Identify 3 frameworks used in information security

Identify 3 frameworks used in information security

Information security framework is a set of security framework model … Read More...
Determine which of the following components are required for a molecule to be classified as organic. Select one: Presence of carbon, hydrogen, four electrons in the outer orbital, and the attachment of a functional group. Presence of sodium, chlorine, four electrons in the outer orbital, and the attachment of a functional group. Presence of carbon, hydrogen, three electrons in the outer orbital, attachment of a functional group. Presence of oxygen, hydrogen, four electrons in the outer orbital, attachment of a functional group. Presence of carbon, hydrogen, four protons in the outer orbital, attachment of a functional group.

Determine which of the following components are required for a molecule to be classified as organic. Select one: Presence of carbon, hydrogen, four electrons in the outer orbital, and the attachment of a functional group. Presence of sodium, chlorine, four electrons in the outer orbital, and the attachment of a functional group. Presence of carbon, hydrogen, three electrons in the outer orbital, attachment of a functional group. Presence of oxygen, hydrogen, four electrons in the outer orbital, attachment of a functional group. Presence of carbon, hydrogen, four protons in the outer orbital, attachment of a functional group.

Determine which of the following components are required for a … Read More...
Chapter 3 Practice Problems (Practice – no credit) Due: 11:59pm on Wednesday, February 12, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Tactics Box 3.1 Determining the Components of a Vector Learning Goal: To practice Tactics Box 3.1 Determining the Components of a Vector. When a vector is decomposed into component vectors and parallel to the coordinate axes, we can describe each component vector with a single number (a scalar) called the component. This tactics box describes how to determine the x component and y component of vector , denoted and . TACTICS BOX 3.1 Determining the components of a vector The absolute value of the x component is the magnitude of the 1. component vector . 2. The sign of is positive if points in the positive x direction; it is negative if points in the negative x direction. 3. The y component is determined similarly. Part A What is the magnitude of the component vector shown in the figure? Express your answer in meters to one significant figure. A A x A y A Ax Ay |Ax| Ax A x Ax A x A x Ay A x

Chapter 3 Practice Problems (Practice – no credit) Due: 11:59pm on Wednesday, February 12, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Tactics Box 3.1 Determining the Components of a Vector Learning Goal: To practice Tactics Box 3.1 Determining the Components of a Vector. When a vector is decomposed into component vectors and parallel to the coordinate axes, we can describe each component vector with a single number (a scalar) called the component. This tactics box describes how to determine the x component and y component of vector , denoted and . TACTICS BOX 3.1 Determining the components of a vector The absolute value of the x component is the magnitude of the 1. component vector . 2. The sign of is positive if points in the positive x direction; it is negative if points in the negative x direction. 3. The y component is determined similarly. Part A What is the magnitude of the component vector shown in the figure? Express your answer in meters to one significant figure. A A x A y A Ax Ay |Ax| Ax A x Ax A x A x Ay A x

please email info@checkyourstudy.com
Faculty of Science Technology and Engineering Department of Physics Senior Laboratory Faraday rotation AIM To show that optical activity is induced in a certain type of glass when it is in a magnetic field. To investigate the degree of rotation of linearly polarised light as a function of the applied magnetic field and hence determine a parameter which is characteristic of each material and known as Verdet’s constant. BACKGROUND INFORMATION A brief description of the properties and production of polarised light is given in the section labelled: Notes on polarisation. This should be read before proceeding with this experiment. Additional details may be found in the references listed at the end of this experiment. Whereas some materials, such as quartz, are naturally optically active, optical activity can be induced in others by the application of a magnetic field. For such materials, the angle through which the plane of polarisation of a linearly polarised beam is rotated () depends on the thickness of the sample (L), the strength of the magnetic field (B) and on the properties of the particular material. The latter is described by means of a parameter introduced by Verdet, which is wavelength dependent. Thus:  = V B L Lamp Polariser Solenoid Polariser Glass rod A Solenoid power supply Viewing mirror EXPERIMENTAL PROCEDURE The experimental arrangement is shown in the diagram. Unpolarised white light is produced by a hot filament and viewed using a mirror. • The light from the globe passes through two polarisers as well as the specially doped glass rod. Select one of the colour filters provided and place in the light path. Each of these filters transmits a relatively narrow band of wavelengths centred around a dominant wavelength as listed in the table. Filter No. Dominant Wavelength 98 4350 Å 50 4500 75 4900 58 5300 72 B 6060 92 6700 With the power supply for the coil switched off, (do not simply turn the potentiometer to zero: this still allows some current to flow) adjust one of the polarisers until minimum light is transmitted to the mirror. Minimum transmission can be determined visually. • Decide which polariser you will work with and do not alter the other one during the measurements. • The magnetic field is generated by a current in a solenoid (coil) placed around the glass rod. As the current in the coil is increased, the magnitude of the magnetic field will increase as shown on the calibration curve below. The degree of optical activity will also increase, resulting in some angle of rotation of the plane of polarisation. Hence you will need to rotate your chosen polariser to regain a minimum setting. 0 1 2 3 4 5 0.00 0.02 0.04 0.06 0.08 I (amps) B (tesla) Magnetic field (B) produced by current (I) in solenoid • Record the rotation angle () for coil currents of 0,1,2,3,4 and 5 amps. Avoid having the current in the coil switched on except when measurements are actually being taken as it can easily overheat. If the coil becomes too hot to touch, switch it off and wait for it to cool before proceeding. • Plot  as a function of B and, given that the length of the glass rod is 30 cm, determine Verdet’s constant for this material at the wavelength () in use. • Repeat the experiment for each of the wavelengths available using the filter set provided. • Calculate the logarithm for each V and  and tabulate the results. By plotting log V against log , determine the relationship between V and . [Hint: m log(x) = log (xm) and log(xy) = log(x) + log(y)]. • Calculate the errors involved in your determination of V. The uncertainty in a value of B may be taken as the uncertainty in reading the scale of the calibration curve) • The magnetic field direction can be reversed by reversing the direction of current flow in the coil. Describe the effect of this reversal and provide an explanation. Reference Optics Hecht.

Faculty of Science Technology and Engineering Department of Physics Senior Laboratory Faraday rotation AIM To show that optical activity is induced in a certain type of glass when it is in a magnetic field. To investigate the degree of rotation of linearly polarised light as a function of the applied magnetic field and hence determine a parameter which is characteristic of each material and known as Verdet’s constant. BACKGROUND INFORMATION A brief description of the properties and production of polarised light is given in the section labelled: Notes on polarisation. This should be read before proceeding with this experiment. Additional details may be found in the references listed at the end of this experiment. Whereas some materials, such as quartz, are naturally optically active, optical activity can be induced in others by the application of a magnetic field. For such materials, the angle through which the plane of polarisation of a linearly polarised beam is rotated () depends on the thickness of the sample (L), the strength of the magnetic field (B) and on the properties of the particular material. The latter is described by means of a parameter introduced by Verdet, which is wavelength dependent. Thus:  = V B L Lamp Polariser Solenoid Polariser Glass rod A Solenoid power supply Viewing mirror EXPERIMENTAL PROCEDURE The experimental arrangement is shown in the diagram. Unpolarised white light is produced by a hot filament and viewed using a mirror. • The light from the globe passes through two polarisers as well as the specially doped glass rod. Select one of the colour filters provided and place in the light path. Each of these filters transmits a relatively narrow band of wavelengths centred around a dominant wavelength as listed in the table. Filter No. Dominant Wavelength 98 4350 Å 50 4500 75 4900 58 5300 72 B 6060 92 6700 With the power supply for the coil switched off, (do not simply turn the potentiometer to zero: this still allows some current to flow) adjust one of the polarisers until minimum light is transmitted to the mirror. Minimum transmission can be determined visually. • Decide which polariser you will work with and do not alter the other one during the measurements. • The magnetic field is generated by a current in a solenoid (coil) placed around the glass rod. As the current in the coil is increased, the magnitude of the magnetic field will increase as shown on the calibration curve below. The degree of optical activity will also increase, resulting in some angle of rotation of the plane of polarisation. Hence you will need to rotate your chosen polariser to regain a minimum setting. 0 1 2 3 4 5 0.00 0.02 0.04 0.06 0.08 I (amps) B (tesla) Magnetic field (B) produced by current (I) in solenoid • Record the rotation angle () for coil currents of 0,1,2,3,4 and 5 amps. Avoid having the current in the coil switched on except when measurements are actually being taken as it can easily overheat. If the coil becomes too hot to touch, switch it off and wait for it to cool before proceeding. • Plot  as a function of B and, given that the length of the glass rod is 30 cm, determine Verdet’s constant for this material at the wavelength () in use. • Repeat the experiment for each of the wavelengths available using the filter set provided. • Calculate the logarithm for each V and  and tabulate the results. By plotting log V against log , determine the relationship between V and . [Hint: m log(x) = log (xm) and log(xy) = log(x) + log(y)]. • Calculate the errors involved in your determination of V. The uncertainty in a value of B may be taken as the uncertainty in reading the scale of the calibration curve) • The magnetic field direction can be reversed by reversing the direction of current flow in the coil. Describe the effect of this reversal and provide an explanation. Reference Optics Hecht.

Top of Form Abstract.     Faraday Effect or Faraday … Read More...
Homework 4 – Construction and Water Management 80 points total Refer to Lecture 6a – Construction Part I, 6b – Construction Part II, and Chapter 6 in your textbook. 1. What is the difference between an owner, a design professional, and a constructor? (6 points) 2. Briefly explain the process of ‘Design-bid-build’ construction. How is it different than a ‘design-build’ type of project? (6 points) 3. Describe, in at least one sentence, the main function of the following construction equipment (2 points each): a. Crane b. Skidsteer c. Excavator d. Backhoe e. Grader f. Pile driver 4. What are 5 major components of a construction staging plan? (5 points) 5. What are 5 administrative controls used for environmental management on a construction site? (For example: protecting native plants) (5 points) 6. Explain the major differences between scaffolding, falsework, and formwork. (6 points) Refer to Lecture 7a, slides 11, 12, & 13 and pages 165-166 in your textbook for background information on using the Rational Method for flowrate calculations. 7. The Bush library park is planted with native grasses and is 15 acres in size. Assume the drainage system was designed to handle a 1-hour storm of 100-year-storm magnitude. The intensity data for different storm events for Dallas County can be found in this document, on page 6: http://iswm.nctcog.org/Documents/archives/site_development_manual/Appendices.pdf a. What is the expected flowrate for the native park area, calculated using the Rational Method? The runoff coefficient for the park can be approximated as 0.10. (6 points) b. What would be the design flowrate if they had paved over the area to create a large parking lot, instead of the park? Assume the runoff coefficient of concrete to be 0.92. (6 points) 8. Refer to page 94 in your textbook. What are four common urban stormwater pollutants and their possible sources? What are the possible impacts from each pollutant to receiving waters? (12 points) Refer to slides 6, 7, and 8 of Lecture 7b, and your in-class assignment for the following question. 9. What is the horizontal pressure force from water stored behind a dam wall if the dam is filled to capacity at 425ft? How high up from the bottom of the dam does the force act? (10 points) Read the following article and answer the question below: http://news.nationalgeographic.com/news/2006/06/060609-gorges-dam_2.html 10. What are three negative environmental, social, or political impacts in China from the Three Gorges Dam? What are three positive impacts? (6 points)

Homework 4 – Construction and Water Management 80 points total Refer to Lecture 6a – Construction Part I, 6b – Construction Part II, and Chapter 6 in your textbook. 1. What is the difference between an owner, a design professional, and a constructor? (6 points) 2. Briefly explain the process of ‘Design-bid-build’ construction. How is it different than a ‘design-build’ type of project? (6 points) 3. Describe, in at least one sentence, the main function of the following construction equipment (2 points each): a. Crane b. Skidsteer c. Excavator d. Backhoe e. Grader f. Pile driver 4. What are 5 major components of a construction staging plan? (5 points) 5. What are 5 administrative controls used for environmental management on a construction site? (For example: protecting native plants) (5 points) 6. Explain the major differences between scaffolding, falsework, and formwork. (6 points) Refer to Lecture 7a, slides 11, 12, & 13 and pages 165-166 in your textbook for background information on using the Rational Method for flowrate calculations. 7. The Bush library park is planted with native grasses and is 15 acres in size. Assume the drainage system was designed to handle a 1-hour storm of 100-year-storm magnitude. The intensity data for different storm events for Dallas County can be found in this document, on page 6: http://iswm.nctcog.org/Documents/archives/site_development_manual/Appendices.pdf a. What is the expected flowrate for the native park area, calculated using the Rational Method? The runoff coefficient for the park can be approximated as 0.10. (6 points) b. What would be the design flowrate if they had paved over the area to create a large parking lot, instead of the park? Assume the runoff coefficient of concrete to be 0.92. (6 points) 8. Refer to page 94 in your textbook. What are four common urban stormwater pollutants and their possible sources? What are the possible impacts from each pollutant to receiving waters? (12 points) Refer to slides 6, 7, and 8 of Lecture 7b, and your in-class assignment for the following question. 9. What is the horizontal pressure force from water stored behind a dam wall if the dam is filled to capacity at 425ft? How high up from the bottom of the dam does the force act? (10 points) Read the following article and answer the question below: http://news.nationalgeographic.com/news/2006/06/060609-gorges-dam_2.html 10. What are three negative environmental, social, or political impacts in China from the Three Gorges Dam? What are three positive impacts? (6 points)

info@checkyourstudy.com Whatsapp +919911743277
ENGR 2010 (Section 02) – Assignment 7 Due: Wednesday November 25th, 11:59 pm Points: 20 Prof. Lei Reading: Sections 6.2-6.3 of Nilsson and Riedel, Electric Circuits, 9th Edition Submit electronic solutions (i.e. using Microsoft Word or a scanned copy of your written work) to the following problems on Blackboard. To receive credit, you must show work indicating how you arrived at each final answer. Problem 1 Consider the RC circuit on the right. and suppose that Vs(t) is a time-varying voltage input shown at the bottom. a) Suppose VC(0) = 0V. Plot VR(t) and VC(t) from 0ms to 300ms. Show your work in obtaining VR(t) and VC(t). b) Suppose the capacitance value is changed to 2μF, and VC(0) = 0V. Plot VR(t) and VC(t) from 0ms to 300ms. Show your work in obtaining VR(t) and VC(t). c) Explain how VC(t) qualitatively compares with Vs(t), and how VR(t) qualitatively compares with Vs(t). d) Explain how the capacitance value affects VC(t). t Vs(t) 1V -1V 50ms 100ms 150ms 200ms 250ms + – Vs(t) 100000 Ohms 1 uF + – VC(t) + – VR(t) 0ms 300ms Note: Capacitors are often used to protect against sudden changes in a voltage value, which could damage electronic components. Here, Vs(t) undergoes many sudden changes, but VC(t) undergoes less change. Problem 2 Using PSpice, perform two transient analysis simulations – one for the circuit in part (a), and one for the circuit in part(b) of problem 1 – to verify that your plots in problem 1 are correct. For each simulation, plot the traces for VR(t) and VC(t). Hint: You may need to perform arithmetic operations between simulation traces. Take a screenshot of your constructed circuits and the simulation traces for VR(t) and VC(t), which you will submit onto Blackboard. t Vs(t) 1V -1V 50ms 100ms 150ms 200ms 250ms + – Vs(t) 100000 Ohms 1 uF + – VC(t) + – VR(t) 0ms 300ms 1 uF or 2 uF Problem 3 Consider the Resistor-Diode circuit on the right, and suppose that Vs(t) is a time-varying voltage input shown at the bottom. Suppose that for the diode to turn on, it needs 0.7V between the positive and negative terminals. a) Plot VR(t) and VD(t) from 0ms to 300ms b) Explain how VD(t) qualitatively compares with Vs(t), and how VR(t) qualitatively compares with Vs(t). t Vs(t) 1V -1V 50ms 100ms 0ms 150ms 200ms 250ms 300ms + – Vs(t) 100000 Ohms + – VD(t) + – VR(t) Problem 4 Using PSpice, perform a transient analysis simulation for the circuit in problem 3 – to verify that your plots in problem 3 are correct. For the simulation, plot the traces for VR(t) and VD(t). To create the diode in PSpice, use the Dbreak component. After placing the component on the page, highlight the component, and edit the Pspice model (Edit -> PSpice Model) and set Rs to 0. Hint: You may need to perform arithmetic operations between simulation traces. Take a screenshot of your constructed circuit and the simulation traces for VR(t) and VD(t), which you will submit onto Blackboard. Note that your simulation trace plots may not be exactly the same as those from Problem 3, since the PSpice diode model has a turn-on voltage that’s not exactly 0.7V. t Vs(t) 1V -1V 50ms 100ms 0ms 150ms 200ms 250ms 300ms + – Vs(t) 100000 Ohms + – VD(t) + – VR(t) Problem 5 (Bonus: 5 points) In the circuit from problem 1 (shown on the right), write several sentences to explain why VC(t) is often referred to as the “low-pass filtered” output, and VR(t) is often referred to as the “high-pass filtered” output. You will need to look up the definitions for “low-pass” and “high-pass” filters. Examining your plots for VC(t) and VR(t) will help. t Vs(t) 1V -1V 50ms 100ms 150ms 200ms 250ms + – Vs(t) 100000 Ohms 1 uF + – VC(t) + – VR(t) 0ms 300ms

ENGR 2010 (Section 02) – Assignment 7 Due: Wednesday November 25th, 11:59 pm Points: 20 Prof. Lei Reading: Sections 6.2-6.3 of Nilsson and Riedel, Electric Circuits, 9th Edition Submit electronic solutions (i.e. using Microsoft Word or a scanned copy of your written work) to the following problems on Blackboard. To receive credit, you must show work indicating how you arrived at each final answer. Problem 1 Consider the RC circuit on the right. and suppose that Vs(t) is a time-varying voltage input shown at the bottom. a) Suppose VC(0) = 0V. Plot VR(t) and VC(t) from 0ms to 300ms. Show your work in obtaining VR(t) and VC(t). b) Suppose the capacitance value is changed to 2μF, and VC(0) = 0V. Plot VR(t) and VC(t) from 0ms to 300ms. Show your work in obtaining VR(t) and VC(t). c) Explain how VC(t) qualitatively compares with Vs(t), and how VR(t) qualitatively compares with Vs(t). d) Explain how the capacitance value affects VC(t). t Vs(t) 1V -1V 50ms 100ms 150ms 200ms 250ms + – Vs(t) 100000 Ohms 1 uF + – VC(t) + – VR(t) 0ms 300ms Note: Capacitors are often used to protect against sudden changes in a voltage value, which could damage electronic components. Here, Vs(t) undergoes many sudden changes, but VC(t) undergoes less change. Problem 2 Using PSpice, perform two transient analysis simulations – one for the circuit in part (a), and one for the circuit in part(b) of problem 1 – to verify that your plots in problem 1 are correct. For each simulation, plot the traces for VR(t) and VC(t). Hint: You may need to perform arithmetic operations between simulation traces. Take a screenshot of your constructed circuits and the simulation traces for VR(t) and VC(t), which you will submit onto Blackboard. t Vs(t) 1V -1V 50ms 100ms 150ms 200ms 250ms + – Vs(t) 100000 Ohms 1 uF + – VC(t) + – VR(t) 0ms 300ms 1 uF or 2 uF Problem 3 Consider the Resistor-Diode circuit on the right, and suppose that Vs(t) is a time-varying voltage input shown at the bottom. Suppose that for the diode to turn on, it needs 0.7V between the positive and negative terminals. a) Plot VR(t) and VD(t) from 0ms to 300ms b) Explain how VD(t) qualitatively compares with Vs(t), and how VR(t) qualitatively compares with Vs(t). t Vs(t) 1V -1V 50ms 100ms 0ms 150ms 200ms 250ms 300ms + – Vs(t) 100000 Ohms + – VD(t) + – VR(t) Problem 4 Using PSpice, perform a transient analysis simulation for the circuit in problem 3 – to verify that your plots in problem 3 are correct. For the simulation, plot the traces for VR(t) and VD(t). To create the diode in PSpice, use the Dbreak component. After placing the component on the page, highlight the component, and edit the Pspice model (Edit -> PSpice Model) and set Rs to 0. Hint: You may need to perform arithmetic operations between simulation traces. Take a screenshot of your constructed circuit and the simulation traces for VR(t) and VD(t), which you will submit onto Blackboard. Note that your simulation trace plots may not be exactly the same as those from Problem 3, since the PSpice diode model has a turn-on voltage that’s not exactly 0.7V. t Vs(t) 1V -1V 50ms 100ms 0ms 150ms 200ms 250ms 300ms + – Vs(t) 100000 Ohms + – VD(t) + – VR(t) Problem 5 (Bonus: 5 points) In the circuit from problem 1 (shown on the right), write several sentences to explain why VC(t) is often referred to as the “low-pass filtered” output, and VR(t) is often referred to as the “high-pass filtered” output. You will need to look up the definitions for “low-pass” and “high-pass” filters. Examining your plots for VC(t) and VR(t) will help. t Vs(t) 1V -1V 50ms 100ms 150ms 200ms 250ms + – Vs(t) 100000 Ohms 1 uF + – VC(t) + – VR(t) 0ms 300ms

No expert has answered this question yet. You can browse … Read More...
Chapter 9 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, April 18, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Momentum and Internal Forces Learning Goal: To understand the concept of total momentum for a system of objects and the effect of the internal forces on the total momentum. We begin by introducing the following terms: System: Any collection of objects, either pointlike or extended. In many momentum-related problems, you have a certain freedom in choosing the objects to be considered as your system. Making a wise choice is often a crucial step in solving the problem. Internal force: Any force interaction between two objects belonging to the chosen system. Let us stress that both interacting objects must belong to the system. External force: Any force interaction between objects at least one of which does not belong to the chosen system; in other words, at least one of the objects is external to the system. Closed system: a system that is not subject to any external forces. Total momentum: The vector sum of the individual momenta of all objects constituting the system. In this problem, you will analyze a system composed of two blocks, 1 and 2, of respective masses and . To simplify the analysis, we will make several assumptions: The blocks can move in only one dimension, namely, 1. along the x axis. 2. The masses of the blocks remain constant. 3. The system is closed. At time , the x components of the velocity and the acceleration of block 1 are denoted by and . Similarly, the x components of the velocity and acceleration of block 2 are denoted by and . In this problem, you will show that the total momentum of the system is not changed by the presence of internal forces. m1 m2 t v1(t) a1 (t) v2 (t) a2 (t)

Chapter 9 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, April 18, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Momentum and Internal Forces Learning Goal: To understand the concept of total momentum for a system of objects and the effect of the internal forces on the total momentum. We begin by introducing the following terms: System: Any collection of objects, either pointlike or extended. In many momentum-related problems, you have a certain freedom in choosing the objects to be considered as your system. Making a wise choice is often a crucial step in solving the problem. Internal force: Any force interaction between two objects belonging to the chosen system. Let us stress that both interacting objects must belong to the system. External force: Any force interaction between objects at least one of which does not belong to the chosen system; in other words, at least one of the objects is external to the system. Closed system: a system that is not subject to any external forces. Total momentum: The vector sum of the individual momenta of all objects constituting the system. In this problem, you will analyze a system composed of two blocks, 1 and 2, of respective masses and . To simplify the analysis, we will make several assumptions: The blocks can move in only one dimension, namely, 1. along the x axis. 2. The masses of the blocks remain constant. 3. The system is closed. At time , the x components of the velocity and the acceleration of block 1 are denoted by and . Similarly, the x components of the velocity and acceleration of block 2 are denoted by and . In this problem, you will show that the total momentum of the system is not changed by the presence of internal forces. m1 m2 t v1(t) a1 (t) v2 (t) a2 (t)

please email info@checkyourstudy.com
Vermont Technical College Electronic Applications ELT-2060 Lab 07: Common Mode Rejection Ratio and Instrumentation Amplifiers Reference: Laboratory Manual to Accompany Operational Amplifiers and Linear Integrated Circuits, Robert Coughlin, Sixth Edition. For the following exercise, make sure to record all calculations, estimations and measured results. Components: LM741 Op Amp, INA126 instrumentation Amp, 10 Ω, 1 kΩ, 470 Ω, 10 kΩ ½ W, 15 kΩ, 82 kΩ, 2-100 kΩ, , 50 kΩ potentiometer Objectives: a. LM741 Differential Voltage Gain, Common Mode Voltage Gain, Common Mode Rejection Ratio b. INA126 instrumentation amplifiers a. Differential Voltage Gain, Common Mode Voltage Gain, Common Mode Rejection Ratio Build the circuit of figure 1. Measure both E1 and E2 with respect to ground and record the values. Next calculate the differential voltage across the 10Ω resistor. Ediff= E1-E2. Calculate the differential voltage gain Adiff Vo = Adiff(E1-E2) or for this schematic Adiff = m = mR/R Measure Vo ` Modify the circuit as shown in figure 2, this now includes a common mode adjustment. In this circuit both inputs (+ input, – input) are shorted together and to E2, which is now the common mode voltage ECM. Measure and record E2 =ECM = __________ Measure Vo of the amplifier and adjust the 50k potentiometer for the smallest output voltage possible. Record this voltage as Vo-cm (Note this value should be approximately 1mV). Vo-cm=_________ Calculate common-mode voltage gain Acm = Vo-cm/Ecm Acm=_______ CMRR= Adiff/Acm CMRR =________ CMRR in dB = _________dB b. INA126 Instrumentation amplifiers 1. Wire the Instrumentation amplifier shown in figure 3. Set the differential gain Adiff to 10 by adjusting the 10-k Ω potentiometer. Again measure E1 and E2 with respect to ground E1=_____ E2=_______ 2. Predict the output voltage Vo from the equation Vo = Adiff(E1-E2) Calculated Vo= ____ Measured Vo=_____ 3. Readjust the 10-k Ω potentiometer for a differential gain of 100. Predict the output voltage Vo from the equation Vo = 100(E1-E2) Calculated Vo= ____ Measured Vo=_____ 4. To measure the common-mode voltage gain of the AD820 instrumentation amplifier, connect both inputs (pin 2 and pin 3) together and to E2 (see figure 4). Remeasure E2, in this configuration E2 = Ecm. Ecm=_______ 5. Measure Vocm Vocm=____ 6. Common-mode voltage gain = Acm= Vocm/Eocm 7. CMRR = Adiff/Acm CMRR = __________ CMRR in dB = _________ dB Compare your results to the INA126 data sheet Lab Report: This lab requires a semi-formal lab report. Record all calculations, estimations, and measured results. Support your lab results using MultiSim; include your MultiSim schematics in your lab report to support your laboratory findings. Please include a written English language paragraph for all lab steps that required an explanation.

Vermont Technical College Electronic Applications ELT-2060 Lab 07: Common Mode Rejection Ratio and Instrumentation Amplifiers Reference: Laboratory Manual to Accompany Operational Amplifiers and Linear Integrated Circuits, Robert Coughlin, Sixth Edition. For the following exercise, make sure to record all calculations, estimations and measured results. Components: LM741 Op Amp, INA126 instrumentation Amp, 10 Ω, 1 kΩ, 470 Ω, 10 kΩ ½ W, 15 kΩ, 82 kΩ, 2-100 kΩ, , 50 kΩ potentiometer Objectives: a. LM741 Differential Voltage Gain, Common Mode Voltage Gain, Common Mode Rejection Ratio b. INA126 instrumentation amplifiers a. Differential Voltage Gain, Common Mode Voltage Gain, Common Mode Rejection Ratio Build the circuit of figure 1. Measure both E1 and E2 with respect to ground and record the values. Next calculate the differential voltage across the 10Ω resistor. Ediff= E1-E2. Calculate the differential voltage gain Adiff Vo = Adiff(E1-E2) or for this schematic Adiff = m = mR/R Measure Vo ` Modify the circuit as shown in figure 2, this now includes a common mode adjustment. In this circuit both inputs (+ input, – input) are shorted together and to E2, which is now the common mode voltage ECM. Measure and record E2 =ECM = __________ Measure Vo of the amplifier and adjust the 50k potentiometer for the smallest output voltage possible. Record this voltage as Vo-cm (Note this value should be approximately 1mV). Vo-cm=_________ Calculate common-mode voltage gain Acm = Vo-cm/Ecm Acm=_______ CMRR= Adiff/Acm CMRR =________ CMRR in dB = _________dB b. INA126 Instrumentation amplifiers 1. Wire the Instrumentation amplifier shown in figure 3. Set the differential gain Adiff to 10 by adjusting the 10-k Ω potentiometer. Again measure E1 and E2 with respect to ground E1=_____ E2=_______ 2. Predict the output voltage Vo from the equation Vo = Adiff(E1-E2) Calculated Vo= ____ Measured Vo=_____ 3. Readjust the 10-k Ω potentiometer for a differential gain of 100. Predict the output voltage Vo from the equation Vo = 100(E1-E2) Calculated Vo= ____ Measured Vo=_____ 4. To measure the common-mode voltage gain of the AD820 instrumentation amplifier, connect both inputs (pin 2 and pin 3) together and to E2 (see figure 4). Remeasure E2, in this configuration E2 = Ecm. Ecm=_______ 5. Measure Vocm Vocm=____ 6. Common-mode voltage gain = Acm= Vocm/Eocm 7. CMRR = Adiff/Acm CMRR = __________ CMRR in dB = _________ dB Compare your results to the INA126 data sheet Lab Report: This lab requires a semi-formal lab report. Record all calculations, estimations, and measured results. Support your lab results using MultiSim; include your MultiSim schematics in your lab report to support your laboratory findings. Please include a written English language paragraph for all lab steps that required an explanation.

info@checkyourstudy.com