Materials are characterized by: a. Macroscopic properties b. Microstructure c. Atomic level composition d. All of the above 2. Atoms are: a. Composed of only electrons b. An abstract concept c. Found in fractional units d. Composed of a nucleus and electrons 3. The Burger’s vector describes: a. Cracks b. Crystal twinning c. The most direct route to McDonald’s d. Geometry of a crystal dislocation 4. Cubic Close Packed (CCP) is another name for which of the following: a. HCP b. BCC c. FCC d. All of the above 5. Un-vulcanized elastomers tend to: a. Fail catastrophically at low strain b. Be composed of metallic grains c. Deform plastically before failure d. Have elastic moduli ~109 Pa 6. Solid state diffusion & vacancy generation: a. Show Arrhenius-type behavior b. Are completely unrelated c. Increase linearly with Temperature d. Describe the motion of lattice points 7. Diffusion & heat transfer: a. Are completely unrelated b. Are directly related phenomena c. Relate a flux to a gradient d. Increase linearly with Temperature 8. Dislocations: a. Are interstitial dopants b. Are crystal defects c. Require atomic impurities d. Enhance plastic deformation 9. A typical atomic radii is roughly: a. 1 centimeter b. 1 nanometer c. 1 picometer d. 1 angstrom 10. Cubic crystal lattices have: a. Equal edge lengths b. 90° angles between edges c. Both a. & b. d. Atoms at each corner 11. Body centered cubic metals have: a. Close packed directions b. Close packed planes c. Both a. & b. d. Neither a. or b. 12. Face centered cubic metals have: a. Close packed directions b. Close packed planes c. Both a. & b. d. Neither a. or b. 13. A crystal lattice is an: a. Idealized representation of crystal sites in a real crystal b. Exact crystal representation c. Both a. & b. d. Neither a. or b. 14. Defects in a real crystal: a. Are at lattice sites b. Are within interstices c. Improve properties d. Decrease properties e. Require extensive characterization as they may involve a., b., c., & d. 15. Dislocations in metal grains: a. Prevent dislocation motion b. Can be removed through recrystallization c. Improve properties d. Decrease properties e. Require extensive characterization as they may involve a., b., c., & d. 16. The KIC parameter is used to describe: a. The number of possible pizza topping combinations at a given restaurant b. Dislocation density c. Weakening of a material due to cracks/stress concentrations d. The degree of Cold Working

Materials are characterized by: a. Macroscopic properties b. Microstructure c. Atomic level composition d. All of the above 2. Atoms are: a. Composed of only electrons b. An abstract concept c. Found in fractional units d. Composed of a nucleus and electrons 3. The Burger’s vector describes: a. Cracks b. Crystal twinning c. The most direct route to McDonald’s d. Geometry of a crystal dislocation 4. Cubic Close Packed (CCP) is another name for which of the following: a. HCP b. BCC c. FCC d. All of the above 5. Un-vulcanized elastomers tend to: a. Fail catastrophically at low strain b. Be composed of metallic grains c. Deform plastically before failure d. Have elastic moduli ~109 Pa 6. Solid state diffusion & vacancy generation: a. Show Arrhenius-type behavior b. Are completely unrelated c. Increase linearly with Temperature d. Describe the motion of lattice points 7. Diffusion & heat transfer: a. Are completely unrelated b. Are directly related phenomena c. Relate a flux to a gradient d. Increase linearly with Temperature 8. Dislocations: a. Are interstitial dopants b. Are crystal defects c. Require atomic impurities d. Enhance plastic deformation 9. A typical atomic radii is roughly: a. 1 centimeter b. 1 nanometer c. 1 picometer d. 1 angstrom 10. Cubic crystal lattices have: a. Equal edge lengths b. 90° angles between edges c. Both a. & b. d. Atoms at each corner 11. Body centered cubic metals have: a. Close packed directions b. Close packed planes c. Both a. & b. d. Neither a. or b. 12. Face centered cubic metals have: a. Close packed directions b. Close packed planes c. Both a. & b. d. Neither a. or b. 13. A crystal lattice is an: a. Idealized representation of crystal sites in a real crystal b. Exact crystal representation c. Both a. & b. d. Neither a. or b. 14. Defects in a real crystal: a. Are at lattice sites b. Are within interstices c. Improve properties d. Decrease properties e. Require extensive characterization as they may involve a., b., c., & d. 15. Dislocations in metal grains: a. Prevent dislocation motion b. Can be removed through recrystallization c. Improve properties d. Decrease properties e. Require extensive characterization as they may involve a., b., c., & d. 16. The KIC parameter is used to describe: a. The number of possible pizza topping combinations at a given restaurant b. Dislocation density c. Weakening of a material due to cracks/stress concentrations d. The degree of Cold Working

info@checkyourstudy.com Materials are characterized by: a. Macroscopic properties b. Microstructure … Read More...
MSE201 Take-home, due 9/10 (1 point each) 1. Materials are characterized by: a. Macroscopic properties b. Microstructure c. Atomic level composition d. All of the above 2. Atoms are: a. Discrete units of matter b. An abstract concept c. Found in fractional units d. Lattice points 3. A typical atomic radii is roughly: a. 1 centimeter b. 1 nanometer c. 1 picometer d. 1 angstrom 4. Cubic crystal lattices have: a. Equal edge lengths b. 90° angles between edges c. Both a. & b. d. Atoms at each corner 5. Body centered cubic metals have: a. Close packed directions b. Close packed planes c. Both a. & b. d. Neither a. or b. 6. Face centered cubic metals have: a. Close packed directions b. Close packed planes c. Both a. & b. d. Neither a. or b. 7. A crystal lattice is an: a. Idealized representation of sites in a real crystal b. Exact crystal representation c. Both a. & b. d. Neither a. or b. 8. Defects in a real crystal are: a. At lattice sites b. Within interstices c. Improve properties d. Decrease properties (1 point each element) 9. Au and W have a density of 19.3 g/cc. Au 197 g/mol with a FCC structure, while W is BCC an a mass of 183.9 g/mol. a. What is a, the lattice parameter for each metal? b. Using a hard sphere approximation, what is the ratio of the gold and tungsten diameters? 10. The close packed plane of the HCP structure is the top surface, or basal plane, of the unit cell. a. Using a typical atomic radii, what is the areal atomic density of this plane? b. Is the face of the FCC structure close packed? c. Repeat 10.a. on an FCC face. d. Where is the close packed plane in the FCC structure? 11. Consider BCC, FCC and HCP structures. a. For each structure, what is the coordination number of each atom? b. Using Appendix 1 in your text, what is the general structural preference of the alkali and alkali earth metals? c. As we discussed, mixed bonding types (covalent, ionic, metallic) are possible. If pure metallic bonding favors a maximum coordination number, describe and justify plausible bonding type preferences of alkali and alkali earth metals. 12. Edge and screw dislocations are interrelated and have been discussed. a. Draw the 2-dimensional picture of an edge dislocation in diamond. b. Draw the path that allows you to determine the length of the Burger’s vector. c. How long is this vector? (diamond lattice parameter = 3.57 angstroms) MSE201 Take-home Crystal structures chemed.chem.purdue.edu commons.wikimedia.org commons.wikimedia.org

MSE201 Take-home, due 9/10 (1 point each) 1. Materials are characterized by: a. Macroscopic properties b. Microstructure c. Atomic level composition d. All of the above 2. Atoms are: a. Discrete units of matter b. An abstract concept c. Found in fractional units d. Lattice points 3. A typical atomic radii is roughly: a. 1 centimeter b. 1 nanometer c. 1 picometer d. 1 angstrom 4. Cubic crystal lattices have: a. Equal edge lengths b. 90° angles between edges c. Both a. & b. d. Atoms at each corner 5. Body centered cubic metals have: a. Close packed directions b. Close packed planes c. Both a. & b. d. Neither a. or b. 6. Face centered cubic metals have: a. Close packed directions b. Close packed planes c. Both a. & b. d. Neither a. or b. 7. A crystal lattice is an: a. Idealized representation of sites in a real crystal b. Exact crystal representation c. Both a. & b. d. Neither a. or b. 8. Defects in a real crystal are: a. At lattice sites b. Within interstices c. Improve properties d. Decrease properties (1 point each element) 9. Au and W have a density of 19.3 g/cc. Au 197 g/mol with a FCC structure, while W is BCC an a mass of 183.9 g/mol. a. What is a, the lattice parameter for each metal? b. Using a hard sphere approximation, what is the ratio of the gold and tungsten diameters? 10. The close packed plane of the HCP structure is the top surface, or basal plane, of the unit cell. a. Using a typical atomic radii, what is the areal atomic density of this plane? b. Is the face of the FCC structure close packed? c. Repeat 10.a. on an FCC face. d. Where is the close packed plane in the FCC structure? 11. Consider BCC, FCC and HCP structures. a. For each structure, what is the coordination number of each atom? b. Using Appendix 1 in your text, what is the general structural preference of the alkali and alkali earth metals? c. As we discussed, mixed bonding types (covalent, ionic, metallic) are possible. If pure metallic bonding favors a maximum coordination number, describe and justify plausible bonding type preferences of alkali and alkali earth metals. 12. Edge and screw dislocations are interrelated and have been discussed. a. Draw the 2-dimensional picture of an edge dislocation in diamond. b. Draw the path that allows you to determine the length of the Burger’s vector. c. How long is this vector? (diamond lattice parameter = 3.57 angstroms) MSE201 Take-home Crystal structures chemed.chem.purdue.edu commons.wikimedia.org commons.wikimedia.org

info@checkyourstudy.com MSE201 Take-home, due 9/10 (1 point each) 1. Materials … Read More...
MSE201 Midterm Exam 10/17/2014 Each element 2 points. Put ALL calculations and answers in your Blue Book! 1. Materials are characterized by: a. Macroscopic properties b. Microstructure c. Atomic level composition d. All of the above 2. Atoms are: a. Discrete units of matter b. An abstract concept c. Found in fractional units d. Crystallographic lattice points 3. The Burger’s vector describes: a. Surface cracks b. Crystal twinning c. Dislocation geometry d. The most direct route to McDonald’s 4. Cubic Close Packed (CCP) is another name for which of the following: a. HCP b. BCC c. FCC d. All of the above 5. Glass and ceramic materials tend to: a. Fail catastrophically at low strain b. Show ductility c. Deform plastically before failure d. Have elastic moduli ~106 Pa 6. Solid state diffusion & vacancy generation: a. Are completely unrelated b. Are directly related c. Increase linearly with Temperature d. Describe lattice point motion 7. Diffusion & heat transfer: a. Are completely unrelated b. Are directly related c. Increase linearly with Temperature d. Have identical differential equations 8. A vacancy and a dislocation both: a. Disrupt the crystal lattice b. Represent partial occupancy c. Contain ruptured bonds d. Are low energy regions 9. Dislocations: a. Are interstitial dopants b. Are crystal defects c. Require atomic impurities d. Enhance plastic deformation 10. Ionic, covalent and metallic bonding are primary bonding types. a. Primary bonds require exchange or sharing of what between atoms? b. How does electronegativity drive the reaction of sodium metal and chlorine gas to form sodium chloride? c. Carbon-carbon bonds are what type? d. The directional nature of covalent bonds is related to what structural feature of atoms? 11. The (111) plane of the FCC structure is close-packed. a. Sketch this plane within a unit cell. b. How many atoms are on the plane you drew inside the unit cell? c. Estimate the area of the plane d. Calculate the area atomic density e. If there is one vacancy per 1012 lattice points at 273K, what is the partial atomic occupancy of each lattice point? f. If you are asked calculate the number of vacancies present at 600K, what additional information do you need? 12. Dislocation motion occurs largely along close-packed directions and planes. First, compare the FCC & BCC structures: a. Describe any close packed planes b. Describe any close packed directions c. If the ductile-to-brittle transition at low temperatures is related to the number of close-packed directions and planes, do you expect BCC or FCC metals to have greater ductility? d. Magnesium and other HCP metals are brittle. Does your analysis from 12.c. support this observation? 13. A tensile test is performed on a ductile sample. The first 1% of strain is elastic with a modulus of 100E9 Pa, at which point plastic deformation begins. The tensile strength of 1.1E9 Pa is determined at 9% strain, while failure occurs at a stress of 9E8 Pa and strain of 18%. a. Sketch the complete stress-strain cycle b. Estimate the toughness in units of J/m3.

MSE201 Midterm Exam 10/17/2014 Each element 2 points. Put ALL calculations and answers in your Blue Book! 1. Materials are characterized by: a. Macroscopic properties b. Microstructure c. Atomic level composition d. All of the above 2. Atoms are: a. Discrete units of matter b. An abstract concept c. Found in fractional units d. Crystallographic lattice points 3. The Burger’s vector describes: a. Surface cracks b. Crystal twinning c. Dislocation geometry d. The most direct route to McDonald’s 4. Cubic Close Packed (CCP) is another name for which of the following: a. HCP b. BCC c. FCC d. All of the above 5. Glass and ceramic materials tend to: a. Fail catastrophically at low strain b. Show ductility c. Deform plastically before failure d. Have elastic moduli ~106 Pa 6. Solid state diffusion & vacancy generation: a. Are completely unrelated b. Are directly related c. Increase linearly with Temperature d. Describe lattice point motion 7. Diffusion & heat transfer: a. Are completely unrelated b. Are directly related c. Increase linearly with Temperature d. Have identical differential equations 8. A vacancy and a dislocation both: a. Disrupt the crystal lattice b. Represent partial occupancy c. Contain ruptured bonds d. Are low energy regions 9. Dislocations: a. Are interstitial dopants b. Are crystal defects c. Require atomic impurities d. Enhance plastic deformation 10. Ionic, covalent and metallic bonding are primary bonding types. a. Primary bonds require exchange or sharing of what between atoms? b. How does electronegativity drive the reaction of sodium metal and chlorine gas to form sodium chloride? c. Carbon-carbon bonds are what type? d. The directional nature of covalent bonds is related to what structural feature of atoms? 11. The (111) plane of the FCC structure is close-packed. a. Sketch this plane within a unit cell. b. How many atoms are on the plane you drew inside the unit cell? c. Estimate the area of the plane d. Calculate the area atomic density e. If there is one vacancy per 1012 lattice points at 273K, what is the partial atomic occupancy of each lattice point? f. If you are asked calculate the number of vacancies present at 600K, what additional information do you need? 12. Dislocation motion occurs largely along close-packed directions and planes. First, compare the FCC & BCC structures: a. Describe any close packed planes b. Describe any close packed directions c. If the ductile-to-brittle transition at low temperatures is related to the number of close-packed directions and planes, do you expect BCC or FCC metals to have greater ductility? d. Magnesium and other HCP metals are brittle. Does your analysis from 12.c. support this observation? 13. A tensile test is performed on a ductile sample. The first 1% of strain is elastic with a modulus of 100E9 Pa, at which point plastic deformation begins. The tensile strength of 1.1E9 Pa is determined at 9% strain, while failure occurs at a stress of 9E8 Pa and strain of 18%. a. Sketch the complete stress-strain cycle b. Estimate the toughness in units of J/m3.

info@checkyourstudy.com MSE201 Midterm Exam 10/17/2014 Each element 2 points. Put … Read More...
ISTC3015 Human Computer Interaction Spring 2014 Assignment You are to choose 2 websites, with different purposes, and review the websites based on the criteria listed below. This assignment is due Thursday, March 20th and is worth 70 points. 1. Starting Point a. Composition Matches Site Purpose b. Target Audience Apparent c. Composition Appropriate for Target Audience 2. Site design a. Consistency within site b. Consistency among pages 3. Visually Pleasing Composition 4. Visual Style in Web Design a. Consistency b. Distinctiveness 5. Focus and Emphasis a. What is emphasized? b. How is emphasis achieved? 6. Consistency a. Real World b. Internal 7. Navigation and Flow a. Home page identifiable throughout b. Location within site apparent c. Navigation consistent; rule-based; appropriate 8. Grouping a. Grouping with White Space b. Grouping with Borders c. Grouping with Backgrounds 9. Response time 10. Links a. Titled b. Incoming c. Outgoing d. Color 11. Detailed content a. Meaningful headings b. Plain language c. Page chunking d. Long blocks of text e. Scrolling f. Use of “within” page links 12. Articles a. Clear headings b. Plain language 13. Presenting Information Simply and Meaningfully a. Legibility b. Readability c. Information in Usable Form d. Visual Lines Clear 14. Legibility of content a. Font color b. Font size c. Font style d. Background color e. Background graphic 15. Documentation a. Included b. Searchable c. Links to difficult concepts/words 16. Multimedia a. Animation/Audio/Video/Still images b. Load time given c. Add-in required d. Quality e. Appropriateness of use 17. Scrolling and Paging a. Usage b. Appropriate? 18. Amount of Information Presented Appropriate 19. Other factors to note?

ISTC3015 Human Computer Interaction Spring 2014 Assignment You are to choose 2 websites, with different purposes, and review the websites based on the criteria listed below. This assignment is due Thursday, March 20th and is worth 70 points. 1. Starting Point a. Composition Matches Site Purpose b. Target Audience Apparent c. Composition Appropriate for Target Audience 2. Site design a. Consistency within site b. Consistency among pages 3. Visually Pleasing Composition 4. Visual Style in Web Design a. Consistency b. Distinctiveness 5. Focus and Emphasis a. What is emphasized? b. How is emphasis achieved? 6. Consistency a. Real World b. Internal 7. Navigation and Flow a. Home page identifiable throughout b. Location within site apparent c. Navigation consistent; rule-based; appropriate 8. Grouping a. Grouping with White Space b. Grouping with Borders c. Grouping with Backgrounds 9. Response time 10. Links a. Titled b. Incoming c. Outgoing d. Color 11. Detailed content a. Meaningful headings b. Plain language c. Page chunking d. Long blocks of text e. Scrolling f. Use of “within” page links 12. Articles a. Clear headings b. Plain language 13. Presenting Information Simply and Meaningfully a. Legibility b. Readability c. Information in Usable Form d. Visual Lines Clear 14. Legibility of content a. Font color b. Font size c. Font style d. Background color e. Background graphic 15. Documentation a. Included b. Searchable c. Links to difficult concepts/words 16. Multimedia a. Animation/Audio/Video/Still images b. Load time given c. Add-in required d. Quality e. Appropriateness of use 17. Scrolling and Paging a. Usage b. Appropriate? 18. Amount of Information Presented Appropriate 19. Other factors to note?

No expert has answered this question yet. You can browse … Read More...
Paper 1. Narrative Essay Overview: This first paper will be a narrative; in other words, it will be a story. As such it will have these essential items: characters, dialogue, plot, tension, and setting. You will write a story that can be fictional or autobiographical. Format: The first draft will be three typed pages, and you will bring to class 2 copies. It should have your name on every page. Ideally, it will be in MLA (Modern Language Association) format, though this is not important at that stage. See the format of the paper in the example below. Details: For your narrative, you must present a scenario wherein your character, or characters, must deal with and overcome adversity. Consider the essay “Have a Caltastic Day” as an example. In that essay, Streeter tells a success story—of a young man who springs from humble beginnings, overcomes difficult obstacles, and advances his place in the world. In your story, you too will write a story of a person who has faced difficulty. It can be any number of issues that your protagonist faces: a coming of age story involving school, friends, sports, family hardship, etc. You must have a well-developed character. You must have a plot, a clear setting, and use at least some dialogue. Again, it can be based on true events or entirely a work of the imagination. Assessment: In this story, I am looking for well-formed, clear sentences, unified and coherent paragraphs, as well as use of standard grammar, diction, and mechanics of American English. Superior essays will have a clear plot, descriptive language and have material arranged with good supporting details. Sample Paper Format Last Name 1 Your Full Name Dr. Riley-Brown ENG 110: Composition Narrative #1–Draft #1 Date Title of Paper Centered This is where the first line of your paper will go. Double space beneath your title and indent the first line of each paragraph five (5) spaces. The essay should have margins that are one each on each side. You should use Times New Roman font in 12 point font size.

Paper 1. Narrative Essay Overview: This first paper will be a narrative; in other words, it will be a story. As such it will have these essential items: characters, dialogue, plot, tension, and setting. You will write a story that can be fictional or autobiographical. Format: The first draft will be three typed pages, and you will bring to class 2 copies. It should have your name on every page. Ideally, it will be in MLA (Modern Language Association) format, though this is not important at that stage. See the format of the paper in the example below. Details: For your narrative, you must present a scenario wherein your character, or characters, must deal with and overcome adversity. Consider the essay “Have a Caltastic Day” as an example. In that essay, Streeter tells a success story—of a young man who springs from humble beginnings, overcomes difficult obstacles, and advances his place in the world. In your story, you too will write a story of a person who has faced difficulty. It can be any number of issues that your protagonist faces: a coming of age story involving school, friends, sports, family hardship, etc. You must have a well-developed character. You must have a plot, a clear setting, and use at least some dialogue. Again, it can be based on true events or entirely a work of the imagination. Assessment: In this story, I am looking for well-formed, clear sentences, unified and coherent paragraphs, as well as use of standard grammar, diction, and mechanics of American English. Superior essays will have a clear plot, descriptive language and have material arranged with good supporting details. Sample Paper Format Last Name 1 Your Full Name Dr. Riley-Brown ENG 110: Composition Narrative #1–Draft #1 Date Title of Paper Centered This is where the first line of your paper will go. Double space beneath your title and indent the first line of each paragraph five (5) spaces. The essay should have margins that are one each on each side. You should use Times New Roman font in 12 point font size.

info@checkyourstudy.com Whatsapp +919711743277
Project Four: Revisiting English 1010 (Literacy, Language, and Culture: An Exploration of the African American Experience) The MultiMedia Reflective Portfolio Project Overview This project will provide us with the opportunity to use a combination of textual, digital, and oral tools to: 1) reflect on and display what we have learned about African American literacy, language, and culture; and 2) reflect on and display what we have learned about the process of composing a literacy narrative, informative summary, media analysis, and multimedia reflective portfolio project. Ultimately, this project will provide us with the opportunity to use multimedia tools and applications to reflect on and display our experience as knowledge users and knowledge makers in this course (specifically as it relates to the English 1010 Learning Outcomes). ___________________________________________________________________ Introduction/Rationale/Assignment Prompt: This reflective assignment, which is the last major assignment of the semester, consists of two parts: Part One Part One consists of a 2-3 page reflective essay in which you reflect on and display: (1) what you learned about African American literacy, language, and culture; and (2) what you learned about the process of composing a literacy narrative, informative summary, media analysis, and multimedia reflective portfolio project–specifically as the process relates to the Learning Outcomes (Reading, Writing, Reflection, and Technology Use). To do so, you must look back over the work you produced during the semester in order to locate and discuss your learning and accomplishments in these areas. While your discussion of achievements with respect to ENG 1010 Learning Outcomes is perhaps the most important goal in the Reflective Essay, the written expression of these achievements can be strengthened when it is integrated into a broader narrative that describes where you are coming from and who you are as a student. In this narrative, you may discuss, for example, how you learned and used various reading strategies in the course, or you may describe, for example, how your ability to use composition and course management technologies, like Word and Blackboard, increased. You may also address, as appropriate, how your culture, identity, or background shaped your experiences as a student in ENG 1010. You may wish to discuss, for example, some of the following issues. • Transition to college and the larger first-year experience • Negotiation of a new identity as college student (how you adjusted; how you handled it) • Membership in groups historically underrepresented in college • Language diversity • Managing life circumstances to be able to give enough time and energy to academic work In sum, the Reflective Essay should make claims about your learning and accomplishments with respect to the two areas identified above. Essentially, the reflective essay should demonstrate what you have learned and what you can do as a result of your work in ENG 1010. In this way, a successful Reflective Essay will inspire confidence that you are prepared to move forward into your next composition courses, beginning with ENG 1020, and into the larger academic discourse community. Part Two Part Two consists of an electronic multimedia portfolio containing 3-5 selected pieces of the work you produced this semester (essay topic proposals, reading responses, essay outlines, essay first or final drafts, in-class assignments, etc.) that you can use as evidence of your learning and accomplishments and to support the claims you made in your reflective essay. ___________________________________________________________________ English 1010 Learning Outcomes Reading ● Develop reading strategies to explain, paraphrase, and summarize college-level material. ● Analyze college-level material to identify evidence that supports broader claims. Writing ● Plan and compose a well-organized thesis-driven text that engages with college-level material and is supported by relevant and sufficient evidence. ● Develop a flexible revision process that incorporates feedback to rewrite multiple drafts of a text for clarity (e.g. argument, organization, support, and audience awareness). Reflection ● Use reflective writing to evaluate and revise writing processes and drafts ● Use reflective writing to assess and articulate skill development in relation to course learning outcomes. Technology Use ● Navigate institutional web-based interfaces, such as course websites, university email, and Blackboard Learn™, to find, access and submit course material. ● Use computer-based composition technologies, including word processing software (e.g. Microsoft Word, PowerPoint), to compose college-level texts. ● Use computer-based composition technologies to read and annotate course readings and texts authored by students (e.g. peer review). Your Final Draft Should: • meet the requirements as outlined in the “Introduction/Rationale/Assignment Prompt” section above. Points for This Project • First Draft: 20 Points • Final Draft: 130 Points • Oral Presentation: 30 Points Refer to the Course Schedule (Syllabus) for Assignment Due Dates. _______________________________________________________________ Evaluation: You will be evaluated based on content, organization, and mechanics.

Project Four: Revisiting English 1010 (Literacy, Language, and Culture: An Exploration of the African American Experience) The MultiMedia Reflective Portfolio Project Overview This project will provide us with the opportunity to use a combination of textual, digital, and oral tools to: 1) reflect on and display what we have learned about African American literacy, language, and culture; and 2) reflect on and display what we have learned about the process of composing a literacy narrative, informative summary, media analysis, and multimedia reflective portfolio project. Ultimately, this project will provide us with the opportunity to use multimedia tools and applications to reflect on and display our experience as knowledge users and knowledge makers in this course (specifically as it relates to the English 1010 Learning Outcomes). ___________________________________________________________________ Introduction/Rationale/Assignment Prompt: This reflective assignment, which is the last major assignment of the semester, consists of two parts: Part One Part One consists of a 2-3 page reflective essay in which you reflect on and display: (1) what you learned about African American literacy, language, and culture; and (2) what you learned about the process of composing a literacy narrative, informative summary, media analysis, and multimedia reflective portfolio project–specifically as the process relates to the Learning Outcomes (Reading, Writing, Reflection, and Technology Use). To do so, you must look back over the work you produced during the semester in order to locate and discuss your learning and accomplishments in these areas. While your discussion of achievements with respect to ENG 1010 Learning Outcomes is perhaps the most important goal in the Reflective Essay, the written expression of these achievements can be strengthened when it is integrated into a broader narrative that describes where you are coming from and who you are as a student. In this narrative, you may discuss, for example, how you learned and used various reading strategies in the course, or you may describe, for example, how your ability to use composition and course management technologies, like Word and Blackboard, increased. You may also address, as appropriate, how your culture, identity, or background shaped your experiences as a student in ENG 1010. You may wish to discuss, for example, some of the following issues. • Transition to college and the larger first-year experience • Negotiation of a new identity as college student (how you adjusted; how you handled it) • Membership in groups historically underrepresented in college • Language diversity • Managing life circumstances to be able to give enough time and energy to academic work In sum, the Reflective Essay should make claims about your learning and accomplishments with respect to the two areas identified above. Essentially, the reflective essay should demonstrate what you have learned and what you can do as a result of your work in ENG 1010. In this way, a successful Reflective Essay will inspire confidence that you are prepared to move forward into your next composition courses, beginning with ENG 1020, and into the larger academic discourse community. Part Two Part Two consists of an electronic multimedia portfolio containing 3-5 selected pieces of the work you produced this semester (essay topic proposals, reading responses, essay outlines, essay first or final drafts, in-class assignments, etc.) that you can use as evidence of your learning and accomplishments and to support the claims you made in your reflective essay. ___________________________________________________________________ English 1010 Learning Outcomes Reading ● Develop reading strategies to explain, paraphrase, and summarize college-level material. ● Analyze college-level material to identify evidence that supports broader claims. Writing ● Plan and compose a well-organized thesis-driven text that engages with college-level material and is supported by relevant and sufficient evidence. ● Develop a flexible revision process that incorporates feedback to rewrite multiple drafts of a text for clarity (e.g. argument, organization, support, and audience awareness). Reflection ● Use reflective writing to evaluate and revise writing processes and drafts ● Use reflective writing to assess and articulate skill development in relation to course learning outcomes. Technology Use ● Navigate institutional web-based interfaces, such as course websites, university email, and Blackboard Learn™, to find, access and submit course material. ● Use computer-based composition technologies, including word processing software (e.g. Microsoft Word, PowerPoint), to compose college-level texts. ● Use computer-based composition technologies to read and annotate course readings and texts authored by students (e.g. peer review). Your Final Draft Should: • meet the requirements as outlined in the “Introduction/Rationale/Assignment Prompt” section above. Points for This Project • First Draft: 20 Points • Final Draft: 130 Points • Oral Presentation: 30 Points Refer to the Course Schedule (Syllabus) for Assignment Due Dates. _______________________________________________________________ Evaluation: You will be evaluated based on content, organization, and mechanics.

No expert has answered this question yet. You can browse … Read More...
Lab Assignment-09 Note: Create and save m-files for each problem individually. Copy all the m-files into a ‘single’ folder and upload the folder to D2L. Read chapters 2 and chapter 3.1-3.3 of the textbook (Introduction to MATLAB 7 for Engineers), solve the following problems in MATLAB. Given A= [■(3&-2&1@6&8&-5@7&9&10)] ; B= [■(6&9&-4@7&5&3@-8&2&1)] ; C= [■(-7&-5&2@10&6&1@3&-9&8)] ; Find the following A+B+C Verify the associative law (A+B)+C=A+ (B+C) D=Transpose(AB) E=A4 + B2 – C3 Find F, given that F = E-1 * D-1 – (AT) -1 Use MATLAB to solve the following set of equations 5x+7y + 9z = 12 7x- 4y + 8z = 86 15x- 9y – 6z = -57 Write a function that accepts temperature in degrees F and computes the corresponding value in degree C. The relation between the two is Aluminum alloys are made by adding other elements to aluminum to improve its properties, such as hardness or tensile strength. The following table shows the composition of five commonly used alloys, which are known by their alloy numbers ( 2024, 6061, and so on) [Kutz, 1999]. Obtain a matrix algorithm to compute the amounts of raw materials needed to produce a given amount of each alloy. Use MATLAB to determine how much raw material each type is needed to produce 1000tons of each alloy. Composition of aluminum alloys Alloy % Cu % Mg % Mn % Si % Zn 2024 4.4 1.5 0.6 0 0 6061 0 1 0 0.6 0 7005 0 1.4 0 0 4.5 7075 1.6 2.5 0 0 5.6 356.0 0 0.3 0 7 0

Lab Assignment-09 Note: Create and save m-files for each problem individually. Copy all the m-files into a ‘single’ folder and upload the folder to D2L. Read chapters 2 and chapter 3.1-3.3 of the textbook (Introduction to MATLAB 7 for Engineers), solve the following problems in MATLAB. Given A= [■(3&-2&1@6&8&-5@7&9&10)] ; B= [■(6&9&-4@7&5&3@-8&2&1)] ; C= [■(-7&-5&2@10&6&1@3&-9&8)] ; Find the following A+B+C Verify the associative law (A+B)+C=A+ (B+C) D=Transpose(AB) E=A4 + B2 – C3 Find F, given that F = E-1 * D-1 – (AT) -1 Use MATLAB to solve the following set of equations 5x+7y + 9z = 12 7x- 4y + 8z = 86 15x- 9y – 6z = -57 Write a function that accepts temperature in degrees F and computes the corresponding value in degree C. The relation between the two is Aluminum alloys are made by adding other elements to aluminum to improve its properties, such as hardness or tensile strength. The following table shows the composition of five commonly used alloys, which are known by their alloy numbers ( 2024, 6061, and so on) [Kutz, 1999]. Obtain a matrix algorithm to compute the amounts of raw materials needed to produce a given amount of each alloy. Use MATLAB to determine how much raw material each type is needed to produce 1000tons of each alloy. Composition of aluminum alloys Alloy % Cu % Mg % Mn % Si % Zn 2024 4.4 1.5 0.6 0 0 6061 0 1 0 0.6 0 7005 0 1.4 0 0 4.5 7075 1.6 2.5 0 0 5.6 356.0 0 0.3 0 7 0

info@checkyourstudy.com Whatsapp +919911743277
Ch 2 Questions that might be on the test. If you cannot answer them, check your class notes or the textbook. 1. A mineral is a naturally occurring substance formed through geological processes that has: a) a characteristic chemical composition, b) a highly ordered atomic structure c) specific physical properties d) all of the above 2. There are currently more than ______ known minerals, according to the International Mineralogical Association, a) 40 b) 400 c) 4000 d) 40 000 3. Some minerals, like quartz, mica or feldspar are: a) rare b) common c) valuable d) priceless 4. Rocks from which minerals are mined for economic purposes are referred to as: a) gangue b) tailings c) ores d) granite 5. Electrons, which have a _____ charge, a size which is so small as to be currently unmeasurable, and which are the least massive of the three types of basic particles. a) positive b) negative c) neutral 6. Both protons and neutrons are themselves now thought to be composed of even more elementary particles called: a) quarks b) quakes c) parsons d) megans 7. In processes which change the number of protons in a nucleus, the atom becomes an atom of a different chemical: a) isotope b) compound c) element d) planet 8. Atoms which have either a deficit or a surplus of electrons are called: a) elements b) isotopes c) ions d) molecules 9. In the Bohr model of the atom, electrons can only orbit the nucleus in particular circular orbits with fixed angular momentum and energy, their distances from the nucleus being proportional to their respective energies. They can only make _____ leaps between the fixed energy levels. a) tiny b) quantum c) gradual 10. It is impossible to simultaneously derive precise values for both the position and momentum of a particle for any given point in time; this became known as the ______ principle. a) Bohr b) Einstein c) uncertainty d) quantum 11. The modern model of the atom describes the positions of electrons in an atom in terms of: a) quantum levels b) orbital paths c) probabilities d) GPS 12. Isotopes of an element have nuclei with the same number of protons (the same atomic number) but different numbers of: a) electrons b) neutrons c) ions d) photons 13. In helium-3 (or 3He), how many protons are present? a) 1 b) 2 c) 3 d) 4 14. In helium-3 (or 3He), how many neutrons are present? a) 1 b) 2 c) 3 d) 4 15. The relative abundance of an isotope is strongly correlated with its tendency toward nuclear _____, short-lived nuclides quickly go away, while their long-lived counterparts endure. a) fission b) fusion c) decay d) bombardment 16. The isotopic composition of elements is different on different planets. a) True b) False 17. As a general rule, the fewer electrons in an atom’s valence shell, the ____ reactive it is. Lithium, sodium, and potassium have one electron in their outer shells. a) more b) less 18. Every atom is much more stable, or less reactive, with a ____ valence shell. a) partly full b) completely full 19. A positively-charged ion, which has fewer electrons than protons, is known as a: a) anion b) cation c) fermion d) bation 20. Bonds vary widely in their strength. Generally covalent and ionic bonds are often described as “strong”, whereas ______ bonds are generally considered to be “weak”. a) van der Waals b) Faradays c) van Neumans 21. This bonding involves sharing of electrons in which the positively charged nuclei of two or more atoms simultaneously attract the negatively charged electrons that are being shared a) ionic b) covalent c) van der Waals d) metallic 22. This bond results from electrostatic attraction between atoms: a) ionic b) covalent c) van der Waals d) metallic 23. A sea of delocalized electrons causes this bonding: a) ionic b) covalent c) van der Waals d) metallic 24. The chemical composition of minerals may vary between end members of a mineral system. For example the ______ feldspars comprise a continuous series from sodiumrich albite to calcium-rich anorthite. a) plagioclase b) orthoclase c) alkaline d) acidic 25. Crystal structure is based on ____ internal atomic arrangement. a) irregular b) regular c) random d) curvilinear 26. Pyrite and marcasite are both _______, but their arrangement of atoms differs. a) iron sulfide b) lead sulfide c) copper silfide d) silver sulfide 27. The carbon atoms in ______ are arranged into sheets which can slide easily past each other, while the carbon atoms in diamond form a strong, interlocking three-dimensional network. a) sapphire b) graphite c) aluminum d) carbonate 28. TGCFAOQTCD a) Crystal habit b) Hardness scale c) Luster scale 29. Dull to metallic, submetallic, adamantine, vitreous, pearly, resinous, or silky. a) Crystal habit b) Hardness scale c) Luster scale d) Heft scale 30. The color of the powder a mineral leaves after rubbing it on unglazed porcelain. a) color b) streak c) lustre d) iridescense 31. Describes the way a mineral may split apart along various planes. a) fracture b) streak c) lustre d) cleavage 32. In modern physics, the position of electrons about a nucleus are defined in terms of: a) probabilities b) circles c) ellipses d) chromodomes 33. The symbol H+ suggests a: a) hydrogen atom b) hydrogen isotope c) hydrogen cation d) hydrogen anion 34. The tabulated atomic mass of natural carbon is not exactly 12 because carbon in nature always has multiple ________ present. a) electrons b) isotopes c) quarks d) protons 35. This type of bonding due to delocalized electrons leads to malleability, ductility, and high melting points: a) covalent b) ionic c) van der Waals d) metallic 36. The mineral ___________ is 3 on Mohs Scale whereas the mineral ___________ is 9. a) calcite, corundum b) corundum, calcite c) caliche, calcite d) chalcedony, quartz 37. In hand specimens, geologists identify most minerals based on: a) physical properties b) chemical analyses c) xray diffraction 38. This type of chemical bonding is the weakest but occurs in all substances. a) covalent b) ionic c) metallic d) none of the above 39. Quartz, feldspar, mica, chlorite, kaolin, calcite, epidote, olivine, augite, hornblende, magnetite, hematite, limonite: these minerals are: a) common in rocks b) occasionally found c) rare d) extremely rare 40. Characteristics of a mineral do NOT include: a) naturally occurring b) characteristic chemical formula c) crystalline d) organic e) all of the above 41. The chemical composition of a particular mineral may vary between end members. For example, the common mineral plagioclase feldspar varies from being _______-rich to being _________-rich. a) sodium, calcium b) potassium, sodium c) iron, magnesium d) carbon, oxygen 42. Sharing of electrons typifies the __________ bond whereas electrostatic attraction typifies the _______ bond. a) ionic, covalent b) ionic, triclinic c) covalent, ionic d) triclinic, covalent 43. If number of protons does not equal the number of electrons, the atom is a(n) : a) isotope b) ion c) quark d) simplex e) google 44. Atoms generally consist of: a) electrons b) protons c) neutrons d) all of the above 45. Not counting rare minerals, about how many mineral species are at least occasionally encountered in rocks? a) 20 b) 200 c) 2000 46. Carbon is atomic number 6. Carbon-13 has _______ protons and _______ neutrons. a) thirteen, six b) six, seven c) twelve, twenty-five d) twelve, twelve 47. Which of these particles are not nucleons? a) electrons b) neutrons c) protons 48. A mineral with visibly recognizable crystals is said to have good crystal habit; otherwise the mineral is said to be: a) massive b) granular c) compact d) any of the above 49. In chemical bonding, two atoms become linked by moving or sharing __________. a) neutrons b) protons c) electrons 50. The name of an element is determined by the number of ______ present in the ______ of an atom. a) electrons, nucleus b) neutrons, nucleus c) protons, nucleus d) protons, electron cloud e) neutrons, electron cloud 51. Generally ________ and ____________ bonds are strong whereas the ______________ bond is weak. a) covalent, ionic, van der Waals b) van der Waals, covalent, ionic c) ionic, van der Waals, covalent 52. Which of the following are held together by chemical bonds? a) molecules b) crystals c) diatomic gases 53. An ion with fewer electrons than protons is called an ______ and it carries a _________ electric charge. a) cation, positive b) anion, negative c) cation, negative d) anion, positive 54. Two or more minerals may have the same _________ composition but different _______ structure. These are called polymorphs. a) crystal, chemical b) chemical, crystal 55. Industrial minerals are: a) gem quality b) commercially valuable c) tailings d) worthless 56. All minerals are crystalline. If the crystals are too small to see, they can be detected by: a) x-ray diffraction b) cosmic rays c) sound waves d) odor 57. If two atomes have the same number of protons but different numbers of neutrons, the atoms are _______ of the same _________. a) elements, mineral b) atoms, isotope c) elements, isotope d) isotopes, element 58. Modern physics recognizes that electrons show both particle and ______ behavior. a) wave b) emotional c) thermal d) revolting 59. Sodium and potassium have one ______ electron in their outer shells and are extremely ________. a) valence, stable b) inverted, reactive c) valence, reactive d) contaminated, inactive 60. The luster of _______ would be described as ________. a) glass, vitreous b) diamond, dull c) pyrite, silky d) graphite, resinous 61. The minerals ________ and __________ are polymorphs of carbon. a) diamond, graphite b) calcite, silicate c) bonite, bronzite 62. In the ______ atom based on _______ physics, electrons were restricted to circular orbits of fixed energy levels. a) Bohr , quantum b) Rutherford, classical c) Bohr, classical d) Rutherford, quantum 63. Virtually all elements other than ______ and _______ were formed in stars and supernovae long after the Big Bang. a) hydrogen, helium b) carbon, phosphorus c) carbon, oxygen d) silica, carbon 64. Physicist Werner _________ developed the ___________ principle which means that it is impossible to know exactly the position and momentum of a particle. a) Heisenberg, certainty b) Heisenberg, uncertainty c) Bohr, uncertainty d) Bohr, certainty

Ch 2 Questions that might be on the test. If you cannot answer them, check your class notes or the textbook. 1. A mineral is a naturally occurring substance formed through geological processes that has: a) a characteristic chemical composition, b) a highly ordered atomic structure c) specific physical properties d) all of the above 2. There are currently more than ______ known minerals, according to the International Mineralogical Association, a) 40 b) 400 c) 4000 d) 40 000 3. Some minerals, like quartz, mica or feldspar are: a) rare b) common c) valuable d) priceless 4. Rocks from which minerals are mined for economic purposes are referred to as: a) gangue b) tailings c) ores d) granite 5. Electrons, which have a _____ charge, a size which is so small as to be currently unmeasurable, and which are the least massive of the three types of basic particles. a) positive b) negative c) neutral 6. Both protons and neutrons are themselves now thought to be composed of even more elementary particles called: a) quarks b) quakes c) parsons d) megans 7. In processes which change the number of protons in a nucleus, the atom becomes an atom of a different chemical: a) isotope b) compound c) element d) planet 8. Atoms which have either a deficit or a surplus of electrons are called: a) elements b) isotopes c) ions d) molecules 9. In the Bohr model of the atom, electrons can only orbit the nucleus in particular circular orbits with fixed angular momentum and energy, their distances from the nucleus being proportional to their respective energies. They can only make _____ leaps between the fixed energy levels. a) tiny b) quantum c) gradual 10. It is impossible to simultaneously derive precise values for both the position and momentum of a particle for any given point in time; this became known as the ______ principle. a) Bohr b) Einstein c) uncertainty d) quantum 11. The modern model of the atom describes the positions of electrons in an atom in terms of: a) quantum levels b) orbital paths c) probabilities d) GPS 12. Isotopes of an element have nuclei with the same number of protons (the same atomic number) but different numbers of: a) electrons b) neutrons c) ions d) photons 13. In helium-3 (or 3He), how many protons are present? a) 1 b) 2 c) 3 d) 4 14. In helium-3 (or 3He), how many neutrons are present? a) 1 b) 2 c) 3 d) 4 15. The relative abundance of an isotope is strongly correlated with its tendency toward nuclear _____, short-lived nuclides quickly go away, while their long-lived counterparts endure. a) fission b) fusion c) decay d) bombardment 16. The isotopic composition of elements is different on different planets. a) True b) False 17. As a general rule, the fewer electrons in an atom’s valence shell, the ____ reactive it is. Lithium, sodium, and potassium have one electron in their outer shells. a) more b) less 18. Every atom is much more stable, or less reactive, with a ____ valence shell. a) partly full b) completely full 19. A positively-charged ion, which has fewer electrons than protons, is known as a: a) anion b) cation c) fermion d) bation 20. Bonds vary widely in their strength. Generally covalent and ionic bonds are often described as “strong”, whereas ______ bonds are generally considered to be “weak”. a) van der Waals b) Faradays c) van Neumans 21. This bonding involves sharing of electrons in which the positively charged nuclei of two or more atoms simultaneously attract the negatively charged electrons that are being shared a) ionic b) covalent c) van der Waals d) metallic 22. This bond results from electrostatic attraction between atoms: a) ionic b) covalent c) van der Waals d) metallic 23. A sea of delocalized electrons causes this bonding: a) ionic b) covalent c) van der Waals d) metallic 24. The chemical composition of minerals may vary between end members of a mineral system. For example the ______ feldspars comprise a continuous series from sodiumrich albite to calcium-rich anorthite. a) plagioclase b) orthoclase c) alkaline d) acidic 25. Crystal structure is based on ____ internal atomic arrangement. a) irregular b) regular c) random d) curvilinear 26. Pyrite and marcasite are both _______, but their arrangement of atoms differs. a) iron sulfide b) lead sulfide c) copper silfide d) silver sulfide 27. The carbon atoms in ______ are arranged into sheets which can slide easily past each other, while the carbon atoms in diamond form a strong, interlocking three-dimensional network. a) sapphire b) graphite c) aluminum d) carbonate 28. TGCFAOQTCD a) Crystal habit b) Hardness scale c) Luster scale 29. Dull to metallic, submetallic, adamantine, vitreous, pearly, resinous, or silky. a) Crystal habit b) Hardness scale c) Luster scale d) Heft scale 30. The color of the powder a mineral leaves after rubbing it on unglazed porcelain. a) color b) streak c) lustre d) iridescense 31. Describes the way a mineral may split apart along various planes. a) fracture b) streak c) lustre d) cleavage 32. In modern physics, the position of electrons about a nucleus are defined in terms of: a) probabilities b) circles c) ellipses d) chromodomes 33. The symbol H+ suggests a: a) hydrogen atom b) hydrogen isotope c) hydrogen cation d) hydrogen anion 34. The tabulated atomic mass of natural carbon is not exactly 12 because carbon in nature always has multiple ________ present. a) electrons b) isotopes c) quarks d) protons 35. This type of bonding due to delocalized electrons leads to malleability, ductility, and high melting points: a) covalent b) ionic c) van der Waals d) metallic 36. The mineral ___________ is 3 on Mohs Scale whereas the mineral ___________ is 9. a) calcite, corundum b) corundum, calcite c) caliche, calcite d) chalcedony, quartz 37. In hand specimens, geologists identify most minerals based on: a) physical properties b) chemical analyses c) xray diffraction 38. This type of chemical bonding is the weakest but occurs in all substances. a) covalent b) ionic c) metallic d) none of the above 39. Quartz, feldspar, mica, chlorite, kaolin, calcite, epidote, olivine, augite, hornblende, magnetite, hematite, limonite: these minerals are: a) common in rocks b) occasionally found c) rare d) extremely rare 40. Characteristics of a mineral do NOT include: a) naturally occurring b) characteristic chemical formula c) crystalline d) organic e) all of the above 41. The chemical composition of a particular mineral may vary between end members. For example, the common mineral plagioclase feldspar varies from being _______-rich to being _________-rich. a) sodium, calcium b) potassium, sodium c) iron, magnesium d) carbon, oxygen 42. Sharing of electrons typifies the __________ bond whereas electrostatic attraction typifies the _______ bond. a) ionic, covalent b) ionic, triclinic c) covalent, ionic d) triclinic, covalent 43. If number of protons does not equal the number of electrons, the atom is a(n) : a) isotope b) ion c) quark d) simplex e) google 44. Atoms generally consist of: a) electrons b) protons c) neutrons d) all of the above 45. Not counting rare minerals, about how many mineral species are at least occasionally encountered in rocks? a) 20 b) 200 c) 2000 46. Carbon is atomic number 6. Carbon-13 has _______ protons and _______ neutrons. a) thirteen, six b) six, seven c) twelve, twenty-five d) twelve, twelve 47. Which of these particles are not nucleons? a) electrons b) neutrons c) protons 48. A mineral with visibly recognizable crystals is said to have good crystal habit; otherwise the mineral is said to be: a) massive b) granular c) compact d) any of the above 49. In chemical bonding, two atoms become linked by moving or sharing __________. a) neutrons b) protons c) electrons 50. The name of an element is determined by the number of ______ present in the ______ of an atom. a) electrons, nucleus b) neutrons, nucleus c) protons, nucleus d) protons, electron cloud e) neutrons, electron cloud 51. Generally ________ and ____________ bonds are strong whereas the ______________ bond is weak. a) covalent, ionic, van der Waals b) van der Waals, covalent, ionic c) ionic, van der Waals, covalent 52. Which of the following are held together by chemical bonds? a) molecules b) crystals c) diatomic gases 53. An ion with fewer electrons than protons is called an ______ and it carries a _________ electric charge. a) cation, positive b) anion, negative c) cation, negative d) anion, positive 54. Two or more minerals may have the same _________ composition but different _______ structure. These are called polymorphs. a) crystal, chemical b) chemical, crystal 55. Industrial minerals are: a) gem quality b) commercially valuable c) tailings d) worthless 56. All minerals are crystalline. If the crystals are too small to see, they can be detected by: a) x-ray diffraction b) cosmic rays c) sound waves d) odor 57. If two atomes have the same number of protons but different numbers of neutrons, the atoms are _______ of the same _________. a) elements, mineral b) atoms, isotope c) elements, isotope d) isotopes, element 58. Modern physics recognizes that electrons show both particle and ______ behavior. a) wave b) emotional c) thermal d) revolting 59. Sodium and potassium have one ______ electron in their outer shells and are extremely ________. a) valence, stable b) inverted, reactive c) valence, reactive d) contaminated, inactive 60. The luster of _______ would be described as ________. a) glass, vitreous b) diamond, dull c) pyrite, silky d) graphite, resinous 61. The minerals ________ and __________ are polymorphs of carbon. a) diamond, graphite b) calcite, silicate c) bonite, bronzite 62. In the ______ atom based on _______ physics, electrons were restricted to circular orbits of fixed energy levels. a) Bohr , quantum b) Rutherford, classical c) Bohr, classical d) Rutherford, quantum 63. Virtually all elements other than ______ and _______ were formed in stars and supernovae long after the Big Bang. a) hydrogen, helium b) carbon, phosphorus c) carbon, oxygen d) silica, carbon 64. Physicist Werner _________ developed the ___________ principle which means that it is impossible to know exactly the position and momentum of a particle. a) Heisenberg, certainty b) Heisenberg, uncertainty c) Bohr, uncertainty d) Bohr, certainty

info@checkyourstudy.com
1 CE 321 PRINCIPLES ENVIRONMENTAL ENGINEERING LAB WORKSHEET No. 1 Due: One (1) Week After Each Lab Section, respectively MICROBIOLOGY Environmental engineers employ microbiology in a variety of applications. Testing for coliform bacteria is used to assess whether pathogens may be present in a water or wastewater sample. Coliforms are a type of bacteria that live in the intestines of warm blooded mammals, such as humans and cattle. They are not pathogens, but if they are present in a sample, it is taken as an indication that fecal material from humans or cattle has contacted the water. If fecal material is present, pathogens may be present, too. In water treatment, coliform counts must average less than one colony per 100 milliliters of sample tested. In wastewater treatment, typical acceptable levels might be 200-colonies/100 mL. There are two standard ways to test for coliforms, the Most Probable Number test, MPN (also called the multiple tube fermentation technique, MTF) and the membrane filter test, MF. Several companies market testing systems that are somewhat simpler, but these cannot be used by treatment plants until they receive EPA approval. Two recently accepted methods are the Minimal Media Test (Colilert system), and the Presence-Absence coliform test (P-A test). Wastewater treatment plant operators study the microorganism composition of the activated sludge units in order to assess and predict the performance of the biological floc. A sample of mixed liquor from the aeration basin is examined under the microscope, and based on the relative predominance of a variety of organisms that might be present; the operator can tell if the BOD application rates and wasting rates are as they should be. For your worksheet, please submit the items requested below (10 pts. each): 1. Examine a sample of activated sludge under the microscope (To be done together in class). Use the Atlas, Standard Methods, or other references to identify at least 5 different organisms you observed. List them and sketch them neatly on unlined paper. Describe their motility and any other distinctive characteristics as you observed it. 2. Explain what types of organisms you might expect to find in sludge with a high mean cell residence time (MCRT), and explain why these would predominate over the other types. 3. How can the predominance of a certain kind of microorganism in activated sludge affect the settling characteristics of the sludge? Give several examples. 2 4. Explain why coliforms are used as “indicator organisms” for water and wastewater testing. Name two pathogenic bacteria, two pathogenic viruses, and one pathogenic protozoan sometimes found in water supplies. 5. There is also a test for fecal coliforms. Use your class notes and outside references to explain the distinctions between the tests for total and fecal coliforms. Explain why one would use the fecal coliform test instead of the test for total coliforms. 6. Using outside references, indicate typical coliform limits for surface waters used for swimming and fishing; potable water; and wastewater treatment plant effluent. 7). In the recent past, EPA instituted regulations designed to insure that Giardia are removed from the water. Using your text or other references, explain what kind of organism this is, and explain the way in which EPA has set standards to insure they are removed during water treatment. 8. What is meant by “population dynamics”? What two factors usually control the population dynamics of a mixed culture? 9. Use the MPN test data from the samples prepared for class prior to determine the number of coliforms present in the wastewater samples. Please show your work and explain your reasoning. Total Coliforms Raw Intermediate Effluent Sample Volume No. Positive No. Positive No. Positive 10 5 5 4 1 5 5 2 0.1 5 3 1 0.01 5 1 0 0.001 2 1 —- 0.0001 1 —- —- FecalColiforms Raw Intermediate Effluent Sample Volume No. Positive No. Positive No. Positive 10 5 5 2 1 5 4 0 0.1 5 2 1 0.01 1 0 0 0.001 0 0 —– 0.0001 2 —– —– 3 10. Use the membrane filter test data given in class to determine the number of total coliforms and fecal coliforms present in the sample. Please show your work and explain your reasoning. Total Coliforms Fecal Coliforms Dilution Colonies Dilution Colonies Raw Influent 0.1 mL/100 mL 58 1 mL/100 mL 47 Intermediate 1 mL/100 mL 13 10 mL/100 mL 28 Wetland Effluent 10 mL/100 mL 10 100 mL/100 mL 15

1 CE 321 PRINCIPLES ENVIRONMENTAL ENGINEERING LAB WORKSHEET No. 1 Due: One (1) Week After Each Lab Section, respectively MICROBIOLOGY Environmental engineers employ microbiology in a variety of applications. Testing for coliform bacteria is used to assess whether pathogens may be present in a water or wastewater sample. Coliforms are a type of bacteria that live in the intestines of warm blooded mammals, such as humans and cattle. They are not pathogens, but if they are present in a sample, it is taken as an indication that fecal material from humans or cattle has contacted the water. If fecal material is present, pathogens may be present, too. In water treatment, coliform counts must average less than one colony per 100 milliliters of sample tested. In wastewater treatment, typical acceptable levels might be 200-colonies/100 mL. There are two standard ways to test for coliforms, the Most Probable Number test, MPN (also called the multiple tube fermentation technique, MTF) and the membrane filter test, MF. Several companies market testing systems that are somewhat simpler, but these cannot be used by treatment plants until they receive EPA approval. Two recently accepted methods are the Minimal Media Test (Colilert system), and the Presence-Absence coliform test (P-A test). Wastewater treatment plant operators study the microorganism composition of the activated sludge units in order to assess and predict the performance of the biological floc. A sample of mixed liquor from the aeration basin is examined under the microscope, and based on the relative predominance of a variety of organisms that might be present; the operator can tell if the BOD application rates and wasting rates are as they should be. For your worksheet, please submit the items requested below (10 pts. each): 1. Examine a sample of activated sludge under the microscope (To be done together in class). Use the Atlas, Standard Methods, or other references to identify at least 5 different organisms you observed. List them and sketch them neatly on unlined paper. Describe their motility and any other distinctive characteristics as you observed it. 2. Explain what types of organisms you might expect to find in sludge with a high mean cell residence time (MCRT), and explain why these would predominate over the other types. 3. How can the predominance of a certain kind of microorganism in activated sludge affect the settling characteristics of the sludge? Give several examples. 2 4. Explain why coliforms are used as “indicator organisms” for water and wastewater testing. Name two pathogenic bacteria, two pathogenic viruses, and one pathogenic protozoan sometimes found in water supplies. 5. There is also a test for fecal coliforms. Use your class notes and outside references to explain the distinctions between the tests for total and fecal coliforms. Explain why one would use the fecal coliform test instead of the test for total coliforms. 6. Using outside references, indicate typical coliform limits for surface waters used for swimming and fishing; potable water; and wastewater treatment plant effluent. 7). In the recent past, EPA instituted regulations designed to insure that Giardia are removed from the water. Using your text or other references, explain what kind of organism this is, and explain the way in which EPA has set standards to insure they are removed during water treatment. 8. What is meant by “population dynamics”? What two factors usually control the population dynamics of a mixed culture? 9. Use the MPN test data from the samples prepared for class prior to determine the number of coliforms present in the wastewater samples. Please show your work and explain your reasoning. Total Coliforms Raw Intermediate Effluent Sample Volume No. Positive No. Positive No. Positive 10 5 5 4 1 5 5 2 0.1 5 3 1 0.01 5 1 0 0.001 2 1 —- 0.0001 1 —- —- FecalColiforms Raw Intermediate Effluent Sample Volume No. Positive No. Positive No. Positive 10 5 5 2 1 5 4 0 0.1 5 2 1 0.01 1 0 0 0.001 0 0 —– 0.0001 2 —– —– 3 10. Use the membrane filter test data given in class to determine the number of total coliforms and fecal coliforms present in the sample. Please show your work and explain your reasoning. Total Coliforms Fecal Coliforms Dilution Colonies Dilution Colonies Raw Influent 0.1 mL/100 mL 58 1 mL/100 mL 47 Intermediate 1 mL/100 mL 13 10 mL/100 mL 28 Wetland Effluent 10 mL/100 mL 10 100 mL/100 mL 15

info@checkyourstudy.com Whatsapp +919911743277