2. The failure density distribution for mechanical component is given by: fT(t) = (ct)* exp(-.5*c*t^2) where ‘c’ is a parameter of the distribution. Determine: • Cumulative distribution of the failures (5 points) • Reliability of the components (5 points) • Hazard rate for the components (5 points) • Mean, standard deviation of the failure distribution and reliability of components at the end of 2 years, when c=0.0025 (5 points) • Plot the Failure rate density function, Failure time distribution function, Reliability function and Hard Rate function for the given distribution when c=0.0025 (5 points)

2. The failure density distribution for mechanical component is given by: fT(t) = (ct)* exp(-.5*c*t^2) where ‘c’ is a parameter of the distribution. Determine: • Cumulative distribution of the failures (5 points) • Reliability of the components (5 points) • Hazard rate for the components (5 points) • Mean, standard deviation of the failure distribution and reliability of components at the end of 2 years, when c=0.0025 (5 points) • Plot the Failure rate density function, Failure time distribution function, Reliability function and Hard Rate function for the given distribution when c=0.0025 (5 points)

info@checkyourstudy.com 2.    The failure density distribution for  mechanical component is … Read More...
UDC CSI Quiz 1 (Close book) Name_________________________________ Student Number_____________________________ 1. Write down the code structure of a typical C++ program. 2. What are the most important components in a computer? Explain in your own words the functionality of each component. 3. Explain the following concepts: (1) Data type, (2) Identifiers, (3) Reserved words , (4) the ASCII format, (5) what are the most important components in a computer 4. Write an if-Statement tell the meaning of the sentence 5. Write a program that take an input value from keyboard. When the input value is 1, you print a square using *’s; otherwise you print a triangle. 6. Write a program that counts the summation 1+2+…+100.

UDC CSI Quiz 1 (Close book) Name_________________________________ Student Number_____________________________ 1. Write down the code structure of a typical C++ program. 2. What are the most important components in a computer? Explain in your own words the functionality of each component. 3. Explain the following concepts: (1) Data type, (2) Identifiers, (3) Reserved words , (4) the ASCII format, (5) what are the most important components in a computer 4. Write an if-Statement tell the meaning of the sentence 5. Write a program that take an input value from keyboard. When the input value is 1, you print a square using *’s; otherwise you print a triangle. 6. Write a program that counts the summation 1+2+…+100.

Extra Credit Due: 11:59pm on Thursday, May 15, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy A Man Running to Catch a Bus A man is running at speed (much less than the speed of light) to catch a bus already at a stop. At , when he is a distance from the door to the bus, the bus starts moving with the positive acceleration . Use a coordinate system with at the door of the stopped bus. Part A What is , the position of the man as a function of time? Answer symbolically in terms of the variables , , and . Hint 1. Which equation should you use for the man’s speed? Because the man’s speed is constant, you may use . ANSWER: c t = 0 b a x = 0 xman(t) b c t x(t) = x(0) + vt xman(t) = −b + ct Correct Part B What is , the position of the bus as a function of time? Answer symbolically in terms of and . Hint 1. Which equation should you use for the bus’s acceleration? Because the bus has constant acceleration, you may use . Recall that . ANSWER: Correct Part C What condition is necessary for the man to catch the bus? Assume he catches it at time . Hint 1. How to approach this problem If the man is to catch the bus, then at some moment in time , the man must arrive at the position of the door of the bus. How would you express this condition mathematically? ANSWER: xbus(t) a t x(t) = x(0) + v(0)t + (1/2)at2 vbus(0) = 0 xbus = 1 a 2 t2 tcatch tcatch Typesetting math: 15% Correct Part D Inserting the formulas you found for and into the condition , you obtain the following: , or . Intuitively, the man will not catch the bus unless he is running fast enough. In mathematical terms, there is a constraint on the man’s speed so that the equation above gives a solution for that is a real positive number. Find , the minimum value of for which the man will catch the bus. Express the minimum value for the man’s speed in terms of and . Hint 1. Consider the discriminant Use the quadratic equation to solve: . What is the discriminant (the part under the radical) of the solution for ? xman(tcatch) > xbus(tcatch) xman(tcatch) = xbus(tcatch) xman(tcatch) < xbus(tcatch) c = a  tcatch xman(t) xbus(t) xman(tcatch) = xbus(tcatch) −b+ct = a catch 1 2 t2 catch 1 a −c +b = 0 2 t2 catch tcatch c tcatch cmin c a b 1 a − c + b = 0 2 t2 catch tcatch tcatch Typesetting math: 15% Hint 1. The quadratic formula Recall: If then ANSWER: Hint 2. What is the constraint? To get a real value for , the discriminant must be greater then or equal to zero. This condition yields a constraint that exceed . ANSWER: Correct Part E Assume that the man misses getting aboard when he first meets up with the bus. Does he get a second chance if he continues to run at the constant speed ? Hint 1. What is the general quadratic equation? The general quadratic equation is , where , \texttip{B}{B}, and \texttip{C}{C} are constants. Depending on the value of the discriminant, \Delta = c^2-2ab, the equation may have Ax2 + Bx + C = 0 x = −B±B2−4AC 2A  = cc − 2ab tcatch c cmin cmin = (2ab) −−−−  c > cmin Ax2 + Bx + C = 0 A Typesetting math: 15% two real valued solutions 1. if \Delta > 0, 2. one real valued solution if \Delta = 0, or 3. two complex valued solutions if \Delta < 0. In this case, every real valued solution corresponds to a time at which the man is at the same position as the door of the bus. ANSWER: Correct Adding and Subtracting Vectors Conceptual Question Six vectors (A to F) have the magnitudes and directions indicated in the figure. Part A No; there is no chance he is going to get aboard. Yes; he will get a second chance Typesetting math: 15% Which two vectors, when added, will have the largest (positive) x component? Hint 1. Largest x component The two vectors with the largest x components will, when combined, give the resultant with the largest x component. Keep in mind that positive x components are larger than negative x components. ANSWER: Correct Part B Which two vectors, when added, will have the largest (positive) y component? Hint 1. Largest y component The two vectors with the largest y components will, when combined, give the resultant with the largest y component. Keep in mind that positive y components are larger than negative y components. ANSWER: C and E E and F A and F C and D B and D Typesetting math: 15% Correct Part C Which two vectors, when subtracted (i.e., when one vector is subtracted from the other), will have the largest magnitude? Hint 1. Subtracting vectors To subtract two vectors, add a vector with the same magnitude but opposite direction of one of the vectors to the other vector. ANSWER: Correct Tactics Box 3.1 Determining the Components of a Vector Learning Goal: C and D A and F E and F A and B E and D A and F A and E D and B C and D E and F Typesetting math: 15% To practice Tactics Box 3.1 Determining the Components of a Vector. When a vector \texttip{\vec{A}}{A_vec} is decomposed into component vectors \texttip{\vec{A}_{\mit x}}{A_vec_x} and \texttip{\vec{A}_{\mit y}}{A_vec_y} parallel to the coordinate axes, we can describe each component vector with a single number (a scalar) called the component. This tactics box describes how to determine the x component and y component of vector \texttip{\vec{A}}{A_vec}, denoted \texttip{A_{\mit x}}{A_x} and \texttip{A_{\mit y}}{A_y}. TACTICS BOX 3.1 Determining the components of a vector The absolute value |A_x| of the x component \texttip{A_{\mit x}}{A_x} is the magnitude of the component vector \texttip{\vec{A}_{\1. mit x}}{A_vec_x}. The sign of \texttip{A_{\mit x}}{A_x} is positive if \texttip{\vec{A}_{\mit x}}{A_vec_x} points in the positive x direction; it is negative if \texttip{\vec{A}_{\mit x}}{A_vec_x} points in the negative x direction. 2. 3. The y component \texttip{A_{\mit y}}{A_y} is determined similarly. Part A What is the magnitude of the component vector \texttip{\vec{A}_{\mit x}}{A_vec_x} shown in the figure? Express your answer in meters to one significant figure. ANSWER: Correct |A_x| = 5 \rm m Typesetting math: 15% Part B What is the sign of the y component \texttip{A_{\mit y}}{A_y} of vector \texttip{\vec{A}}{A_vec} shown in the figure? ANSWER: Correct Part C Now, combine the information given in the tactics box above to find the x and y components, \texttip{B_{\mit x}}{B_x} and \texttip{B_{\mit y}}{B_y}, of vector \texttip{\vec{B}}{B_vec} shown in the figure. Express your answers, separated by a comma, in meters to one significant figure. positive negative Typesetting math: 15% ANSWER: Correct Conceptual Problem about Projectile Motion Learning Goal: To understand projectile motion by considering horizontal constant velocity motion and vertical constant acceleration motion independently. Projectile motion refers to the motion of unpowered objects (called projectiles) such as balls or stones moving near the surface of the earth under the influence of the earth's gravity alone. In this analysis we assume that air resistance can be neglected. An object undergoing projectile motion near the surface of the earth obeys the following rules: An object undergoing projectile motion travels horizontally at a constant rate. That is, the x component of its velocity, \texttip{v_{\mit x}}{1. v_x}, is constant. An object undergoing projectile motion moves vertically with a constant downward acceleration whose magnitude, denoted by \texttip{g}{g}, is equal to 9.80 \rm{m/s^2} near the surface of the earth. Hence, the y component of its velocity, \texttip{v_{\mit y}}{v_y}, changes continuously. 2. An object undergoing projectile motion will undergo the horizontal and vertical motions described above from the instant it is launched until the instant it strikes the ground again. Even though the horizontal and vertical motions can be treated independently, they are related by the fact that they occur for exactly the same amount of time, namely the time \texttip{t}{t} the projectile is in the air. 3. The figure shows the trajectory (i.e., the path) of a ball undergoing projectile motion over level ground. The time t_0 = 0\;\rm{s} corresponds to the moment just after the ball is launched from position x_0 = 0\;\rm{m} and y_0 = 0\;\rm{m}. Its launch velocity, also called the initial velocity, is \texttip{\vec{v}_{\rm 0}}{v_vec_0}. Two other points along the trajectory are indicated in the figure. One is the moment the ball reaches the peak of its trajectory, at time \texttip{t_{\rm 1}}{t_1} with velocity \texttip{\vec{v}_{\rm 1}}{v_1_vec}. Its position at this moment is denoted by (x_1, y_1) or (x_1, y_{\max}) since it is at its maximum \texttip{B_{\mit x}}{B_x}, \texttip{B_{\mit y}}{B_y} = -2,-5 \rm m, \rm m Typesetting math: 15% The other point, at time \texttip{t_{\rm 2}}{t_2} with velocity \texttip{\vec{v}_{\rm 2}}{v_2_vec}, corresponds to the moment just before the ball strikes the ground on the way back down. At this time its position is (x_2, y_2), also known as (x_{\max}, y_2) since it is at its maximum horizontal range. Projectile motion is symmetric about the peak, provided the object lands at the same vertical height from which is was launched, as is the case here. Hence y_2 = y_0 = 0\;\rm{m}. Part A How do the speeds \texttip{v_{\rm 0}}{v_0}, \texttip{v_{\rm 1}}{v_1}, and \texttip{v_{\rm 2}}{v_2} (at times \texttip{t_{\rm 0}}{t_0}, \texttip{t_{\rm 1}}{t_1}, and \texttip{t_{\rm 2}}{t_2}) compare? ANSWER: Correct Here \texttip{v_{\rm 0}}{v_0} equals \texttip{v_{\rm 2}}{v_2} by symmetry and both exceed \texttip{v_{\rm 1}}{v_1}. This is because \texttip{v_{\rm 0}}{v_0} and \texttip{v_{\rm 2}}{v_2} include vertical speed as well as the constant horizontal speed. Consider a diagram of the ball at time \texttip{t_{\rm 0}}{t_0}. Recall that \texttip{t_{\rm 0}}{t_0} refers to the instant just after the ball has been launched, so it is still at ground level (x_0 = y_0= 0\;\rm{m}). However, it is already moving with initial velocity \texttip{\vec{v}_{\rm 0}}{v_0_vec}, whose magnitude is v_0 = 30.0\;{\rm m/s} and direction is \theta = 60.0\;{\rm degrees} counterclockwise from the positive x direction. \texttip{v_{\rm 0}}{v_0} = \texttip{v_{\rm 1}}{v_1} = \texttip{v_{\rm 2}}{v_2} > 0 \texttip{v_{\rm 0}}{v_0} = \texttip{v_{\rm 2}}{v_2} > \texttip{v_{\rm 1}}{v_1} = 0 \texttip{v_{\rm 0}}{v_0} = \texttip{v_{\rm 2}}{v_2} > \texttip{v_{\rm 1}}{v_1} > 0 \texttip{v_{\rm 0}}{v_0} > \texttip{v_{\rm 1}}{v_1} > \texttip{v_{\rm 2}}{v_2} > 0 \texttip{v_{\rm 0}}{v_0} > \texttip{v_{\rm 2}}{v_2} > \texttip{v_{\rm 1}}{v_1} = 0 Typesetting math: 15% Part B What are the values of the intial velocity vector components \texttip{v_{0,x}}{v_0, x} and \texttip{v_{0,y}}{v_0, y} (both in \rm{m/s}) as well as the acceleration vector components \texttip{a_{0,x}}{a_0, x} and \texttip{a_{0,y}}{a_0, y} (both in \rm{m/s^2})? Here the subscript 0 means “at time \texttip{t_{\rm 0}}{t_0}.” Hint 1. Determining components of a vector that is aligned with an axis If a vector points along a single axis direction, such as in the positive x direction, its x component will be its full magnitude, whereas its y component will be zero since the vector is perpendicular to the y direction. If the vector points in the negative x direction, its x component will be the negative of its full magnitude. Hint 2. Calculating the components of the initial velocity Notice that the vector \texttip{\vec{v}_{\rm 0}}{v_0_vec} points up and to the right. Since “up” is the positive y axis direction and “to the right” is the positive x axis direction, \texttip{v_{0,x}}{v_0, x} and \texttip{v_{0,y}}{v_0, y} will both be positive. As shown in the figure, \texttip{v_{0,x}}{v_0, x}, \texttip{v_{0,y}}{v_0, y}, and \texttip{v_{\rm 0}}{v_0} are three sides of a right triangle, one angle of which is \texttip{\theta }{theta}. Thus \texttip{v_{0,x}}{v_0, x} and \texttip{v_{0,y}}{v_0, y} can be found using the definition of the sine and cosine functions given below. Recall that v_0 = 30.0\;\rm{m/s} and \theta = 60.0\;\rm{degrees} and note that \large{\sin(\theta) = \frac{\rm{length\;of\;opposite\;side}}{\rm{length\;of\;hypotenuse}}} \large{= \frac{v_{0, y}}{v_0}}, \large{\cos(\theta) = \frac{\rm{length\;of\;adjacent\;side}}{\rm{length\;of\;hypotenuse}}} \large{= \frac{v_{0, x}}{v_0}.} What are the values of \texttip{v_{0,x}}{v_0, x} and \texttip{v_{0,y}}{v_0, y}? Enter your answers numerically in meters per second separated by a comma. ANSWER: ANSWER: 15.0,26.0 \rm{m/s} Typesetting math: 15% Correct Also notice that at time \texttip{t_{\rm 2}}{t_2}, just before the ball lands, its velocity components are v_{2, x} = 15\;\rm{m/s} (the same as always) and v_{2, y} = – 26.0\;\rm{m/s} (the same size but opposite sign from \texttip{v_{0,y}}{v_0, y} by symmetry). The acceleration at time \texttip{t_{\rm 2}}{t_2} will have components (0, -9.80 \rm{m/s^2}), exactly the same as at \texttip{t_{\rm 0}}{t_0}, as required by Rule 2. The peak of the trajectory occurs at time \texttip{t_{\rm 1}}{t_1}. This is the point where the ball reaches its maximum height \texttip{y_{\rm max}}{y_max}. At the peak the ball switches from moving up to moving down, even as it continues to travel horizontally at a constant rate. Part C What are the values of the velocity vector components \texttip{v_{1,x}}{v_1, x} and \texttip{v_{1,y}}{v_1, y} (both in \rm{m/s}) as well as the acceleration vector components \texttip{a_{1,x}}{a_1, x} and \texttip{a_{1,y}}{a_1, y} (both in \rm{m/s^2})? Here the subscript 1 means that these are all at time \texttip{t_{\rm 1}}{t_1}. ANSWER: 30.0, 0, 0, 0 0, 30.0, 0, 0 15.0, 26.0, 0, 0 30.0, 0, 0, -9.80 0, 30.0, 0, -9.80 15.0, 26.0, 0, -9.80 15.0, 26.0, 0, +9.80 Typesetting math: 15% Correct At the peak of its trajectory the ball continues traveling horizontally at a constant rate. However, at this moment it stops moving up and is about to move back down. This constitutes a downward-directed change in velocity, so the ball is accelerating downward even at the peak. The flight time refers to the total amount of time the ball is in the air, from just after it is launched (\texttip{t_{\rm 0}}{t_0}) until just before it lands (\texttip{t_{\rm 2}}{t_2}). Hence the flight time can be calculated as t_2 – t_0, or just \texttip{t_{\rm 2}}{t_2} in this particular situation since t_0 = 0. Because the ball lands at the same height from which it was launched, by symmetry it spends half its flight time traveling up to the peak and the other half traveling back down. The flight time is determined by the initial vertical component of the velocity and by the acceleration. The flight time does not depend on whether the object is moving horizontally while it is in the air. Part D If a second ball were dropped from rest from height \texttip{y_{\rm max}}{y_max}, how long would it take to reach the ground? Ignore air resistance. Check all that apply. Hint 1. Kicking a ball of cliff; a related problem Consider two balls, one of which is dropped from rest off the edge of a cliff at the same moment that the other is kicked horizontally off the edge of the cliff. Which ball reaches the level ground at the base of the cliff first? Ignore air resistance. Hint 1. Comparing position, velocity, and acceleration of the two balls Both balls start at the same height and have the same initial y velocity (v_{0,y} = 0) as well as the same acceleration (\vec a = g downward). They differ only in their x velocity (one is 0, 0, 0, 0 0, 0, 0, -9.80 15.0, 0, 0, 0 15.0, 0, 0, -9.80 0, 26.0, 0, 0 0, 26.0, 0, -9.80 15.0, 26.0, 0, 0 15.0, 26.0, 0, -9.80 Typesetting math: 15% zero, the other nonzero). This difference will affect their x motion but not their y motion. ANSWER: ANSWER: Correct In projectile motion over level ground, it takes an object just as long to rise from the ground to the peak as it takes for it to fall from the peak back to the ground. The range \texttip{R}{R} of the ball refers to how far it moves horizontally, from just after it is launched until just before it lands. Range is defined as x_2 – x_0, or just \texttip{x_{\rm 2}}{x_2} in this particular situation since x_0 = 0. Range can be calculated as the product of the flight time \texttip{t_{\rm 2}}{t_2} and the x component of the velocity \texttip{v_{\mit x}}{v_x} (which is the same at all times, so v_x = v_{0,x}). The value of \texttip{v_{\mit x}}{v_x} can be found from the launch speed \texttip{v_{\rm 0}}{v_0} and the launch angle \texttip{\theta }{theta} using trigonometric functions, as was done in Part B. The flight time is related to the initial y component of the velocity, which may also be found from \texttip{v_{\rm 0}}{v_0} and \texttip{\theta }{theta} using trig functions. The following equations may be useful in solving projectile motion problems, but these equations apply only to a projectile launched over level ground from position (x_0 = y_0 = 0) at time t_0 = 0 with initial speed \texttip{v_{\rm 0}}{v_0} and launch angle \texttip{\theta }{theta} measured from the horizontal. As was the case above, \texttip{t_{\rm 2}}{t_2} refers to the flight time and \texttip{R}{R} refers to the range of the projectile. flight time: \large{t_2 = \frac{2 v_{0, y}}{g} = \frac{2 v_0 \sin(\theta)}{g}} range: \large{R = v_x t_2 = \frac{v_0^2 \sin(2\theta)}{g}} The ball that falls straight down strikes the ground first. The ball that was kicked so it moves horizontally as it falls strikes the ground first. Both balls strike the ground at the same time. \texttip{t_{\rm 0}}{t_0} t_1 – t_0 \texttip{t_{\rm 2}}{t_2} t_2 – t_1 \large{\frac{t_2 – t_0}{2}} Typesetting math: 15% In general, a high launch angle yields a long flight time but a small horizontal speed and hence little range. A low launch angle gives a larger horizontal speed, but less flight time in which to accumulate range. The launch angle that achieves the maximum range for projectile motion over level ground is 45 degrees. Part E Which of the following changes would increase the range of the ball shown in the original figure? Check all that apply. ANSWER: Correct A solid understanding of the concepts of projectile motion will take you far, including giving you additional insight into the solution of projectile motion problems numerically. Even when the object does not land at the same height from which is was launched, the rules given in the introduction will still be useful. Recall that air resistance is assumed to be negligible here, so this projectile motion analysis may not be the best choice for describing things like frisbees or feathers, whose motion is strongly influenced by air. The value of the gravitational free-fall acceleration \texttip{g}{g} is also assumed to be constant, which may not be appropriate for objects that move vertically through distances of hundreds of kilometers, like rockets or missiles. However, for problems that involve relatively dense projectiles moving close to the surface of the earth, these assumptions are reasonable. A World-Class Sprinter World-class sprinters can accelerate out of the starting blocks with an acceleration that is nearly horizontal and has magnitude 15 \;{\rm m}/{\rm s}^{2}. Part A How much horizontal force \texttip{F}{F} must a sprinter of mass 64{\rm kg} exert on the starting blocks to produce this acceleration? Express your answer in newtons using two significant figures. Increase \texttip{v_{\rm 0}}{v_0} above 30 \rm{m/s}. Reduce \texttip{v_{\rm 0}}{v_0} below 30 \rm{m/s}. Reduce \texttip{\theta }{theta} from 60 \rm{degrees} to 45 \rm{degrees}. Reduce \texttip{\theta }{theta} from 60 \rm{degrees} to less than 30 \rm{degrees}. Increase \texttip{\theta }{theta} from 60 \rm{degrees} up toward 90 \rm{degrees}. Typesetting math: 15% Hint 1. Newton’s 2nd law of motion According to Newton’s 2nd law of motion, if a net external force \texttip{F_{\rm net}}{F_net} acts on a body, the body accelerates, and the net force is equal to the mass \texttip{m}{m} of the body times the acceleration \texttip{a}{a} of the body: F_{\rm net} = ma. ANSWER: Co

Extra Credit Due: 11:59pm on Thursday, May 15, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy A Man Running to Catch a Bus A man is running at speed (much less than the speed of light) to catch a bus already at a stop. At , when he is a distance from the door to the bus, the bus starts moving with the positive acceleration . Use a coordinate system with at the door of the stopped bus. Part A What is , the position of the man as a function of time? Answer symbolically in terms of the variables , , and . Hint 1. Which equation should you use for the man’s speed? Because the man’s speed is constant, you may use . ANSWER: c t = 0 b a x = 0 xman(t) b c t x(t) = x(0) + vt xman(t) = −b + ct Correct Part B What is , the position of the bus as a function of time? Answer symbolically in terms of and . Hint 1. Which equation should you use for the bus’s acceleration? Because the bus has constant acceleration, you may use . Recall that . ANSWER: Correct Part C What condition is necessary for the man to catch the bus? Assume he catches it at time . Hint 1. How to approach this problem If the man is to catch the bus, then at some moment in time , the man must arrive at the position of the door of the bus. How would you express this condition mathematically? ANSWER: xbus(t) a t x(t) = x(0) + v(0)t + (1/2)at2 vbus(0) = 0 xbus = 1 a 2 t2 tcatch tcatch Typesetting math: 15% Correct Part D Inserting the formulas you found for and into the condition , you obtain the following: , or . Intuitively, the man will not catch the bus unless he is running fast enough. In mathematical terms, there is a constraint on the man’s speed so that the equation above gives a solution for that is a real positive number. Find , the minimum value of for which the man will catch the bus. Express the minimum value for the man’s speed in terms of and . Hint 1. Consider the discriminant Use the quadratic equation to solve: . What is the discriminant (the part under the radical) of the solution for ? xman(tcatch) > xbus(tcatch) xman(tcatch) = xbus(tcatch) xman(tcatch) < xbus(tcatch) c = a  tcatch xman(t) xbus(t) xman(tcatch) = xbus(tcatch) −b+ct = a catch 1 2 t2 catch 1 a −c +b = 0 2 t2 catch tcatch c tcatch cmin c a b 1 a − c + b = 0 2 t2 catch tcatch tcatch Typesetting math: 15% Hint 1. The quadratic formula Recall: If then ANSWER: Hint 2. What is the constraint? To get a real value for , the discriminant must be greater then or equal to zero. This condition yields a constraint that exceed . ANSWER: Correct Part E Assume that the man misses getting aboard when he first meets up with the bus. Does he get a second chance if he continues to run at the constant speed ? Hint 1. What is the general quadratic equation? The general quadratic equation is , where , \texttip{B}{B}, and \texttip{C}{C} are constants. Depending on the value of the discriminant, \Delta = c^2-2ab, the equation may have Ax2 + Bx + C = 0 x = −B±B2−4AC 2A  = cc − 2ab tcatch c cmin cmin = (2ab) −−−−  c > cmin Ax2 + Bx + C = 0 A Typesetting math: 15% two real valued solutions 1. if \Delta > 0, 2. one real valued solution if \Delta = 0, or 3. two complex valued solutions if \Delta < 0. In this case, every real valued solution corresponds to a time at which the man is at the same position as the door of the bus. ANSWER: Correct Adding and Subtracting Vectors Conceptual Question Six vectors (A to F) have the magnitudes and directions indicated in the figure. Part A No; there is no chance he is going to get aboard. Yes; he will get a second chance Typesetting math: 15% Which two vectors, when added, will have the largest (positive) x component? Hint 1. Largest x component The two vectors with the largest x components will, when combined, give the resultant with the largest x component. Keep in mind that positive x components are larger than negative x components. ANSWER: Correct Part B Which two vectors, when added, will have the largest (positive) y component? Hint 1. Largest y component The two vectors with the largest y components will, when combined, give the resultant with the largest y component. Keep in mind that positive y components are larger than negative y components. ANSWER: C and E E and F A and F C and D B and D Typesetting math: 15% Correct Part C Which two vectors, when subtracted (i.e., when one vector is subtracted from the other), will have the largest magnitude? Hint 1. Subtracting vectors To subtract two vectors, add a vector with the same magnitude but opposite direction of one of the vectors to the other vector. ANSWER: Correct Tactics Box 3.1 Determining the Components of a Vector Learning Goal: C and D A and F E and F A and B E and D A and F A and E D and B C and D E and F Typesetting math: 15% To practice Tactics Box 3.1 Determining the Components of a Vector. When a vector \texttip{\vec{A}}{A_vec} is decomposed into component vectors \texttip{\vec{A}_{\mit x}}{A_vec_x} and \texttip{\vec{A}_{\mit y}}{A_vec_y} parallel to the coordinate axes, we can describe each component vector with a single number (a scalar) called the component. This tactics box describes how to determine the x component and y component of vector \texttip{\vec{A}}{A_vec}, denoted \texttip{A_{\mit x}}{A_x} and \texttip{A_{\mit y}}{A_y}. TACTICS BOX 3.1 Determining the components of a vector The absolute value |A_x| of the x component \texttip{A_{\mit x}}{A_x} is the magnitude of the component vector \texttip{\vec{A}_{\1. mit x}}{A_vec_x}. The sign of \texttip{A_{\mit x}}{A_x} is positive if \texttip{\vec{A}_{\mit x}}{A_vec_x} points in the positive x direction; it is negative if \texttip{\vec{A}_{\mit x}}{A_vec_x} points in the negative x direction. 2. 3. The y component \texttip{A_{\mit y}}{A_y} is determined similarly. Part A What is the magnitude of the component vector \texttip{\vec{A}_{\mit x}}{A_vec_x} shown in the figure? Express your answer in meters to one significant figure. ANSWER: Correct |A_x| = 5 \rm m Typesetting math: 15% Part B What is the sign of the y component \texttip{A_{\mit y}}{A_y} of vector \texttip{\vec{A}}{A_vec} shown in the figure? ANSWER: Correct Part C Now, combine the information given in the tactics box above to find the x and y components, \texttip{B_{\mit x}}{B_x} and \texttip{B_{\mit y}}{B_y}, of vector \texttip{\vec{B}}{B_vec} shown in the figure. Express your answers, separated by a comma, in meters to one significant figure. positive negative Typesetting math: 15% ANSWER: Correct Conceptual Problem about Projectile Motion Learning Goal: To understand projectile motion by considering horizontal constant velocity motion and vertical constant acceleration motion independently. Projectile motion refers to the motion of unpowered objects (called projectiles) such as balls or stones moving near the surface of the earth under the influence of the earth's gravity alone. In this analysis we assume that air resistance can be neglected. An object undergoing projectile motion near the surface of the earth obeys the following rules: An object undergoing projectile motion travels horizontally at a constant rate. That is, the x component of its velocity, \texttip{v_{\mit x}}{1. v_x}, is constant. An object undergoing projectile motion moves vertically with a constant downward acceleration whose magnitude, denoted by \texttip{g}{g}, is equal to 9.80 \rm{m/s^2} near the surface of the earth. Hence, the y component of its velocity, \texttip{v_{\mit y}}{v_y}, changes continuously. 2. An object undergoing projectile motion will undergo the horizontal and vertical motions described above from the instant it is launched until the instant it strikes the ground again. Even though the horizontal and vertical motions can be treated independently, they are related by the fact that they occur for exactly the same amount of time, namely the time \texttip{t}{t} the projectile is in the air. 3. The figure shows the trajectory (i.e., the path) of a ball undergoing projectile motion over level ground. The time t_0 = 0\;\rm{s} corresponds to the moment just after the ball is launched from position x_0 = 0\;\rm{m} and y_0 = 0\;\rm{m}. Its launch velocity, also called the initial velocity, is \texttip{\vec{v}_{\rm 0}}{v_vec_0}. Two other points along the trajectory are indicated in the figure. One is the moment the ball reaches the peak of its trajectory, at time \texttip{t_{\rm 1}}{t_1} with velocity \texttip{\vec{v}_{\rm 1}}{v_1_vec}. Its position at this moment is denoted by (x_1, y_1) or (x_1, y_{\max}) since it is at its maximum \texttip{B_{\mit x}}{B_x}, \texttip{B_{\mit y}}{B_y} = -2,-5 \rm m, \rm m Typesetting math: 15% The other point, at time \texttip{t_{\rm 2}}{t_2} with velocity \texttip{\vec{v}_{\rm 2}}{v_2_vec}, corresponds to the moment just before the ball strikes the ground on the way back down. At this time its position is (x_2, y_2), also known as (x_{\max}, y_2) since it is at its maximum horizontal range. Projectile motion is symmetric about the peak, provided the object lands at the same vertical height from which is was launched, as is the case here. Hence y_2 = y_0 = 0\;\rm{m}. Part A How do the speeds \texttip{v_{\rm 0}}{v_0}, \texttip{v_{\rm 1}}{v_1}, and \texttip{v_{\rm 2}}{v_2} (at times \texttip{t_{\rm 0}}{t_0}, \texttip{t_{\rm 1}}{t_1}, and \texttip{t_{\rm 2}}{t_2}) compare? ANSWER: Correct Here \texttip{v_{\rm 0}}{v_0} equals \texttip{v_{\rm 2}}{v_2} by symmetry and both exceed \texttip{v_{\rm 1}}{v_1}. This is because \texttip{v_{\rm 0}}{v_0} and \texttip{v_{\rm 2}}{v_2} include vertical speed as well as the constant horizontal speed. Consider a diagram of the ball at time \texttip{t_{\rm 0}}{t_0}. Recall that \texttip{t_{\rm 0}}{t_0} refers to the instant just after the ball has been launched, so it is still at ground level (x_0 = y_0= 0\;\rm{m}). However, it is already moving with initial velocity \texttip{\vec{v}_{\rm 0}}{v_0_vec}, whose magnitude is v_0 = 30.0\;{\rm m/s} and direction is \theta = 60.0\;{\rm degrees} counterclockwise from the positive x direction. \texttip{v_{\rm 0}}{v_0} = \texttip{v_{\rm 1}}{v_1} = \texttip{v_{\rm 2}}{v_2} > 0 \texttip{v_{\rm 0}}{v_0} = \texttip{v_{\rm 2}}{v_2} > \texttip{v_{\rm 1}}{v_1} = 0 \texttip{v_{\rm 0}}{v_0} = \texttip{v_{\rm 2}}{v_2} > \texttip{v_{\rm 1}}{v_1} > 0 \texttip{v_{\rm 0}}{v_0} > \texttip{v_{\rm 1}}{v_1} > \texttip{v_{\rm 2}}{v_2} > 0 \texttip{v_{\rm 0}}{v_0} > \texttip{v_{\rm 2}}{v_2} > \texttip{v_{\rm 1}}{v_1} = 0 Typesetting math: 15% Part B What are the values of the intial velocity vector components \texttip{v_{0,x}}{v_0, x} and \texttip{v_{0,y}}{v_0, y} (both in \rm{m/s}) as well as the acceleration vector components \texttip{a_{0,x}}{a_0, x} and \texttip{a_{0,y}}{a_0, y} (both in \rm{m/s^2})? Here the subscript 0 means “at time \texttip{t_{\rm 0}}{t_0}.” Hint 1. Determining components of a vector that is aligned with an axis If a vector points along a single axis direction, such as in the positive x direction, its x component will be its full magnitude, whereas its y component will be zero since the vector is perpendicular to the y direction. If the vector points in the negative x direction, its x component will be the negative of its full magnitude. Hint 2. Calculating the components of the initial velocity Notice that the vector \texttip{\vec{v}_{\rm 0}}{v_0_vec} points up and to the right. Since “up” is the positive y axis direction and “to the right” is the positive x axis direction, \texttip{v_{0,x}}{v_0, x} and \texttip{v_{0,y}}{v_0, y} will both be positive. As shown in the figure, \texttip{v_{0,x}}{v_0, x}, \texttip{v_{0,y}}{v_0, y}, and \texttip{v_{\rm 0}}{v_0} are three sides of a right triangle, one angle of which is \texttip{\theta }{theta}. Thus \texttip{v_{0,x}}{v_0, x} and \texttip{v_{0,y}}{v_0, y} can be found using the definition of the sine and cosine functions given below. Recall that v_0 = 30.0\;\rm{m/s} and \theta = 60.0\;\rm{degrees} and note that \large{\sin(\theta) = \frac{\rm{length\;of\;opposite\;side}}{\rm{length\;of\;hypotenuse}}} \large{= \frac{v_{0, y}}{v_0}}, \large{\cos(\theta) = \frac{\rm{length\;of\;adjacent\;side}}{\rm{length\;of\;hypotenuse}}} \large{= \frac{v_{0, x}}{v_0}.} What are the values of \texttip{v_{0,x}}{v_0, x} and \texttip{v_{0,y}}{v_0, y}? Enter your answers numerically in meters per second separated by a comma. ANSWER: ANSWER: 15.0,26.0 \rm{m/s} Typesetting math: 15% Correct Also notice that at time \texttip{t_{\rm 2}}{t_2}, just before the ball lands, its velocity components are v_{2, x} = 15\;\rm{m/s} (the same as always) and v_{2, y} = – 26.0\;\rm{m/s} (the same size but opposite sign from \texttip{v_{0,y}}{v_0, y} by symmetry). The acceleration at time \texttip{t_{\rm 2}}{t_2} will have components (0, -9.80 \rm{m/s^2}), exactly the same as at \texttip{t_{\rm 0}}{t_0}, as required by Rule 2. The peak of the trajectory occurs at time \texttip{t_{\rm 1}}{t_1}. This is the point where the ball reaches its maximum height \texttip{y_{\rm max}}{y_max}. At the peak the ball switches from moving up to moving down, even as it continues to travel horizontally at a constant rate. Part C What are the values of the velocity vector components \texttip{v_{1,x}}{v_1, x} and \texttip{v_{1,y}}{v_1, y} (both in \rm{m/s}) as well as the acceleration vector components \texttip{a_{1,x}}{a_1, x} and \texttip{a_{1,y}}{a_1, y} (both in \rm{m/s^2})? Here the subscript 1 means that these are all at time \texttip{t_{\rm 1}}{t_1}. ANSWER: 30.0, 0, 0, 0 0, 30.0, 0, 0 15.0, 26.0, 0, 0 30.0, 0, 0, -9.80 0, 30.0, 0, -9.80 15.0, 26.0, 0, -9.80 15.0, 26.0, 0, +9.80 Typesetting math: 15% Correct At the peak of its trajectory the ball continues traveling horizontally at a constant rate. However, at this moment it stops moving up and is about to move back down. This constitutes a downward-directed change in velocity, so the ball is accelerating downward even at the peak. The flight time refers to the total amount of time the ball is in the air, from just after it is launched (\texttip{t_{\rm 0}}{t_0}) until just before it lands (\texttip{t_{\rm 2}}{t_2}). Hence the flight time can be calculated as t_2 – t_0, or just \texttip{t_{\rm 2}}{t_2} in this particular situation since t_0 = 0. Because the ball lands at the same height from which it was launched, by symmetry it spends half its flight time traveling up to the peak and the other half traveling back down. The flight time is determined by the initial vertical component of the velocity and by the acceleration. The flight time does not depend on whether the object is moving horizontally while it is in the air. Part D If a second ball were dropped from rest from height \texttip{y_{\rm max}}{y_max}, how long would it take to reach the ground? Ignore air resistance. Check all that apply. Hint 1. Kicking a ball of cliff; a related problem Consider two balls, one of which is dropped from rest off the edge of a cliff at the same moment that the other is kicked horizontally off the edge of the cliff. Which ball reaches the level ground at the base of the cliff first? Ignore air resistance. Hint 1. Comparing position, velocity, and acceleration of the two balls Both balls start at the same height and have the same initial y velocity (v_{0,y} = 0) as well as the same acceleration (\vec a = g downward). They differ only in their x velocity (one is 0, 0, 0, 0 0, 0, 0, -9.80 15.0, 0, 0, 0 15.0, 0, 0, -9.80 0, 26.0, 0, 0 0, 26.0, 0, -9.80 15.0, 26.0, 0, 0 15.0, 26.0, 0, -9.80 Typesetting math: 15% zero, the other nonzero). This difference will affect their x motion but not their y motion. ANSWER: ANSWER: Correct In projectile motion over level ground, it takes an object just as long to rise from the ground to the peak as it takes for it to fall from the peak back to the ground. The range \texttip{R}{R} of the ball refers to how far it moves horizontally, from just after it is launched until just before it lands. Range is defined as x_2 – x_0, or just \texttip{x_{\rm 2}}{x_2} in this particular situation since x_0 = 0. Range can be calculated as the product of the flight time \texttip{t_{\rm 2}}{t_2} and the x component of the velocity \texttip{v_{\mit x}}{v_x} (which is the same at all times, so v_x = v_{0,x}). The value of \texttip{v_{\mit x}}{v_x} can be found from the launch speed \texttip{v_{\rm 0}}{v_0} and the launch angle \texttip{\theta }{theta} using trigonometric functions, as was done in Part B. The flight time is related to the initial y component of the velocity, which may also be found from \texttip{v_{\rm 0}}{v_0} and \texttip{\theta }{theta} using trig functions. The following equations may be useful in solving projectile motion problems, but these equations apply only to a projectile launched over level ground from position (x_0 = y_0 = 0) at time t_0 = 0 with initial speed \texttip{v_{\rm 0}}{v_0} and launch angle \texttip{\theta }{theta} measured from the horizontal. As was the case above, \texttip{t_{\rm 2}}{t_2} refers to the flight time and \texttip{R}{R} refers to the range of the projectile. flight time: \large{t_2 = \frac{2 v_{0, y}}{g} = \frac{2 v_0 \sin(\theta)}{g}} range: \large{R = v_x t_2 = \frac{v_0^2 \sin(2\theta)}{g}} The ball that falls straight down strikes the ground first. The ball that was kicked so it moves horizontally as it falls strikes the ground first. Both balls strike the ground at the same time. \texttip{t_{\rm 0}}{t_0} t_1 – t_0 \texttip{t_{\rm 2}}{t_2} t_2 – t_1 \large{\frac{t_2 – t_0}{2}} Typesetting math: 15% In general, a high launch angle yields a long flight time but a small horizontal speed and hence little range. A low launch angle gives a larger horizontal speed, but less flight time in which to accumulate range. The launch angle that achieves the maximum range for projectile motion over level ground is 45 degrees. Part E Which of the following changes would increase the range of the ball shown in the original figure? Check all that apply. ANSWER: Correct A solid understanding of the concepts of projectile motion will take you far, including giving you additional insight into the solution of projectile motion problems numerically. Even when the object does not land at the same height from which is was launched, the rules given in the introduction will still be useful. Recall that air resistance is assumed to be negligible here, so this projectile motion analysis may not be the best choice for describing things like frisbees or feathers, whose motion is strongly influenced by air. The value of the gravitational free-fall acceleration \texttip{g}{g} is also assumed to be constant, which may not be appropriate for objects that move vertically through distances of hundreds of kilometers, like rockets or missiles. However, for problems that involve relatively dense projectiles moving close to the surface of the earth, these assumptions are reasonable. A World-Class Sprinter World-class sprinters can accelerate out of the starting blocks with an acceleration that is nearly horizontal and has magnitude 15 \;{\rm m}/{\rm s}^{2}. Part A How much horizontal force \texttip{F}{F} must a sprinter of mass 64{\rm kg} exert on the starting blocks to produce this acceleration? Express your answer in newtons using two significant figures. Increase \texttip{v_{\rm 0}}{v_0} above 30 \rm{m/s}. Reduce \texttip{v_{\rm 0}}{v_0} below 30 \rm{m/s}. Reduce \texttip{\theta }{theta} from 60 \rm{degrees} to 45 \rm{degrees}. Reduce \texttip{\theta }{theta} from 60 \rm{degrees} to less than 30 \rm{degrees}. Increase \texttip{\theta }{theta} from 60 \rm{degrees} up toward 90 \rm{degrees}. Typesetting math: 15% Hint 1. Newton’s 2nd law of motion According to Newton’s 2nd law of motion, if a net external force \texttip{F_{\rm net}}{F_net} acts on a body, the body accelerates, and the net force is equal to the mass \texttip{m}{m} of the body times the acceleration \texttip{a}{a} of the body: F_{\rm net} = ma. ANSWER: Co

please email info@checkyourstudy.com
Take Home Exam 3: Special Note Before Starting the Exam: If you scan your solutions to the exam and save it as a pdf or image file and put it on dropbox and I can not read it or open it, you will not receive credit for the exam. Furthermore, if you write the solutions up in word, latex ect. and give me a print out, which does not include all the pages you will not get credit for the missing pages. Also if your folder on dropbox is not clearly labeled and I can not find your exam then you will not get credit for the exam. Finally, please make sure you put your name on the exam!! Math 2100 Exam 3, Out of Class, Due by December 8th, 2015 at 5:00 pm. Name: Problem 1. (15 points) A random variable is said to have the (standard) Cauchy distribution if its PDF is given by f (x) = 1 π 1 1+ x2 , −∞< x <∞ This problem uses computer simulations to demonstrate that a) samples from this distribution often have extreme outliers (a consequence of the heavy tails of the distribution), and b) the sample mean is prone to the same type of outliers. Below is a graph of the pdf a) (5 points) The R commands x=rcauchy(500); summary(x) generate a random sample of size 500 from the Cauchy distribution and display the sample’s five number summary; Report the five number summary and the interquartile range, and comment on whether or not the smallest and largest numbers generated from this sample of 500 are outliers. Repeat this 10 times. b) (5 points) The R commands m=matrix(rcauchy(50000), nrow=500); xb=apply(m,1,mean);summary(xb) generate the matrix m that has 500 rows, each of which is a sample of size n=100 from the Cauchy distribution, compute the 500 sample means and store them in xb. and display the five number summary xb. Repeat these commands 10 times, and report the 10 sets of five number summaries. Compare with the 10 sets of five number summaries from part (a), and comment on whether or not the distribution of the averages seems to be more prone to extreme outliers as that of the individual observations. c) (5 points) Why does this happen? (hint: try to calculate E(X) and V(X) for this distribution) and does the LLN and CLT apply for samples from a Cauchy distribution? Hint: E(X) is undefined for this distribution unless you use the Cauchy Principle Value as such for the mean lim a→∞ xf (x)dx −a a∫ In addition x2 1+ x2 dx = x2 +1−1 1+ x2 dx = 1− 1 1+ x2 " # $ % & ' ∫ ∫ ∫ dx 1 1+ x2 dx = tan−1 ∫ x +C Problem 2. (5 points) A marketing expert for a pasta-making company believes that 40% of pasta lovers prefer lasagna. If 9 out of 20 pasta lovers choose lasagna over other pastas, what can be concluded about the expert's claim? Use a 0.05 level of significance. Problem 3. (10 points) A coin is tossed 20 times, resulting in 5 heads. Is this sufficient evidence to reject the hypothesis that the coin is balanced in favor of the alternative that heads occur less than 50% of the time (essentially is this significant evidence to claim that the coin is unbalanced in favor of tails)? Use a 0.05 level of significance. Problem 4. (25 points) Since the chemical benzene may cause cancer, the federal government has set the maximum allowable benzene concentration in the workplace at 1 part per million (1 ppm) Suppose that a steel manufacturing plant is under investigation for possible violations regarding benzene level. The Occupational Safety and Health Administration (OSHA) will analyze 14 air samples over a one-month period. Assume normality of the population from which the samples were drawn. a) (3 points) What is an appropriate null hypothesis for this scenario? (Give this in symbols) b) (3 points) What is an appropriate alternative hypothesis for this scenario? (Give this in symbols) c) (3 points) What kind of hypothesis test is this: left-tailed, right-tailed or two-tailed? Explain how you picked your answer. d) (3 points) Is this a one-sample t-test or a one-sample test using a normal distribution? Explain how you picked your answer. e) (4 points) If the test using this sample of size 14 is to be done at the 1% significance level, calculate the critical value(s) and describe the rejection region(s) for the test statistic. Show your work. f) (5 points) OHSA finds the following for their sample of size 14: a mean benzene level of 1.51 ppm and a standard deviation of 1.415 ppm. What should be concluded at the 1% significance level? Support your answer with calculation(s) and reasoning. g) (4 points) Calculate the p-value for this test and verify that this answer would lead to the same conclusion you made in part f. Problem 5. (15 points) A normally distributed random variable Y possesses a mean of μ = 20 and a standard deviation of σ = 5. A random sample of n = 31 observations is to be selected. Let X be the sample average. (X in this problem is really x _ ) a)(5 points) Describe the sampling distribution of X (i.e. describe the distribution of X and give μx, σx ) b) (5 points) Find the z-score of x = 22 c) (5 points) Find P(X ≥ 22) = Problem 6. (10 points) A restaurants receipts show that the cost of customers' dinners has a distribution with a mean of $54 and a standard deviation of $18. What is the probability that the next 100 customers will spend a total of at least $5800 on dinner? Problem 7. (10 points) The operations manager of a large production plant would like to estimate the mean amount of time a worker takes to assemble a new electronic component. Assume that the standard deviation of this assembly time is 3.6 minutes and is normally distributed. a) (3 points) After observing 120 workers assembling similar devices, the manager noticed that their average time was 16.2 minutes. Construct a 92% confidence interval for the mean assembly time. b) (2 points) How many workers should be involved in this study in order to have the mean assembly time estimated up to ± 15 seconds with 92% confidence? c) (5 points) Construct a 92% confidence interval if instead of observing 120 workers assembling similar devices, rather the manager observes 25 workers and notice their average time was 16.2 minutes with a standard deviation of 4.0 minutes. Problem 8. (10 points): A manufacturer of candy must monitor the temperature at which the candies are baked. Too much variation will cause inconsistency in the taste of the candy. Past records show that the standard deviation of the temperature has been 1.2oF . A random sample of 30 batches of candy is selected, and the sample standard deviation of the temperature is 2.1oF . a. (5 points) At the 0.05 level of significance, is there evidence that the population standard deviation has increased above 1.2oF ? b. (3 points) What assumption do you need to make in order to perform this test? c. (2 points) Compute the p-value in (a) and interpret its meaning.

Take Home Exam 3: Special Note Before Starting the Exam: If you scan your solutions to the exam and save it as a pdf or image file and put it on dropbox and I can not read it or open it, you will not receive credit for the exam. Furthermore, if you write the solutions up in word, latex ect. and give me a print out, which does not include all the pages you will not get credit for the missing pages. Also if your folder on dropbox is not clearly labeled and I can not find your exam then you will not get credit for the exam. Finally, please make sure you put your name on the exam!! Math 2100 Exam 3, Out of Class, Due by December 8th, 2015 at 5:00 pm. Name: Problem 1. (15 points) A random variable is said to have the (standard) Cauchy distribution if its PDF is given by f (x) = 1 π 1 1+ x2 , −∞< x <∞ This problem uses computer simulations to demonstrate that a) samples from this distribution often have extreme outliers (a consequence of the heavy tails of the distribution), and b) the sample mean is prone to the same type of outliers. Below is a graph of the pdf a) (5 points) The R commands x=rcauchy(500); summary(x) generate a random sample of size 500 from the Cauchy distribution and display the sample’s five number summary; Report the five number summary and the interquartile range, and comment on whether or not the smallest and largest numbers generated from this sample of 500 are outliers. Repeat this 10 times. b) (5 points) The R commands m=matrix(rcauchy(50000), nrow=500); xb=apply(m,1,mean);summary(xb) generate the matrix m that has 500 rows, each of which is a sample of size n=100 from the Cauchy distribution, compute the 500 sample means and store them in xb. and display the five number summary xb. Repeat these commands 10 times, and report the 10 sets of five number summaries. Compare with the 10 sets of five number summaries from part (a), and comment on whether or not the distribution of the averages seems to be more prone to extreme outliers as that of the individual observations. c) (5 points) Why does this happen? (hint: try to calculate E(X) and V(X) for this distribution) and does the LLN and CLT apply for samples from a Cauchy distribution? Hint: E(X) is undefined for this distribution unless you use the Cauchy Principle Value as such for the mean lim a→∞ xf (x)dx −a a∫ In addition x2 1+ x2 dx = x2 +1−1 1+ x2 dx = 1− 1 1+ x2 " # $ % & ' ∫ ∫ ∫ dx 1 1+ x2 dx = tan−1 ∫ x +C Problem 2. (5 points) A marketing expert for a pasta-making company believes that 40% of pasta lovers prefer lasagna. If 9 out of 20 pasta lovers choose lasagna over other pastas, what can be concluded about the expert's claim? Use a 0.05 level of significance. Problem 3. (10 points) A coin is tossed 20 times, resulting in 5 heads. Is this sufficient evidence to reject the hypothesis that the coin is balanced in favor of the alternative that heads occur less than 50% of the time (essentially is this significant evidence to claim that the coin is unbalanced in favor of tails)? Use a 0.05 level of significance. Problem 4. (25 points) Since the chemical benzene may cause cancer, the federal government has set the maximum allowable benzene concentration in the workplace at 1 part per million (1 ppm) Suppose that a steel manufacturing plant is under investigation for possible violations regarding benzene level. The Occupational Safety and Health Administration (OSHA) will analyze 14 air samples over a one-month period. Assume normality of the population from which the samples were drawn. a) (3 points) What is an appropriate null hypothesis for this scenario? (Give this in symbols) b) (3 points) What is an appropriate alternative hypothesis for this scenario? (Give this in symbols) c) (3 points) What kind of hypothesis test is this: left-tailed, right-tailed or two-tailed? Explain how you picked your answer. d) (3 points) Is this a one-sample t-test or a one-sample test using a normal distribution? Explain how you picked your answer. e) (4 points) If the test using this sample of size 14 is to be done at the 1% significance level, calculate the critical value(s) and describe the rejection region(s) for the test statistic. Show your work. f) (5 points) OHSA finds the following for their sample of size 14: a mean benzene level of 1.51 ppm and a standard deviation of 1.415 ppm. What should be concluded at the 1% significance level? Support your answer with calculation(s) and reasoning. g) (4 points) Calculate the p-value for this test and verify that this answer would lead to the same conclusion you made in part f. Problem 5. (15 points) A normally distributed random variable Y possesses a mean of μ = 20 and a standard deviation of σ = 5. A random sample of n = 31 observations is to be selected. Let X be the sample average. (X in this problem is really x _ ) a)(5 points) Describe the sampling distribution of X (i.e. describe the distribution of X and give μx, σx ) b) (5 points) Find the z-score of x = 22 c) (5 points) Find P(X ≥ 22) = Problem 6. (10 points) A restaurants receipts show that the cost of customers' dinners has a distribution with a mean of $54 and a standard deviation of $18. What is the probability that the next 100 customers will spend a total of at least $5800 on dinner? Problem 7. (10 points) The operations manager of a large production plant would like to estimate the mean amount of time a worker takes to assemble a new electronic component. Assume that the standard deviation of this assembly time is 3.6 minutes and is normally distributed. a) (3 points) After observing 120 workers assembling similar devices, the manager noticed that their average time was 16.2 minutes. Construct a 92% confidence interval for the mean assembly time. b) (2 points) How many workers should be involved in this study in order to have the mean assembly time estimated up to ± 15 seconds with 92% confidence? c) (5 points) Construct a 92% confidence interval if instead of observing 120 workers assembling similar devices, rather the manager observes 25 workers and notice their average time was 16.2 minutes with a standard deviation of 4.0 minutes. Problem 8. (10 points): A manufacturer of candy must monitor the temperature at which the candies are baked. Too much variation will cause inconsistency in the taste of the candy. Past records show that the standard deviation of the temperature has been 1.2oF . A random sample of 30 batches of candy is selected, and the sample standard deviation of the temperature is 2.1oF . a. (5 points) At the 0.05 level of significance, is there evidence that the population standard deviation has increased above 1.2oF ? b. (3 points) What assumption do you need to make in order to perform this test? c. (2 points) Compute the p-value in (a) and interpret its meaning.

No expert has answered this question yet. You can browse … Read More...
Define the term “creep” and discuss its significance in the design of polymer components.

Define the term “creep” and discuss its significance in the design of polymer components.

Creep is a time- dependent deformation under a certain applied … Read More...
EBIO/ECHM 100 – Homework #6 2015 Due Thursday October 8, 2015 1. Flow rates – in most bio- or chemical engineering problems, you will be working with flow rates rather than a singular amount of mass, moles or volume. When working with gases, a molar flow rate (mol/time) or a volumetric flow rate (volume/time) can be used in the ideal gas law. Consider a mixed gas consisting of 60% Hydrogen, 20% Nitrogen and 20% Carbon Monoxide (CO) which has a molar flow rate of 175 lbmol/min. The temperature is 200oF and pressure is 3 atm gauge. a. Calculate the individual molar flow rates of each component (mol/min) b. Calculate the total volumetric flow rate in ft3/min c. Determine the molar density of the mixed gas (mol/ft3) d. Determine the mass flow rate of the gas (g/min) e. Determine the mass fraction of hydrogen in the gas Read Section 6.5 of your textbook and/or watch the mini-lecture on statistics. That information will help you complete problems 2-4 In previous years, students in EBIO/ECHM 100 would test their ability to brew a repeatable batch of coffee. Let’s say you tried your best to brew three identical batches of coffee – you ground your own beans and measured exactly how many grounds you added to the pot. You took three samples from each batch and measured the absorbance. Representative data for the absorbance readings is given below. Batch 1 Batch 2 Batch 3 Measurement 1 0.343 0.374 0.327 Measurement 2 0.342 0.372 0.327 Measurement 3 0.371 0.375 0.328 2. For each batch of coffee (data in a vertical column), calculate the mean and standard deviation of the absorbance measurement of the three measurements taken from each batch (batch 1 has 3 absorbance measurements of .343, 0.342 and 0.371). Show at least one hand calculation on engineering paper, but you can do the rest in Excel if you wish, using the functions for average, =average(), and standard deviation, =stdev(). For example if you put data from batch 1 in column B, cells B2, B3 and B4 you could tell Excel to compute the average of those numbers by entering the equation =average(B2,B3,B4) in a neighboring cell. An alternate to way compute the average would be to type =(B2+B3+B4)/3. While you get the same answer with both methods, the second method become more cumbersome as your number of samples goes up. 3. Now, calculate the mean and standard deviation for the combination of all nine samples. 4. Why is the standard deviation calculated in #3 greater than those calculated in #2? Discuss this question in terms of experimental factors that could lead to scatter in your data (think back to the steps of making coffee and try to come up with at least 3 factors – these can address sample to sample variations or batch to batch variations). Staple the spreadsheet to the rest of your HW if using Excel. Adjust numbers so they report correct significant figures.

EBIO/ECHM 100 – Homework #6 2015 Due Thursday October 8, 2015 1. Flow rates – in most bio- or chemical engineering problems, you will be working with flow rates rather than a singular amount of mass, moles or volume. When working with gases, a molar flow rate (mol/time) or a volumetric flow rate (volume/time) can be used in the ideal gas law. Consider a mixed gas consisting of 60% Hydrogen, 20% Nitrogen and 20% Carbon Monoxide (CO) which has a molar flow rate of 175 lbmol/min. The temperature is 200oF and pressure is 3 atm gauge. a. Calculate the individual molar flow rates of each component (mol/min) b. Calculate the total volumetric flow rate in ft3/min c. Determine the molar density of the mixed gas (mol/ft3) d. Determine the mass flow rate of the gas (g/min) e. Determine the mass fraction of hydrogen in the gas Read Section 6.5 of your textbook and/or watch the mini-lecture on statistics. That information will help you complete problems 2-4 In previous years, students in EBIO/ECHM 100 would test their ability to brew a repeatable batch of coffee. Let’s say you tried your best to brew three identical batches of coffee – you ground your own beans and measured exactly how many grounds you added to the pot. You took three samples from each batch and measured the absorbance. Representative data for the absorbance readings is given below. Batch 1 Batch 2 Batch 3 Measurement 1 0.343 0.374 0.327 Measurement 2 0.342 0.372 0.327 Measurement 3 0.371 0.375 0.328 2. For each batch of coffee (data in a vertical column), calculate the mean and standard deviation of the absorbance measurement of the three measurements taken from each batch (batch 1 has 3 absorbance measurements of .343, 0.342 and 0.371). Show at least one hand calculation on engineering paper, but you can do the rest in Excel if you wish, using the functions for average, =average(), and standard deviation, =stdev(). For example if you put data from batch 1 in column B, cells B2, B3 and B4 you could tell Excel to compute the average of those numbers by entering the equation =average(B2,B3,B4) in a neighboring cell. An alternate to way compute the average would be to type =(B2+B3+B4)/3. While you get the same answer with both methods, the second method become more cumbersome as your number of samples goes up. 3. Now, calculate the mean and standard deviation for the combination of all nine samples. 4. Why is the standard deviation calculated in #3 greater than those calculated in #2? Discuss this question in terms of experimental factors that could lead to scatter in your data (think back to the steps of making coffee and try to come up with at least 3 factors – these can address sample to sample variations or batch to batch variations). Staple the spreadsheet to the rest of your HW if using Excel. Adjust numbers so they report correct significant figures.

Assignment 3 Due: 11:59pm on Friday, February 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Problem 2.68 As a science project, you drop a watermelon off the top of the Empire State Building, 320 m above the sidewalk. It so happens that Superman flies by at the instant you release the watermelon. Superman is headed straight down with a speed of 36.0 . Part A How fast is the watermelon going when it passes Superman? Express your answer with the appropriate units. ANSWER: Correct Problem 2.63 A motorist is driving at when she sees that a traffic light ahead has just turned red. She knows that this light stays red for , and she wants to reach the light just as it turns green again. It takes her to step on the brakes and begin slowing. Part A What is her speed as she reaches the light at the instant it turns green? Express your answer with the appropriate units. ANSWER: m/s 72.0 ms 20 m/s 200 m 15 s 1.0 s 5.71 ms Correct Conceptual Question 4.1 Part A At this instant, is the particle in the figurespeeding up, slowing down, or traveling at constant speed? ANSWER: Correct Part B Is this particle curving to the right, curving to the left, or traveling straight? Speeding up Slowing down Traveling at constant speed ANSWER: Correct Conceptual Question 4.2 Part A At this instant, is the particle in the following figure speeding up, slowing down, or traveling at constant speed? ANSWER: Curving to the right Curving to the left Traveling straight Correct Part B Is this particle curving upward, curving downward, or traveling straight? ANSWER: Correct Problem 4.8 A particle’s trajectory is described by and , where is in s. Part A What is the particle’s speed at ? ANSWER: The particle is speeding up. The particle is slowing down. The particle is traveling at constant speed. The particle is curving upward. The particle is curving downward. The particle is traveling straight. x = ( 1 −2 ) m 2 t3 t2 y = ( 1 −2t) m 2 t2 t t = 0 s v = 2 m/s Correct Part B What is the particle’s speed at ? Express your answer using two significant figures. ANSWER: Correct Part C What is the particle’s direction of motion, measured as an angle from the x-axis, at ? Express your answer using two significant figures. ANSWER: Correct Part D What is the particle’s direction of motion, measured as an angle from the x-axis, at ? Express your answer using two significant figures. ANSWER: t = 5.0s v = 18 m/s t = 0 s  = -90  counterclockwise from the +x axis. t = 5.0s  = 9.7  counterclockwise from the +x axis. Correct Problem 4.9 A rocket-powered hockey puck moves on a horizontal frictionless table. The figure shows the graph of and the figure shows the graph of , the x- and y-components of the puck’s velocity, respectively. The puck starts at the origin. Part A In which direction is the puck moving at = 3 ? Give your answer as an angle from the x-axis. Express your answer using two significant figures. ANSWER: Correct Part B vx vy t s = 51   above the x-axis How far from the origin is the puck at 5 ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 4.13 A rifle is aimed horizontally at a target 51.0 away. The bullet hits the target 1.50 below the aim point. You may want to review ( pages 91 – 95) . For help with math skills, you may want to review: Quadratic Equations Part A What was the bullet’s flight time? Express your answer with the appropriate units. Hint 1. How to approach the problem Start by drawing a picture of the bullet’s trajectory, including where it leaves the gun and where it hits the target. You can assume that the gun was held parallel to the ground. Label the distances given in the problem. Choose an x-y coordinate system, making sure to label the origin. It is conventional to have x in the horizontal direction and y in the vertical direction. What is the y coordinate when the bullet leaves the gun? What is the y coordinate when it hits the target? What is the initial velocity in the y direction? What is the acceleration in the y direction? What is the equation that describes the motion in the vertical y direction as a function of time? Can you use the equation for to determine the time of flight? Why was it not necessary to include the motion in the x direction? s s = 180 cm m cm y(t) y(t) ANSWER: Correct Part B What was the bullet’s speed as it left the barrel? Express your answer with the appropriate units. Hint 1. How to approach the problem In the coordinate system introduced in Part A, what are the x coordinates when the bullet leaves the gun and when it hits the target? Is there any acceleration in the x direction? What is the equation that describes the motion in the horizontal x direction as a function of time? Can you use the equation for to determine the initial velocity? ANSWER: Correct Introduction to Projectile Motion Learning Goal: To understand the basic concepts of projectile motion. Projectile motion may seem rather complex at first. However, by breaking it down into components, you will find that it is really no different than the one-dimensional motions that you have already studied. One of the most often used techniques in physics is to divide two- and three-dimensional quantities into components. For instance, in projectile motion, a particle has some initial velocity . In general, this velocity can point in any direction on the xy plane and can have any magnitude. To make a problem more managable, it is common to break up such a quantity into its x component and its y component . 5.53×10−2 s x(t) x(t) 922 ms v vx vy Consider a particle with initial velocity that has magnitude 12.0 and is directed 60.0 above the negative x axis. Part A What is the x component of ? Express your answer in meters per second. ANSWER: Correct Part B What is the y component of ? Express your answer in meters per second. ANSWER: Correct Breaking up the velocities into components is particularly useful when the components do not affect each other. Eventually, you will learn about situations in which the components of velocity do affect one another, but for now you will only be looking at problems where they do not. So, if there is acceleration in the x direction but not in the y direction, then the x component of the velocity will change, but the y component of the velocity will not. Part C Look at this applet. The motion diagram for a projectile is displayed, as are the motion diagrams for each component. The x-component motion diagram is what you would get if you shined a spotlight down on the particle as it moved and recorded the motion of its shadow. Similarly, if you shined a spotlight to the left and recorded the particle’s shadow, you would get the motion diagram for its y component. How would you describe the two motion diagrams for the components? ANSWER: v m/s degrees vx v vx = -6.00 m/s vy v vy = 10.4 m/s Correct As you can see, the two components of the motion obey their own independent kinematic laws. For the vertical component, there is an acceleration downward with magnitude . Thus, you can calculate the vertical position of the particle at any time using the standard kinematic equation . Similarly, there is no acceleration in the horizontal direction, so the horizontal position of the particle is given by the standard kinematic equation . Now, consider this applet. Two balls are simultaneously dropped from a height of 5.0 . Part D How long does it take for the balls to reach the ground? Use 10 for the magnitude of the acceleration due to gravity. Express your answer in seconds to two significant figures. Hint 1. How to approach the problem The balls are released from rest at a height of 5.0 at time . Using these numbers and basic kinematics, you can determine the amount of time it takes for the balls to reach the ground. ANSWER: Correct This situation, which you have dealt with before (motion under the constant acceleration of gravity), is actually a special case of projectile motion. Think of this as projectile motion where the horizontal component of the initial velocity is zero. Both the vertical and horizontal components exhibit motion with constant nonzero acceleration. The vertical component exhibits motion with constant nonzero acceleration, whereas the horizontal component exhibits constant-velocity motion. The vertical component exhibits constant-velocity motion, whereas the horizontal component exhibits motion with constant nonzero acceleration. Both the vertical and horizontal components exhibit motion with constant velocity. g = 10 m/s2 y = y0 + v0 t + (1/2)at2 x = x0 + v0 t m tg m/s2 m t = 0 s tg = 1.0 s Part E Imagine the ball on the left is given a nonzero initial speed in the horizontal direction, while the ball on the right continues to fall with zero initial velocity. What horizontal speed must the ball on the left start with so that it hits the ground at the same position as the ball on the right? Remember that the two balls are released, starting a horizontal distance of 3.0 apart. Express your answer in meters per second to two significant figures. Hint 1. How to approach the problem Recall from Part B that the horizontal component of velocity does not change during projectile motion. Therefore, you need to find the horizontal component of velocity such that, in a time , the ball will move horizontally 3.0 . You can assume that its initial x coordinate is . ANSWER: Correct You can adjust the horizontal speeds in this applet. Notice that regardless of what horizontal speeds you give to the balls, they continue to move vertically in the same way (i.e., they are at the same y coordinate at the same time). Problem 4.12 A ball thrown horizontally at 27 travels a horizontal distance of 49 before hitting the ground. Part A From what height was the ball thrown? Express your answer using two significant figures with the appropriate units. ANSWER: vx m vx tg = 1.0 s m x0 = 0.0 m vx = 3.0 m/s m/s m h = 16 m Correct Enhanced EOC: Problem 4.20 The figure shows the angular-velocity-versus-time graph for a particle moving in a circle. You may want to review ( page ) . For help with math skills, you may want to review: The Definite Integral Part A How many revolutions does the object make during the first 3.5 ? Express your answer using two significant figures. You did not open hints for this part. ANSWER: s n = Incorrect; Try Again Problem 4.26 To withstand “g-forces” of up to 10 g’s, caused by suddenly pulling out of a steep dive, fighter jet pilots train on a “human centrifuge.” 10 g’s is an acceleration of . Part A If the length of the centrifuge arm is 10.0 , at what speed is the rider moving when she experiences 10 g’s? Express your answer with the appropriate units. ANSWER: Correct Problem 4.28 Your roommate is working on his bicycle and has the bike upside down. He spins the 60.0 -diameter wheel, and you notice that a pebble stuck in the tread goes by three times every second. Part A What is the pebble’s speed? Express your answer with the appropriate units. ANSWER: Correct 98 m/s2 m 31.3 ms cm 5.65 ms Part B What is the pebble’s acceleration? Express your answer with the appropriate units. ANSWER: Correct Enhanced EOC: Problem 4.43 On the Apollo 14 mission to the moon, astronaut Alan Shepard hit a golf ball with a 6 iron. The acceleration due to gravity on the moon is 1/6 of its value on earth. Suppose he hits the ball with a speed of 13 at an angle 50 above the horizontal. You may want to review ( pages 90 – 95) . For help with math skills, you may want to review: Quadratic Equations Part A How much farther did the ball travel on the moon than it would have on earth? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Start by drawing a picture of the path of the golf ball, showing its starting and ending points. Choose a coordinate system, and label the origin. It is conventional to let x be the horizontal direction and y the vertical direction. What is the initial velocity in the x and y directions? What is the acceleration in the x and y directions on the moon and on the earth? What are the equations for and as a function of time, and , respectively? What is the y coordinate when the golf ball hits the ground? Can you use this information to determine the time of flight on the moon and on the earth? 107 m s2 m/s  x y x(t) y(t) Once you have the time of flight, how can you use the equation to determine the total distance traveled? Compare the distance traveled on the moon to the distance traveled on the earth . ANSWER: Correct Part B For how much more time was the ball in flight? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the equation describing as a function of time? What is the initial x component of the ball’s velocity? How are the initial x component of the ball’s velocity and the distance traveled related to the time of flight? What is the difference between the time of flight on the moon and on earth? ANSWER: Correct Problem 4.42 In the Olympic shotput event, an athlete throws the shot with an initial speed of 12 at a 40.0 angle from the horizontal. The shot leaves her hand at a height of 1.8 above the ground. x(t) L = 85 m x(t) x t = 10 s m/s  m Part A How far does the shot travel? Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part B Repeat the calculation of part (a) for angles of 42.5 , 45.0 , and 47.5 . Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part C Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part D x = 16.36 m    x(42.5 ) = 16.39 m x(45.0 ) = 16.31 m Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part E At what angle of release does she throw the farthest? ANSWER: Correct Problem 4.44 A ball is thrown toward a cliff of height with a speed of 32 and an angle of 60 above horizontal. It lands on the edge of the cliff 3.2 later. Part A How high is the cliff? Express your answer to two significant figures and include the appropriate units. ANSWER: x(47.5 ) = 16.13 m 40.0 42.5 45.0 47.5 h m/s  s h = 39 m Answer Requested Part B What was the maximum height of the ball? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the ball’s impact speed? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 4.58 A typical laboratory centrifuge rotates at 3600 . Test tubes have to be placed into a centrifuge very carefully because of the very large accelerations. Part A What is the acceleration at the end of a test tube that is 10 from the axis of rotation? Express your answer with the appropriate units. hmax = 39 m v = 16 ms rpm cm ANSWER: Correct Part B For comparison, what is the magnitude of the acceleration a test tube would experience if dropped from a height of 1.0 and stopped in a 1.7-ms-long encounter with a hard floor? Express your answer with the appropriate units. ANSWER: Correct Problem 4.62 Communications satellites are placed in a circular orbit where they stay directly over a fixed point on the equator as the earth rotates. These are called geosynchronous orbits. The radius of the earth is , and the altitude of a geosynchronous orbit is ( 22000 miles). Part A What is the speed of a satellite in a geosynchronous orbit? Express your answer with the appropriate units. ANSWER: Correct a = 1.42×104 m s2 m a = 2610 m s2 6.37 × 106m 3.58 × 107m  v = 3070 ms Part B What is the magnitude of the acceleration of a satellite in a geosynchronous orbit? Express your answer with the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 89.5%. You received 103.82 out of a possible total of 116 points. a = 0.223 m s2

Assignment 3 Due: 11:59pm on Friday, February 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Problem 2.68 As a science project, you drop a watermelon off the top of the Empire State Building, 320 m above the sidewalk. It so happens that Superman flies by at the instant you release the watermelon. Superman is headed straight down with a speed of 36.0 . Part A How fast is the watermelon going when it passes Superman? Express your answer with the appropriate units. ANSWER: Correct Problem 2.63 A motorist is driving at when she sees that a traffic light ahead has just turned red. She knows that this light stays red for , and she wants to reach the light just as it turns green again. It takes her to step on the brakes and begin slowing. Part A What is her speed as she reaches the light at the instant it turns green? Express your answer with the appropriate units. ANSWER: m/s 72.0 ms 20 m/s 200 m 15 s 1.0 s 5.71 ms Correct Conceptual Question 4.1 Part A At this instant, is the particle in the figurespeeding up, slowing down, or traveling at constant speed? ANSWER: Correct Part B Is this particle curving to the right, curving to the left, or traveling straight? Speeding up Slowing down Traveling at constant speed ANSWER: Correct Conceptual Question 4.2 Part A At this instant, is the particle in the following figure speeding up, slowing down, or traveling at constant speed? ANSWER: Curving to the right Curving to the left Traveling straight Correct Part B Is this particle curving upward, curving downward, or traveling straight? ANSWER: Correct Problem 4.8 A particle’s trajectory is described by and , where is in s. Part A What is the particle’s speed at ? ANSWER: The particle is speeding up. The particle is slowing down. The particle is traveling at constant speed. The particle is curving upward. The particle is curving downward. The particle is traveling straight. x = ( 1 −2 ) m 2 t3 t2 y = ( 1 −2t) m 2 t2 t t = 0 s v = 2 m/s Correct Part B What is the particle’s speed at ? Express your answer using two significant figures. ANSWER: Correct Part C What is the particle’s direction of motion, measured as an angle from the x-axis, at ? Express your answer using two significant figures. ANSWER: Correct Part D What is the particle’s direction of motion, measured as an angle from the x-axis, at ? Express your answer using two significant figures. ANSWER: t = 5.0s v = 18 m/s t = 0 s  = -90  counterclockwise from the +x axis. t = 5.0s  = 9.7  counterclockwise from the +x axis. Correct Problem 4.9 A rocket-powered hockey puck moves on a horizontal frictionless table. The figure shows the graph of and the figure shows the graph of , the x- and y-components of the puck’s velocity, respectively. The puck starts at the origin. Part A In which direction is the puck moving at = 3 ? Give your answer as an angle from the x-axis. Express your answer using two significant figures. ANSWER: Correct Part B vx vy t s = 51   above the x-axis How far from the origin is the puck at 5 ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 4.13 A rifle is aimed horizontally at a target 51.0 away. The bullet hits the target 1.50 below the aim point. You may want to review ( pages 91 – 95) . For help with math skills, you may want to review: Quadratic Equations Part A What was the bullet’s flight time? Express your answer with the appropriate units. Hint 1. How to approach the problem Start by drawing a picture of the bullet’s trajectory, including where it leaves the gun and where it hits the target. You can assume that the gun was held parallel to the ground. Label the distances given in the problem. Choose an x-y coordinate system, making sure to label the origin. It is conventional to have x in the horizontal direction and y in the vertical direction. What is the y coordinate when the bullet leaves the gun? What is the y coordinate when it hits the target? What is the initial velocity in the y direction? What is the acceleration in the y direction? What is the equation that describes the motion in the vertical y direction as a function of time? Can you use the equation for to determine the time of flight? Why was it not necessary to include the motion in the x direction? s s = 180 cm m cm y(t) y(t) ANSWER: Correct Part B What was the bullet’s speed as it left the barrel? Express your answer with the appropriate units. Hint 1. How to approach the problem In the coordinate system introduced in Part A, what are the x coordinates when the bullet leaves the gun and when it hits the target? Is there any acceleration in the x direction? What is the equation that describes the motion in the horizontal x direction as a function of time? Can you use the equation for to determine the initial velocity? ANSWER: Correct Introduction to Projectile Motion Learning Goal: To understand the basic concepts of projectile motion. Projectile motion may seem rather complex at first. However, by breaking it down into components, you will find that it is really no different than the one-dimensional motions that you have already studied. One of the most often used techniques in physics is to divide two- and three-dimensional quantities into components. For instance, in projectile motion, a particle has some initial velocity . In general, this velocity can point in any direction on the xy plane and can have any magnitude. To make a problem more managable, it is common to break up such a quantity into its x component and its y component . 5.53×10−2 s x(t) x(t) 922 ms v vx vy Consider a particle with initial velocity that has magnitude 12.0 and is directed 60.0 above the negative x axis. Part A What is the x component of ? Express your answer in meters per second. ANSWER: Correct Part B What is the y component of ? Express your answer in meters per second. ANSWER: Correct Breaking up the velocities into components is particularly useful when the components do not affect each other. Eventually, you will learn about situations in which the components of velocity do affect one another, but for now you will only be looking at problems where they do not. So, if there is acceleration in the x direction but not in the y direction, then the x component of the velocity will change, but the y component of the velocity will not. Part C Look at this applet. The motion diagram for a projectile is displayed, as are the motion diagrams for each component. The x-component motion diagram is what you would get if you shined a spotlight down on the particle as it moved and recorded the motion of its shadow. Similarly, if you shined a spotlight to the left and recorded the particle’s shadow, you would get the motion diagram for its y component. How would you describe the two motion diagrams for the components? ANSWER: v m/s degrees vx v vx = -6.00 m/s vy v vy = 10.4 m/s Correct As you can see, the two components of the motion obey their own independent kinematic laws. For the vertical component, there is an acceleration downward with magnitude . Thus, you can calculate the vertical position of the particle at any time using the standard kinematic equation . Similarly, there is no acceleration in the horizontal direction, so the horizontal position of the particle is given by the standard kinematic equation . Now, consider this applet. Two balls are simultaneously dropped from a height of 5.0 . Part D How long does it take for the balls to reach the ground? Use 10 for the magnitude of the acceleration due to gravity. Express your answer in seconds to two significant figures. Hint 1. How to approach the problem The balls are released from rest at a height of 5.0 at time . Using these numbers and basic kinematics, you can determine the amount of time it takes for the balls to reach the ground. ANSWER: Correct This situation, which you have dealt with before (motion under the constant acceleration of gravity), is actually a special case of projectile motion. Think of this as projectile motion where the horizontal component of the initial velocity is zero. Both the vertical and horizontal components exhibit motion with constant nonzero acceleration. The vertical component exhibits motion with constant nonzero acceleration, whereas the horizontal component exhibits constant-velocity motion. The vertical component exhibits constant-velocity motion, whereas the horizontal component exhibits motion with constant nonzero acceleration. Both the vertical and horizontal components exhibit motion with constant velocity. g = 10 m/s2 y = y0 + v0 t + (1/2)at2 x = x0 + v0 t m tg m/s2 m t = 0 s tg = 1.0 s Part E Imagine the ball on the left is given a nonzero initial speed in the horizontal direction, while the ball on the right continues to fall with zero initial velocity. What horizontal speed must the ball on the left start with so that it hits the ground at the same position as the ball on the right? Remember that the two balls are released, starting a horizontal distance of 3.0 apart. Express your answer in meters per second to two significant figures. Hint 1. How to approach the problem Recall from Part B that the horizontal component of velocity does not change during projectile motion. Therefore, you need to find the horizontal component of velocity such that, in a time , the ball will move horizontally 3.0 . You can assume that its initial x coordinate is . ANSWER: Correct You can adjust the horizontal speeds in this applet. Notice that regardless of what horizontal speeds you give to the balls, they continue to move vertically in the same way (i.e., they are at the same y coordinate at the same time). Problem 4.12 A ball thrown horizontally at 27 travels a horizontal distance of 49 before hitting the ground. Part A From what height was the ball thrown? Express your answer using two significant figures with the appropriate units. ANSWER: vx m vx tg = 1.0 s m x0 = 0.0 m vx = 3.0 m/s m/s m h = 16 m Correct Enhanced EOC: Problem 4.20 The figure shows the angular-velocity-versus-time graph for a particle moving in a circle. You may want to review ( page ) . For help with math skills, you may want to review: The Definite Integral Part A How many revolutions does the object make during the first 3.5 ? Express your answer using two significant figures. You did not open hints for this part. ANSWER: s n = Incorrect; Try Again Problem 4.26 To withstand “g-forces” of up to 10 g’s, caused by suddenly pulling out of a steep dive, fighter jet pilots train on a “human centrifuge.” 10 g’s is an acceleration of . Part A If the length of the centrifuge arm is 10.0 , at what speed is the rider moving when she experiences 10 g’s? Express your answer with the appropriate units. ANSWER: Correct Problem 4.28 Your roommate is working on his bicycle and has the bike upside down. He spins the 60.0 -diameter wheel, and you notice that a pebble stuck in the tread goes by three times every second. Part A What is the pebble’s speed? Express your answer with the appropriate units. ANSWER: Correct 98 m/s2 m 31.3 ms cm 5.65 ms Part B What is the pebble’s acceleration? Express your answer with the appropriate units. ANSWER: Correct Enhanced EOC: Problem 4.43 On the Apollo 14 mission to the moon, astronaut Alan Shepard hit a golf ball with a 6 iron. The acceleration due to gravity on the moon is 1/6 of its value on earth. Suppose he hits the ball with a speed of 13 at an angle 50 above the horizontal. You may want to review ( pages 90 – 95) . For help with math skills, you may want to review: Quadratic Equations Part A How much farther did the ball travel on the moon than it would have on earth? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Start by drawing a picture of the path of the golf ball, showing its starting and ending points. Choose a coordinate system, and label the origin. It is conventional to let x be the horizontal direction and y the vertical direction. What is the initial velocity in the x and y directions? What is the acceleration in the x and y directions on the moon and on the earth? What are the equations for and as a function of time, and , respectively? What is the y coordinate when the golf ball hits the ground? Can you use this information to determine the time of flight on the moon and on the earth? 107 m s2 m/s  x y x(t) y(t) Once you have the time of flight, how can you use the equation to determine the total distance traveled? Compare the distance traveled on the moon to the distance traveled on the earth . ANSWER: Correct Part B For how much more time was the ball in flight? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the equation describing as a function of time? What is the initial x component of the ball’s velocity? How are the initial x component of the ball’s velocity and the distance traveled related to the time of flight? What is the difference between the time of flight on the moon and on earth? ANSWER: Correct Problem 4.42 In the Olympic shotput event, an athlete throws the shot with an initial speed of 12 at a 40.0 angle from the horizontal. The shot leaves her hand at a height of 1.8 above the ground. x(t) L = 85 m x(t) x t = 10 s m/s  m Part A How far does the shot travel? Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part B Repeat the calculation of part (a) for angles of 42.5 , 45.0 , and 47.5 . Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part C Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part D x = 16.36 m    x(42.5 ) = 16.39 m x(45.0 ) = 16.31 m Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part E At what angle of release does she throw the farthest? ANSWER: Correct Problem 4.44 A ball is thrown toward a cliff of height with a speed of 32 and an angle of 60 above horizontal. It lands on the edge of the cliff 3.2 later. Part A How high is the cliff? Express your answer to two significant figures and include the appropriate units. ANSWER: x(47.5 ) = 16.13 m 40.0 42.5 45.0 47.5 h m/s  s h = 39 m Answer Requested Part B What was the maximum height of the ball? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the ball’s impact speed? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 4.58 A typical laboratory centrifuge rotates at 3600 . Test tubes have to be placed into a centrifuge very carefully because of the very large accelerations. Part A What is the acceleration at the end of a test tube that is 10 from the axis of rotation? Express your answer with the appropriate units. hmax = 39 m v = 16 ms rpm cm ANSWER: Correct Part B For comparison, what is the magnitude of the acceleration a test tube would experience if dropped from a height of 1.0 and stopped in a 1.7-ms-long encounter with a hard floor? Express your answer with the appropriate units. ANSWER: Correct Problem 4.62 Communications satellites are placed in a circular orbit where they stay directly over a fixed point on the equator as the earth rotates. These are called geosynchronous orbits. The radius of the earth is , and the altitude of a geosynchronous orbit is ( 22000 miles). Part A What is the speed of a satellite in a geosynchronous orbit? Express your answer with the appropriate units. ANSWER: Correct a = 1.42×104 m s2 m a = 2610 m s2 6.37 × 106m 3.58 × 107m  v = 3070 ms Part B What is the magnitude of the acceleration of a satellite in a geosynchronous orbit? Express your answer with the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 89.5%. You received 103.82 out of a possible total of 116 points. a = 0.223 m s2

please email info@checkyourstudy.com
4. Determine the magnitude of the projected component of the force F= {500 i -200 j +400 k} N acting along cable BA. You must use the dot product to solve the problem. As part of your answer, identify the vectors used in the dot product and the angle between them.

4. Determine the magnitude of the projected component of the force F= {500 i -200 j +400 k} N acting along cable BA. You must use the dot product to solve the problem. As part of your answer, identify the vectors used in the dot product and the angle between them.

For any additional help, please contact: info@checkyourstudy.com Call / Whatsapp … Read More...
2/24/2015 Assignment 2 =3484333 1/22 Assignment 2 Due: 6:43pm on Saturday, February 28, 2015 You will receive no credit for items you complete after the assignment is due. Grading Policy Adding and Subtracting Vectors Conceptual Question Six vectors (A to F) have the magnitudes and directions indicated in the figure. Part A Which two vectors, when added, will have the largest (positive) x component? You did not open hints for this part. ANSWER: Part B Which two vectors, when added, will have the largest (positive) y component? You did not open hints for this part. ANSWER: C and E E and F A and F C and D B and D 2/24/2015 Assignment 2 =3484333 2/22 Part C Which two vectors, when subtracted (i.e., when one vector is subtracted from the other), will have the largest magnitude? You did not open hints for this part. ANSWER: Components of Vectors Shown is a 10 by 10 grid, with coordinate axes x and y . The grid runs from 5 to 5 on both axes. Drawn on this grid are four vectors, labeled through . This problem will ask you various questions about these vectors. All answers should be in decimal notation, unless otherwise specified. Part A C and D A and F E and F A and B E and D A and F A and E D and B C and D E and F _._ _._ ._ 2/24/2015 Assignment 2 =3484333 3/22 What is the x component of ? Express your answer to two significant figures. You did not open hints for this part. ANSWER: Part B What is the y component of ? Express your answer to the nearest integer. ANSWER: Part C What is the y component of ? Express your answer to the nearest integer. You did not open hints for this part. ANSWER: Part D What is the component of ? Express your answer to the nearest integer. You did not open hints for this part. ANSWER: _._ _4 = _._ _5 = _._ _5 = 4 _._ _4 = 2/24/2015 Assignment 2 =3484333 4/22 The following questions will ask you to give both components of vectors using the ordered pairs method. In this method, the x component is written first, followed by a comma, and then the y component. For example, the components of would be written 2.5,3 in ordered pair notation. The answers below are all integers, so estimate the components to the nearest whole number. Part E In ordered pair notation, write down the components of vector . Express your answers to the nearest integer. ANSWER: Part F In ordered pair notation, write down the components of vector . Express your answers to the nearest integer. ANSWER: Part G What is true about and ? Choose from the pulldown list below. ANSWER: Finding the Cross Product The figure shows two vectors and separated by an angle . You are given that , , and . _._ _._ _4, _5 = _._ _4 , _5 = _._ _._ They have different components and are not the same vectors. They have the same components but are not the same vectors. They are the same vectors. _ ._ _._ J56 _ .__ _ _ _ _.__ _ _ _ _ ._g_.__ _ ._ 2/24/2015 Assignment 2 =3484333 5/22 Part A Express as an ordered triplet of values, separated by commas. ANSWER: Part B Find the magnitude of . ANSWER: Part C Find the sine of the angle between and . ANSWER: Significant Figures Conceptual Question In the parts that follow select whether the number presented in statement A is greater than, less than, or equal to the number presented in statement B. Be sure to follow all of the rules concerning significant figures. _ ._ _ ._= _ ._ ]_ ]._ = _ ._ _._ TJO J__ = 2/24/2015 Assignment 2 =3484333 6/22 Part A Statement A: 2.567 , to two significant figures. Statement B: 2.567 , to three significant figures. Determine the correct relationship between the statements. You did not open hints for this part. ANSWER: Part B Statement A: (2.567 + 3.146 ), to two significant figures. Statement B: (2.567 , to two significant figures) + (3.146 , to two significant figures). Determine the correct relationship between the statements. ANSWER: Part C Statement A: Area of a rectangle with measured length = 2.536 and width = 1.4 . Statement B: Area of a rectangle with measured length = 2.536 and width = 1.41 . Since you are not told specific numbers of significant figures to round to, you must use the rules for multiplying numbers while respecting significant figures. If you need a reminder, consult the hint. Determine the correct relationship between the statements. You did not open hints for this part. ANSWER: LN LN Statement A is greater than less than equal to Statement B. LN LN LN LN Statement A is greater than less than equal to Statement B. N N N N 2/24/2015 Assignment 2 =3484333 7/22 ± Vector Dot Product Let vectors , , and . Calculate the following: Part A You did not open hints for this part. ANSWER: Part B What is the angle between and ? Express your answer using one significant figure. You did not open hints for this part. ANSWER: Part C ANSWER: Part D ANSWER: Statement A is greater than less than equal to Statement B. _.__ _ _Ã_ _.__ Ã_ _ _ _.__ Ã_Ã_ _ _._ø _._ = J”# _._ _._ J”# = SBEJBOT __._ø __._ = 2/24/2015 Assignment 2 =3484333 8/22 Part E Which of the following can be computed? You did not open hints for this part. ANSWER: and are different vectors with lengths and respectively. Find the following: Part F Express your answer in terms of You did not open hints for this part. ANSWER: Part G If and are perpendicular, You did not open hints for this part. ANSWER: _ _._ø __._ = _._ø _._ø _._ _._ø _._ø _._ _._ø _.___._ _ ø _._ _ .__ _ .__ __ __ __ = ø _ .__ _ .__ _ .__ _ .__ = ø _ .__ _ .__ 2/24/2015 Assignment 2 =3484333 9/22 Part H If and are parallel, Express your answer in terms of and . You did not open hints for this part. ANSWER: ± Resolving Vector Components with Trigonometry Often a vector is specified by a magnitude and a direction; for example, a rope with tension exerts a force of magnitude in a direction 35 north of east. This is a good way to think of vectors; however, to calculate results with vectors, it is best to select a coordinate system and manipulate the components of the vectors in that coordinate system. Part A Find the components of the vector with length = 1.00 and angle =20.0 with respect to the x axis as shown. Enter the x component followed by the y component, separated by a comma. You did not open hints for this part. ANSWER: Part B _ .__ _ .__ __ __ = ø _ .__ _ .__ _ ._ _ È _._ _ C È _._ = ._ 2/24/2015 Assignment 2 =3484333 10/22 Find the components of the vector with length = 1.00 and angle =20.0 with respect to the x axis as shown. Enter the x component followed by the y component, separated by a comma. You did not open hints for this part. ANSWER: Part C Find the components of the vector with length = 1.00 and angle 30.0 as shown. Enter the x component followed by the y component, separated by a comma. You did not open hints for this part. ANSWER: Exercise 1.28 Part A How many dollar bills would you have to stack to reach the moon? (Depending on age, dollar bills can be stacked with about 23 per millimeter.) Express your answer using one significant figure. ANSWER: Problem 1.80 A boulder of weight rests on a hillside that rises at a constant angle above the horizontal, as shown in the figure . Its weight is a force on the boulder that has direction vertically downward. _._ _ D È _._ = _._ _ ] _ È _._ = dollar bills 3 C 2/24/2015 Assignment 2 =3484333 11/22 Part A In terms of and , what is the component of the weight of the boulder in the direction parallel to the surface of the hill? Express your answer in terms of and . ANSWER: Part B What is the component of the weight in the direction perpendicular to the surface of the hill? Express your answer in terms of and . ANSWER: Part C An air conditioner unit is fastened to a roof that slopes upward at an angle of . In order that the unit not slide down the roof, the component of the unit’s weight parallel to the roof cannot exceed 550 N. What is the maximum allowed weight of the unit? ANSWER: Problem 1.84 You are camping with two friends, Joe and Karl. Since all three of you like your privacy, you don’t pitch your tents close together. Joe’s tent is 23.5 from yours, in the direction 19.0 north of east. Karl’s tent is 40.0 from yours, in the direction 36.0 south of east. C 3 C 3 ]3,_. ] = C 3 ]3,!., ] = ____È 3 = / N È N È 2/24/2015 Assignment 2 =3484333 12/22 Part A What is the distance between Karl’s tent and Joe’s tent? ANSWER: Multiple Choice Question 1.8 Part A The components of vectors and are given as follows: Ax = +5.7 Bx = 9.8 Ay = 3.6 By = 6.5 The magnitude of the vector difference , is closest to: ANSWER: OneDimensional Kinematics with Constant Acceleration Learning Goal: To understand the meaning of the variables that appear in the equations for onedimensional kinematics with constant acceleration. Motion with a constant, nonzero acceleration is not uncommon in the world around us. Falling (or thrown) objects and cars starting and stopping approximate this type of motion. It is also the type of motion most frequently involved in introductory kinematics problems. The kinematic equations for such motion can be written as , , where the symbols are defined as follows: is the position of the particle; _ = N _ ¥ _ ¥ à _ ¥ _ ¥ 5.0 11 5.0 16 250 4 0_ 4J_2J0_ _ __ 0_ 2 0 _ 2J __0 4 0 2/24/2015 Assignment 2 =3484333 13/22 is the initial position of the particle; is the velocity of the particle; is the initial velocity of the particle; is the acceleration of the particle. In anwering the following questions, assume that the acceleration is constant and nonzero: . Part A The quantity represented by is a function of time (i.e., is not constant). ANSWER: Part B The quantity represented by is a function of time (i.e., is not constant). ANSWER: Part C The quantity represented by is a function of time (i.e., is not constant). ANSWER: Part D The quantity represented by is a function of time (i.e., is not constant). ANSWER: 4J 2 0 2J _ _ Ü _ 4 true false 4J true false 2J true false 2 true false 2/24/2015 Assignment 2 =3484333 14/22 Part E Which of the given equations is not an explicit function of and is therefore useful when you don’t know or don’t need the time? ANSWER: Part F A particle moves with constant acceleration . The expression represents the particle’s velocity at what instant in time? ANSWER: More generally, the equations of motion can be written as and . Here is the time that has elapsed since the beginning of the particle’s motion, that is, , where is the current time and is the time at which we start measuring the particle’s motion. The terms and are, respectively, the position and velocity at . As you can now see, the equations given at the beginning of this problem correspond to the case , which is a convenient choice if there is only one particle of interest. To illustrate the use of these more general equations, consider the motion of two particles, A and B. The position of particle A depends on time as . That is, particle A starts moving at time with velocity , from . At time , particle B has twice the acceleration, half the velocity, and the same position that particle A had at time . Part G What is the equation describing the position of particle B? You did not open hints for this part. ANSWER: 0 4_ 4J_2J0_ _ __ 0_ 2 _ 2J __0 _ ___ 4à 2_ 2_J 4J _ 2J __0 only at time only at the “initial” time when a time has passed since the particle’s velocity was 0 _ _ 0 2J 4 0_ 4J_2J 0_ _ 0 __ _ 2 0 _ 2J __ 0 0 0 _ 0Ã0J 0 0J 4J 2J 0 _ 0J 0J _ _ 4″ 0 _ 4J _2J0_ ____0_ 0 _ 0J” _ _ 2J” _ 2J 4J” _ 4J 0 _ 0_ 0 _ _ 2/24/2015 Assignment 2 =3484333 15/22 Part H At what time does the velocity of particle B equal that of particle A? You did not open hints for this part. ANSWER: Given Positions, Find Velocity and Acceleration Learning Goal: To understand how to graph position, velocity, and acceleration of an object starting with a table of positions vs. time. The table shows the x coordinate of a moving object. The position is tabulated at 1s intervals. The x coordinate is indicated below each time. You should make the simplification that the acceleration of the object is bounded and contains no spikes. time (s) 0 1 2 3 4 5 6 7 8 9 x (m) 0 1 4 9 16 24 32 40 46 48 Part A Which graph best represents the function , describing the object’s position vs. time? 4# 0_ 4J__2J0_ _ __ 0_ 4# 0 _ 4J ____2J0__0_ 4# 0_ 4J__2J 0_0__ _ 0_ __ 0__ 4# 0 _ 4J ____2J 0_0_ __ 0_0_ _ 4# 0_ 4J__2J 0Ã0__ _ 0à __ 0__ 4# 0 _ 4J ____2J 0Ã0_ __ 0Ã0_ _ The two particles never have the same velocity. 0_ 0__ 2J __ 0__0__ 2J __ 0__0__ 2J __ 4 0 2/24/2015 Assignment 2 =3484333 16/22 You did not open hints for this part. ANSWER: Part B Which of the following graphs best represents the function , describing the object’s velocity as a function of time? You did not open hints for this part. ANSWER: 1 2 3 4 2 0 2/24/2015 Assignment 2 =3484333 17/22 Part C Which of the following graphs best represents the function , describing the acceleration of this object? You did not open hints for this part. ANSWER: A Man Running to Catch a Bus A man is running at speed (much less than the speed of light) to catch a bus already at a stop. At , when he is a distance from the door to the bus, the bus starts moving with the positive acceleration . Use a coordinate system with at the door of the stopped bus. 1 2 3 4 _ 0 1 2 3 4 _ 0 _ _ _ _ 4 _ _ 2/24/2015 Assignment 2 =3484333 18/22 Part A What is , the position of the man as a function of time? Answer symbolically in terms of the variables , , and . You did not open hints for this part. ANSWER: Part B What is , the position of the bus as a function of time? Answer symbolically in terms of and . You did not open hints for this part. ANSWER: Part C What condition is necessary for the man to catch the bus? Assume he catches it at time . You did not open hints for this part. 4NBO 0 _ _ 0 4NBO 0 = 4CVT 0 _ 0 4CVT = 0DBUDI 2/24/2015 Assignment 2 =3484333 19/22 ANSWER: Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Stopping on Snow Light, dry snow is called powder. Skiing on a powder day is different than skiing on a day when the snow is wet and heavy. When you slow down on dry snow the maximum (negative) acceleration caused by the snow acting on your skis is about twofifths as much as that of stopping on wet snow. Part A For a given initial velocity, how does the time it takes to stop on dry snow differ from the time it takes to stop on wet snow? You did not open hints for this part. ANSWER: Part B For a given initial velocity, how does the stopping distance on dry snow differ from the stopping distance on wet snow? 4NBO 0DBUDI _ 4CVT 0DBUDI 4NBO 0DBUDI _ 4CVT 0DBUDI 4NBO 0DBUDI _ 4CVT 0DBUDI _ _ _ Ç 0DBUDI 0E 0X 0E _ ___0X 0E _ 0X 0E _ ___0X 4E 4X 2/24/2015 Assignment 2 =3484333 20/22 You did not open hints for this part. ANSWER: Exercise 2.34 A subway train starts from rest at a station and accelerates at a rate of for 14.0 . It runs at constant speed for 70.0 and slows down at a rate of until it stops at the next station. Part A Find the total distance covered. ANSWER: Problem 2.57 Dan gets on Interstate Highway I280 at Seward, Nebraska, and drives due west in a straight line and at an average velocity of magnitude 88.0 . After traveling 76 km, he reaches the Aurora exit . Realizing he has gone too far, he turns around and drives due east 34 back to the York exit at an average velocity of magnitude 75.0 . Part A For his whole trip from Seward to the York exit, what is his average speed? 4E _ ___4X 4E _ 4X 4E _ ___4X ____ N_T_ T T ____ N_T_ = LN LN_I LN LN_I 2/24/2015 Assignment 2 =3484333 21/22 ANSWER: Part B For his whole trip from Seward to the York exit, what is the magnitude of his average velocity? ANSWER: Multiple Choice Question 2.1 Part A A train starts from rest and accelerates uniformly, until it has traveled 5.9 km and acquired a velocity of 35 m/s. The train then moves at a constant velocity of 35 m/s for 400 s. The train then decelerates uniformly at 0.065 m/s2, until it is brought to a halt. The acceleration during the first 5.9 km of travel is closest to: ANSWER: Multiple Choice Question 2.8 Part A A racquetball strikes a wall with a speed of 30 m/s and rebounds with a speed of 26 m/s. The collision takes 20 ms. What is the average acceleration of the ball during collision? ANSWER: 2 = LN_I 2 = LN_I 0.13 m/s2 0.11 m/s2 0.12 m/s2 0.10 m/s2 0.093 m/s2 2/24/2015 Assignment 2 Score Summary: Your score on this assignment is 0.0%. You received 0 out of a possible total of 18 points. zero 200 m/s2 1500 m/s2 1300 m/s2 2800 m/s2

2/24/2015 Assignment 2 =3484333 1/22 Assignment 2 Due: 6:43pm on Saturday, February 28, 2015 You will receive no credit for items you complete after the assignment is due. Grading Policy Adding and Subtracting Vectors Conceptual Question Six vectors (A to F) have the magnitudes and directions indicated in the figure. Part A Which two vectors, when added, will have the largest (positive) x component? You did not open hints for this part. ANSWER: Part B Which two vectors, when added, will have the largest (positive) y component? You did not open hints for this part. ANSWER: C and E E and F A and F C and D B and D 2/24/2015 Assignment 2 =3484333 2/22 Part C Which two vectors, when subtracted (i.e., when one vector is subtracted from the other), will have the largest magnitude? You did not open hints for this part. ANSWER: Components of Vectors Shown is a 10 by 10 grid, with coordinate axes x and y . The grid runs from 5 to 5 on both axes. Drawn on this grid are four vectors, labeled through . This problem will ask you various questions about these vectors. All answers should be in decimal notation, unless otherwise specified. Part A C and D A and F E and F A and B E and D A and F A and E D and B C and D E and F _._ _._ ._ 2/24/2015 Assignment 2 =3484333 3/22 What is the x component of ? Express your answer to two significant figures. You did not open hints for this part. ANSWER: Part B What is the y component of ? Express your answer to the nearest integer. ANSWER: Part C What is the y component of ? Express your answer to the nearest integer. You did not open hints for this part. ANSWER: Part D What is the component of ? Express your answer to the nearest integer. You did not open hints for this part. ANSWER: _._ _4 = _._ _5 = _._ _5 = 4 _._ _4 = 2/24/2015 Assignment 2 =3484333 4/22 The following questions will ask you to give both components of vectors using the ordered pairs method. In this method, the x component is written first, followed by a comma, and then the y component. For example, the components of would be written 2.5,3 in ordered pair notation. The answers below are all integers, so estimate the components to the nearest whole number. Part E In ordered pair notation, write down the components of vector . Express your answers to the nearest integer. ANSWER: Part F In ordered pair notation, write down the components of vector . Express your answers to the nearest integer. ANSWER: Part G What is true about and ? Choose from the pulldown list below. ANSWER: Finding the Cross Product The figure shows two vectors and separated by an angle . You are given that , , and . _._ _._ _4, _5 = _._ _4 , _5 = _._ _._ They have different components and are not the same vectors. They have the same components but are not the same vectors. They are the same vectors. _ ._ _._ J56 _ .__ _ _ _ _.__ _ _ _ _ ._g_.__ _ ._ 2/24/2015 Assignment 2 =3484333 5/22 Part A Express as an ordered triplet of values, separated by commas. ANSWER: Part B Find the magnitude of . ANSWER: Part C Find the sine of the angle between and . ANSWER: Significant Figures Conceptual Question In the parts that follow select whether the number presented in statement A is greater than, less than, or equal to the number presented in statement B. Be sure to follow all of the rules concerning significant figures. _ ._ _ ._= _ ._ ]_ ]._ = _ ._ _._ TJO J__ = 2/24/2015 Assignment 2 =3484333 6/22 Part A Statement A: 2.567 , to two significant figures. Statement B: 2.567 , to three significant figures. Determine the correct relationship between the statements. You did not open hints for this part. ANSWER: Part B Statement A: (2.567 + 3.146 ), to two significant figures. Statement B: (2.567 , to two significant figures) + (3.146 , to two significant figures). Determine the correct relationship between the statements. ANSWER: Part C Statement A: Area of a rectangle with measured length = 2.536 and width = 1.4 . Statement B: Area of a rectangle with measured length = 2.536 and width = 1.41 . Since you are not told specific numbers of significant figures to round to, you must use the rules for multiplying numbers while respecting significant figures. If you need a reminder, consult the hint. Determine the correct relationship between the statements. You did not open hints for this part. ANSWER: LN LN Statement A is greater than less than equal to Statement B. LN LN LN LN Statement A is greater than less than equal to Statement B. N N N N 2/24/2015 Assignment 2 =3484333 7/22 ± Vector Dot Product Let vectors , , and . Calculate the following: Part A You did not open hints for this part. ANSWER: Part B What is the angle between and ? Express your answer using one significant figure. You did not open hints for this part. ANSWER: Part C ANSWER: Part D ANSWER: Statement A is greater than less than equal to Statement B. _.__ _ _Ã_ _.__ Ã_ _ _ _.__ Ã_Ã_ _ _._ø _._ = J”# _._ _._ J”# = SBEJBOT __._ø __._ = 2/24/2015 Assignment 2 =3484333 8/22 Part E Which of the following can be computed? You did not open hints for this part. ANSWER: and are different vectors with lengths and respectively. Find the following: Part F Express your answer in terms of You did not open hints for this part. ANSWER: Part G If and are perpendicular, You did not open hints for this part. ANSWER: _ _._ø __._ = _._ø _._ø _._ _._ø _._ø _._ _._ø _.___._ _ ø _._ _ .__ _ .__ __ __ __ = ø _ .__ _ .__ _ .__ _ .__ = ø _ .__ _ .__ 2/24/2015 Assignment 2 =3484333 9/22 Part H If and are parallel, Express your answer in terms of and . You did not open hints for this part. ANSWER: ± Resolving Vector Components with Trigonometry Often a vector is specified by a magnitude and a direction; for example, a rope with tension exerts a force of magnitude in a direction 35 north of east. This is a good way to think of vectors; however, to calculate results with vectors, it is best to select a coordinate system and manipulate the components of the vectors in that coordinate system. Part A Find the components of the vector with length = 1.00 and angle =20.0 with respect to the x axis as shown. Enter the x component followed by the y component, separated by a comma. You did not open hints for this part. ANSWER: Part B _ .__ _ .__ __ __ = ø _ .__ _ .__ _ ._ _ È _._ _ C È _._ = ._ 2/24/2015 Assignment 2 =3484333 10/22 Find the components of the vector with length = 1.00 and angle =20.0 with respect to the x axis as shown. Enter the x component followed by the y component, separated by a comma. You did not open hints for this part. ANSWER: Part C Find the components of the vector with length = 1.00 and angle 30.0 as shown. Enter the x component followed by the y component, separated by a comma. You did not open hints for this part. ANSWER: Exercise 1.28 Part A How many dollar bills would you have to stack to reach the moon? (Depending on age, dollar bills can be stacked with about 23 per millimeter.) Express your answer using one significant figure. ANSWER: Problem 1.80 A boulder of weight rests on a hillside that rises at a constant angle above the horizontal, as shown in the figure . Its weight is a force on the boulder that has direction vertically downward. _._ _ D È _._ = _._ _ ] _ È _._ = dollar bills 3 C 2/24/2015 Assignment 2 =3484333 11/22 Part A In terms of and , what is the component of the weight of the boulder in the direction parallel to the surface of the hill? Express your answer in terms of and . ANSWER: Part B What is the component of the weight in the direction perpendicular to the surface of the hill? Express your answer in terms of and . ANSWER: Part C An air conditioner unit is fastened to a roof that slopes upward at an angle of . In order that the unit not slide down the roof, the component of the unit’s weight parallel to the roof cannot exceed 550 N. What is the maximum allowed weight of the unit? ANSWER: Problem 1.84 You are camping with two friends, Joe and Karl. Since all three of you like your privacy, you don’t pitch your tents close together. Joe’s tent is 23.5 from yours, in the direction 19.0 north of east. Karl’s tent is 40.0 from yours, in the direction 36.0 south of east. C 3 C 3 ]3,_. ] = C 3 ]3,!., ] = ____È 3 = / N È N È 2/24/2015 Assignment 2 =3484333 12/22 Part A What is the distance between Karl’s tent and Joe’s tent? ANSWER: Multiple Choice Question 1.8 Part A The components of vectors and are given as follows: Ax = +5.7 Bx = 9.8 Ay = 3.6 By = 6.5 The magnitude of the vector difference , is closest to: ANSWER: OneDimensional Kinematics with Constant Acceleration Learning Goal: To understand the meaning of the variables that appear in the equations for onedimensional kinematics with constant acceleration. Motion with a constant, nonzero acceleration is not uncommon in the world around us. Falling (or thrown) objects and cars starting and stopping approximate this type of motion. It is also the type of motion most frequently involved in introductory kinematics problems. The kinematic equations for such motion can be written as , , where the symbols are defined as follows: is the position of the particle; _ = N _ ¥ _ ¥ à _ ¥ _ ¥ 5.0 11 5.0 16 250 4 0_ 4J_2J0_ _ __ 0_ 2 0 _ 2J __0 4 0 2/24/2015 Assignment 2 =3484333 13/22 is the initial position of the particle; is the velocity of the particle; is the initial velocity of the particle; is the acceleration of the particle. In anwering the following questions, assume that the acceleration is constant and nonzero: . Part A The quantity represented by is a function of time (i.e., is not constant). ANSWER: Part B The quantity represented by is a function of time (i.e., is not constant). ANSWER: Part C The quantity represented by is a function of time (i.e., is not constant). ANSWER: Part D The quantity represented by is a function of time (i.e., is not constant). ANSWER: 4J 2 0 2J _ _ Ü _ 4 true false 4J true false 2J true false 2 true false 2/24/2015 Assignment 2 =3484333 14/22 Part E Which of the given equations is not an explicit function of and is therefore useful when you don’t know or don’t need the time? ANSWER: Part F A particle moves with constant acceleration . The expression represents the particle’s velocity at what instant in time? ANSWER: More generally, the equations of motion can be written as and . Here is the time that has elapsed since the beginning of the particle’s motion, that is, , where is the current time and is the time at which we start measuring the particle’s motion. The terms and are, respectively, the position and velocity at . As you can now see, the equations given at the beginning of this problem correspond to the case , which is a convenient choice if there is only one particle of interest. To illustrate the use of these more general equations, consider the motion of two particles, A and B. The position of particle A depends on time as . That is, particle A starts moving at time with velocity , from . At time , particle B has twice the acceleration, half the velocity, and the same position that particle A had at time . Part G What is the equation describing the position of particle B? You did not open hints for this part. ANSWER: 0 4_ 4J_2J0_ _ __ 0_ 2 _ 2J __0 _ ___ 4à 2_ 2_J 4J _ 2J __0 only at time only at the “initial” time when a time has passed since the particle’s velocity was 0 _ _ 0 2J 4 0_ 4J_2J 0_ _ 0 __ _ 2 0 _ 2J __ 0 0 0 _ 0Ã0J 0 0J 4J 2J 0 _ 0J 0J _ _ 4″ 0 _ 4J _2J0_ ____0_ 0 _ 0J” _ _ 2J” _ 2J 4J” _ 4J 0 _ 0_ 0 _ _ 2/24/2015 Assignment 2 =3484333 15/22 Part H At what time does the velocity of particle B equal that of particle A? You did not open hints for this part. ANSWER: Given Positions, Find Velocity and Acceleration Learning Goal: To understand how to graph position, velocity, and acceleration of an object starting with a table of positions vs. time. The table shows the x coordinate of a moving object. The position is tabulated at 1s intervals. The x coordinate is indicated below each time. You should make the simplification that the acceleration of the object is bounded and contains no spikes. time (s) 0 1 2 3 4 5 6 7 8 9 x (m) 0 1 4 9 16 24 32 40 46 48 Part A Which graph best represents the function , describing the object’s position vs. time? 4# 0_ 4J__2J0_ _ __ 0_ 4# 0 _ 4J ____2J0__0_ 4# 0_ 4J__2J 0_0__ _ 0_ __ 0__ 4# 0 _ 4J ____2J 0_0_ __ 0_0_ _ 4# 0_ 4J__2J 0Ã0__ _ 0à __ 0__ 4# 0 _ 4J ____2J 0Ã0_ __ 0Ã0_ _ The two particles never have the same velocity. 0_ 0__ 2J __ 0__0__ 2J __ 0__0__ 2J __ 4 0 2/24/2015 Assignment 2 =3484333 16/22 You did not open hints for this part. ANSWER: Part B Which of the following graphs best represents the function , describing the object’s velocity as a function of time? You did not open hints for this part. ANSWER: 1 2 3 4 2 0 2/24/2015 Assignment 2 =3484333 17/22 Part C Which of the following graphs best represents the function , describing the acceleration of this object? You did not open hints for this part. ANSWER: A Man Running to Catch a Bus A man is running at speed (much less than the speed of light) to catch a bus already at a stop. At , when he is a distance from the door to the bus, the bus starts moving with the positive acceleration . Use a coordinate system with at the door of the stopped bus. 1 2 3 4 _ 0 1 2 3 4 _ 0 _ _ _ _ 4 _ _ 2/24/2015 Assignment 2 =3484333 18/22 Part A What is , the position of the man as a function of time? Answer symbolically in terms of the variables , , and . You did not open hints for this part. ANSWER: Part B What is , the position of the bus as a function of time? Answer symbolically in terms of and . You did not open hints for this part. ANSWER: Part C What condition is necessary for the man to catch the bus? Assume he catches it at time . You did not open hints for this part. 4NBO 0 _ _ 0 4NBO 0 = 4CVT 0 _ 0 4CVT = 0DBUDI 2/24/2015 Assignment 2 =3484333 19/22 ANSWER: Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Stopping on Snow Light, dry snow is called powder. Skiing on a powder day is different than skiing on a day when the snow is wet and heavy. When you slow down on dry snow the maximum (negative) acceleration caused by the snow acting on your skis is about twofifths as much as that of stopping on wet snow. Part A For a given initial velocity, how does the time it takes to stop on dry snow differ from the time it takes to stop on wet snow? You did not open hints for this part. ANSWER: Part B For a given initial velocity, how does the stopping distance on dry snow differ from the stopping distance on wet snow? 4NBO 0DBUDI _ 4CVT 0DBUDI 4NBO 0DBUDI _ 4CVT 0DBUDI 4NBO 0DBUDI _ 4CVT 0DBUDI _ _ _ Ç 0DBUDI 0E 0X 0E _ ___0X 0E _ 0X 0E _ ___0X 4E 4X 2/24/2015 Assignment 2 =3484333 20/22 You did not open hints for this part. ANSWER: Exercise 2.34 A subway train starts from rest at a station and accelerates at a rate of for 14.0 . It runs at constant speed for 70.0 and slows down at a rate of until it stops at the next station. Part A Find the total distance covered. ANSWER: Problem 2.57 Dan gets on Interstate Highway I280 at Seward, Nebraska, and drives due west in a straight line and at an average velocity of magnitude 88.0 . After traveling 76 km, he reaches the Aurora exit . Realizing he has gone too far, he turns around and drives due east 34 back to the York exit at an average velocity of magnitude 75.0 . Part A For his whole trip from Seward to the York exit, what is his average speed? 4E _ ___4X 4E _ 4X 4E _ ___4X ____ N_T_ T T ____ N_T_ = LN LN_I LN LN_I 2/24/2015 Assignment 2 =3484333 21/22 ANSWER: Part B For his whole trip from Seward to the York exit, what is the magnitude of his average velocity? ANSWER: Multiple Choice Question 2.1 Part A A train starts from rest and accelerates uniformly, until it has traveled 5.9 km and acquired a velocity of 35 m/s. The train then moves at a constant velocity of 35 m/s for 400 s. The train then decelerates uniformly at 0.065 m/s2, until it is brought to a halt. The acceleration during the first 5.9 km of travel is closest to: ANSWER: Multiple Choice Question 2.8 Part A A racquetball strikes a wall with a speed of 30 m/s and rebounds with a speed of 26 m/s. The collision takes 20 ms. What is the average acceleration of the ball during collision? ANSWER: 2 = LN_I 2 = LN_I 0.13 m/s2 0.11 m/s2 0.12 m/s2 0.10 m/s2 0.093 m/s2 2/24/2015 Assignment 2 Score Summary: Your score on this assignment is 0.0%. You received 0 out of a possible total of 18 points. zero 200 m/s2 1500 m/s2 1300 m/s2 2800 m/s2

info@checkyourstudy.com 2/24/2015 Assignment 2 =3484333 1/22 Assignment 2 Due: 6:43pm … Read More...