Define: 41 Things Philosophy is: 1. Ignorant 2. Selfish 3. Ironic 4. Plain 5. Misunderstood 6. A failure 7. Poor 8. Unscientific 9. Unteachable 10. Foolish 11. Abnormal 12. Divine trickery 13. Egalitarian 14. A divine calling 15. Laborious 16. Countercultural 17. Uncomfortable 18. Virtuous 19. Dangerous 20. Simplistic<br />21. Polemical 22. Therapeutic 23. “conformist” 24. Embarrassi ng 25. Invulnerable 26. Annoying 27. Pneumatic 28. Apolitic al 29. Docile/teachable 30. Messianic 31. Pious 32. Impract ical 33. Happy 34. Necessary 35. Death-defying 36. Fallible 37. Immortal 38. Confident 39. Painful 40. agnostic</br

Define: 41 Things Philosophy is: 1. Ignorant 2. Selfish 3. Ironic 4. Plain 5. Misunderstood 6. A failure 7. Poor 8. Unscientific 9. Unteachable 10. Foolish 11. Abnormal 12. Divine trickery 13. Egalitarian 14. A divine calling 15. Laborious 16. Countercultural 17. Uncomfortable 18. Virtuous 19. Dangerous 20. Simplistic
21. Polemical 22. Therapeutic 23. “conformist” 24. Embarrassi ng 25. Invulnerable 26. Annoying 27. Pneumatic 28. Apolitic al 29. Docile/teachable 30. Messianic 31. Pious 32. Impract ical 33. Happy 34. Necessary 35. Death-defying 36. Fallible 37. Immortal 38. Confident 39. Painful 40. agnostic

Ignorant- A person is said to be ignorant if he … Read More...
4. Using your knowledge of the Stevenson’s career management model identify and briefly describe one activity that should be included in an organization’s career management program. Identify which element of the model the activity you identified fits within.

4. Using your knowledge of the Stevenson’s career management model identify and briefly describe one activity that should be included in an organization’s career management program. Identify which element of the model the activity you identified fits within.

Discipline Expertise- There is an apparent type of interdisciplinary in … Read More...
Chapter 15 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, May 16, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Fluid Pressure in a U-Tube A U-tube is filled with water, and the two arms are capped. The tube is cylindrical, and the right arm has twice the radius of the left arm. The caps have negligible mass, are watertight, and can freely slide up and down the tube. Part A A one-inch depth of sand is poured onto the cap on each arm. After the caps have moved (if necessary) to reestablish equilibrium, is the right cap higher, lower, or the same height as the left cap? You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Pressure in the Ocean The pressure at 10 below the surface of the ocean is about 2.00×105 . Part A higher lower the same height m Pa Which of the following statements is true? You did not open hints for this part. ANSWER: Part B Now consider the pressure 20 below the surface of the ocean. Which of the following statements is true? You did not open hints for this part. ANSWER: Relating Pressure and Height in a Container Learning Goal: To understand the derivation of the law relating height and pressure in a container. The weight of a column of seawater 1 in cross section and 10 high is about 2.00×105 . The weight of a column of seawater 1 in cross section and 10 high plus the weight of a column of air with the same cross section extending up to the top of the atmosphere is about 2.00×105 . The weight of 1 of seawater at 10 below the surface of the ocean is about 2.00×105 . The density of seawater is about 2.00×105 times the density of air at sea level. m2 m N m2 m N m3 m N m The pressure is twice that at a depth of 10 . The pressure is the same as that at a depth of 10 . The pressure is equal to that at a depth of 10 plus the weight per 1 cross sectional area of a column of seawater 10 high. The pressure is equal to the weight per 1 cross sectional area of a column of seawater 20 high. m m m m2 m m2 m In this problem, you will derive the law relating pressure to height in a container by analyzing a particular system. A container of uniform cross-sectional area is filled with liquid of uniform density . Consider a thin horizontal layer of liquid (thickness ) at a height as measured from the bottom of the container. Let the pressure exerted upward on the bottom of the layer be and the pressure exerted downward on the top be . Assume throughout the problem that the system is in equilibrium (the container has not been recently shaken or moved, etc.). Part A What is , the magnitude of the force exerted upward on the bottom of the liquid? You did not open hints for this part. ANSWER: Part B What is , the magnitude of the force exerted downward on the top of the liquid? A  dy y p p + dp Fup Fup = Fdown You did not open hints for this part. ANSWER: Part C What is the weight of the thin layer of liquid? Express your answer in terms of quantities given in the problem introduction and , the magnitude of the acceleration due to gravity. You did not open hints for this part. ANSWER: Part D Since the liquid is in equilibrium, the net force on the thin layer of liquid is zero. Complete the force equation for the sum of the vertical forces acting on the liquid layer described in the problem introduction. Express your answer in terms of quantities given in the problem introduction and taking upward forces to be positive. You did not open hints for this part. ANSWER: Fdown = wlayer g wlayer = Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). A Submerged Ball A ball of mass and volume is lowered on a string into a fluid of density . Assume that the object would sink to the bottom if it were not supported by the string. Part A  = = i Fy,i mb V f What is the tension in the string when the ball is fully submerged but not touching the bottom, as shown in the figure? Express your answer in terms of any or all of the given quantities and , the magnitude of the acceleration due to gravity. You did not open hints for this part. ANSWER: Archimedes’ Principle Learning Goal: To understand the applications of Archimedes’ principle. Archimedes’ principle is a powerful tool for solving many problems involving equilibrium in fluids. It states the following: When a body is partially or completely submerged in a fluid (either a liquid or a gas), the fluid exerts an upward force on the body equal to the weight of the fluid displaced by the body. As a result of the upward Archimedes force (often called the buoyant force), some objects may float in a fluid, and all of them appear to weigh less. This is the familiar phenomenon of buoyancy. Quantitatively, the buoyant force can be found as , where is the force, is the density of the fluid, is the magnitude of the acceleration due to gravity, and is the volume of the displaced fluid. In this problem, you will be asked several qualitative questions that should help you develop a feel for Archimedes’ principle. An object is placed in a fluid and then released. Assume that the object either floats to the surface (settling so that the object is partly above and partly below the fluid surface) or sinks to the bottom. (Note that for Parts A through D, you should assume that the object has settled in equilibrium.) Part A Consider the following statement: The magnitude of the buoyant force is equal to the weight of fluid displaced by the object. Under what circumstances is this statement true? T g T = Fbuoyant = fluidgV Fbuoyant fluid g V You did not open hints for this part. ANSWER: Part B Consider the following statement: The magnitude of the buoyant force is equal to the weight of the amount of fluid that has the same total volume as the object. Under what circumstances is this statement true? You did not open hints for this part. ANSWER: Part C Consider the following statement: The magnitude of the buoyant force equals the weight of the object. Under what circumstances is this statement true? for every object submerged partially or completely in a fluid only for an object that floats only for an object that sinks for no object submerged in a fluid for an object that is partially submerged in a fluid only for an object that floats for an object completely submerged in a fluid for no object partially or completely submerged in a fluid You did not open hints for this part. ANSWER: Part D Consider the following statement: The magnitude of the buoyant force is less than the weight of the object. Under what circumstances is this statement true? ANSWER: Now apply what you know to some more complicated situations. Part E An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, filled with a denser liquid. What would you observe? You did not open hints for this part. ANSWER: for every object submerged partially or completely in a fluid for an object that floats only for an object that sinks for no object submerged in a fluid for every object submerged partially or completely in a fluid for an object that floats for an object that sinks for no object submerged in a fluid Part F An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, filled with a less dense liquid. What would you observe? You did not open hints for this part. ANSWER: Part G Two objects, T and B, have identical size and shape and have uniform density. They are carefully placed in a container filled with a liquid. Both objects float in equilibrium. Less of object T is submerged than of object B, which floats, fully submerged, closer to the bottom of the container. Which of the following statements is true? ANSWER: The object would sink all the way to the bottom. The object would float submerged more deeply than in the first container. The object would float submerged less deeply than in the first container. More than one of these outcomes is possible. The object would sink all the way to the bottom. The object would float submerged more deeply than in the first container. The object would float submerged less deeply than in the first container. More than one of these outcomes is possible. Object T has a greater density than object B. Object B has a greater density than object T. Both objects have the same density. ± Buoyant Force Conceptual Question A rectangular wooden block of weight floats with exactly one-half of its volume below the waterline. Part A What is the buoyant force acting on the block? You did not open hints for this part. ANSWER: Part B W The buoyant force cannot be determined. 2W W 1 W 2 The density of water is 1.00 . What is the density of the block? You did not open hints for this part. ANSWER: Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). g/cm3 2.00 between 1.00 and 2.00 1.00 between 0.50 and 1.00 0.50 The density cannot be determined. g/cm3 g/cm3 g/cm3 g/cm3 g/cm3 Flow Velocity of Blood Conceptual Question Arteriosclerotic plaques forming on the inner walls of arteries can decrease the effective cross-sectional area of an artery. Even small changes in the effective area of an artery can lead to very large changes in the blood pressure in the artery and possibly to the collapse of the blood vessel. Imagine a healthy artery, with blood flow velocity of and mass per unit volume of . The kinetic energy per unit volume of blood is given by Imagine that plaque has narrowed an artery to one-fifth of its normal cross-sectional area (an 80% blockage). Part A Compared to normal blood flow velocity, , what is the velocity of blood as it passes through this blockage? You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C v0 = 0.14 m/s  = 1050 kg/m3 K0 =  . 1 2 v20 v0 80v0 20v0 5v0 v0/5 This question will be shown after you complete previous question(s). For parts D – F imagine that plaque has grown to a 90% blockage. Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). ± Playing with a Water Hose Two children, Ferdinand and Isabella, are playing with a water hose on a sunny summer day. Isabella is holding the hose in her hand 1.0 meters above the ground and is trying to spray Ferdinand, who is standing 10.0 meters away. Part A Will Isabella be able to spray Ferdinand if the water is flowing out of the hose at a constant speed of 3.5 meters per second? Assume that the hose is pointed parallel to the ground and take the magnitude of the acceleration due to gravity to be 9.81 meters per second, per second. You did not open hints for this part. v0 g ANSWER: Part B This question will be shown after you complete previous question(s). Tactics Box 15.2 Finding Whether an Object Floats or Sinks Learning Goal: To practice Tactics Box 15.2 Finding whether an object floats or sinks. If you hold an object underwater and then release it, it can float to the surface, sink, or remain “hanging” in the water, depending on whether the fluid density is larger than, smaller than, or equal to the object’s average density . These conditions are summarized in this Tactics Box. Yes No f avg TACTICS BOX 15.2 Finding whether an object floats or sinks Object sinks Object floats Object has neutral buoyancy An object sinks if it weighs more than the fluid it displaces, that is, if its average density is greater than the density of the fluid: . An object floats on the surface if it weighs less than the fluid it displaces, that is, if its average density is less than the density of the fluid: . An object hangs motionless in the fluid if it weighs exactly the same as the fluid it displaces. It has neutral buoyancy if its average density equals the density of the fluid: . Part A Ice at 0.0 has a density of 917 . A 3.00 ice cube is gently released inside a small container filled with oil and is observed to be neutrally buoyant. What is the density of the oil, ? Express your answer in kilograms per meter cubed to three significant figures. ANSWER: Part B Once the ice cube melts, what happens to the liquid water that it produces? You did not open hints for this part. ANSWER: avg > f avg < f avg = f 'C kg/m3 cm3 oil oil = kg/m3 Part C What happens if some ethyl alcohol of density 790 is poured into the container after the ice cube has melted? ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. The liquid water sinks to the bottom of the container. The liquid water rises to the surface and floats on top of the oil. The liquid water is in static equilibrium at the location where the ice cube was originally placed. kg/m3 A layer of ethyl alcohol forms between the oil and the water. The layer of ethyl alcohol forms at the bottom of the container. The layer of ethyl alcohol forms on the surface.

Chapter 15 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, May 16, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Fluid Pressure in a U-Tube A U-tube is filled with water, and the two arms are capped. The tube is cylindrical, and the right arm has twice the radius of the left arm. The caps have negligible mass, are watertight, and can freely slide up and down the tube. Part A A one-inch depth of sand is poured onto the cap on each arm. After the caps have moved (if necessary) to reestablish equilibrium, is the right cap higher, lower, or the same height as the left cap? You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Pressure in the Ocean The pressure at 10 below the surface of the ocean is about 2.00×105 . Part A higher lower the same height m Pa Which of the following statements is true? You did not open hints for this part. ANSWER: Part B Now consider the pressure 20 below the surface of the ocean. Which of the following statements is true? You did not open hints for this part. ANSWER: Relating Pressure and Height in a Container Learning Goal: To understand the derivation of the law relating height and pressure in a container. The weight of a column of seawater 1 in cross section and 10 high is about 2.00×105 . The weight of a column of seawater 1 in cross section and 10 high plus the weight of a column of air with the same cross section extending up to the top of the atmosphere is about 2.00×105 . The weight of 1 of seawater at 10 below the surface of the ocean is about 2.00×105 . The density of seawater is about 2.00×105 times the density of air at sea level. m2 m N m2 m N m3 m N m The pressure is twice that at a depth of 10 . The pressure is the same as that at a depth of 10 . The pressure is equal to that at a depth of 10 plus the weight per 1 cross sectional area of a column of seawater 10 high. The pressure is equal to the weight per 1 cross sectional area of a column of seawater 20 high. m m m m2 m m2 m In this problem, you will derive the law relating pressure to height in a container by analyzing a particular system. A container of uniform cross-sectional area is filled with liquid of uniform density . Consider a thin horizontal layer of liquid (thickness ) at a height as measured from the bottom of the container. Let the pressure exerted upward on the bottom of the layer be and the pressure exerted downward on the top be . Assume throughout the problem that the system is in equilibrium (the container has not been recently shaken or moved, etc.). Part A What is , the magnitude of the force exerted upward on the bottom of the liquid? You did not open hints for this part. ANSWER: Part B What is , the magnitude of the force exerted downward on the top of the liquid? A  dy y p p + dp Fup Fup = Fdown You did not open hints for this part. ANSWER: Part C What is the weight of the thin layer of liquid? Express your answer in terms of quantities given in the problem introduction and , the magnitude of the acceleration due to gravity. You did not open hints for this part. ANSWER: Part D Since the liquid is in equilibrium, the net force on the thin layer of liquid is zero. Complete the force equation for the sum of the vertical forces acting on the liquid layer described in the problem introduction. Express your answer in terms of quantities given in the problem introduction and taking upward forces to be positive. You did not open hints for this part. ANSWER: Fdown = wlayer g wlayer = Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). A Submerged Ball A ball of mass and volume is lowered on a string into a fluid of density . Assume that the object would sink to the bottom if it were not supported by the string. Part A  = = i Fy,i mb V f What is the tension in the string when the ball is fully submerged but not touching the bottom, as shown in the figure? Express your answer in terms of any or all of the given quantities and , the magnitude of the acceleration due to gravity. You did not open hints for this part. ANSWER: Archimedes’ Principle Learning Goal: To understand the applications of Archimedes’ principle. Archimedes’ principle is a powerful tool for solving many problems involving equilibrium in fluids. It states the following: When a body is partially or completely submerged in a fluid (either a liquid or a gas), the fluid exerts an upward force on the body equal to the weight of the fluid displaced by the body. As a result of the upward Archimedes force (often called the buoyant force), some objects may float in a fluid, and all of them appear to weigh less. This is the familiar phenomenon of buoyancy. Quantitatively, the buoyant force can be found as , where is the force, is the density of the fluid, is the magnitude of the acceleration due to gravity, and is the volume of the displaced fluid. In this problem, you will be asked several qualitative questions that should help you develop a feel for Archimedes’ principle. An object is placed in a fluid and then released. Assume that the object either floats to the surface (settling so that the object is partly above and partly below the fluid surface) or sinks to the bottom. (Note that for Parts A through D, you should assume that the object has settled in equilibrium.) Part A Consider the following statement: The magnitude of the buoyant force is equal to the weight of fluid displaced by the object. Under what circumstances is this statement true? T g T = Fbuoyant = fluidgV Fbuoyant fluid g V You did not open hints for this part. ANSWER: Part B Consider the following statement: The magnitude of the buoyant force is equal to the weight of the amount of fluid that has the same total volume as the object. Under what circumstances is this statement true? You did not open hints for this part. ANSWER: Part C Consider the following statement: The magnitude of the buoyant force equals the weight of the object. Under what circumstances is this statement true? for every object submerged partially or completely in a fluid only for an object that floats only for an object that sinks for no object submerged in a fluid for an object that is partially submerged in a fluid only for an object that floats for an object completely submerged in a fluid for no object partially or completely submerged in a fluid You did not open hints for this part. ANSWER: Part D Consider the following statement: The magnitude of the buoyant force is less than the weight of the object. Under what circumstances is this statement true? ANSWER: Now apply what you know to some more complicated situations. Part E An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, filled with a denser liquid. What would you observe? You did not open hints for this part. ANSWER: for every object submerged partially or completely in a fluid for an object that floats only for an object that sinks for no object submerged in a fluid for every object submerged partially or completely in a fluid for an object that floats for an object that sinks for no object submerged in a fluid Part F An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, filled with a less dense liquid. What would you observe? You did not open hints for this part. ANSWER: Part G Two objects, T and B, have identical size and shape and have uniform density. They are carefully placed in a container filled with a liquid. Both objects float in equilibrium. Less of object T is submerged than of object B, which floats, fully submerged, closer to the bottom of the container. Which of the following statements is true? ANSWER: The object would sink all the way to the bottom. The object would float submerged more deeply than in the first container. The object would float submerged less deeply than in the first container. More than one of these outcomes is possible. The object would sink all the way to the bottom. The object would float submerged more deeply than in the first container. The object would float submerged less deeply than in the first container. More than one of these outcomes is possible. Object T has a greater density than object B. Object B has a greater density than object T. Both objects have the same density. ± Buoyant Force Conceptual Question A rectangular wooden block of weight floats with exactly one-half of its volume below the waterline. Part A What is the buoyant force acting on the block? You did not open hints for this part. ANSWER: Part B W The buoyant force cannot be determined. 2W W 1 W 2 The density of water is 1.00 . What is the density of the block? You did not open hints for this part. ANSWER: Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). g/cm3 2.00 between 1.00 and 2.00 1.00 between 0.50 and 1.00 0.50 The density cannot be determined. g/cm3 g/cm3 g/cm3 g/cm3 g/cm3 Flow Velocity of Blood Conceptual Question Arteriosclerotic plaques forming on the inner walls of arteries can decrease the effective cross-sectional area of an artery. Even small changes in the effective area of an artery can lead to very large changes in the blood pressure in the artery and possibly to the collapse of the blood vessel. Imagine a healthy artery, with blood flow velocity of and mass per unit volume of . The kinetic energy per unit volume of blood is given by Imagine that plaque has narrowed an artery to one-fifth of its normal cross-sectional area (an 80% blockage). Part A Compared to normal blood flow velocity, , what is the velocity of blood as it passes through this blockage? You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C v0 = 0.14 m/s  = 1050 kg/m3 K0 =  . 1 2 v20 v0 80v0 20v0 5v0 v0/5 This question will be shown after you complete previous question(s). For parts D – F imagine that plaque has grown to a 90% blockage. Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). ± Playing with a Water Hose Two children, Ferdinand and Isabella, are playing with a water hose on a sunny summer day. Isabella is holding the hose in her hand 1.0 meters above the ground and is trying to spray Ferdinand, who is standing 10.0 meters away. Part A Will Isabella be able to spray Ferdinand if the water is flowing out of the hose at a constant speed of 3.5 meters per second? Assume that the hose is pointed parallel to the ground and take the magnitude of the acceleration due to gravity to be 9.81 meters per second, per second. You did not open hints for this part. v0 g ANSWER: Part B This question will be shown after you complete previous question(s). Tactics Box 15.2 Finding Whether an Object Floats or Sinks Learning Goal: To practice Tactics Box 15.2 Finding whether an object floats or sinks. If you hold an object underwater and then release it, it can float to the surface, sink, or remain “hanging” in the water, depending on whether the fluid density is larger than, smaller than, or equal to the object’s average density . These conditions are summarized in this Tactics Box. Yes No f avg TACTICS BOX 15.2 Finding whether an object floats or sinks Object sinks Object floats Object has neutral buoyancy An object sinks if it weighs more than the fluid it displaces, that is, if its average density is greater than the density of the fluid: . An object floats on the surface if it weighs less than the fluid it displaces, that is, if its average density is less than the density of the fluid: . An object hangs motionless in the fluid if it weighs exactly the same as the fluid it displaces. It has neutral buoyancy if its average density equals the density of the fluid: . Part A Ice at 0.0 has a density of 917 . A 3.00 ice cube is gently released inside a small container filled with oil and is observed to be neutrally buoyant. What is the density of the oil, ? Express your answer in kilograms per meter cubed to three significant figures. ANSWER: Part B Once the ice cube melts, what happens to the liquid water that it produces? You did not open hints for this part. ANSWER: avg > f avg < f avg = f 'C kg/m3 cm3 oil oil = kg/m3 Part C What happens if some ethyl alcohol of density 790 is poured into the container after the ice cube has melted? ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. The liquid water sinks to the bottom of the container. The liquid water rises to the surface and floats on top of the oil. The liquid water is in static equilibrium at the location where the ice cube was originally placed. kg/m3 A layer of ethyl alcohol forms between the oil and the water. The layer of ethyl alcohol forms at the bottom of the container. The layer of ethyl alcohol forms on the surface.

please email info@checkyourstudy.com Chapter 15 Practice Problems (Practice – no … Read More...
TEXT The sole text is Daniel Bonevac’s Today’s Moral Issues. This is an extremely accessible work that organizes the subject matter of ethics into well-structured units involving both general principles and focused ethical dilemmas. The instructor will guide the students through the pertinent readings and discussion topics. Exam #3: WAR ECONOMIC EQUALITY 1. Aquinas 5. Mill 2. Grotius 6. Hospers 3. Clausewitz 7. Anderson 4. Gandhi CONCERNING THE SHORT PAPER Choose one of our dilemma topics from our book as the focus of your short paper. If you have another topic in mind, please consult with me for permission. —length: 4 to 5 pages — format: typed —number of points: 10 — submission via Bb, under “Assignments” — Format: Microsoft Word — Line Spacing: Double-Spaced —Print: Black The following is merely a suggestion for the organization of the paper, but it might be useful as an indication of how it could look: a) Initial statement of your position concerning the moral dilemma; how to resolve it, how you plan to argue for/against it. b) Amplification of your position; your main points or position. c) Backup: some cited references and supporting evidence for your position. d) Your criticisms of alternative or contrary points of view. e) Your conclusion/summing up. Plagiarism is a serious breach of academic integrity. If you submit plagiarized materials you will receive a zero on the assignment. If you need an extension of the due date for the paper, please consult with me.

TEXT The sole text is Daniel Bonevac’s Today’s Moral Issues. This is an extremely accessible work that organizes the subject matter of ethics into well-structured units involving both general principles and focused ethical dilemmas. The instructor will guide the students through the pertinent readings and discussion topics. Exam #3: WAR ECONOMIC EQUALITY 1. Aquinas 5. Mill 2. Grotius 6. Hospers 3. Clausewitz 7. Anderson 4. Gandhi CONCERNING THE SHORT PAPER Choose one of our dilemma topics from our book as the focus of your short paper. If you have another topic in mind, please consult with me for permission. —length: 4 to 5 pages — format: typed —number of points: 10 — submission via Bb, under “Assignments” — Format: Microsoft Word — Line Spacing: Double-Spaced —Print: Black The following is merely a suggestion for the organization of the paper, but it might be useful as an indication of how it could look: a) Initial statement of your position concerning the moral dilemma; how to resolve it, how you plan to argue for/against it. b) Amplification of your position; your main points or position. c) Backup: some cited references and supporting evidence for your position. d) Your criticisms of alternative or contrary points of view. e) Your conclusion/summing up. Plagiarism is a serious breach of academic integrity. If you submit plagiarized materials you will receive a zero on the assignment. If you need an extension of the due date for the paper, please consult with me.

Non-violence as a rule of love   The mainly essential … Read More...
Faculty of Science Technology and Engineering Department of Physics Senior Laboratory Faraday rotation AIM To show that optical activity is induced in a certain type of glass when it is in a magnetic field. To investigate the degree of rotation of linearly polarised light as a function of the applied magnetic field and hence determine a parameter which is characteristic of each material and known as Verdet’s constant. BACKGROUND INFORMATION A brief description of the properties and production of polarised light is given in the section labelled: Notes on polarisation. This should be read before proceeding with this experiment. Additional details may be found in the references listed at the end of this experiment. Whereas some materials, such as quartz, are naturally optically active, optical activity can be induced in others by the application of a magnetic field. For such materials, the angle through which the plane of polarisation of a linearly polarised beam is rotated () depends on the thickness of the sample (L), the strength of the magnetic field (B) and on the properties of the particular material. The latter is described by means of a parameter introduced by Verdet, which is wavelength dependent. Thus:  = V B L Lamp Polariser Solenoid Polariser Glass rod A Solenoid power supply Viewing mirror EXPERIMENTAL PROCEDURE The experimental arrangement is shown in the diagram. Unpolarised white light is produced by a hot filament and viewed using a mirror. • The light from the globe passes through two polarisers as well as the specially doped glass rod. Select one of the colour filters provided and place in the light path. Each of these filters transmits a relatively narrow band of wavelengths centred around a dominant wavelength as listed in the table. Filter No. Dominant Wavelength 98 4350 Å 50 4500 75 4900 58 5300 72 B 6060 92 6700 With the power supply for the coil switched off, (do not simply turn the potentiometer to zero: this still allows some current to flow) adjust one of the polarisers until minimum light is transmitted to the mirror. Minimum transmission can be determined visually. • Decide which polariser you will work with and do not alter the other one during the measurements. • The magnetic field is generated by a current in a solenoid (coil) placed around the glass rod. As the current in the coil is increased, the magnitude of the magnetic field will increase as shown on the calibration curve below. The degree of optical activity will also increase, resulting in some angle of rotation of the plane of polarisation. Hence you will need to rotate your chosen polariser to regain a minimum setting. 0 1 2 3 4 5 0.00 0.02 0.04 0.06 0.08 I (amps) B (tesla) Magnetic field (B) produced by current (I) in solenoid • Record the rotation angle () for coil currents of 0,1,2,3,4 and 5 amps. Avoid having the current in the coil switched on except when measurements are actually being taken as it can easily overheat. If the coil becomes too hot to touch, switch it off and wait for it to cool before proceeding. • Plot  as a function of B and, given that the length of the glass rod is 30 cm, determine Verdet’s constant for this material at the wavelength () in use. • Repeat the experiment for each of the wavelengths available using the filter set provided. • Calculate the logarithm for each V and  and tabulate the results. By plotting log V against log , determine the relationship between V and . [Hint: m log(x) = log (xm) and log(xy) = log(x) + log(y)]. • Calculate the errors involved in your determination of V. The uncertainty in a value of B may be taken as the uncertainty in reading the scale of the calibration curve) • The magnetic field direction can be reversed by reversing the direction of current flow in the coil. Describe the effect of this reversal and provide an explanation. Reference Optics Hecht.

Faculty of Science Technology and Engineering Department of Physics Senior Laboratory Faraday rotation AIM To show that optical activity is induced in a certain type of glass when it is in a magnetic field. To investigate the degree of rotation of linearly polarised light as a function of the applied magnetic field and hence determine a parameter which is characteristic of each material and known as Verdet’s constant. BACKGROUND INFORMATION A brief description of the properties and production of polarised light is given in the section labelled: Notes on polarisation. This should be read before proceeding with this experiment. Additional details may be found in the references listed at the end of this experiment. Whereas some materials, such as quartz, are naturally optically active, optical activity can be induced in others by the application of a magnetic field. For such materials, the angle through which the plane of polarisation of a linearly polarised beam is rotated () depends on the thickness of the sample (L), the strength of the magnetic field (B) and on the properties of the particular material. The latter is described by means of a parameter introduced by Verdet, which is wavelength dependent. Thus:  = V B L Lamp Polariser Solenoid Polariser Glass rod A Solenoid power supply Viewing mirror EXPERIMENTAL PROCEDURE The experimental arrangement is shown in the diagram. Unpolarised white light is produced by a hot filament and viewed using a mirror. • The light from the globe passes through two polarisers as well as the specially doped glass rod. Select one of the colour filters provided and place in the light path. Each of these filters transmits a relatively narrow band of wavelengths centred around a dominant wavelength as listed in the table. Filter No. Dominant Wavelength 98 4350 Å 50 4500 75 4900 58 5300 72 B 6060 92 6700 With the power supply for the coil switched off, (do not simply turn the potentiometer to zero: this still allows some current to flow) adjust one of the polarisers until minimum light is transmitted to the mirror. Minimum transmission can be determined visually. • Decide which polariser you will work with and do not alter the other one during the measurements. • The magnetic field is generated by a current in a solenoid (coil) placed around the glass rod. As the current in the coil is increased, the magnitude of the magnetic field will increase as shown on the calibration curve below. The degree of optical activity will also increase, resulting in some angle of rotation of the plane of polarisation. Hence you will need to rotate your chosen polariser to regain a minimum setting. 0 1 2 3 4 5 0.00 0.02 0.04 0.06 0.08 I (amps) B (tesla) Magnetic field (B) produced by current (I) in solenoid • Record the rotation angle () for coil currents of 0,1,2,3,4 and 5 amps. Avoid having the current in the coil switched on except when measurements are actually being taken as it can easily overheat. If the coil becomes too hot to touch, switch it off and wait for it to cool before proceeding. • Plot  as a function of B and, given that the length of the glass rod is 30 cm, determine Verdet’s constant for this material at the wavelength () in use. • Repeat the experiment for each of the wavelengths available using the filter set provided. • Calculate the logarithm for each V and  and tabulate the results. By plotting log V against log , determine the relationship between V and . [Hint: m log(x) = log (xm) and log(xy) = log(x) + log(y)]. • Calculate the errors involved in your determination of V. The uncertainty in a value of B may be taken as the uncertainty in reading the scale of the calibration curve) • The magnetic field direction can be reversed by reversing the direction of current flow in the coil. Describe the effect of this reversal and provide an explanation. Reference Optics Hecht.

Top of Form Abstract.     Faraday Effect or Faraday … Read More...
c. Briefly describe the credits the commissioning process will likely affect in the certification of the building

c. Briefly describe the credits the commissioning process will likely affect in the certification of the building

To require building commissioning as a standard practice is one … Read More...
Project Part 1 Objective Our objective, in this Part 1 of our Project, is to practise solving a problem by composing and testing a Python program using all that we have learnt so far and discovering new things, such as lists of lists, on the way. Project – Hunting worms in our garden! No more turtles! In this project, we shall move on to worms. Indeed, our project is a game in which the player hunts for worms in our garden. Once our garden has been displayed, the player tries to guess where the worms are located by entering the coordinates of a cell in our garden. When the player has located all the worms, the game is over! Of course there are ways of making this game more exciting (hence complicated), but considering that we have 2 weeks for Part 1 and 2 weeks for Part 2, keeping it simple will be our goal. We will implement our game in two parts. In Part 1, we write code that constructs and tests our data structures i.e., our variables. In Part 2, we write code that allows the player to play a complete “worm hunting” game! ? Project – Part 1 – Description Data Structures (variables): As stated above, in Part 1, we write code that constructs our data structures i.e., our variables. In our game program, we will need data structures (variables) to represent: 1. Our garden that is displayed to the player (suggestion: list of lists), 2. The garden that contains all the worms (suggestion: another list of lists), Garden: Our garden in Part 1 of our Project will have a width and a height of 10. Warning: The width and the height of our garden may change in Part 2 of our Project. So, it may be a good idea to create 2 variables and assign the width and the height of our garden to these 2 variables. 3. Our worms and their information. For each worm, we may want to keep the following information: a. worm number, b. the location of the worm, for example, either the coordinates of the cells containing the worm OR the coordinate of the first cell containing the worm, its length and whether the worm is laying horizontally or vertically. Worms: We will create 6 worms of length 3. 4. And other variables as needed. Testing our data structures: ? Suggestion: as we create a data structure (the “displayed” garden, the garden containing the worms, each worm, etc…), print it with a “debug print statement”. Once we are certain the data structure is well constructed, comment out the “debug print statement”. Code: In Part 1, the code we write must include functions and it must include the main section of our program. In other words, in Part 1, the code we write must be a complete program. In terms of functions, here is a list of suggestions. We may have functions that … ? creates a garden (i.e., a garden data structure), ? creates the worms (i.e., the worm data structure), ? places a worm in the garden that is to hold the worms (i.e., another garden data structure), ? displays the garden on the screen for the player to see, ? displays a worm in the displayed garden, ? etc… ? Finally, in Part 1, the code we write must implement the following algorithm: Algorithm: Here is the algorithm for the main section of our game program: ? Welcome the player ? Create an empty “displayed” garden, (“displayed” because this is the garden we display to the player) ? Create the worms (worms’ information) ? Create an empty “hidden” garden Note 1: “hidden” because one can keep track of the worms in this “hidden” garden, which we do not show to the player. This is why it is called “hidden”. Note 2: One can keep track of worm’s locations using a different mechanism or data structure. It does not have to be a list of lists representing a “hidden” garden. We are free to choose how we want to keep track of where our worms are located in our garden. ? Place each worm in the “hidden” garden (or whatever mechanism or data structure we decide to use) ? Display the “displayed” garden on the screen for the player to see ? While the player wants to play, ask the player for a worm number (1 to 6), read this worm number and display this worm on the “displayed” garden. This is not the game. Remember, we shall implement the game itself in Part 2. Here, in this step, we make sure our code works properly, i.e., it can retrieve worm information and display worms properly. Displaying worms properly: Note that when we create worms and display them, it may be the case that worms overlap with other worms and that worms wrap around the garden. These 2 situations are illustrated in the 3 Sample Runs discussed below. At this point, we are ready for Part 2 of our Project. Sample Runs: In order to illustrate the explanations given above of what we are to do in this Part 1 of our Project, 3 sample runs have been posted below the description of this Part 1 of our Project on our course web site. Have a look at these 3 sample runs. The code we create for this Part 1 of our Project must produce exactly the same output as the one shown in these 3 sample runs. Of course, the position of our worms will be different but everything else should be the same. What we see in each of these 3 sample runs is 1 execution of the code we are to create for this Part 1 of our Project. Note about Sample Run 1: In this Sample Run, the player enters the numbers 1 to 8 sequentially. Wrap around: Worm 2 wraps around: it starts at (row 7, column B), (row 7, column A) then wraps around to (row 7, column J). Worm 6 also wraps around: it starts at (row 2, column E), (row 1, column E) then wraps around to (row 10, column E). Overlap: There are some overlapping worms: worms 5 and 6 overlap at (row 1, column E). Note about Sample Run 2: In this Sample Run, the player enters the numbers 1 to 8 sequentially. Wrap around: Worm 3 wraps around: it starts at (row 1, column B) then wraps around to (row 10, column B) and (row 9, column B). Worm 6 also wraps around: it starts at (row 1, column D) then wraps around to (row 10, column D) and (row 9, column D). Overlap: There are some overlapping worms: worms 2 and 4 overlap at (row 3, column H), worms 1 and 2 overlap at (row 3, column G) and worms 2 and 5 overlap at (row 3, column E). Note about Sample Run 3: In this Sample Run, the player enters the numbers in the following sequence: 3, 2, 6, 4, 5, 1, 7, 8. Wrap around: Worm 3 wraps around: it starts at (row 2, column C), (row 1, column C) then wraps around to (row 10, column C). Worm 1 also wraps around: it starts at (row 2, column B), (row 2, column A) then wraps around to (row 2, column J). Overlap: There are some overlapping worms: worms 6 and 3 overlap at (row 1, column C) and (row 2, column C). Other Requirements: Here are a few more requirements the code we are to create for this Part 1 of our Project must satisfy. 1. The location of each worm in the garden must be determined randomly. 2. Whether a worm is lying horizontally or vertically must also be determined randomly. 3. It is acceptable in Part 1 of our Project if worms overlap each other (see Sample Runs) 4. When placing a worm in a garden, the worm must “wrap around” the garden. See Sample Runs for examples of what “wrapping around” signifies. How will we implement this wrapping around? Hint: wrapping around can be achieved using an arithmetic operator we have already seen. 5. We must make use of docstring when we implement our functions (have a look at our textbook for an explanation and an example). 6. Every time we encounter the word must in this description of Part 1 of our Project, we shall look upon that sentence as another requirement. For example, the sentence “The code we create for this Part 1 of our Project must produce exactly the same output as the one shown in these 3 sample runs.”, even though it is not listed below the Other Requirements heading, is also a requirement because of its must.

Project Part 1 Objective Our objective, in this Part 1 of our Project, is to practise solving a problem by composing and testing a Python program using all that we have learnt so far and discovering new things, such as lists of lists, on the way. Project – Hunting worms in our garden! No more turtles! In this project, we shall move on to worms. Indeed, our project is a game in which the player hunts for worms in our garden. Once our garden has been displayed, the player tries to guess where the worms are located by entering the coordinates of a cell in our garden. When the player has located all the worms, the game is over! Of course there are ways of making this game more exciting (hence complicated), but considering that we have 2 weeks for Part 1 and 2 weeks for Part 2, keeping it simple will be our goal. We will implement our game in two parts. In Part 1, we write code that constructs and tests our data structures i.e., our variables. In Part 2, we write code that allows the player to play a complete “worm hunting” game! ? Project – Part 1 – Description Data Structures (variables): As stated above, in Part 1, we write code that constructs our data structures i.e., our variables. In our game program, we will need data structures (variables) to represent: 1. Our garden that is displayed to the player (suggestion: list of lists), 2. The garden that contains all the worms (suggestion: another list of lists), Garden: Our garden in Part 1 of our Project will have a width and a height of 10. Warning: The width and the height of our garden may change in Part 2 of our Project. So, it may be a good idea to create 2 variables and assign the width and the height of our garden to these 2 variables. 3. Our worms and their information. For each worm, we may want to keep the following information: a. worm number, b. the location of the worm, for example, either the coordinates of the cells containing the worm OR the coordinate of the first cell containing the worm, its length and whether the worm is laying horizontally or vertically. Worms: We will create 6 worms of length 3. 4. And other variables as needed. Testing our data structures: ? Suggestion: as we create a data structure (the “displayed” garden, the garden containing the worms, each worm, etc…), print it with a “debug print statement”. Once we are certain the data structure is well constructed, comment out the “debug print statement”. Code: In Part 1, the code we write must include functions and it must include the main section of our program. In other words, in Part 1, the code we write must be a complete program. In terms of functions, here is a list of suggestions. We may have functions that … ? creates a garden (i.e., a garden data structure), ? creates the worms (i.e., the worm data structure), ? places a worm in the garden that is to hold the worms (i.e., another garden data structure), ? displays the garden on the screen for the player to see, ? displays a worm in the displayed garden, ? etc… ? Finally, in Part 1, the code we write must implement the following algorithm: Algorithm: Here is the algorithm for the main section of our game program: ? Welcome the player ? Create an empty “displayed” garden, (“displayed” because this is the garden we display to the player) ? Create the worms (worms’ information) ? Create an empty “hidden” garden Note 1: “hidden” because one can keep track of the worms in this “hidden” garden, which we do not show to the player. This is why it is called “hidden”. Note 2: One can keep track of worm’s locations using a different mechanism or data structure. It does not have to be a list of lists representing a “hidden” garden. We are free to choose how we want to keep track of where our worms are located in our garden. ? Place each worm in the “hidden” garden (or whatever mechanism or data structure we decide to use) ? Display the “displayed” garden on the screen for the player to see ? While the player wants to play, ask the player for a worm number (1 to 6), read this worm number and display this worm on the “displayed” garden. This is not the game. Remember, we shall implement the game itself in Part 2. Here, in this step, we make sure our code works properly, i.e., it can retrieve worm information and display worms properly. Displaying worms properly: Note that when we create worms and display them, it may be the case that worms overlap with other worms and that worms wrap around the garden. These 2 situations are illustrated in the 3 Sample Runs discussed below. At this point, we are ready for Part 2 of our Project. Sample Runs: In order to illustrate the explanations given above of what we are to do in this Part 1 of our Project, 3 sample runs have been posted below the description of this Part 1 of our Project on our course web site. Have a look at these 3 sample runs. The code we create for this Part 1 of our Project must produce exactly the same output as the one shown in these 3 sample runs. Of course, the position of our worms will be different but everything else should be the same. What we see in each of these 3 sample runs is 1 execution of the code we are to create for this Part 1 of our Project. Note about Sample Run 1: In this Sample Run, the player enters the numbers 1 to 8 sequentially. Wrap around: Worm 2 wraps around: it starts at (row 7, column B), (row 7, column A) then wraps around to (row 7, column J). Worm 6 also wraps around: it starts at (row 2, column E), (row 1, column E) then wraps around to (row 10, column E). Overlap: There are some overlapping worms: worms 5 and 6 overlap at (row 1, column E). Note about Sample Run 2: In this Sample Run, the player enters the numbers 1 to 8 sequentially. Wrap around: Worm 3 wraps around: it starts at (row 1, column B) then wraps around to (row 10, column B) and (row 9, column B). Worm 6 also wraps around: it starts at (row 1, column D) then wraps around to (row 10, column D) and (row 9, column D). Overlap: There are some overlapping worms: worms 2 and 4 overlap at (row 3, column H), worms 1 and 2 overlap at (row 3, column G) and worms 2 and 5 overlap at (row 3, column E). Note about Sample Run 3: In this Sample Run, the player enters the numbers in the following sequence: 3, 2, 6, 4, 5, 1, 7, 8. Wrap around: Worm 3 wraps around: it starts at (row 2, column C), (row 1, column C) then wraps around to (row 10, column C). Worm 1 also wraps around: it starts at (row 2, column B), (row 2, column A) then wraps around to (row 2, column J). Overlap: There are some overlapping worms: worms 6 and 3 overlap at (row 1, column C) and (row 2, column C). Other Requirements: Here are a few more requirements the code we are to create for this Part 1 of our Project must satisfy. 1. The location of each worm in the garden must be determined randomly. 2. Whether a worm is lying horizontally or vertically must also be determined randomly. 3. It is acceptable in Part 1 of our Project if worms overlap each other (see Sample Runs) 4. When placing a worm in a garden, the worm must “wrap around” the garden. See Sample Runs for examples of what “wrapping around” signifies. How will we implement this wrapping around? Hint: wrapping around can be achieved using an arithmetic operator we have already seen. 5. We must make use of docstring when we implement our functions (have a look at our textbook for an explanation and an example). 6. Every time we encounter the word must in this description of Part 1 of our Project, we shall look upon that sentence as another requirement. For example, the sentence “The code we create for this Part 1 of our Project must produce exactly the same output as the one shown in these 3 sample runs.”, even though it is not listed below the Other Requirements heading, is also a requirement because of its must.

info@checkyourstudy.com
Read this article and answer this question in 2 pages : Answers should be from the below article only. What is the difference between “standards-based” and “standards-embedded” curriculum? what are the curricular implications of this difference? Article: In 2007, at the dawn of 21st century in education, it is impossible to talk about teaching, curriculum, schools, or education without discussing standards . standards-based v. standards-embedded curriculum We are in an age of accountability where our success as educators is determined by individual and group mastery of specific standards dem- onstrated by standardized test per- formance. Even before No Child Left Behind (NCLB), standards and measures were used to determine if schools and students were success- ful (McClure, 2005). But, NCLB has increased the pace, intensity, and high stakes of this trend. Gifted and talented students and their teach- ers are significantly impacted by these local or state proficiency stan- dards and grade-level assessments (VanTassel-Baska & Stambaugh, 2006). This article explores how to use these standards in the develop- ment of high-quality curriculum for gifted students. NCLB, High-Stakes State Testing, and Standards- Based Instruction There are a few potentially positive outcomes of this evolution to public accountability. All stakeholders have had to ask themselves, “Are students learning? If so, what are they learning and how do we know?” In cases where we have been allowed to thoughtfully evaluate curriculum and instruction, we have also asked, “What’s worth learning?” “When’s the best time to learn it?” and “Who needs to learn it?” Even though state achievement tests are only a single measure, citizens are now offered a yardstick, albeit a nar- row one, for comparing communities, schools, and in some cases, teachers. Some testing reports allow teachers to identify for parents what their chil- dren can do and what they can not do. Testing also has focused attention on the not-so-new observations that pov- erty, discrimination and prejudices, and language proficiency impacts learning. With enough ceiling (e.g., above-grade-level assessments), even gifted students’ actual achievement and readiness levels can be identi- fied and provide a starting point for appropriately differentiated instruc- tion (Tomlinson, 2001). Unfortunately, as a veteran teacher for more than three decades and as a teacher-educator, my recent observa- tions of and conversations with class- room and gifted teachers have usually revealed negative outcomes. For gifted children, their actual achievement level is often unrecognized by teachers because both the tests and the reporting of the results rarely reach above the student’s grade-level placement. Assessments also focus on a huge number of state stan- dards for a given school year that cre- ate “overload” (Tomlinson & McTighe, 2006) and have a devastating impact on the development and implementation of rich and relevant curriculum and instruction. In too many scenarios, I see teachers teach- ing directly to the test. And, in the worst cases, some teachers actually teach The Test. In those cases, The Test itself becomes the curriculum. Consistently I hear, “Oh, I used to teach a great unit on ________ but I can’t do it any- more because I have to teach the standards.” Or, “I have to teach my favorite units in April and May after testing.” If the outcomes can’t be boiled down to simple “I can . . .” state- ments that can be posted on a school’s walls, then teachers seem to omit poten- tially meaningful learning opportunities from the school year. In many cases, real education and learning are being trivial- ized. We seem to have lost sight of the more significant purpose of teaching and learning: individual growth and develop- ment. We also have surrendered much of the joy of learning, as the incidentals, the tangents, the “bird walks” are cut short or elimi- nated because teachers hear the con- stant ticking clock of the countdown to the state test and feel the pressure of the way-too-many standards that have to be covered in a mere 180 school days. The accountability movement has pushed us away from seeing the whole child: “Students are not machines, as the standards movement suggests; they are volatile, complicated, and paradoxical” (Cookson, 2001, p. 42). How does this impact gifted chil- dren? In many heterogeneous class- rooms, teachers have retreated to traditional subject delineations and traditional instruction in an effort to ensure direct standards-based instruc- tion even though “no solid basis exists in the research literature for the ways we currently develop, place, and align educational standards in school cur- ricula” (Zenger & Zenger, 2002, p. 212). Grade-level standards are often particularly inappropriate for the gifted and talented whose pace of learning, achievement levels, and depth of knowledge are significantly beyond their chronological peers. A broad-based, thematically rich, and challenging curriculum is the heart of education for the gifted. Virgil Ward, one of the earliest voices for a differen- tial education for the gifted, said, “It is insufficient to consider the curriculum for the gifted in terms of traditional subjects and instructional processes” (Ward, 1980, p. 5). VanTassel-Baska Standards-Based v. Standards-Embedded Curriculum gifted child today 45 Standards-Based v. Standards-Embedded Curriculum and Stambaugh (2006) described three dimensions of successful curriculum for gifted students: content mastery, pro- cess and product, and epistemological concept, “understanding and appre- ciating systems of knowledge rather than individual elements of those systems” (p. 9). Overemphasis on testing and grade-level standards limits all three and therefore limits learning for gifted students. Hirsch (2001) concluded that “broad gen- eral knowledge is the best entrée to deep knowledge” (p. 23) and that it is highly correlated with general ability to learn. He continued, “the best way to learn a subject is to learn its gen- eral principles and to study an ample number of diverse examples that illustrate those principles” (Hirsch, 2001, p. 23). Principle-based learn- ing applies to both gifted and general education children. In order to meet the needs of gifted and general education students, cur- riculum should be differentiated in ways that are relevant and engaging. Curriculum content, processes, and products should provide challenge, depth, and complexity, offering multiple opportunities for problem solving, creativity, and exploration. In specific content areas, the cur- riculum should reflect the elegance and sophistication unique to the discipline. Even with this expanded view of curriculum in mind, we still must find ways to address the current reality of state standards and assess- ments. Standards-Embedded Curriculum How can educators address this chal- lenge? As in most things, a change of perspective can be helpful. Standards- based curriculum as described above should be replaced with standards- embedded curriculum. Standards- embedded curriculum begins with broad questions and topics, either discipline specific or interdisciplinary. Once teachers have given thoughtful consideration to relevant, engaging, and important content and the con- nections that support meaning-making (Jensen, 1998), they next select stan- dards that are relevant to this content and to summative assessments. This process is supported by the backward planning advocated in Understanding by Design by Wiggins and McTighe (2005) and its predecessors, as well as current thinkers in other fields, such as Covey (Tomlinson & McTighe, 2006). It is a critical component of differenti- ating instruction for advanced learners (Tomlinson, 2001) and a significant factor in the Core Parallel in the Parallel Curriculum Model (Tomlinson et al., 2002). Teachers choose from standards in multiple disciplines at both above and below grade level depending on the needs of the students and the classroom or program structure. Preassessment data and the results of prior instruc- tion also inform this process of embed- ding appropriate standards. For gifted students, this formative assessment will result in “more advanced curricula available at younger ages, ensuring that all levels of the standards are traversed in the process” (VanTassel-Baska & Little, 2003, p. 3). Once the essential questions, key content, and relevant standards are selected and sequenced, they are embedded into a coherent unit design and instructional decisions (grouping, pacing, instructional methodology) can be made. For gifted students, this includes the identification of appropri- ate resources, often including advanced texts, mentors, and independent research, as appropriate to the child’s developmental level and interest. Applying Standards- Embedded Curriculum What does this look like in practice? In reading the possible class- room applications below, consider these three Ohio Academic Content Standards for third grade: 1. Math: “Read thermometers in both Fahrenheit and Celsius scales” (“Academic Content Standards: K–12 Mathematics,” n.d., p. 71). 2. Social Studies: “Compare some of the cultural practices and products of various groups of people who have lived in the local community including artistic expression, religion, language, and food. Compare the cultural practices and products of the local community with those of other communities in Ohio, the United States, and countries of the world” (Academic Content Standards: K–12 Social Studies, n.d., p. 122). 3. Life Science: “Observe and explore how fossils provide evidence about animals that lived long ago and the nature of the environment at that time” (Academic Content Standards: K–12 Science, n.d., p. 57). When students are fortunate to have a teacher who is dedicated to helping all of them make good use of their time, the gifted may have a preassessment opportunity where they can demonstrate their familiarity with the content and potential mastery of a standard at their grade level. Students who pass may get to read by them- selves for the brief period while the rest of the class works on the single outcome. Sometimes more experienced teachers will create opportunities for gifted and advanced students Standards-Based v. Standards-Embedded Curriculum to work on a standard in the same domain or strand at the next higher grade level (i.e., accelerate through the standards). For example, a stu- dent might be able to work on a Life Science standard for fourth grade that progresses to other communities such as ecosystems. These above-grade-level standards can provide rich material for differentiation, advanced problem solving, and more in-depth curriculum integration. In another classroom scenario, a teacher may focus on the math stan- dard above, identifying the standard number on his lesson plan. He creates or collects paper thermometers, some showing measurement in Celsius and some in Fahrenheit. He also has some real thermometers. He demonstrates thermometer use with boiling water and with freezing water and reads the different temperatures. Students complete a worksheet that has them read thermometers in Celsius and Fahrenheit. The more advanced students may learn how to convert between the two scales. Students then practice with several questions on the topic that are similar in structure and content to those that have been on past proficiency tests. They are coached in how to answer them so that the stan- dard, instruction, formative assess- ment, and summative assessment are all aligned. Then, each student writes a statement that says, “I can read a thermometer using either Celsius or Fahrenheit scales.” Both of these examples describe a standards-based environment, where the starting point is the standard. Direct instruction to that standard is followed by an observable student behavior that demonstrates specific mastery of that single standard. The standard becomes both the start- ing point and the ending point of the curriculum. Education, rather than opening up a student’s mind, becomes a series of closed links in a chain. Whereas the above lessons may be differentiated to some extent, they have no context; they may relate only to the next standard on the list, such as, “Telling time to the nearest minute and finding elapsed time using a cal- endar or a clock.” How would a “standards-embed- ded” model of curriculum design be different? It would begin with the development of an essential ques- tion such as, “Who or what lived here before me? How were they different from me? How were they the same? How do we know?” These questions might be more relevant to our con- temporary highly mobile students. It would involve place and time. Using this intriguing line of inquiry, students might work on the social studies stan- dard as part of the study of their home- town, their school, or even their house or apartment. Because where people live and what they do is influenced by the weather, students could look into weather patterns of their area and learn how to measure temperature using a Fahrenheit scale so they could see if it is similar now to what it was a century ago. Skipping ahead to consideration of the social studies standard, students could then choose another country, preferably one that uses Celsius, and do the same investigation of fossils, communities, and the like. Students could complete a weather comparison, looking at the temperature in Celsius as people in other parts of the world, such as those in Canada, do. Thus, learning is contextualized and connected, dem- onstrating both depth and complexity. This approach takes a lot more work and time. It is a sophisticated integrated view of curriculum devel- opment and involves in-depth knowl- edge of the content areas, as well as an understanding of the scope and sequence of the standards in each dis- cipline. Teachers who develop vital single-discipline units, as well as inter- disciplinary teaching units, begin with a central topic surrounded by subtopics and connections to other areas. Then they connect important terms, facts, or concepts to the subtopics. Next, the skilled teacher/curriculum devel- oper embeds relevant, multileveled standards and objectives appropriate to a given student or group of stu- dents into the unit. Finally, teachers select the instructional strategies and develop student assessments. These assessments include, but are not lim- ited to, the types of questions asked on standardized and state assessments. Comparing Standards- Based and Standards- Embedded Curriculum Design Following is an articulation of the differences between standards-based and standards-embedded curriculum design. (See Figure 1.) 1. The starting point. Standards- based curriculum begins with the grade-level standard and the underlying assumption that every student needs to master that stan- dard at that moment in time. In standards-embedded curriculum, the multifaceted essential ques- tion and students’ needs are the starting points. 2. Preassessment. In standards- based curriculum and teaching, if a preassessment is provided, it cov- ers a single standard or two. In a standards-embedded curriculum, preassessment includes a broader range of grade-level and advanced standards, as well as students’ knowledge of surrounding content such as background experiences with the subject, relevant skills (such as reading and writing), and continued on page ?? even learning style or interests. gifted child today 47 Standards-Based v. Standards-Embedded Curriculum Standards Based Standards Embedded Starting Points The grade-level standard. Whole class’ general skill level Essential questions and content relevant to individual students and groups. Preassessment Targeted to a single grade-level standard. Short-cycle assessments. Background knowledge. Multiple grade-level standards from multiple areas connected by the theme of the unit. Includes annual learning style and interest inventories. Acceleration/ Enrichment To next grade-level standard in the same strand. To above-grade-level standards, as well as into broader thematically connected content. Language Arts Divided into individual skills. Reading and writing skills often separated from real-world relevant contexts. The language arts are embedded in all units and themes and connected to differentiated processes and products across all content areas. Instruction Lesson planning begins with the standard as the objective. Sequential direct instruction progresses through the standards in each content area separately. Strategies are selected to introduce, practice, and demonstrate mastery of all grade-level standards in all content areas in one school year. Lesson planning begins with essential questions, topics, and significant themes. Integrated instruction is designed around connections among content areas and embeds all relevant standards. Assessment Format modeled after the state test. Variety of assessments including questions similar to the state test format. Teacher Role Monitor of standards mastery. Time manager. Facilitator of instructional design and student engagement with learning, as well as assessor of achievement. Student Self- Esteem “I can . . .” statements. Star Charts. Passing “the test.” Completed projects/products. Making personal connections to learning and the theme/topic. Figure 1. Standards based v. standards-embedded instruction and gifted students. and the potential political outcry of “stepping on the toes” of the next grade’s teacher. Few classroom teachers have been provided with the in-depth professional develop- ment and understanding of curric- ulum compacting that would allow them to implement this effectively. In standards-embedded curricu- lum, enrichment and extensions of learning are more possible and more interesting because ideas, top- ics, and questions lend themselves more easily to depth and complex- ity than isolated skills. 4. Language arts. In standards- based classrooms, the language arts have been redivided into sepa- rate skills, with reading separated from writing, and writing sepa- rated from grammar. To many concrete thinkers, whole-language approaches seem antithetical to teaching “to the standards.” In a standards-embedded classroom, integrated language arts skills (reading, writing, listening, speak- ing, presenting, and even pho- nics) are embedded into the study of every unit. Especially for the gifted, the communication and language arts are essential, regard- less of domain-specific talents (Ward, 1980) and should be com- ponents of all curriculum because they are the underpinnings of scholarship in all areas. 5. Instruction. A standards-based classroom lends itself to direct instruction and sequential pro- gression from one standard to the next. A standards-embedded class- room requires a variety of more open-ended instructional strate- gies and materials that extend and diversify learning rather than focus it narrowly. Creativity and differ- entiation in instruction and stu- dent performance are supported more effectively in a standards- embedded approach. 6. Assessment. A standards-based classroom uses targeted assess- ments focused on the structure and content of questions on the externally imposed standardized test (i.e., proficiency tests). A stan- dards-embedded classroom lends itself to greater use of authentic assessment and differentiated 3. Acceleration/Enrichment. In a standards-based curriculum, the narrow definition of the learning outcome (a test item) often makes acceleration or curriculum compact- ing the only path for differentiating instruction for gifted, talented, and/ or advanced learners. This rarely happens, however, because of lack of materials, knowledge, o

Read this article and answer this question in 2 pages : Answers should be from the below article only. What is the difference between “standards-based” and “standards-embedded” curriculum? what are the curricular implications of this difference? Article: In 2007, at the dawn of 21st century in education, it is impossible to talk about teaching, curriculum, schools, or education without discussing standards . standards-based v. standards-embedded curriculum We are in an age of accountability where our success as educators is determined by individual and group mastery of specific standards dem- onstrated by standardized test per- formance. Even before No Child Left Behind (NCLB), standards and measures were used to determine if schools and students were success- ful (McClure, 2005). But, NCLB has increased the pace, intensity, and high stakes of this trend. Gifted and talented students and their teach- ers are significantly impacted by these local or state proficiency stan- dards and grade-level assessments (VanTassel-Baska & Stambaugh, 2006). This article explores how to use these standards in the develop- ment of high-quality curriculum for gifted students. NCLB, High-Stakes State Testing, and Standards- Based Instruction There are a few potentially positive outcomes of this evolution to public accountability. All stakeholders have had to ask themselves, “Are students learning? If so, what are they learning and how do we know?” In cases where we have been allowed to thoughtfully evaluate curriculum and instruction, we have also asked, “What’s worth learning?” “When’s the best time to learn it?” and “Who needs to learn it?” Even though state achievement tests are only a single measure, citizens are now offered a yardstick, albeit a nar- row one, for comparing communities, schools, and in some cases, teachers. Some testing reports allow teachers to identify for parents what their chil- dren can do and what they can not do. Testing also has focused attention on the not-so-new observations that pov- erty, discrimination and prejudices, and language proficiency impacts learning. With enough ceiling (e.g., above-grade-level assessments), even gifted students’ actual achievement and readiness levels can be identi- fied and provide a starting point for appropriately differentiated instruc- tion (Tomlinson, 2001). Unfortunately, as a veteran teacher for more than three decades and as a teacher-educator, my recent observa- tions of and conversations with class- room and gifted teachers have usually revealed negative outcomes. For gifted children, their actual achievement level is often unrecognized by teachers because both the tests and the reporting of the results rarely reach above the student’s grade-level placement. Assessments also focus on a huge number of state stan- dards for a given school year that cre- ate “overload” (Tomlinson & McTighe, 2006) and have a devastating impact on the development and implementation of rich and relevant curriculum and instruction. In too many scenarios, I see teachers teach- ing directly to the test. And, in the worst cases, some teachers actually teach The Test. In those cases, The Test itself becomes the curriculum. Consistently I hear, “Oh, I used to teach a great unit on ________ but I can’t do it any- more because I have to teach the standards.” Or, “I have to teach my favorite units in April and May after testing.” If the outcomes can’t be boiled down to simple “I can . . .” state- ments that can be posted on a school’s walls, then teachers seem to omit poten- tially meaningful learning opportunities from the school year. In many cases, real education and learning are being trivial- ized. We seem to have lost sight of the more significant purpose of teaching and learning: individual growth and develop- ment. We also have surrendered much of the joy of learning, as the incidentals, the tangents, the “bird walks” are cut short or elimi- nated because teachers hear the con- stant ticking clock of the countdown to the state test and feel the pressure of the way-too-many standards that have to be covered in a mere 180 school days. The accountability movement has pushed us away from seeing the whole child: “Students are not machines, as the standards movement suggests; they are volatile, complicated, and paradoxical” (Cookson, 2001, p. 42). How does this impact gifted chil- dren? In many heterogeneous class- rooms, teachers have retreated to traditional subject delineations and traditional instruction in an effort to ensure direct standards-based instruc- tion even though “no solid basis exists in the research literature for the ways we currently develop, place, and align educational standards in school cur- ricula” (Zenger & Zenger, 2002, p. 212). Grade-level standards are often particularly inappropriate for the gifted and talented whose pace of learning, achievement levels, and depth of knowledge are significantly beyond their chronological peers. A broad-based, thematically rich, and challenging curriculum is the heart of education for the gifted. Virgil Ward, one of the earliest voices for a differen- tial education for the gifted, said, “It is insufficient to consider the curriculum for the gifted in terms of traditional subjects and instructional processes” (Ward, 1980, p. 5). VanTassel-Baska Standards-Based v. Standards-Embedded Curriculum gifted child today 45 Standards-Based v. Standards-Embedded Curriculum and Stambaugh (2006) described three dimensions of successful curriculum for gifted students: content mastery, pro- cess and product, and epistemological concept, “understanding and appre- ciating systems of knowledge rather than individual elements of those systems” (p. 9). Overemphasis on testing and grade-level standards limits all three and therefore limits learning for gifted students. Hirsch (2001) concluded that “broad gen- eral knowledge is the best entrée to deep knowledge” (p. 23) and that it is highly correlated with general ability to learn. He continued, “the best way to learn a subject is to learn its gen- eral principles and to study an ample number of diverse examples that illustrate those principles” (Hirsch, 2001, p. 23). Principle-based learn- ing applies to both gifted and general education children. In order to meet the needs of gifted and general education students, cur- riculum should be differentiated in ways that are relevant and engaging. Curriculum content, processes, and products should provide challenge, depth, and complexity, offering multiple opportunities for problem solving, creativity, and exploration. In specific content areas, the cur- riculum should reflect the elegance and sophistication unique to the discipline. Even with this expanded view of curriculum in mind, we still must find ways to address the current reality of state standards and assess- ments. Standards-Embedded Curriculum How can educators address this chal- lenge? As in most things, a change of perspective can be helpful. Standards- based curriculum as described above should be replaced with standards- embedded curriculum. Standards- embedded curriculum begins with broad questions and topics, either discipline specific or interdisciplinary. Once teachers have given thoughtful consideration to relevant, engaging, and important content and the con- nections that support meaning-making (Jensen, 1998), they next select stan- dards that are relevant to this content and to summative assessments. This process is supported by the backward planning advocated in Understanding by Design by Wiggins and McTighe (2005) and its predecessors, as well as current thinkers in other fields, such as Covey (Tomlinson & McTighe, 2006). It is a critical component of differenti- ating instruction for advanced learners (Tomlinson, 2001) and a significant factor in the Core Parallel in the Parallel Curriculum Model (Tomlinson et al., 2002). Teachers choose from standards in multiple disciplines at both above and below grade level depending on the needs of the students and the classroom or program structure. Preassessment data and the results of prior instruc- tion also inform this process of embed- ding appropriate standards. For gifted students, this formative assessment will result in “more advanced curricula available at younger ages, ensuring that all levels of the standards are traversed in the process” (VanTassel-Baska & Little, 2003, p. 3). Once the essential questions, key content, and relevant standards are selected and sequenced, they are embedded into a coherent unit design and instructional decisions (grouping, pacing, instructional methodology) can be made. For gifted students, this includes the identification of appropri- ate resources, often including advanced texts, mentors, and independent research, as appropriate to the child’s developmental level and interest. Applying Standards- Embedded Curriculum What does this look like in practice? In reading the possible class- room applications below, consider these three Ohio Academic Content Standards for third grade: 1. Math: “Read thermometers in both Fahrenheit and Celsius scales” (“Academic Content Standards: K–12 Mathematics,” n.d., p. 71). 2. Social Studies: “Compare some of the cultural practices and products of various groups of people who have lived in the local community including artistic expression, religion, language, and food. Compare the cultural practices and products of the local community with those of other communities in Ohio, the United States, and countries of the world” (Academic Content Standards: K–12 Social Studies, n.d., p. 122). 3. Life Science: “Observe and explore how fossils provide evidence about animals that lived long ago and the nature of the environment at that time” (Academic Content Standards: K–12 Science, n.d., p. 57). When students are fortunate to have a teacher who is dedicated to helping all of them make good use of their time, the gifted may have a preassessment opportunity where they can demonstrate their familiarity with the content and potential mastery of a standard at their grade level. Students who pass may get to read by them- selves for the brief period while the rest of the class works on the single outcome. Sometimes more experienced teachers will create opportunities for gifted and advanced students Standards-Based v. Standards-Embedded Curriculum to work on a standard in the same domain or strand at the next higher grade level (i.e., accelerate through the standards). For example, a stu- dent might be able to work on a Life Science standard for fourth grade that progresses to other communities such as ecosystems. These above-grade-level standards can provide rich material for differentiation, advanced problem solving, and more in-depth curriculum integration. In another classroom scenario, a teacher may focus on the math stan- dard above, identifying the standard number on his lesson plan. He creates or collects paper thermometers, some showing measurement in Celsius and some in Fahrenheit. He also has some real thermometers. He demonstrates thermometer use with boiling water and with freezing water and reads the different temperatures. Students complete a worksheet that has them read thermometers in Celsius and Fahrenheit. The more advanced students may learn how to convert between the two scales. Students then practice with several questions on the topic that are similar in structure and content to those that have been on past proficiency tests. They are coached in how to answer them so that the stan- dard, instruction, formative assess- ment, and summative assessment are all aligned. Then, each student writes a statement that says, “I can read a thermometer using either Celsius or Fahrenheit scales.” Both of these examples describe a standards-based environment, where the starting point is the standard. Direct instruction to that standard is followed by an observable student behavior that demonstrates specific mastery of that single standard. The standard becomes both the start- ing point and the ending point of the curriculum. Education, rather than opening up a student’s mind, becomes a series of closed links in a chain. Whereas the above lessons may be differentiated to some extent, they have no context; they may relate only to the next standard on the list, such as, “Telling time to the nearest minute and finding elapsed time using a cal- endar or a clock.” How would a “standards-embed- ded” model of curriculum design be different? It would begin with the development of an essential ques- tion such as, “Who or what lived here before me? How were they different from me? How were they the same? How do we know?” These questions might be more relevant to our con- temporary highly mobile students. It would involve place and time. Using this intriguing line of inquiry, students might work on the social studies stan- dard as part of the study of their home- town, their school, or even their house or apartment. Because where people live and what they do is influenced by the weather, students could look into weather patterns of their area and learn how to measure temperature using a Fahrenheit scale so they could see if it is similar now to what it was a century ago. Skipping ahead to consideration of the social studies standard, students could then choose another country, preferably one that uses Celsius, and do the same investigation of fossils, communities, and the like. Students could complete a weather comparison, looking at the temperature in Celsius as people in other parts of the world, such as those in Canada, do. Thus, learning is contextualized and connected, dem- onstrating both depth and complexity. This approach takes a lot more work and time. It is a sophisticated integrated view of curriculum devel- opment and involves in-depth knowl- edge of the content areas, as well as an understanding of the scope and sequence of the standards in each dis- cipline. Teachers who develop vital single-discipline units, as well as inter- disciplinary teaching units, begin with a central topic surrounded by subtopics and connections to other areas. Then they connect important terms, facts, or concepts to the subtopics. Next, the skilled teacher/curriculum devel- oper embeds relevant, multileveled standards and objectives appropriate to a given student or group of stu- dents into the unit. Finally, teachers select the instructional strategies and develop student assessments. These assessments include, but are not lim- ited to, the types of questions asked on standardized and state assessments. Comparing Standards- Based and Standards- Embedded Curriculum Design Following is an articulation of the differences between standards-based and standards-embedded curriculum design. (See Figure 1.) 1. The starting point. Standards- based curriculum begins with the grade-level standard and the underlying assumption that every student needs to master that stan- dard at that moment in time. In standards-embedded curriculum, the multifaceted essential ques- tion and students’ needs are the starting points. 2. Preassessment. In standards- based curriculum and teaching, if a preassessment is provided, it cov- ers a single standard or two. In a standards-embedded curriculum, preassessment includes a broader range of grade-level and advanced standards, as well as students’ knowledge of surrounding content such as background experiences with the subject, relevant skills (such as reading and writing), and continued on page ?? even learning style or interests. gifted child today 47 Standards-Based v. Standards-Embedded Curriculum Standards Based Standards Embedded Starting Points The grade-level standard. Whole class’ general skill level Essential questions and content relevant to individual students and groups. Preassessment Targeted to a single grade-level standard. Short-cycle assessments. Background knowledge. Multiple grade-level standards from multiple areas connected by the theme of the unit. Includes annual learning style and interest inventories. Acceleration/ Enrichment To next grade-level standard in the same strand. To above-grade-level standards, as well as into broader thematically connected content. Language Arts Divided into individual skills. Reading and writing skills often separated from real-world relevant contexts. The language arts are embedded in all units and themes and connected to differentiated processes and products across all content areas. Instruction Lesson planning begins with the standard as the objective. Sequential direct instruction progresses through the standards in each content area separately. Strategies are selected to introduce, practice, and demonstrate mastery of all grade-level standards in all content areas in one school year. Lesson planning begins with essential questions, topics, and significant themes. Integrated instruction is designed around connections among content areas and embeds all relevant standards. Assessment Format modeled after the state test. Variety of assessments including questions similar to the state test format. Teacher Role Monitor of standards mastery. Time manager. Facilitator of instructional design and student engagement with learning, as well as assessor of achievement. Student Self- Esteem “I can . . .” statements. Star Charts. Passing “the test.” Completed projects/products. Making personal connections to learning and the theme/topic. Figure 1. Standards based v. standards-embedded instruction and gifted students. and the potential political outcry of “stepping on the toes” of the next grade’s teacher. Few classroom teachers have been provided with the in-depth professional develop- ment and understanding of curric- ulum compacting that would allow them to implement this effectively. In standards-embedded curricu- lum, enrichment and extensions of learning are more possible and more interesting because ideas, top- ics, and questions lend themselves more easily to depth and complex- ity than isolated skills. 4. Language arts. In standards- based classrooms, the language arts have been redivided into sepa- rate skills, with reading separated from writing, and writing sepa- rated from grammar. To many concrete thinkers, whole-language approaches seem antithetical to teaching “to the standards.” In a standards-embedded classroom, integrated language arts skills (reading, writing, listening, speak- ing, presenting, and even pho- nics) are embedded into the study of every unit. Especially for the gifted, the communication and language arts are essential, regard- less of domain-specific talents (Ward, 1980) and should be com- ponents of all curriculum because they are the underpinnings of scholarship in all areas. 5. Instruction. A standards-based classroom lends itself to direct instruction and sequential pro- gression from one standard to the next. A standards-embedded class- room requires a variety of more open-ended instructional strate- gies and materials that extend and diversify learning rather than focus it narrowly. Creativity and differ- entiation in instruction and stu- dent performance are supported more effectively in a standards- embedded approach. 6. Assessment. A standards-based classroom uses targeted assess- ments focused on the structure and content of questions on the externally imposed standardized test (i.e., proficiency tests). A stan- dards-embedded classroom lends itself to greater use of authentic assessment and differentiated 3. Acceleration/Enrichment. In a standards-based curriculum, the narrow definition of the learning outcome (a test item) often makes acceleration or curriculum compact- ing the only path for differentiating instruction for gifted, talented, and/ or advanced learners. This rarely happens, however, because of lack of materials, knowledge, o

Standard based Curriculum In standard based curriculum, the initial point … Read More...
Select Case 1, 2, or 8 in the back of the textbook. After you have read the case, select at least one of the questions presented at the end.-If you select only one question, then you will need to elaborate with more examples and perspectives than if you select more than one, but the choice is yours. Fair warning: It is possible to fall into the trap of repeating oneself. To avoid that threat, think in advance of the different perspectives that you wish to explore. If you select more than one question, each answer will naturally be shorter. This may be a good approach if you discern that the questions lack strong potential to elicit in-depth answers. Remember to reply to the contributions of two other students in this exercise. This is a rule that we are only observing in the case analyses, given the relative complexity of the cases, compared to the chapter discussion questions. Always add value, from the textbook, news, personal experience, or all three. Indicate the case and question at the beginning, but avoid restating the question in your answer. In this respect, use the same method as in the chapter discussion questions, described in the Week 2 forum. Write at least 500 words (no minimum for replies, but do add value). Quoted passages do not contribute to the word count (so you will need to write more if you insert any quoted material). Post-edit your work carefully to catch errors. Avoid plagiarism at all cost. ——— Note on anomalous questions. Some questions will require you to work around selected details to fit the requisite discussion format. For example, Question 2 in Case 1 asks how your proposal will solve certain problems noted in answer to the previous question. If you have not actually answered Question 1, then you will have to assert one or more problems from the case, a proposed solution, and then an explanation of how your proposal may help. Question 3 is similar, in that you will need to identify a problem and a solution, followed by an argument about the budget. Although Alistair was expecting to hire a Project Engineer rather than a Quality Compliance Manager, the methods used to make the decision should be similar. The main difference in the Quality Compliance Manager position is that it is in a joint venture with a Hungarian government backed firm. International Joint Ventures (IJV) makes HRM practices more complicated because HRM practices and strategies are required for each IJV entity (Dowling, Festing, & Engle, 2013). HRM must address IJV in four stages, in which, each stage has an impact on the next. It is important for HRM to very thorough with each stage and communication through each stage is vital. To be successful, HRM must combine the IJV strategy along with the recruitment, selection, training, and development processes (Dowling et al., 2013). In light of the needs of the company and the new Quality Compliance Manager position, Alistair should choose the first candidate, Marie Erten-Loiseau. The fact that the job requires travel to France and Germany is a positive for Marie because she was born in France and was educated in France and Germany. The familiarity of these locations will help her as she meets with new business partners because she will have a good understanding of the policy and procedures required for companies in these two countries. Dowling et al., (2013), points out that the manager needs to be able to assess the desires of the stakeholders and be able to implement strategies based on their desires. Another reason for choosing Marie is that she has the most experience and has worked with Trianon for 13 years. The experience she has with the company is invaluable because she knows the goals of the company and strategies for implementing those goals. The last reason for choosing Marie is that she has been successful in her previous positions. She has lead two projects in two different countries and both were successful. This shows that she is able to adapt to the different practices of each country. There are many factors that Alistair should take into consideration to determine the correct choice for the Quality Compliance Manager position. The major factors that require consideration are the specificities of the entire situation, the reason for the assignment, and type of assignment. The four main specificities include context specificities, firm specific variables, local unit specificities, and IHRM practices (Dowling et al., 2013). The context specificities would include the differences in cultures between the assignment in Hungary and the base location for the Trianon, Marseilles. The firm specific variable includes any changes in the way operations in Hungary are conducted, whether it is strategy or HRM policies. The local unit specificities include the role of the joint venture in relation to Trianon and how this joint venture will fit into the long-term plan of the company. The company hopes that it will provide a good working relationship with the state supported airline, which will lead to more business in the future. The IHRM practices determine the employees that are hired and the training that is available to the employees. The reason for the assignment also is a major factor in determining the correct candidate. In the situation of Trianon, a joint venture with a Hungarian government back firm created a position that needed filling. The Quality Compliance Manager position allows Trianon to manage the joint venture operation, make sure it is successful, and build a strong relationship with Malev. The last major factor is the type of assignment. The Quality Compliance Manager assignment is long-term assignment because it is 3 years in duration. The joint venture is the first that the company has been involved in outside the UK so there is less familiarity on the administrative/compliance side. The candidate must act as an agent of direct control (Dowling et al., 2013) by assuring that compliance policies are followed and company strategy is implemented. Assessing whether a male or female would be the best fit for the position is also a factor that deserves consideration. The low number of female expatriates led Jessens, Cappellen, &Zanoni (2006) to research the following three myths: women have no desire to be in positions of authority in a foreign country, companies do not desire to place females in positions of authority while a foreign country, and women would be ineffective because of the views towards women in foreign countries. The research indicated that female expatriates do have conflict that arises related to their gender but the successful ones were able to turn the conflicts around based on the qualities that these women possess (Jessens et al., 2006). With all of these factors considered, I believe Marie Erten-Loiseau is the best candidate for the Quality Compliance Manager. References Dowling, P.J., Festing, M., & Engle, A.D. Sr. (2013). International Human Resource Management (6th ed.). Stamford, CT: Cengage Learning Janssens, M., Cappellen, T., &Zanoni, P. (2006). Successful female expatriates as agents: Positioning oneself through gender, hierarchy, and culture. Journal of World Business, 1-16. doi:10.1016/j.jwb.2006.01.001 2.) Case 8 – Questions 1 & 4 Multinational firms are often faced with recruiting and staffing decisions that could ultimately enhance or diminish the firm’s ability to be successful in a competitive global market. Perlmutter identified four staffing approaches for MNEs to consider based on the primary attitudes of international executives that would lay the foundation for MNEs during the recruitment and hiring process (Dowling, Festing, & Engle, 2013). At one point or another throughout the MacDougall family journey Lachlan and Lisa have served in one of the four capacities as an ethnocentric, polycentric, geocentric, and regiocentric employee. The ability to encompass all four attitudes that Perlmutter set forth is something that the MacDougall family has managed to do extremely well. The possibility for a multinational firm to recruit a family of this caliber that has been exposed and has an understanding of the positive and negative aspects of each attitude is phenomenal. This would be resourceful for any multinational firm. The MacDougal family’s exposure to cross-cultural management is also valuable. The diverse cultural background that the family has encountered on their international journey is a rarity. Cultural diversity and cross-cultural management play a critical role in MNEs because it produces a work environment that can transform the workplace into a place of learning and give the firm the availability to create new ideas for a more productive and competitive advantage over other firms (Sultana, Rashid, Mohiuddin, &Mazumder, 2013). This is something that is easy for the MacDougall family to bring to the table with the family’s given history. The expatriate lifestyle that has become second nature to the MacDougall family is beneficial for multinational firms for multifarious reasons Being raised around different cultures and then choosing to work internationally and learn different cultures has attributed to Lachlan’s successful career. The family’s ability to communicate and blend in socially among diverse cultures is an important aspect for international firms that want to stay competitive and be successful. The family has acclimated fairly easy to all of the places they have been and this is something that can be favorable when firms are recruiting employees. The MacDougall family has an upper-hand in the international marketplace naturally due to previous experiences with other countries and cultures. The exceptional way that the family has managed to conform to a multitude of other cultures and flourish is not an easy task. Marriage is not easy and many families experience a greater challenge avoiding divorcees when international mobility is involved. Lachlan and Lisa have been able to move together and this is an important aspect to the success of their marriage. Based on the case study they have a common desire to travel and both are successful in their careers. Lisa’s devotion to her husband’s successful career has put some strain on the marriage as she has had times where she felt she did not have her own identity. Military spouses experience this type of stress during long deployments and times that they have to hold the household together on their own. Another example is with employers who are transferred internationally for a short period of time or travel often. Separation of spouses can strain any marriage, but Lisa and Lachlan have been fortunate to avoid separation for any extended length of time. References Dowling, P.J., Festing, M., & Engle, A.D.Sr.(2013). International Human Resource Management. (6thed.). Stamford, CT: Cengage Sultana, M., Rashid, M., Mohiuddin, M. &Mazumder, M. (2013).Cross-cultural management and organizational performance.A Contnet analysis perspective.International Journal of Business and Management, 8(8), 133-146.

Select Case 1, 2, or 8 in the back of the textbook. After you have read the case, select at least one of the questions presented at the end.-If you select only one question, then you will need to elaborate with more examples and perspectives than if you select more than one, but the choice is yours. Fair warning: It is possible to fall into the trap of repeating oneself. To avoid that threat, think in advance of the different perspectives that you wish to explore. If you select more than one question, each answer will naturally be shorter. This may be a good approach if you discern that the questions lack strong potential to elicit in-depth answers. Remember to reply to the contributions of two other students in this exercise. This is a rule that we are only observing in the case analyses, given the relative complexity of the cases, compared to the chapter discussion questions. Always add value, from the textbook, news, personal experience, or all three. Indicate the case and question at the beginning, but avoid restating the question in your answer. In this respect, use the same method as in the chapter discussion questions, described in the Week 2 forum. Write at least 500 words (no minimum for replies, but do add value). Quoted passages do not contribute to the word count (so you will need to write more if you insert any quoted material). Post-edit your work carefully to catch errors. Avoid plagiarism at all cost. ——— Note on anomalous questions. Some questions will require you to work around selected details to fit the requisite discussion format. For example, Question 2 in Case 1 asks how your proposal will solve certain problems noted in answer to the previous question. If you have not actually answered Question 1, then you will have to assert one or more problems from the case, a proposed solution, and then an explanation of how your proposal may help. Question 3 is similar, in that you will need to identify a problem and a solution, followed by an argument about the budget. Although Alistair was expecting to hire a Project Engineer rather than a Quality Compliance Manager, the methods used to make the decision should be similar. The main difference in the Quality Compliance Manager position is that it is in a joint venture with a Hungarian government backed firm. International Joint Ventures (IJV) makes HRM practices more complicated because HRM practices and strategies are required for each IJV entity (Dowling, Festing, & Engle, 2013). HRM must address IJV in four stages, in which, each stage has an impact on the next. It is important for HRM to very thorough with each stage and communication through each stage is vital. To be successful, HRM must combine the IJV strategy along with the recruitment, selection, training, and development processes (Dowling et al., 2013). In light of the needs of the company and the new Quality Compliance Manager position, Alistair should choose the first candidate, Marie Erten-Loiseau. The fact that the job requires travel to France and Germany is a positive for Marie because she was born in France and was educated in France and Germany. The familiarity of these locations will help her as she meets with new business partners because she will have a good understanding of the policy and procedures required for companies in these two countries. Dowling et al., (2013), points out that the manager needs to be able to assess the desires of the stakeholders and be able to implement strategies based on their desires. Another reason for choosing Marie is that she has the most experience and has worked with Trianon for 13 years. The experience she has with the company is invaluable because she knows the goals of the company and strategies for implementing those goals. The last reason for choosing Marie is that she has been successful in her previous positions. She has lead two projects in two different countries and both were successful. This shows that she is able to adapt to the different practices of each country. There are many factors that Alistair should take into consideration to determine the correct choice for the Quality Compliance Manager position. The major factors that require consideration are the specificities of the entire situation, the reason for the assignment, and type of assignment. The four main specificities include context specificities, firm specific variables, local unit specificities, and IHRM practices (Dowling et al., 2013). The context specificities would include the differences in cultures between the assignment in Hungary and the base location for the Trianon, Marseilles. The firm specific variable includes any changes in the way operations in Hungary are conducted, whether it is strategy or HRM policies. The local unit specificities include the role of the joint venture in relation to Trianon and how this joint venture will fit into the long-term plan of the company. The company hopes that it will provide a good working relationship with the state supported airline, which will lead to more business in the future. The IHRM practices determine the employees that are hired and the training that is available to the employees. The reason for the assignment also is a major factor in determining the correct candidate. In the situation of Trianon, a joint venture with a Hungarian government back firm created a position that needed filling. The Quality Compliance Manager position allows Trianon to manage the joint venture operation, make sure it is successful, and build a strong relationship with Malev. The last major factor is the type of assignment. The Quality Compliance Manager assignment is long-term assignment because it is 3 years in duration. The joint venture is the first that the company has been involved in outside the UK so there is less familiarity on the administrative/compliance side. The candidate must act as an agent of direct control (Dowling et al., 2013) by assuring that compliance policies are followed and company strategy is implemented. Assessing whether a male or female would be the best fit for the position is also a factor that deserves consideration. The low number of female expatriates led Jessens, Cappellen, &Zanoni (2006) to research the following three myths: women have no desire to be in positions of authority in a foreign country, companies do not desire to place females in positions of authority while a foreign country, and women would be ineffective because of the views towards women in foreign countries. The research indicated that female expatriates do have conflict that arises related to their gender but the successful ones were able to turn the conflicts around based on the qualities that these women possess (Jessens et al., 2006). With all of these factors considered, I believe Marie Erten-Loiseau is the best candidate for the Quality Compliance Manager. References Dowling, P.J., Festing, M., & Engle, A.D. Sr. (2013). International Human Resource Management (6th ed.). Stamford, CT: Cengage Learning Janssens, M., Cappellen, T., &Zanoni, P. (2006). Successful female expatriates as agents: Positioning oneself through gender, hierarchy, and culture. Journal of World Business, 1-16. doi:10.1016/j.jwb.2006.01.001 2.) Case 8 – Questions 1 & 4 Multinational firms are often faced with recruiting and staffing decisions that could ultimately enhance or diminish the firm’s ability to be successful in a competitive global market. Perlmutter identified four staffing approaches for MNEs to consider based on the primary attitudes of international executives that would lay the foundation for MNEs during the recruitment and hiring process (Dowling, Festing, & Engle, 2013). At one point or another throughout the MacDougall family journey Lachlan and Lisa have served in one of the four capacities as an ethnocentric, polycentric, geocentric, and regiocentric employee. The ability to encompass all four attitudes that Perlmutter set forth is something that the MacDougall family has managed to do extremely well. The possibility for a multinational firm to recruit a family of this caliber that has been exposed and has an understanding of the positive and negative aspects of each attitude is phenomenal. This would be resourceful for any multinational firm. The MacDougal family’s exposure to cross-cultural management is also valuable. The diverse cultural background that the family has encountered on their international journey is a rarity. Cultural diversity and cross-cultural management play a critical role in MNEs because it produces a work environment that can transform the workplace into a place of learning and give the firm the availability to create new ideas for a more productive and competitive advantage over other firms (Sultana, Rashid, Mohiuddin, &Mazumder, 2013). This is something that is easy for the MacDougall family to bring to the table with the family’s given history. The expatriate lifestyle that has become second nature to the MacDougall family is beneficial for multinational firms for multifarious reasons Being raised around different cultures and then choosing to work internationally and learn different cultures has attributed to Lachlan’s successful career. The family’s ability to communicate and blend in socially among diverse cultures is an important aspect for international firms that want to stay competitive and be successful. The family has acclimated fairly easy to all of the places they have been and this is something that can be favorable when firms are recruiting employees. The MacDougall family has an upper-hand in the international marketplace naturally due to previous experiences with other countries and cultures. The exceptional way that the family has managed to conform to a multitude of other cultures and flourish is not an easy task. Marriage is not easy and many families experience a greater challenge avoiding divorcees when international mobility is involved. Lachlan and Lisa have been able to move together and this is an important aspect to the success of their marriage. Based on the case study they have a common desire to travel and both are successful in their careers. Lisa’s devotion to her husband’s successful career has put some strain on the marriage as she has had times where she felt she did not have her own identity. Military spouses experience this type of stress during long deployments and times that they have to hold the household together on their own. Another example is with employers who are transferred internationally for a short period of time or travel often. Separation of spouses can strain any marriage, but Lisa and Lachlan have been fortunate to avoid separation for any extended length of time. References Dowling, P.J., Festing, M., & Engle, A.D.Sr.(2013). International Human Resource Management. (6thed.). Stamford, CT: Cengage Sultana, M., Rashid, M., Mohiuddin, M. &Mazumder, M. (2013).Cross-cultural management and organizational performance.A Contnet analysis perspective.International Journal of Business and Management, 8(8), 133-146.

No expert has answered this question yet. You can browse … Read More...