4. Using your knowledge of the Stevenson’s career management model identify and briefly describe one activity that should be included in an organization’s career management program. Identify which element of the model the activity you identified fits within.

4. Using your knowledge of the Stevenson’s career management model identify and briefly describe one activity that should be included in an organization’s career management program. Identify which element of the model the activity you identified fits within.

Discipline Expertise- There is an apparent type of interdisciplinary in … Read More...
102 Criteria for Source Evaluation Collection (Assign. #3) Total Points Possible=20 (each evaluation worth 3 pts, for a total of 18 pts; up to 2 extra pts given for overall sense of careful polish in the collection) 1. Does the collection contain a correct bibliographic entry (per MLA style guidelines; see Pocket Style Manual)? 2. Does the evaluation (the “Content Summary”) contain a substantial summary that avoids personal commentary (such as “in this outstanding article”) and includes a “big picture” assertion and major “key points”? Are these key points clearly explained with effective use of quotations and paraphrasing (see instructions in “Content Summary” on assignment handout)? 3. Does the collection include substantial objective evaluations that show that the writer has considered the authority and reliability of the source? Does the collection include substantial subjective evaluations that explain the usefulness of the source for the writer’s own project in particular?

102 Criteria for Source Evaluation Collection (Assign. #3) Total Points Possible=20 (each evaluation worth 3 pts, for a total of 18 pts; up to 2 extra pts given for overall sense of careful polish in the collection) 1. Does the collection contain a correct bibliographic entry (per MLA style guidelines; see Pocket Style Manual)? 2. Does the evaluation (the “Content Summary”) contain a substantial summary that avoids personal commentary (such as “in this outstanding article”) and includes a “big picture” assertion and major “key points”? Are these key points clearly explained with effective use of quotations and paraphrasing (see instructions in “Content Summary” on assignment handout)? 3. Does the collection include substantial objective evaluations that show that the writer has considered the authority and reliability of the source? Does the collection include substantial subjective evaluations that explain the usefulness of the source for the writer’s own project in particular?

No expert has answered this question yet. You can browse … Read More...
Tornado Eddy Investigation Abstract The objective of this lab was to write a bunch of jibberish to provide students with a formatting template. Chemical engineering, bioengineering, and environmental engineering are “process engineering” disciplines. Good abstracts contains real content, such as 560 mL/min, 35 deg, and 67 percent yield. Ideal degreed graduates are technically strong, bring broad system perspectives to problem solving, and have the professional “soft skills” to make immediate contributions in the workplace. The senior lab sequence is the “capstone” opportunity to realize this ideal by integrating technical skills and developing professional soft skills to ensure workforce preparedness. The best conclusions are objective and numerical, such as operating conditions of 45 L/min at 32 deg C with expected costs of $4.55/lb. Background Insect exchange processes are often used in bug filtration, as they are effective at removing either positive or negative insects from water. An insect exchange column is a packed or fluidized bed filled with resin beads. Water flows through the column and most of the insects from the water enter the beads, but some of them pass in between the beads, which makes the exchange of insects non-ideal. Insectac 249 resin is a cation exchange resin, as it is being used to attract cationic Ca2+ from the toxic waste stream. This means the resin is negatively charged, and needs to be regenerated with a solution that produces positively charged insects, in this case, salt water which contains Na+ insects. The resin contains acidic styrene backbones which capture the cationic insects in a reversible process. A curve of Ca2+ concentration concentration vs. time was obtained after a standard curve was made to determine how many drops from the low cost barium test kit from Aquarium Pharmaceuticals (API)1 bottle #2 would correspond to a certain concentration in solution. A standard curve works by preparing solutions with known concentrations and testing these concentrations using the kit to create a curve of number of drops from bottle #2 (obtained result) vs. concentration of Ca2+ in solution (desired response). The standard curve can then be used for every test on the prototype and in the field, to quickly and accurately obtain a concentration from the test kit. The barium concentration vs. time curve can be used to calculate the exchange capacity of the resin and, in later tests, the regeneration efficiency. The curves must be used to get the total amount of barium removed from the water, m. Seen in Equation 2, the volumetric flow rate of water, , is multiplied by the integral from tinitial to tfinal of the total concentration of Ca2+ absorbed by the resin as a function of time, C. (2) 1 http://aquariumpharm.com/Products/Product.aspx?ProductID=72 , date accessed: 11/26/10 CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 9 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A graphical trapezoid method was used to evaluate the integral and get the final solution in equivalents of Ca2+ per L, it must be noted that there are 2 equivalents per mole of barium, as the charge of the barium insect is +2. An initial exchange capacity was calculated for the virgin resin, and an adjusted exchange capacity was calculated once the resin was regenerated. The regenerated resin capacity was found by multiplying the virgin resin capacity by the regeneration efficiency, expressed in Equation 3. (3) See Appendix A for the calculation of the exchange capacities and the regeneration efficiency. Materials and Methods Rosalie and Peter Johnson of Corvallis established the Linus Pauling Chair in Chemical Engineering to honor Oregon State University’s most famous graduate. Peter Johnson, former President and owner of Tekmax, Inc., a company which revolutionized battery manufacturing equipment, is a 1955 graduate of the College of Engineering.2 The Chair, also known as the Linus Pauling Distinguished Engineer or Linus Pauling Engineer (LPE), was originally designed to focus on the traditional “capstone” senior lab sequence in the former Department of Chemical Engineering. The focus is now extended to all the process engineering disciplines. The LPE is charged with establishing strong ties with industry, ensuring current and relevant laboratory experiences, and helping upperclass students develop skills in communication, teamwork, project management, and leadership. Include details about lab procedures not sufficiently detailed in the SOP, problems you had, etc. The bulk solution prepared to create the standard curve was used in the second day of testing to obtain the exchange capacity of the insectac 249 resin. The solution was pumped through a bathroom scale into the prototype insect exchange column. 45 mL of resin was rinsed and added to the column. The bed was fluidized as the solution was pumped through the resin, but for the creation of the Ca2+ concentration vs. time curve, the solution was pumped down through the column, as illustrated in the process flow diagram seen in Figure 1. Figure 1. Process sketch of the insect exchange column used for the project. Ref: http://www.generon.co.uk/acatalog/Chromatography.html 2 Harding, P. Viscosity Measurement SOP, Spring, 2010. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 10 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A bathroom scale calibration curve was created to ensure that the 150 mL/min, used to calculate the breakthrough time, would be delivered to the resin. The bathroom scale used was a Dwyer brand with flowrates between 0 and 300 cc/min of water. Originally, values between 120 and 180 mL/min were chosen for the calibration, with three runs for each flowrate, however the bathroom scale values were so far away from the measure values the range was extended to 100 to 200 mL/min. The regeneration experiment was performed using a method similar to that used in the water softening experiment, however instead of using a 640 ppm Ca2+ solution to fill the resin, a 6000 ppm Na+ solution was used to eject the Ca2+ from the resin. Twelve samples times were chosen and adjusted as the experiment progressed, with more than half of the samples taken at times less than 10 minutes, and the last sample taken at 45 minutes. The bulk exit solution was also tested to determine the regeneration efficiency. Results and Discussion The senior lab sequence has its roots in the former Department of Chemical Engineering. CHE 414 and 415 were taught in Winter and Spring and included 6 hours of lab time per week. The School has endeavored to incorporate the courses into the BIOE and ENVE curriculum, and this will be complete in 2008-2009. Recent development of the senior lab course sequence is shown chronologically in Fig. 1. In 2006-2007, CHE 414 and 415 were moved to Fall and Winter to enable CHE 416, an elective independent senior project course. Also that year, BIOE students took BIOE 414 in the Fall and BIOE 415 was developed and taught. No BIOE students enrolled in the optional CHE. In 2007-2008, the program transitioned in a new Linus Pauling Engineer and ENVE 414 was offered. Also, approximately 30 percent of BIOE students enrolled in the optional CHE 416. Accommodating the academic calendars of the three disciplines required a reduction in weekly student lab time from 6 to 3 hours. The expected relationship between coughing rate, y, and length of canine, x, is Bx z y Fe− (1) where F is a pre-exponential constant, B is vitamin B concentration and z is the height of an average trapeze artist. 3 The 2008-2009 brings the challenge of the dramatic enrollment increase shown in Fig. 1 and the first offering of ENVE 415. The result, shown on the right in Fig. 1, is the delivery of the senior lab sequence uniformly across the process engineering disciplines. CBEE 416 is expected to drawn approximately of the students that take the 415 courses. In 2007-2008, 414 and 415 were required for CHEs, 414 and 415 for BIOEs, and only 414 for ENVEs. CHE 416 is ostensibly an elective for all disciplines. In 2008-2009, 414 and 415 is required for all disciplines and CHE 416 will be an elective. The content of 414 is essentially 3 Fundamentals of Momentum, Heat, and Mass Transfer, Welty, J.R. et al., 4th edition, John Wiley & Sons, Inc. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 11 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE identical for all three disciplines, 415 has discipline-specific labs, and 416 consists of senior projects with potentially cross-discipline teams of 2 to 4 students. Tremendous labor and struggling with the lab equipment resulted in the data shown in y = –‐0.29x + 1.71 y = –‐0.25x + 2.03 y = –‐0.135x + 2.20 –‐1.5 –‐1.0 –‐0.5 0.0 0.5 1.0 1.5 2.0 2.5 0 2 4 6 8 10 ln y (units) x (units) ln y_1 ln y_2 ln y_3 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Case 1 Case 2 Case 3 Slope (units) (a) (b) Figure 1. (a) Data for y and x plotted for various values of z and (b) a comparison of slopes for the 3 cases investigate. The log plot slope yields the vitamin B concentration. The slopes were shown to be significantly at the 90% confidence level, but the instructor ran out of time and did not include error bars. The slope changed as predicted by the Snirtenhoffer equation. Improvements to the lab might include advice on how to legally change my name to something less embarrassing. My whole life I have been forced to repeat and spell it. I really feel that this has affected my psychologically. This was perhaps the worst lab I have ever done in my academic career, primarily due to the fact that there was no lab time. I simply typed in this entire report and filled it with jibberish. Some might think nobody will notice, but I know that …… Harding reads every word. Acknowledgments The author acknowledges his elementary teacher for providing truly foundational instruction in addition and subtraction. Jenny Burninbalm was instrumental with guidance on use of the RT-345 dog scratching device. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 12

Tornado Eddy Investigation Abstract The objective of this lab was to write a bunch of jibberish to provide students with a formatting template. Chemical engineering, bioengineering, and environmental engineering are “process engineering” disciplines. Good abstracts contains real content, such as 560 mL/min, 35 deg, and 67 percent yield. Ideal degreed graduates are technically strong, bring broad system perspectives to problem solving, and have the professional “soft skills” to make immediate contributions in the workplace. The senior lab sequence is the “capstone” opportunity to realize this ideal by integrating technical skills and developing professional soft skills to ensure workforce preparedness. The best conclusions are objective and numerical, such as operating conditions of 45 L/min at 32 deg C with expected costs of $4.55/lb. Background Insect exchange processes are often used in bug filtration, as they are effective at removing either positive or negative insects from water. An insect exchange column is a packed or fluidized bed filled with resin beads. Water flows through the column and most of the insects from the water enter the beads, but some of them pass in between the beads, which makes the exchange of insects non-ideal. Insectac 249 resin is a cation exchange resin, as it is being used to attract cationic Ca2+ from the toxic waste stream. This means the resin is negatively charged, and needs to be regenerated with a solution that produces positively charged insects, in this case, salt water which contains Na+ insects. The resin contains acidic styrene backbones which capture the cationic insects in a reversible process. A curve of Ca2+ concentration concentration vs. time was obtained after a standard curve was made to determine how many drops from the low cost barium test kit from Aquarium Pharmaceuticals (API)1 bottle #2 would correspond to a certain concentration in solution. A standard curve works by preparing solutions with known concentrations and testing these concentrations using the kit to create a curve of number of drops from bottle #2 (obtained result) vs. concentration of Ca2+ in solution (desired response). The standard curve can then be used for every test on the prototype and in the field, to quickly and accurately obtain a concentration from the test kit. The barium concentration vs. time curve can be used to calculate the exchange capacity of the resin and, in later tests, the regeneration efficiency. The curves must be used to get the total amount of barium removed from the water, m. Seen in Equation 2, the volumetric flow rate of water, , is multiplied by the integral from tinitial to tfinal of the total concentration of Ca2+ absorbed by the resin as a function of time, C. (2) 1 http://aquariumpharm.com/Products/Product.aspx?ProductID=72 , date accessed: 11/26/10 CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 9 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A graphical trapezoid method was used to evaluate the integral and get the final solution in equivalents of Ca2+ per L, it must be noted that there are 2 equivalents per mole of barium, as the charge of the barium insect is +2. An initial exchange capacity was calculated for the virgin resin, and an adjusted exchange capacity was calculated once the resin was regenerated. The regenerated resin capacity was found by multiplying the virgin resin capacity by the regeneration efficiency, expressed in Equation 3. (3) See Appendix A for the calculation of the exchange capacities and the regeneration efficiency. Materials and Methods Rosalie and Peter Johnson of Corvallis established the Linus Pauling Chair in Chemical Engineering to honor Oregon State University’s most famous graduate. Peter Johnson, former President and owner of Tekmax, Inc., a company which revolutionized battery manufacturing equipment, is a 1955 graduate of the College of Engineering.2 The Chair, also known as the Linus Pauling Distinguished Engineer or Linus Pauling Engineer (LPE), was originally designed to focus on the traditional “capstone” senior lab sequence in the former Department of Chemical Engineering. The focus is now extended to all the process engineering disciplines. The LPE is charged with establishing strong ties with industry, ensuring current and relevant laboratory experiences, and helping upperclass students develop skills in communication, teamwork, project management, and leadership. Include details about lab procedures not sufficiently detailed in the SOP, problems you had, etc. The bulk solution prepared to create the standard curve was used in the second day of testing to obtain the exchange capacity of the insectac 249 resin. The solution was pumped through a bathroom scale into the prototype insect exchange column. 45 mL of resin was rinsed and added to the column. The bed was fluidized as the solution was pumped through the resin, but for the creation of the Ca2+ concentration vs. time curve, the solution was pumped down through the column, as illustrated in the process flow diagram seen in Figure 1. Figure 1. Process sketch of the insect exchange column used for the project. Ref: http://www.generon.co.uk/acatalog/Chromatography.html 2 Harding, P. Viscosity Measurement SOP, Spring, 2010. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 10 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A bathroom scale calibration curve was created to ensure that the 150 mL/min, used to calculate the breakthrough time, would be delivered to the resin. The bathroom scale used was a Dwyer brand with flowrates between 0 and 300 cc/min of water. Originally, values between 120 and 180 mL/min were chosen for the calibration, with three runs for each flowrate, however the bathroom scale values were so far away from the measure values the range was extended to 100 to 200 mL/min. The regeneration experiment was performed using a method similar to that used in the water softening experiment, however instead of using a 640 ppm Ca2+ solution to fill the resin, a 6000 ppm Na+ solution was used to eject the Ca2+ from the resin. Twelve samples times were chosen and adjusted as the experiment progressed, with more than half of the samples taken at times less than 10 minutes, and the last sample taken at 45 minutes. The bulk exit solution was also tested to determine the regeneration efficiency. Results and Discussion The senior lab sequence has its roots in the former Department of Chemical Engineering. CHE 414 and 415 were taught in Winter and Spring and included 6 hours of lab time per week. The School has endeavored to incorporate the courses into the BIOE and ENVE curriculum, and this will be complete in 2008-2009. Recent development of the senior lab course sequence is shown chronologically in Fig. 1. In 2006-2007, CHE 414 and 415 were moved to Fall and Winter to enable CHE 416, an elective independent senior project course. Also that year, BIOE students took BIOE 414 in the Fall and BIOE 415 was developed and taught. No BIOE students enrolled in the optional CHE. In 2007-2008, the program transitioned in a new Linus Pauling Engineer and ENVE 414 was offered. Also, approximately 30 percent of BIOE students enrolled in the optional CHE 416. Accommodating the academic calendars of the three disciplines required a reduction in weekly student lab time from 6 to 3 hours. The expected relationship between coughing rate, y, and length of canine, x, is Bx z y Fe− (1) where F is a pre-exponential constant, B is vitamin B concentration and z is the height of an average trapeze artist. 3 The 2008-2009 brings the challenge of the dramatic enrollment increase shown in Fig. 1 and the first offering of ENVE 415. The result, shown on the right in Fig. 1, is the delivery of the senior lab sequence uniformly across the process engineering disciplines. CBEE 416 is expected to drawn approximately of the students that take the 415 courses. In 2007-2008, 414 and 415 were required for CHEs, 414 and 415 for BIOEs, and only 414 for ENVEs. CHE 416 is ostensibly an elective for all disciplines. In 2008-2009, 414 and 415 is required for all disciplines and CHE 416 will be an elective. The content of 414 is essentially 3 Fundamentals of Momentum, Heat, and Mass Transfer, Welty, J.R. et al., 4th edition, John Wiley & Sons, Inc. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 11 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE identical for all three disciplines, 415 has discipline-specific labs, and 416 consists of senior projects with potentially cross-discipline teams of 2 to 4 students. Tremendous labor and struggling with the lab equipment resulted in the data shown in y = –‐0.29x + 1.71 y = –‐0.25x + 2.03 y = –‐0.135x + 2.20 –‐1.5 –‐1.0 –‐0.5 0.0 0.5 1.0 1.5 2.0 2.5 0 2 4 6 8 10 ln y (units) x (units) ln y_1 ln y_2 ln y_3 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Case 1 Case 2 Case 3 Slope (units) (a) (b) Figure 1. (a) Data for y and x plotted for various values of z and (b) a comparison of slopes for the 3 cases investigate. The log plot slope yields the vitamin B concentration. The slopes were shown to be significantly at the 90% confidence level, but the instructor ran out of time and did not include error bars. The slope changed as predicted by the Snirtenhoffer equation. Improvements to the lab might include advice on how to legally change my name to something less embarrassing. My whole life I have been forced to repeat and spell it. I really feel that this has affected my psychologically. This was perhaps the worst lab I have ever done in my academic career, primarily due to the fact that there was no lab time. I simply typed in this entire report and filled it with jibberish. Some might think nobody will notice, but I know that …… Harding reads every word. Acknowledgments The author acknowledges his elementary teacher for providing truly foundational instruction in addition and subtraction. Jenny Burninbalm was instrumental with guidance on use of the RT-345 dog scratching device. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 12

For any additional help, please contact: info@checkyourstudy.com Call / Whatsapp … Read More...
This assignment provides you the opportunity to reflect on the topics ethics and how one might experience ethical challenges early in one’s career. The attached scenario is based on actual events and used with permission of ASCE. Using the attached scenario and American Society of Civil Engineers (ASCE) code of ethics, develop a response to the questions that are included within the scenario. Your deliverable must be in the form of a memorandum, which could be used as a reference or guideline when discussing the importance of ethics colleagues. When answering the questions you should be specific in identifying the components of the code of ethics you use to reflect on the questions posed and how they would be used to assist someone facing the same scenario. Ethics Scenario and Questions: Last month, Sara was reported to her State’s Engineer’s Board for a possible ethics violation. Tomorrow morning she would meet with the Board and though she felt she had done nothing unethical, Sara’s eyes had been opened to the complexity and gravity of ethical dilemmas in engineering practice. She wished she had sought and/or received better guidance regarding ethical issues earlier in her career. Sara reflected on how she got to this point in her career. When Sara had been a senior Civil Engineering student in an ABET-accredited program at the State University, she immersed herself in her course work. Graduating at the top of her class assured Sara that she would have some choice in her career direction. Knowing that she wanted to become a licensed engineer, Sara took and passed the Fundamentals of Engineering (FE) exam during her senior year and after graduation, went to work as an Engineer Intern (EI) for a company that would allow her to achieve that goal. Sara was excited about her new job — she worked diligently for four years under licensed engineers and was assigned increasing responsibilities. She was now ready to take the Professional Engineer (PE) exam and become licensed. Just before taking the PE licensing exam, Sara’s firm was retained to investigate the structural integrity of an apartment complex that the firm’s client planned to sell. Sara’s supervisor informed her in no uncertain terms that the client required that the structural report remain confidential. Later, the client informed Sara that he planned to sell the occupied property “as is.” During Sara’s investigation she found no significant structural problems with the apartment complex. However, she did observe some electrical deficiencies that she believed violated city codes and could pose a safety hazard to the occupants. Realizing that electrical matters were, in a manner of speaking, not her direct area of expertise, Sara discussed possible approaches with her colleague and friend, Tom. Also an Engineer Intern, Tom had been an officer in the student chapter of ASCE during their college years. During their conversation, Tom commented that based on the ASCE Code of Ethics, he believed Sara had an ethical obligation to disclose this health-safety problem. Sara felt Tom did not appreciate the fact that she had been clearly instructed to keep such information confidential, and she certainly did not want to damage the client relationship. Nevertheless, with reluctance, Sara verbally informed the client about the problem and made an oblique reference to the electrical deficiencies in her report, which her supervisor signed and sealed. Several weeks later, Sara learned that her client did not inform either the residents of the apartment complex or the prospective buyer about her concerns. Although Sara felt confident and pleased with her work on the project, the situation about the electrical deficiencies continued to bother her. She wondered if she had an ethical obligation to do more than just tell the client and state her concerns in her report. The thought of informing the proper authorities occurred to her, especially since the client was not disclosing the potential safety concerns to either the occupants or the buyer. She toyed with the idea of discussing the situation with her immediate supervisor but since everyone seemed satisfied, Sara moved onto other projects and eventually put it out of her mind. Questions to consider (What were the main issues Sara was wrestling with in this situation? ; Do you think Sara had a “right” or an “obligation” to report the deficiency to the proper authorities? ;Who might Sara have spoken with about the dilemma? ; Who should be responsible for what happened – Sara, Sara’s employer, the client, or someone else? ; How does this situation conflict with Sara’s obligation to be faithful to her client? ; Is it wise practice to ignore “gut feelings” that arise? These and other questions will surface again later and most will be considered at that point, but let’s continue for now with Sara’s story. During her first few years with the company, and under the supervision of several managers, Sara was encouraged to become active in technical and professional societies (which was the policy of the company). But then she found her involvement with those groups diminishing as her current supervisor opposed Sara’s participation in meetings and conferences unless she used vacation time. Sara was very frustrated but did not really know how to rectify the situation. In the course of time, Sara attended a meeting with the CEO on a different matter and she took the opportunity to inquire about attending technical and professional society meetings. The CEO reaffirmed that the company thought it important and that he wanted Sara to participate in such meetings. Sara informed her supervisor and though he did begin approving Sara’s requests for leave to participate in society meetings, their relationship was strained. Questions to consider: What might Sara have done differently to seek a remedy and yet preserve her relationship with her supervisor? ; Where could Sara have found guidance in the ASCE Code of Ethics, appropriate to this situation? The story continues….. As Christmas approached the following year, Sara discovered a gift bag on her desk. Inside the gift bag was an expensive honey-glazed spiral cut ham and a Christmas greeting card from a vendor who called on Sara from time to time. This concerned Sara as she felt it might cast doubt on the integrity of their business relationship. She asked around and found that several others received gifts from the vendor as well. After sleeping on it, Sara sent a polite note to the vendor returning the ham. Questions to consider: Was Sara really obligated to return the ham? Or was this taking ethics too far? ; On the other hand, could Sara be obligated to pursue the matter further than just returning the gift she had received? A few years later, friends and colleagues urged Sara, now a highly successful principal in a respected engineering firm, to run for public office. Sara carefully considered this step, realizing it would be a challenge to juggle work, family, and such intense community involvement. Ultimately, she agreed to run and soon found herself immersed in the campaign. A draft political advertisement was prepared that included her photograph, her engineering seal, and the following text: “Vote for Sara! We need an engineer on the City Council. That is simple common sense, isn’t it? Sara is an experienced licensed engineer with years of rich accomplishments, who disdains delays and takes action now!” Questions to consider: Should Sara’s engineering seal be included in the advertisement? ; Should she ask someone in ASCE his or her opinion before deciding? As fate would have it, a few days later, just after announcing her candidacy for City Council, the matter of Sara’s investigation of the apartment complex so many years ago resurfaced. Sara learned that the apartment complex caught on fire, and people had been seriously injured. During the investigation of the cause of the fire, Sara’s report was reviewed, and somehow the cause of the fire was traced to the electrical deficiencies, which she had briefly mentioned. Immediately this hit the local newspapers, attorneys became involved, and subsequently the Licensing Board was asked to look into the ethical responsibilities related to the report. Now, sitting alone by the shore of the lake, Sara pondered her situation. Legally, she felt she might claim some immunity since she was not a licensed engineer at the time of her work on the apartment complex. But professionally, she keenly felt she had let the public down, and she could not get this, or those who had been hurt in the fire, out of her mind. Question to consider: Occasionally, are some elements of the code in conflict with other elements In the backseat of the taxi on the way to the airport, Sara thumbed through her hometown newspaper that she had purchased at a newsstand. She stopped when she saw an editorial about her City Council campaign. The article claimed that, as a result of the allegations against her, she was no longer fit for public office. Could this be true? Question to consider: How should she respond to such claims?

This assignment provides you the opportunity to reflect on the topics ethics and how one might experience ethical challenges early in one’s career. The attached scenario is based on actual events and used with permission of ASCE. Using the attached scenario and American Society of Civil Engineers (ASCE) code of ethics, develop a response to the questions that are included within the scenario. Your deliverable must be in the form of a memorandum, which could be used as a reference or guideline when discussing the importance of ethics colleagues. When answering the questions you should be specific in identifying the components of the code of ethics you use to reflect on the questions posed and how they would be used to assist someone facing the same scenario. Ethics Scenario and Questions: Last month, Sara was reported to her State’s Engineer’s Board for a possible ethics violation. Tomorrow morning she would meet with the Board and though she felt she had done nothing unethical, Sara’s eyes had been opened to the complexity and gravity of ethical dilemmas in engineering practice. She wished she had sought and/or received better guidance regarding ethical issues earlier in her career. Sara reflected on how she got to this point in her career. When Sara had been a senior Civil Engineering student in an ABET-accredited program at the State University, she immersed herself in her course work. Graduating at the top of her class assured Sara that she would have some choice in her career direction. Knowing that she wanted to become a licensed engineer, Sara took and passed the Fundamentals of Engineering (FE) exam during her senior year and after graduation, went to work as an Engineer Intern (EI) for a company that would allow her to achieve that goal. Sara was excited about her new job — she worked diligently for four years under licensed engineers and was assigned increasing responsibilities. She was now ready to take the Professional Engineer (PE) exam and become licensed. Just before taking the PE licensing exam, Sara’s firm was retained to investigate the structural integrity of an apartment complex that the firm’s client planned to sell. Sara’s supervisor informed her in no uncertain terms that the client required that the structural report remain confidential. Later, the client informed Sara that he planned to sell the occupied property “as is.” During Sara’s investigation she found no significant structural problems with the apartment complex. However, she did observe some electrical deficiencies that she believed violated city codes and could pose a safety hazard to the occupants. Realizing that electrical matters were, in a manner of speaking, not her direct area of expertise, Sara discussed possible approaches with her colleague and friend, Tom. Also an Engineer Intern, Tom had been an officer in the student chapter of ASCE during their college years. During their conversation, Tom commented that based on the ASCE Code of Ethics, he believed Sara had an ethical obligation to disclose this health-safety problem. Sara felt Tom did not appreciate the fact that she had been clearly instructed to keep such information confidential, and she certainly did not want to damage the client relationship. Nevertheless, with reluctance, Sara verbally informed the client about the problem and made an oblique reference to the electrical deficiencies in her report, which her supervisor signed and sealed. Several weeks later, Sara learned that her client did not inform either the residents of the apartment complex or the prospective buyer about her concerns. Although Sara felt confident and pleased with her work on the project, the situation about the electrical deficiencies continued to bother her. She wondered if she had an ethical obligation to do more than just tell the client and state her concerns in her report. The thought of informing the proper authorities occurred to her, especially since the client was not disclosing the potential safety concerns to either the occupants or the buyer. She toyed with the idea of discussing the situation with her immediate supervisor but since everyone seemed satisfied, Sara moved onto other projects and eventually put it out of her mind. Questions to consider (What were the main issues Sara was wrestling with in this situation? ; Do you think Sara had a “right” or an “obligation” to report the deficiency to the proper authorities? ;Who might Sara have spoken with about the dilemma? ; Who should be responsible for what happened – Sara, Sara’s employer, the client, or someone else? ; How does this situation conflict with Sara’s obligation to be faithful to her client? ; Is it wise practice to ignore “gut feelings” that arise? These and other questions will surface again later and most will be considered at that point, but let’s continue for now with Sara’s story. During her first few years with the company, and under the supervision of several managers, Sara was encouraged to become active in technical and professional societies (which was the policy of the company). But then she found her involvement with those groups diminishing as her current supervisor opposed Sara’s participation in meetings and conferences unless she used vacation time. Sara was very frustrated but did not really know how to rectify the situation. In the course of time, Sara attended a meeting with the CEO on a different matter and she took the opportunity to inquire about attending technical and professional society meetings. The CEO reaffirmed that the company thought it important and that he wanted Sara to participate in such meetings. Sara informed her supervisor and though he did begin approving Sara’s requests for leave to participate in society meetings, their relationship was strained. Questions to consider: What might Sara have done differently to seek a remedy and yet preserve her relationship with her supervisor? ; Where could Sara have found guidance in the ASCE Code of Ethics, appropriate to this situation? The story continues….. As Christmas approached the following year, Sara discovered a gift bag on her desk. Inside the gift bag was an expensive honey-glazed spiral cut ham and a Christmas greeting card from a vendor who called on Sara from time to time. This concerned Sara as she felt it might cast doubt on the integrity of their business relationship. She asked around and found that several others received gifts from the vendor as well. After sleeping on it, Sara sent a polite note to the vendor returning the ham. Questions to consider: Was Sara really obligated to return the ham? Or was this taking ethics too far? ; On the other hand, could Sara be obligated to pursue the matter further than just returning the gift she had received? A few years later, friends and colleagues urged Sara, now a highly successful principal in a respected engineering firm, to run for public office. Sara carefully considered this step, realizing it would be a challenge to juggle work, family, and such intense community involvement. Ultimately, she agreed to run and soon found herself immersed in the campaign. A draft political advertisement was prepared that included her photograph, her engineering seal, and the following text: “Vote for Sara! We need an engineer on the City Council. That is simple common sense, isn’t it? Sara is an experienced licensed engineer with years of rich accomplishments, who disdains delays and takes action now!” Questions to consider: Should Sara’s engineering seal be included in the advertisement? ; Should she ask someone in ASCE his or her opinion before deciding? As fate would have it, a few days later, just after announcing her candidacy for City Council, the matter of Sara’s investigation of the apartment complex so many years ago resurfaced. Sara learned that the apartment complex caught on fire, and people had been seriously injured. During the investigation of the cause of the fire, Sara’s report was reviewed, and somehow the cause of the fire was traced to the electrical deficiencies, which she had briefly mentioned. Immediately this hit the local newspapers, attorneys became involved, and subsequently the Licensing Board was asked to look into the ethical responsibilities related to the report. Now, sitting alone by the shore of the lake, Sara pondered her situation. Legally, she felt she might claim some immunity since she was not a licensed engineer at the time of her work on the apartment complex. But professionally, she keenly felt she had let the public down, and she could not get this, or those who had been hurt in the fire, out of her mind. Question to consider: Occasionally, are some elements of the code in conflict with other elements In the backseat of the taxi on the way to the airport, Sara thumbed through her hometown newspaper that she had purchased at a newsstand. She stopped when she saw an editorial about her City Council campaign. The article claimed that, as a result of the allegations against her, she was no longer fit for public office. Could this be true? Question to consider: How should she respond to such claims?

MEMO       To: Ms. Sara From: Ethics Monitoring … Read More...
Author Name: BIO 218 Natural History Paper General Formatting: (10%) • 1 Margins correct? • 1 Font correct? • 2 Double-spaced? • 2 Pages numbered? • 2 All sections included? • 2 At least 3 pages of text, not more than 5 pages? Project elements (50%) • Introduction: o 8 General background on topic and species (state scientific name!)? o 2 Goes from general to specific? • Review of Journal Articles: o 4 States topic and hypothesis/hypotheses described in articles? o 3 Reports how research was conducted? o 2 Describes specialized materials used? o 2 Discusses type(s) of data collected and how to be analyzed/compared/used? o 3 Reports what happened in the experiments? o 2 If comparisons made, discusses how they were made? o 2 Figure(s) reproduced and cited? o 2 Table(s) reproduced and cited? • Summary/Conclusion: o 10 Synthesizes the results of the experiments and ties the findings of the articles together? • Literature Cited: o 4 At least 3 journal articles (primary literature) used? o 2 References used in paper properly? o 2 References all listed in this section and formatted correctly? o 2 All references listed are in the body of the paper and all references in the body are listed in this section? *0.5% for each extra citation (>3) that is correctly used* Writing Elements (40%) • /15 Grammar or spelling errors? • /15 Writing is clear and flows logically throughout paper? • /10 Appropriate content in each section? Final Paper Total ( %) = /40 Comments:

Author Name: BIO 218 Natural History Paper General Formatting: (10%) • 1 Margins correct? • 1 Font correct? • 2 Double-spaced? • 2 Pages numbered? • 2 All sections included? • 2 At least 3 pages of text, not more than 5 pages? Project elements (50%) • Introduction: o 8 General background on topic and species (state scientific name!)? o 2 Goes from general to specific? • Review of Journal Articles: o 4 States topic and hypothesis/hypotheses described in articles? o 3 Reports how research was conducted? o 2 Describes specialized materials used? o 2 Discusses type(s) of data collected and how to be analyzed/compared/used? o 3 Reports what happened in the experiments? o 2 If comparisons made, discusses how they were made? o 2 Figure(s) reproduced and cited? o 2 Table(s) reproduced and cited? • Summary/Conclusion: o 10 Synthesizes the results of the experiments and ties the findings of the articles together? • Literature Cited: o 4 At least 3 journal articles (primary literature) used? o 2 References used in paper properly? o 2 References all listed in this section and formatted correctly? o 2 All references listed are in the body of the paper and all references in the body are listed in this section? *0.5% for each extra citation (>3) that is correctly used* Writing Elements (40%) • /15 Grammar or spelling errors? • /15 Writing is clear and flows logically throughout paper? • /10 Appropriate content in each section? Final Paper Total ( %) = /40 Comments:

info@checkyourstudy.com
Memory a. Compare and contrast sensory memory, short-term memory, and long-term memory using school-based examples. b. What works best for you when required to commit facts to memory for both the short-term and long-term? c. Knowing how memory works, how will this impact your instruction? How will you help students to retain and retrieve the information they need to know? Provide a specific strategy that you would utilize in your classroom to ensure that the content makes a lasting impression and is secured in long-term memory.

Memory a. Compare and contrast sensory memory, short-term memory, and long-term memory using school-based examples. b. What works best for you when required to commit facts to memory for both the short-term and long-term? c. Knowing how memory works, how will this impact your instruction? How will you help students to retain and retrieve the information they need to know? Provide a specific strategy that you would utilize in your classroom to ensure that the content makes a lasting impression and is secured in long-term memory.

No expert has answered this question yet. You can browse … Read More...