers of the late 19th century. Scholars have long debated this transition in the workplace, and have attempted to assess whether the change was beneficial or not for the worker. Using your own personal experience if you wish, but also using specific historical examples discussed in the text and lesson, do you feel the changes the American worker experienced in the 19th century were beneficial or not? Would you rather work in a pre-industrial workplace, not governed by the clock, or has the advent of machines and machinery allowed American workers more freedom? Or has it made them robots? Also, why do you think we don’t have violent labor conflicts in this country like there were in the 19th century? Are workers happier? Or just used to a system now that they have no choice but to accept?

Planned labor has always been of paramount importance as supporting … Read More...
Now, you observe the following light pattern. Select all the possible changes in experimental conditions that might have caused the differences in the original pattern (that shown in problem 3) to that which you observe now. the wavelength of the light source was increased the wavelength of the light source was decreased the slit width/slit separation was increased the slit width/slit separation was decreased the experiment was changed from a double slit to single slit the experiment was changed from a single slit to a double slit

Now, you observe the following light pattern. Select all the possible changes in experimental conditions that might have caused the differences in the original pattern (that shown in problem 3) to that which you observe now. the wavelength of the light source was increased the wavelength of the light source was decreased the slit width/slit separation was increased the slit width/slit separation was decreased the experiment was changed from a double slit to single slit the experiment was changed from a single slit to a double slit

The formula y/L = m(wavelength)/a It’s still a single slit … Read More...
Essay list

Essay list

      Some students have a background or story … Read More...
MCE 260 Fall 2015 Homework 4, due September 22, 2015. PRESENT CLEARLY HOW YOU DEVELOPED THE SOLUTION TO THE PROBLEMS Each problem is worth up to 5 points. Points are given as follows: 5 points: Work was complete and presented clearly, the answer is correct 4 points: Work was complete, but not clearly presented or some errors in calculation 3 points: Some errors or omissions in methods or presentation 2 points: Major errors or omissions in methods or presentation 1 point: Problem was understood but incorrect approach was used DO SOMETHING WITH LINKAGES 1. (5 points) Fig 4-16b shows a Stephenson 6-bar linkage. Assume that the linkage is driven by a constant speed motor on the fixed pivot of link 7. Draw this linkage schematically (dimensions are not important). The link numbering and vector loops are already defined in Fig 4-16b. Add symbols for the angles θ2… θ8 and the lengths L2… L8 to the Figure. 2. (5 points) There are two vector loops (1-2-3-4, and 4-5-6-7-8). Write the vector loop equations as separate X and Y equations for each loop. 3. (5 points) Identify the unknowns that must be solved for doing position analysis. Make sure that the number of unknowns is the same as the number of equations. Hint: “links” 3 and 5 are both on the (rigid) coupler, so there is a simple relationship between the two angles. 4. (5 points) Write the vector loop equations for the inverted crank-slider (Fig. 4-13). Identify the two unknowns that must be solved when it is driven by the slider joint, which means that length b is a known input (as in the hydraulic excavator). Write expressions for the elements of the 2×2 Jacobian matrix. 5. (5 points) Modify the Matlab code fbpos1vec.m to solve the position analysis problem for this system. You may choose the dimensions and the input (probably best to make this similar to Fig 4-13). Show the lines of Matlab code that you changed (and no other lines) and show the values for the two unknowns that you solved. Page 1 of 1

MCE 260 Fall 2015 Homework 4, due September 22, 2015. PRESENT CLEARLY HOW YOU DEVELOPED THE SOLUTION TO THE PROBLEMS Each problem is worth up to 5 points. Points are given as follows: 5 points: Work was complete and presented clearly, the answer is correct 4 points: Work was complete, but not clearly presented or some errors in calculation 3 points: Some errors or omissions in methods or presentation 2 points: Major errors or omissions in methods or presentation 1 point: Problem was understood but incorrect approach was used DO SOMETHING WITH LINKAGES 1. (5 points) Fig 4-16b shows a Stephenson 6-bar linkage. Assume that the linkage is driven by a constant speed motor on the fixed pivot of link 7. Draw this linkage schematically (dimensions are not important). The link numbering and vector loops are already defined in Fig 4-16b. Add symbols for the angles θ2… θ8 and the lengths L2… L8 to the Figure. 2. (5 points) There are two vector loops (1-2-3-4, and 4-5-6-7-8). Write the vector loop equations as separate X and Y equations for each loop. 3. (5 points) Identify the unknowns that must be solved for doing position analysis. Make sure that the number of unknowns is the same as the number of equations. Hint: “links” 3 and 5 are both on the (rigid) coupler, so there is a simple relationship between the two angles. 4. (5 points) Write the vector loop equations for the inverted crank-slider (Fig. 4-13). Identify the two unknowns that must be solved when it is driven by the slider joint, which means that length b is a known input (as in the hydraulic excavator). Write expressions for the elements of the 2×2 Jacobian matrix. 5. (5 points) Modify the Matlab code fbpos1vec.m to solve the position analysis problem for this system. You may choose the dimensions and the input (probably best to make this similar to Fig 4-13). Show the lines of Matlab code that you changed (and no other lines) and show the values for the two unknowns that you solved. Page 1 of 1

info@checkyourstudy.com
Tornado Eddy Investigation Abstract The objective of this lab was to write a bunch of jibberish to provide students with a formatting template. Chemical engineering, bioengineering, and environmental engineering are “process engineering” disciplines. Good abstracts contains real content, such as 560 mL/min, 35 deg, and 67 percent yield. Ideal degreed graduates are technically strong, bring broad system perspectives to problem solving, and have the professional “soft skills” to make immediate contributions in the workplace. The senior lab sequence is the “capstone” opportunity to realize this ideal by integrating technical skills and developing professional soft skills to ensure workforce preparedness. The best conclusions are objective and numerical, such as operating conditions of 45 L/min at 32 deg C with expected costs of $4.55/lb. Background Insect exchange processes are often used in bug filtration, as they are effective at removing either positive or negative insects from water. An insect exchange column is a packed or fluidized bed filled with resin beads. Water flows through the column and most of the insects from the water enter the beads, but some of them pass in between the beads, which makes the exchange of insects non-ideal. Insectac 249 resin is a cation exchange resin, as it is being used to attract cationic Ca2+ from the toxic waste stream. This means the resin is negatively charged, and needs to be regenerated with a solution that produces positively charged insects, in this case, salt water which contains Na+ insects. The resin contains acidic styrene backbones which capture the cationic insects in a reversible process. A curve of Ca2+ concentration concentration vs. time was obtained after a standard curve was made to determine how many drops from the low cost barium test kit from Aquarium Pharmaceuticals (API)1 bottle #2 would correspond to a certain concentration in solution. A standard curve works by preparing solutions with known concentrations and testing these concentrations using the kit to create a curve of number of drops from bottle #2 (obtained result) vs. concentration of Ca2+ in solution (desired response). The standard curve can then be used for every test on the prototype and in the field, to quickly and accurately obtain a concentration from the test kit. The barium concentration vs. time curve can be used to calculate the exchange capacity of the resin and, in later tests, the regeneration efficiency. The curves must be used to get the total amount of barium removed from the water, m. Seen in Equation 2, the volumetric flow rate of water, , is multiplied by the integral from tinitial to tfinal of the total concentration of Ca2+ absorbed by the resin as a function of time, C. (2) 1 http://aquariumpharm.com/Products/Product.aspx?ProductID=72 , date accessed: 11/26/10 CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 9 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A graphical trapezoid method was used to evaluate the integral and get the final solution in equivalents of Ca2+ per L, it must be noted that there are 2 equivalents per mole of barium, as the charge of the barium insect is +2. An initial exchange capacity was calculated for the virgin resin, and an adjusted exchange capacity was calculated once the resin was regenerated. The regenerated resin capacity was found by multiplying the virgin resin capacity by the regeneration efficiency, expressed in Equation 3. (3) See Appendix A for the calculation of the exchange capacities and the regeneration efficiency. Materials and Methods Rosalie and Peter Johnson of Corvallis established the Linus Pauling Chair in Chemical Engineering to honor Oregon State University’s most famous graduate. Peter Johnson, former President and owner of Tekmax, Inc., a company which revolutionized battery manufacturing equipment, is a 1955 graduate of the College of Engineering.2 The Chair, also known as the Linus Pauling Distinguished Engineer or Linus Pauling Engineer (LPE), was originally designed to focus on the traditional “capstone” senior lab sequence in the former Department of Chemical Engineering. The focus is now extended to all the process engineering disciplines. The LPE is charged with establishing strong ties with industry, ensuring current and relevant laboratory experiences, and helping upperclass students develop skills in communication, teamwork, project management, and leadership. Include details about lab procedures not sufficiently detailed in the SOP, problems you had, etc. The bulk solution prepared to create the standard curve was used in the second day of testing to obtain the exchange capacity of the insectac 249 resin. The solution was pumped through a bathroom scale into the prototype insect exchange column. 45 mL of resin was rinsed and added to the column. The bed was fluidized as the solution was pumped through the resin, but for the creation of the Ca2+ concentration vs. time curve, the solution was pumped down through the column, as illustrated in the process flow diagram seen in Figure 1. Figure 1. Process sketch of the insect exchange column used for the project. Ref: http://www.generon.co.uk/acatalog/Chromatography.html 2 Harding, P. Viscosity Measurement SOP, Spring, 2010. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 10 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A bathroom scale calibration curve was created to ensure that the 150 mL/min, used to calculate the breakthrough time, would be delivered to the resin. The bathroom scale used was a Dwyer brand with flowrates between 0 and 300 cc/min of water. Originally, values between 120 and 180 mL/min were chosen for the calibration, with three runs for each flowrate, however the bathroom scale values were so far away from the measure values the range was extended to 100 to 200 mL/min. The regeneration experiment was performed using a method similar to that used in the water softening experiment, however instead of using a 640 ppm Ca2+ solution to fill the resin, a 6000 ppm Na+ solution was used to eject the Ca2+ from the resin. Twelve samples times were chosen and adjusted as the experiment progressed, with more than half of the samples taken at times less than 10 minutes, and the last sample taken at 45 minutes. The bulk exit solution was also tested to determine the regeneration efficiency. Results and Discussion The senior lab sequence has its roots in the former Department of Chemical Engineering. CHE 414 and 415 were taught in Winter and Spring and included 6 hours of lab time per week. The School has endeavored to incorporate the courses into the BIOE and ENVE curriculum, and this will be complete in 2008-2009. Recent development of the senior lab course sequence is shown chronologically in Fig. 1. In 2006-2007, CHE 414 and 415 were moved to Fall and Winter to enable CHE 416, an elective independent senior project course. Also that year, BIOE students took BIOE 414 in the Fall and BIOE 415 was developed and taught. No BIOE students enrolled in the optional CHE. In 2007-2008, the program transitioned in a new Linus Pauling Engineer and ENVE 414 was offered. Also, approximately 30 percent of BIOE students enrolled in the optional CHE 416. Accommodating the academic calendars of the three disciplines required a reduction in weekly student lab time from 6 to 3 hours. The expected relationship between coughing rate, y, and length of canine, x, is Bx z y Fe− (1) where F is a pre-exponential constant, B is vitamin B concentration and z is the height of an average trapeze artist. 3 The 2008-2009 brings the challenge of the dramatic enrollment increase shown in Fig. 1 and the first offering of ENVE 415. The result, shown on the right in Fig. 1, is the delivery of the senior lab sequence uniformly across the process engineering disciplines. CBEE 416 is expected to drawn approximately of the students that take the 415 courses. In 2007-2008, 414 and 415 were required for CHEs, 414 and 415 for BIOEs, and only 414 for ENVEs. CHE 416 is ostensibly an elective for all disciplines. In 2008-2009, 414 and 415 is required for all disciplines and CHE 416 will be an elective. The content of 414 is essentially 3 Fundamentals of Momentum, Heat, and Mass Transfer, Welty, J.R. et al., 4th edition, John Wiley & Sons, Inc. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 11 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE identical for all three disciplines, 415 has discipline-specific labs, and 416 consists of senior projects with potentially cross-discipline teams of 2 to 4 students. Tremendous labor and struggling with the lab equipment resulted in the data shown in y = –‐0.29x + 1.71 y = –‐0.25x + 2.03 y = –‐0.135x + 2.20 –‐1.5 –‐1.0 –‐0.5 0.0 0.5 1.0 1.5 2.0 2.5 0 2 4 6 8 10 ln y (units) x (units) ln y_1 ln y_2 ln y_3 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Case 1 Case 2 Case 3 Slope (units) (a) (b) Figure 1. (a) Data for y and x plotted for various values of z and (b) a comparison of slopes for the 3 cases investigate. The log plot slope yields the vitamin B concentration. The slopes were shown to be significantly at the 90% confidence level, but the instructor ran out of time and did not include error bars. The slope changed as predicted by the Snirtenhoffer equation. Improvements to the lab might include advice on how to legally change my name to something less embarrassing. My whole life I have been forced to repeat and spell it. I really feel that this has affected my psychologically. This was perhaps the worst lab I have ever done in my academic career, primarily due to the fact that there was no lab time. I simply typed in this entire report and filled it with jibberish. Some might think nobody will notice, but I know that …… Harding reads every word. Acknowledgments The author acknowledges his elementary teacher for providing truly foundational instruction in addition and subtraction. Jenny Burninbalm was instrumental with guidance on use of the RT-345 dog scratching device. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 12

Tornado Eddy Investigation Abstract The objective of this lab was to write a bunch of jibberish to provide students with a formatting template. Chemical engineering, bioengineering, and environmental engineering are “process engineering” disciplines. Good abstracts contains real content, such as 560 mL/min, 35 deg, and 67 percent yield. Ideal degreed graduates are technically strong, bring broad system perspectives to problem solving, and have the professional “soft skills” to make immediate contributions in the workplace. The senior lab sequence is the “capstone” opportunity to realize this ideal by integrating technical skills and developing professional soft skills to ensure workforce preparedness. The best conclusions are objective and numerical, such as operating conditions of 45 L/min at 32 deg C with expected costs of $4.55/lb. Background Insect exchange processes are often used in bug filtration, as they are effective at removing either positive or negative insects from water. An insect exchange column is a packed or fluidized bed filled with resin beads. Water flows through the column and most of the insects from the water enter the beads, but some of them pass in between the beads, which makes the exchange of insects non-ideal. Insectac 249 resin is a cation exchange resin, as it is being used to attract cationic Ca2+ from the toxic waste stream. This means the resin is negatively charged, and needs to be regenerated with a solution that produces positively charged insects, in this case, salt water which contains Na+ insects. The resin contains acidic styrene backbones which capture the cationic insects in a reversible process. A curve of Ca2+ concentration concentration vs. time was obtained after a standard curve was made to determine how many drops from the low cost barium test kit from Aquarium Pharmaceuticals (API)1 bottle #2 would correspond to a certain concentration in solution. A standard curve works by preparing solutions with known concentrations and testing these concentrations using the kit to create a curve of number of drops from bottle #2 (obtained result) vs. concentration of Ca2+ in solution (desired response). The standard curve can then be used for every test on the prototype and in the field, to quickly and accurately obtain a concentration from the test kit. The barium concentration vs. time curve can be used to calculate the exchange capacity of the resin and, in later tests, the regeneration efficiency. The curves must be used to get the total amount of barium removed from the water, m. Seen in Equation 2, the volumetric flow rate of water, , is multiplied by the integral from tinitial to tfinal of the total concentration of Ca2+ absorbed by the resin as a function of time, C. (2) 1 http://aquariumpharm.com/Products/Product.aspx?ProductID=72 , date accessed: 11/26/10 CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 9 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A graphical trapezoid method was used to evaluate the integral and get the final solution in equivalents of Ca2+ per L, it must be noted that there are 2 equivalents per mole of barium, as the charge of the barium insect is +2. An initial exchange capacity was calculated for the virgin resin, and an adjusted exchange capacity was calculated once the resin was regenerated. The regenerated resin capacity was found by multiplying the virgin resin capacity by the regeneration efficiency, expressed in Equation 3. (3) See Appendix A for the calculation of the exchange capacities and the regeneration efficiency. Materials and Methods Rosalie and Peter Johnson of Corvallis established the Linus Pauling Chair in Chemical Engineering to honor Oregon State University’s most famous graduate. Peter Johnson, former President and owner of Tekmax, Inc., a company which revolutionized battery manufacturing equipment, is a 1955 graduate of the College of Engineering.2 The Chair, also known as the Linus Pauling Distinguished Engineer or Linus Pauling Engineer (LPE), was originally designed to focus on the traditional “capstone” senior lab sequence in the former Department of Chemical Engineering. The focus is now extended to all the process engineering disciplines. The LPE is charged with establishing strong ties with industry, ensuring current and relevant laboratory experiences, and helping upperclass students develop skills in communication, teamwork, project management, and leadership. Include details about lab procedures not sufficiently detailed in the SOP, problems you had, etc. The bulk solution prepared to create the standard curve was used in the second day of testing to obtain the exchange capacity of the insectac 249 resin. The solution was pumped through a bathroom scale into the prototype insect exchange column. 45 mL of resin was rinsed and added to the column. The bed was fluidized as the solution was pumped through the resin, but for the creation of the Ca2+ concentration vs. time curve, the solution was pumped down through the column, as illustrated in the process flow diagram seen in Figure 1. Figure 1. Process sketch of the insect exchange column used for the project. Ref: http://www.generon.co.uk/acatalog/Chromatography.html 2 Harding, P. Viscosity Measurement SOP, Spring, 2010. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 10 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A bathroom scale calibration curve was created to ensure that the 150 mL/min, used to calculate the breakthrough time, would be delivered to the resin. The bathroom scale used was a Dwyer brand with flowrates between 0 and 300 cc/min of water. Originally, values between 120 and 180 mL/min were chosen for the calibration, with three runs for each flowrate, however the bathroom scale values were so far away from the measure values the range was extended to 100 to 200 mL/min. The regeneration experiment was performed using a method similar to that used in the water softening experiment, however instead of using a 640 ppm Ca2+ solution to fill the resin, a 6000 ppm Na+ solution was used to eject the Ca2+ from the resin. Twelve samples times were chosen and adjusted as the experiment progressed, with more than half of the samples taken at times less than 10 minutes, and the last sample taken at 45 minutes. The bulk exit solution was also tested to determine the regeneration efficiency. Results and Discussion The senior lab sequence has its roots in the former Department of Chemical Engineering. CHE 414 and 415 were taught in Winter and Spring and included 6 hours of lab time per week. The School has endeavored to incorporate the courses into the BIOE and ENVE curriculum, and this will be complete in 2008-2009. Recent development of the senior lab course sequence is shown chronologically in Fig. 1. In 2006-2007, CHE 414 and 415 were moved to Fall and Winter to enable CHE 416, an elective independent senior project course. Also that year, BIOE students took BIOE 414 in the Fall and BIOE 415 was developed and taught. No BIOE students enrolled in the optional CHE. In 2007-2008, the program transitioned in a new Linus Pauling Engineer and ENVE 414 was offered. Also, approximately 30 percent of BIOE students enrolled in the optional CHE 416. Accommodating the academic calendars of the three disciplines required a reduction in weekly student lab time from 6 to 3 hours. The expected relationship between coughing rate, y, and length of canine, x, is Bx z y Fe− (1) where F is a pre-exponential constant, B is vitamin B concentration and z is the height of an average trapeze artist. 3 The 2008-2009 brings the challenge of the dramatic enrollment increase shown in Fig. 1 and the first offering of ENVE 415. The result, shown on the right in Fig. 1, is the delivery of the senior lab sequence uniformly across the process engineering disciplines. CBEE 416 is expected to drawn approximately of the students that take the 415 courses. In 2007-2008, 414 and 415 were required for CHEs, 414 and 415 for BIOEs, and only 414 for ENVEs. CHE 416 is ostensibly an elective for all disciplines. In 2008-2009, 414 and 415 is required for all disciplines and CHE 416 will be an elective. The content of 414 is essentially 3 Fundamentals of Momentum, Heat, and Mass Transfer, Welty, J.R. et al., 4th edition, John Wiley & Sons, Inc. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 11 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE identical for all three disciplines, 415 has discipline-specific labs, and 416 consists of senior projects with potentially cross-discipline teams of 2 to 4 students. Tremendous labor and struggling with the lab equipment resulted in the data shown in y = –‐0.29x + 1.71 y = –‐0.25x + 2.03 y = –‐0.135x + 2.20 –‐1.5 –‐1.0 –‐0.5 0.0 0.5 1.0 1.5 2.0 2.5 0 2 4 6 8 10 ln y (units) x (units) ln y_1 ln y_2 ln y_3 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Case 1 Case 2 Case 3 Slope (units) (a) (b) Figure 1. (a) Data for y and x plotted for various values of z and (b) a comparison of slopes for the 3 cases investigate. The log plot slope yields the vitamin B concentration. The slopes were shown to be significantly at the 90% confidence level, but the instructor ran out of time and did not include error bars. The slope changed as predicted by the Snirtenhoffer equation. Improvements to the lab might include advice on how to legally change my name to something less embarrassing. My whole life I have been forced to repeat and spell it. I really feel that this has affected my psychologically. This was perhaps the worst lab I have ever done in my academic career, primarily due to the fact that there was no lab time. I simply typed in this entire report and filled it with jibberish. Some might think nobody will notice, but I know that …… Harding reads every word. Acknowledgments The author acknowledges his elementary teacher for providing truly foundational instruction in addition and subtraction. Jenny Burninbalm was instrumental with guidance on use of the RT-345 dog scratching device. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 12

For any additional help, please contact: info@checkyourstudy.com Call / Whatsapp … Read More...