NAME: _____________________________________________ (print) INTRODUCTORY SURVEYING – MINING ENGINEERING 2400 Second Midterm Exam October 24, 2014 Work all four problems in the space provided. Solutions must be neat and logically presented for full credit. 1. (25 pts) Put an “X” over the letter corresponding to correct answers for the following multiple choice questions. A theodolite is used to estimate a distance using stadia. The stadia factor is 100, the stadia constant is zero, the zenith angle is 90°, the upper reading is 10.20, the rod reading is 7.75 and the lower reading is 5.30. The best estimate for horizontal distance is: (a) 1020 ft; (b) 490 ft; (c) 245 ft; (d) if none of the preceding – provide your answer . From B the azimuth to A is 233° 15′ 30″. The angle right to C is 215° 05′ 15″. The azimuth of C to B is: (a)88°20’45”; (b) 268°20’45”; (c) 250°10’30”; (d) if none of the preceding – provide your answer. A five-level station is described as C3.5/34.1 C4.8/25.0 C6.7/0.0 C9.2/25.0 C10.8/33.6. How wide is the road? (a) 50.0 ft, (b) 67.7 ft, (c) 25.0 ft, (e) if none of the preceding – provide your answer . An engineer used a total station to complete a closed traverse at a construction site. The sum of LAT and sum of DEP were determined to be 0.04 and 0.07 respectively. The total horizontal distance measured 2510.00 ft. What is the corresponding precision? (a) 1/63000; (b) 1/36000; (c) 1/31000; (d) if none of the preceding-provide your answer. The interior angles of a closed six sided traverse measure: 34° 28′ 20″ 185° 37′ 00″ 110° 59′ 20″ 195° 10′ 40″ 81° 40′ 20″ 112° 05′ 20″ In adjusting this traverse, the adjusted value for the first angle is: (a) 34° 28′ 20″; (b) 34° 28′ 10″; ( c) 34° 28′ 30″; (d) if none of the preceding – provide your answer . 2. (15 pts) Given the position of points A and B, determine the azimuth of A to B to the nearest second. Point A 5470.00N 4710.00E Point B 5130.00N 5350.00E 3. (25 pts) The volume of a fill between station 24+00 and 26+00 on a 50-foot wide road is to be determined by the prismoidal method. The three level sections are given by: Stn. 24+00 F10.0 F12.0 F8.0 52.0 0.0 65.0 Stn. 25+00 F8.0 F10.0 F10.0 55.0 0.0 52.0 Stn. 26+00 F12.0 F8.0 F15.0 61.0 0.0 55.0 Determine the volume to the nearest 100 cubic feet. (All fill dimensions are in feet.) (Hint: The area at Stn. 25 is 760 sq ft and the area at Stn. 26 is 801.5 sq ft.) 4. (35 points) The following information was obtained from an angle-right traverse conducted on the surface with a total station (conventional practice for HI and HS, i.e. HS is above the target of interest and, therefore, indicated as negative in the notes): BS IS FS Angle Rt. Zenith Angle SD HI HS A B C 261°12’20” 97° 25’20” 355.33 4.99 -0.33 261°11’40” 262° 34’20” The position of B is N5000.00, E5000.00, El 5000.00. The azimuth of A to B is 49°18’30”. Determine the coordinates and elevation of C. Show and identify all intermediate calculations.

NAME: _____________________________________________ (print) INTRODUCTORY SURVEYING – MINING ENGINEERING 2400 Second Midterm Exam October 24, 2014 Work all four problems in the space provided. Solutions must be neat and logically presented for full credit. 1. (25 pts) Put an “X” over the letter corresponding to correct answers for the following multiple choice questions. A theodolite is used to estimate a distance using stadia. The stadia factor is 100, the stadia constant is zero, the zenith angle is 90°, the upper reading is 10.20, the rod reading is 7.75 and the lower reading is 5.30. The best estimate for horizontal distance is: (a) 1020 ft; (b) 490 ft; (c) 245 ft; (d) if none of the preceding – provide your answer . From B the azimuth to A is 233° 15′ 30″. The angle right to C is 215° 05′ 15″. The azimuth of C to B is: (a)88°20’45”; (b) 268°20’45”; (c) 250°10’30”; (d) if none of the preceding – provide your answer. A five-level station is described as C3.5/34.1 C4.8/25.0 C6.7/0.0 C9.2/25.0 C10.8/33.6. How wide is the road? (a) 50.0 ft, (b) 67.7 ft, (c) 25.0 ft, (e) if none of the preceding – provide your answer . An engineer used a total station to complete a closed traverse at a construction site. The sum of LAT and sum of DEP were determined to be 0.04 and 0.07 respectively. The total horizontal distance measured 2510.00 ft. What is the corresponding precision? (a) 1/63000; (b) 1/36000; (c) 1/31000; (d) if none of the preceding-provide your answer. The interior angles of a closed six sided traverse measure: 34° 28′ 20″ 185° 37′ 00″ 110° 59′ 20″ 195° 10′ 40″ 81° 40′ 20″ 112° 05′ 20″ In adjusting this traverse, the adjusted value for the first angle is: (a) 34° 28′ 20″; (b) 34° 28′ 10″; ( c) 34° 28′ 30″; (d) if none of the preceding – provide your answer . 2. (15 pts) Given the position of points A and B, determine the azimuth of A to B to the nearest second. Point A 5470.00N 4710.00E Point B 5130.00N 5350.00E 3. (25 pts) The volume of a fill between station 24+00 and 26+00 on a 50-foot wide road is to be determined by the prismoidal method. The three level sections are given by: Stn. 24+00 F10.0 F12.0 F8.0 52.0 0.0 65.0 Stn. 25+00 F8.0 F10.0 F10.0 55.0 0.0 52.0 Stn. 26+00 F12.0 F8.0 F15.0 61.0 0.0 55.0 Determine the volume to the nearest 100 cubic feet. (All fill dimensions are in feet.) (Hint: The area at Stn. 25 is 760 sq ft and the area at Stn. 26 is 801.5 sq ft.) 4. (35 points) The following information was obtained from an angle-right traverse conducted on the surface with a total station (conventional practice for HI and HS, i.e. HS is above the target of interest and, therefore, indicated as negative in the notes): BS IS FS Angle Rt. Zenith Angle SD HI HS A B C 261°12’20” 97° 25’20” 355.33 4.99 -0.33 261°11’40” 262° 34’20” The position of B is N5000.00, E5000.00, El 5000.00. The azimuth of A to B is 49°18’30”. Determine the coordinates and elevation of C. Show and identify all intermediate calculations.

info@checkyourstudy.com Whatsapp +919911743277
Annotated Bibliography Annotated Bibliography. For each of the tasks which are undertaken as part of this portfolio you will normally be expected to “read round” the subject area. It isn’t really sufficient just to read the relevant chapter in the textbook; you will also find information in periodicals, magazines, quality newspapers etc etc and certainly by searching the Internet. Just as in any other assignment in UWBS you are expected to identify your sources in a bibliography using Harvard referencing. An annotated bibliography is the same as a conventional bibliography but includes comments on what you found particularly useful in each of the texts that you cite. On this page you will present your annotated bibliography. You can either write the assignment here or upload it as a word document. Some of you may be using Endnote in preparation your dissertation, and in that case you could create a new endnote library for this assignment and then upload the bibliography from that endnote library. During the briefing sessions you will be shown how to upload a file and create a link. You can also find help if you click on the large ? on the Pebble beach opening page. Once you have finished, delete the red text.

Annotated Bibliography Annotated Bibliography. For each of the tasks which are undertaken as part of this portfolio you will normally be expected to “read round” the subject area. It isn’t really sufficient just to read the relevant chapter in the textbook; you will also find information in periodicals, magazines, quality newspapers etc etc and certainly by searching the Internet. Just as in any other assignment in UWBS you are expected to identify your sources in a bibliography using Harvard referencing. An annotated bibliography is the same as a conventional bibliography but includes comments on what you found particularly useful in each of the texts that you cite. On this page you will present your annotated bibliography. You can either write the assignment here or upload it as a word document. Some of you may be using Endnote in preparation your dissertation, and in that case you could create a new endnote library for this assignment and then upload the bibliography from that endnote library. During the briefing sessions you will be shown how to upload a file and create a link. You can also find help if you click on the large ? on the Pebble beach opening page. Once you have finished, delete the red text.

Annotated Bibliography:   Mayaavi.com, (2015). Strategy, Innovation and Entrepreneurship: : … Read More...
In the article, “The Moral Person” it talks about Lawrence Kohlberg’s stages of moral development. Briefly explain the 3 Conventional levels (pre-conventional, conventional, and post-conventional). How may these stages impact one’s ethics? Think about how culture or the social environment affects our framework for coming up with any moral or ethical answer. (Hei Lam Kwan) In the article, they talked about a push for a “global ethic” or “one world”. Do you think this is possible? Besides the Golden Rule are there any other examples of shared ethics around the world? (Nicole Thompson) The article explained that often people know the distinction between right and wrong, but still do the wrong thing. If people know what is morally right, why do they act in ways that are morally wrong? (Nicole Thompson) In McLaren’s reading, he gives us a description on an idea of personhood to help us understand a moral person. He mentions a quote from the philosopher, Sarvepalli Rhadakrishnan that caught my interest. He says, “The self is not an object which we can find in knowledge, for it is the very condition of knowledge. It is different from all objects, the body, the senses, the empirical self itself (36)”. In your opinion, what exactly does he mean by stating that? Does thinking of yourself this way help you morally? (Maggy Ergun) Video: In the video, Damon Horowitz talks about the different approaches to figuring out what is right and what is wrong. Some of them included Plato, who believed that he could uncover the “truths about Justice”, Aristotle, who thought that people should use their current knowledge to make the right decision of here and now to their best ability, and Utilitarianism, who thought it was about measuring out the options to see which one had the most benefit for the greatest amount of people. Which approach do you think is best? Would you suggest another approach? (Nicole Thompson) Damon Horowitz explains the huge power we have and that is knowledge and data we receive from technology. With all this power in our hands, you can have any information you would like to obtain whether it’s on an object or human being. And as technology keeps rising, the more advanced it keeps getting. When it comes to privacy and dignity, do you think it is fair for one another to have this huge power on us? Will this be better for our future or worse? (Maggy Ergun) Horowitz describes how we rely more on our smart devices then actual moral thinking. (Mobile operating system then moral operating system) If we were to create a moral operating system, do you think that will help provoke people from making bad/evil decisions and guide us to better? Or do those bad decisions just come instantly without much thought? (Maggy Ergun) In the video it states, “what we need is a moral operating system.” What are the possible flaws in relying on a machine/software for answering ethical problems? Discuss and list at least one problem we may encounter from relying on such a system for an ethical solution. (Hei Lam Kwan) Reviewing the answers to the previous questions given, do you think there is only one right answer to any ethical question and why? (Hei Lam Kwan) http://www.ted.com/talks/damon_horowitz?language=en this is the video

In the article, “The Moral Person” it talks about Lawrence Kohlberg’s stages of moral development. Briefly explain the 3 Conventional levels (pre-conventional, conventional, and post-conventional). How may these stages impact one’s ethics? Think about how culture or the social environment affects our framework for coming up with any moral or ethical answer. (Hei Lam Kwan) In the article, they talked about a push for a “global ethic” or “one world”. Do you think this is possible? Besides the Golden Rule are there any other examples of shared ethics around the world? (Nicole Thompson) The article explained that often people know the distinction between right and wrong, but still do the wrong thing. If people know what is morally right, why do they act in ways that are morally wrong? (Nicole Thompson) In McLaren’s reading, he gives us a description on an idea of personhood to help us understand a moral person. He mentions a quote from the philosopher, Sarvepalli Rhadakrishnan that caught my interest. He says, “The self is not an object which we can find in knowledge, for it is the very condition of knowledge. It is different from all objects, the body, the senses, the empirical self itself (36)”. In your opinion, what exactly does he mean by stating that? Does thinking of yourself this way help you morally? (Maggy Ergun) Video: In the video, Damon Horowitz talks about the different approaches to figuring out what is right and what is wrong. Some of them included Plato, who believed that he could uncover the “truths about Justice”, Aristotle, who thought that people should use their current knowledge to make the right decision of here and now to their best ability, and Utilitarianism, who thought it was about measuring out the options to see which one had the most benefit for the greatest amount of people. Which approach do you think is best? Would you suggest another approach? (Nicole Thompson) Damon Horowitz explains the huge power we have and that is knowledge and data we receive from technology. With all this power in our hands, you can have any information you would like to obtain whether it’s on an object or human being. And as technology keeps rising, the more advanced it keeps getting. When it comes to privacy and dignity, do you think it is fair for one another to have this huge power on us? Will this be better for our future or worse? (Maggy Ergun) Horowitz describes how we rely more on our smart devices then actual moral thinking. (Mobile operating system then moral operating system) If we were to create a moral operating system, do you think that will help provoke people from making bad/evil decisions and guide us to better? Or do those bad decisions just come instantly without much thought? (Maggy Ergun) In the video it states, “what we need is a moral operating system.” What are the possible flaws in relying on a machine/software for answering ethical problems? Discuss and list at least one problem we may encounter from relying on such a system for an ethical solution. (Hei Lam Kwan) Reviewing the answers to the previous questions given, do you think there is only one right answer to any ethical question and why? (Hei Lam Kwan) http://www.ted.com/talks/damon_horowitz?language=en this is the video

info@checkyourstudy.com
salt water contains n sodium ions (Na+) per cubic meter and n chloride ions (cI-) per cubic meter. A battery is connected to metal. A battery is connected to metal rods that dip into a narrow pipe full of the salt water. the cross sectional area of the pipe is A what is the direction of conventional current flow in the salt water? 1. to the right, 2. to the left, 3. there is no conventional current because the motion of the positive and negative ions cancel each other out.

salt water contains n sodium ions (Na+) per cubic meter and n chloride ions (cI-) per cubic meter. A battery is connected to metal. A battery is connected to metal rods that dip into a narrow pipe full of the salt water. the cross sectional area of the pipe is A what is the direction of conventional current flow in the salt water? 1. to the right, 2. to the left, 3. there is no conventional current because the motion of the positive and negative ions cancel each other out.

answer 2
Two identical circular loops of wire, perpendicular to the page, carry the same conventional current I. In the Front View what is the direction of the magnetic field due to the loops at the location P, which is midway between the loops? 1. a 2. b 3. c 4. d 5. e 6. f 7. g

Two identical circular loops of wire, perpendicular to the page, carry the same conventional current I. In the Front View what is the direction of the magnetic field due to the loops at the location P, which is midway between the loops? 1. a 2. b 3. c 4. d 5. e 6. f 7. g

answer  1
Assignment 3 Due: 11:59pm on Friday, February 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Problem 2.68 As a science project, you drop a watermelon off the top of the Empire State Building, 320 m above the sidewalk. It so happens that Superman flies by at the instant you release the watermelon. Superman is headed straight down with a speed of 36.0 . Part A How fast is the watermelon going when it passes Superman? Express your answer with the appropriate units. ANSWER: Correct Problem 2.63 A motorist is driving at when she sees that a traffic light ahead has just turned red. She knows that this light stays red for , and she wants to reach the light just as it turns green again. It takes her to step on the brakes and begin slowing. Part A What is her speed as she reaches the light at the instant it turns green? Express your answer with the appropriate units. ANSWER: m/s 72.0 ms 20 m/s 200 m 15 s 1.0 s 5.71 ms Correct Conceptual Question 4.1 Part A At this instant, is the particle in the figurespeeding up, slowing down, or traveling at constant speed? ANSWER: Correct Part B Is this particle curving to the right, curving to the left, or traveling straight? Speeding up Slowing down Traveling at constant speed ANSWER: Correct Conceptual Question 4.2 Part A At this instant, is the particle in the following figure speeding up, slowing down, or traveling at constant speed? ANSWER: Curving to the right Curving to the left Traveling straight Correct Part B Is this particle curving upward, curving downward, or traveling straight? ANSWER: Correct Problem 4.8 A particle’s trajectory is described by and , where is in s. Part A What is the particle’s speed at ? ANSWER: The particle is speeding up. The particle is slowing down. The particle is traveling at constant speed. The particle is curving upward. The particle is curving downward. The particle is traveling straight. x = ( 1 −2 ) m 2 t3 t2 y = ( 1 −2t) m 2 t2 t t = 0 s v = 2 m/s Correct Part B What is the particle’s speed at ? Express your answer using two significant figures. ANSWER: Correct Part C What is the particle’s direction of motion, measured as an angle from the x-axis, at ? Express your answer using two significant figures. ANSWER: Correct Part D What is the particle’s direction of motion, measured as an angle from the x-axis, at ? Express your answer using two significant figures. ANSWER: t = 5.0s v = 18 m/s t = 0 s  = -90  counterclockwise from the +x axis. t = 5.0s  = 9.7  counterclockwise from the +x axis. Correct Problem 4.9 A rocket-powered hockey puck moves on a horizontal frictionless table. The figure shows the graph of and the figure shows the graph of , the x- and y-components of the puck’s velocity, respectively. The puck starts at the origin. Part A In which direction is the puck moving at = 3 ? Give your answer as an angle from the x-axis. Express your answer using two significant figures. ANSWER: Correct Part B vx vy t s = 51   above the x-axis How far from the origin is the puck at 5 ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 4.13 A rifle is aimed horizontally at a target 51.0 away. The bullet hits the target 1.50 below the aim point. You may want to review ( pages 91 – 95) . For help with math skills, you may want to review: Quadratic Equations Part A What was the bullet’s flight time? Express your answer with the appropriate units. Hint 1. How to approach the problem Start by drawing a picture of the bullet’s trajectory, including where it leaves the gun and where it hits the target. You can assume that the gun was held parallel to the ground. Label the distances given in the problem. Choose an x-y coordinate system, making sure to label the origin. It is conventional to have x in the horizontal direction and y in the vertical direction. What is the y coordinate when the bullet leaves the gun? What is the y coordinate when it hits the target? What is the initial velocity in the y direction? What is the acceleration in the y direction? What is the equation that describes the motion in the vertical y direction as a function of time? Can you use the equation for to determine the time of flight? Why was it not necessary to include the motion in the x direction? s s = 180 cm m cm y(t) y(t) ANSWER: Correct Part B What was the bullet’s speed as it left the barrel? Express your answer with the appropriate units. Hint 1. How to approach the problem In the coordinate system introduced in Part A, what are the x coordinates when the bullet leaves the gun and when it hits the target? Is there any acceleration in the x direction? What is the equation that describes the motion in the horizontal x direction as a function of time? Can you use the equation for to determine the initial velocity? ANSWER: Correct Introduction to Projectile Motion Learning Goal: To understand the basic concepts of projectile motion. Projectile motion may seem rather complex at first. However, by breaking it down into components, you will find that it is really no different than the one-dimensional motions that you have already studied. One of the most often used techniques in physics is to divide two- and three-dimensional quantities into components. For instance, in projectile motion, a particle has some initial velocity . In general, this velocity can point in any direction on the xy plane and can have any magnitude. To make a problem more managable, it is common to break up such a quantity into its x component and its y component . 5.53×10−2 s x(t) x(t) 922 ms v vx vy Consider a particle with initial velocity that has magnitude 12.0 and is directed 60.0 above the negative x axis. Part A What is the x component of ? Express your answer in meters per second. ANSWER: Correct Part B What is the y component of ? Express your answer in meters per second. ANSWER: Correct Breaking up the velocities into components is particularly useful when the components do not affect each other. Eventually, you will learn about situations in which the components of velocity do affect one another, but for now you will only be looking at problems where they do not. So, if there is acceleration in the x direction but not in the y direction, then the x component of the velocity will change, but the y component of the velocity will not. Part C Look at this applet. The motion diagram for a projectile is displayed, as are the motion diagrams for each component. The x-component motion diagram is what you would get if you shined a spotlight down on the particle as it moved and recorded the motion of its shadow. Similarly, if you shined a spotlight to the left and recorded the particle’s shadow, you would get the motion diagram for its y component. How would you describe the two motion diagrams for the components? ANSWER: v m/s degrees vx v vx = -6.00 m/s vy v vy = 10.4 m/s Correct As you can see, the two components of the motion obey their own independent kinematic laws. For the vertical component, there is an acceleration downward with magnitude . Thus, you can calculate the vertical position of the particle at any time using the standard kinematic equation . Similarly, there is no acceleration in the horizontal direction, so the horizontal position of the particle is given by the standard kinematic equation . Now, consider this applet. Two balls are simultaneously dropped from a height of 5.0 . Part D How long does it take for the balls to reach the ground? Use 10 for the magnitude of the acceleration due to gravity. Express your answer in seconds to two significant figures. Hint 1. How to approach the problem The balls are released from rest at a height of 5.0 at time . Using these numbers and basic kinematics, you can determine the amount of time it takes for the balls to reach the ground. ANSWER: Correct This situation, which you have dealt with before (motion under the constant acceleration of gravity), is actually a special case of projectile motion. Think of this as projectile motion where the horizontal component of the initial velocity is zero. Both the vertical and horizontal components exhibit motion with constant nonzero acceleration. The vertical component exhibits motion with constant nonzero acceleration, whereas the horizontal component exhibits constant-velocity motion. The vertical component exhibits constant-velocity motion, whereas the horizontal component exhibits motion with constant nonzero acceleration. Both the vertical and horizontal components exhibit motion with constant velocity. g = 10 m/s2 y = y0 + v0 t + (1/2)at2 x = x0 + v0 t m tg m/s2 m t = 0 s tg = 1.0 s Part E Imagine the ball on the left is given a nonzero initial speed in the horizontal direction, while the ball on the right continues to fall with zero initial velocity. What horizontal speed must the ball on the left start with so that it hits the ground at the same position as the ball on the right? Remember that the two balls are released, starting a horizontal distance of 3.0 apart. Express your answer in meters per second to two significant figures. Hint 1. How to approach the problem Recall from Part B that the horizontal component of velocity does not change during projectile motion. Therefore, you need to find the horizontal component of velocity such that, in a time , the ball will move horizontally 3.0 . You can assume that its initial x coordinate is . ANSWER: Correct You can adjust the horizontal speeds in this applet. Notice that regardless of what horizontal speeds you give to the balls, they continue to move vertically in the same way (i.e., they are at the same y coordinate at the same time). Problem 4.12 A ball thrown horizontally at 27 travels a horizontal distance of 49 before hitting the ground. Part A From what height was the ball thrown? Express your answer using two significant figures with the appropriate units. ANSWER: vx m vx tg = 1.0 s m x0 = 0.0 m vx = 3.0 m/s m/s m h = 16 m Correct Enhanced EOC: Problem 4.20 The figure shows the angular-velocity-versus-time graph for a particle moving in a circle. You may want to review ( page ) . For help with math skills, you may want to review: The Definite Integral Part A How many revolutions does the object make during the first 3.5 ? Express your answer using two significant figures. You did not open hints for this part. ANSWER: s n = Incorrect; Try Again Problem 4.26 To withstand “g-forces” of up to 10 g’s, caused by suddenly pulling out of a steep dive, fighter jet pilots train on a “human centrifuge.” 10 g’s is an acceleration of . Part A If the length of the centrifuge arm is 10.0 , at what speed is the rider moving when she experiences 10 g’s? Express your answer with the appropriate units. ANSWER: Correct Problem 4.28 Your roommate is working on his bicycle and has the bike upside down. He spins the 60.0 -diameter wheel, and you notice that a pebble stuck in the tread goes by three times every second. Part A What is the pebble’s speed? Express your answer with the appropriate units. ANSWER: Correct 98 m/s2 m 31.3 ms cm 5.65 ms Part B What is the pebble’s acceleration? Express your answer with the appropriate units. ANSWER: Correct Enhanced EOC: Problem 4.43 On the Apollo 14 mission to the moon, astronaut Alan Shepard hit a golf ball with a 6 iron. The acceleration due to gravity on the moon is 1/6 of its value on earth. Suppose he hits the ball with a speed of 13 at an angle 50 above the horizontal. You may want to review ( pages 90 – 95) . For help with math skills, you may want to review: Quadratic Equations Part A How much farther did the ball travel on the moon than it would have on earth? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Start by drawing a picture of the path of the golf ball, showing its starting and ending points. Choose a coordinate system, and label the origin. It is conventional to let x be the horizontal direction and y the vertical direction. What is the initial velocity in the x and y directions? What is the acceleration in the x and y directions on the moon and on the earth? What are the equations for and as a function of time, and , respectively? What is the y coordinate when the golf ball hits the ground? Can you use this information to determine the time of flight on the moon and on the earth? 107 m s2 m/s  x y x(t) y(t) Once you have the time of flight, how can you use the equation to determine the total distance traveled? Compare the distance traveled on the moon to the distance traveled on the earth . ANSWER: Correct Part B For how much more time was the ball in flight? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the equation describing as a function of time? What is the initial x component of the ball’s velocity? How are the initial x component of the ball’s velocity and the distance traveled related to the time of flight? What is the difference between the time of flight on the moon and on earth? ANSWER: Correct Problem 4.42 In the Olympic shotput event, an athlete throws the shot with an initial speed of 12 at a 40.0 angle from the horizontal. The shot leaves her hand at a height of 1.8 above the ground. x(t) L = 85 m x(t) x t = 10 s m/s  m Part A How far does the shot travel? Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part B Repeat the calculation of part (a) for angles of 42.5 , 45.0 , and 47.5 . Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part C Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part D x = 16.36 m    x(42.5 ) = 16.39 m x(45.0 ) = 16.31 m Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part E At what angle of release does she throw the farthest? ANSWER: Correct Problem 4.44 A ball is thrown toward a cliff of height with a speed of 32 and an angle of 60 above horizontal. It lands on the edge of the cliff 3.2 later. Part A How high is the cliff? Express your answer to two significant figures and include the appropriate units. ANSWER: x(47.5 ) = 16.13 m 40.0 42.5 45.0 47.5 h m/s  s h = 39 m Answer Requested Part B What was the maximum height of the ball? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the ball’s impact speed? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 4.58 A typical laboratory centrifuge rotates at 3600 . Test tubes have to be placed into a centrifuge very carefully because of the very large accelerations. Part A What is the acceleration at the end of a test tube that is 10 from the axis of rotation? Express your answer with the appropriate units. hmax = 39 m v = 16 ms rpm cm ANSWER: Correct Part B For comparison, what is the magnitude of the acceleration a test tube would experience if dropped from a height of 1.0 and stopped in a 1.7-ms-long encounter with a hard floor? Express your answer with the appropriate units. ANSWER: Correct Problem 4.62 Communications satellites are placed in a circular orbit where they stay directly over a fixed point on the equator as the earth rotates. These are called geosynchronous orbits. The radius of the earth is , and the altitude of a geosynchronous orbit is ( 22000 miles). Part A What is the speed of a satellite in a geosynchronous orbit? Express your answer with the appropriate units. ANSWER: Correct a = 1.42×104 m s2 m a = 2610 m s2 6.37 × 106m 3.58 × 107m  v = 3070 ms Part B What is the magnitude of the acceleration of a satellite in a geosynchronous orbit? Express your answer with the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 89.5%. You received 103.82 out of a possible total of 116 points. a = 0.223 m s2

Assignment 3 Due: 11:59pm on Friday, February 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Problem 2.68 As a science project, you drop a watermelon off the top of the Empire State Building, 320 m above the sidewalk. It so happens that Superman flies by at the instant you release the watermelon. Superman is headed straight down with a speed of 36.0 . Part A How fast is the watermelon going when it passes Superman? Express your answer with the appropriate units. ANSWER: Correct Problem 2.63 A motorist is driving at when she sees that a traffic light ahead has just turned red. She knows that this light stays red for , and she wants to reach the light just as it turns green again. It takes her to step on the brakes and begin slowing. Part A What is her speed as she reaches the light at the instant it turns green? Express your answer with the appropriate units. ANSWER: m/s 72.0 ms 20 m/s 200 m 15 s 1.0 s 5.71 ms Correct Conceptual Question 4.1 Part A At this instant, is the particle in the figurespeeding up, slowing down, or traveling at constant speed? ANSWER: Correct Part B Is this particle curving to the right, curving to the left, or traveling straight? Speeding up Slowing down Traveling at constant speed ANSWER: Correct Conceptual Question 4.2 Part A At this instant, is the particle in the following figure speeding up, slowing down, or traveling at constant speed? ANSWER: Curving to the right Curving to the left Traveling straight Correct Part B Is this particle curving upward, curving downward, or traveling straight? ANSWER: Correct Problem 4.8 A particle’s trajectory is described by and , where is in s. Part A What is the particle’s speed at ? ANSWER: The particle is speeding up. The particle is slowing down. The particle is traveling at constant speed. The particle is curving upward. The particle is curving downward. The particle is traveling straight. x = ( 1 −2 ) m 2 t3 t2 y = ( 1 −2t) m 2 t2 t t = 0 s v = 2 m/s Correct Part B What is the particle’s speed at ? Express your answer using two significant figures. ANSWER: Correct Part C What is the particle’s direction of motion, measured as an angle from the x-axis, at ? Express your answer using two significant figures. ANSWER: Correct Part D What is the particle’s direction of motion, measured as an angle from the x-axis, at ? Express your answer using two significant figures. ANSWER: t = 5.0s v = 18 m/s t = 0 s  = -90  counterclockwise from the +x axis. t = 5.0s  = 9.7  counterclockwise from the +x axis. Correct Problem 4.9 A rocket-powered hockey puck moves on a horizontal frictionless table. The figure shows the graph of and the figure shows the graph of , the x- and y-components of the puck’s velocity, respectively. The puck starts at the origin. Part A In which direction is the puck moving at = 3 ? Give your answer as an angle from the x-axis. Express your answer using two significant figures. ANSWER: Correct Part B vx vy t s = 51   above the x-axis How far from the origin is the puck at 5 ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 4.13 A rifle is aimed horizontally at a target 51.0 away. The bullet hits the target 1.50 below the aim point. You may want to review ( pages 91 – 95) . For help with math skills, you may want to review: Quadratic Equations Part A What was the bullet’s flight time? Express your answer with the appropriate units. Hint 1. How to approach the problem Start by drawing a picture of the bullet’s trajectory, including where it leaves the gun and where it hits the target. You can assume that the gun was held parallel to the ground. Label the distances given in the problem. Choose an x-y coordinate system, making sure to label the origin. It is conventional to have x in the horizontal direction and y in the vertical direction. What is the y coordinate when the bullet leaves the gun? What is the y coordinate when it hits the target? What is the initial velocity in the y direction? What is the acceleration in the y direction? What is the equation that describes the motion in the vertical y direction as a function of time? Can you use the equation for to determine the time of flight? Why was it not necessary to include the motion in the x direction? s s = 180 cm m cm y(t) y(t) ANSWER: Correct Part B What was the bullet’s speed as it left the barrel? Express your answer with the appropriate units. Hint 1. How to approach the problem In the coordinate system introduced in Part A, what are the x coordinates when the bullet leaves the gun and when it hits the target? Is there any acceleration in the x direction? What is the equation that describes the motion in the horizontal x direction as a function of time? Can you use the equation for to determine the initial velocity? ANSWER: Correct Introduction to Projectile Motion Learning Goal: To understand the basic concepts of projectile motion. Projectile motion may seem rather complex at first. However, by breaking it down into components, you will find that it is really no different than the one-dimensional motions that you have already studied. One of the most often used techniques in physics is to divide two- and three-dimensional quantities into components. For instance, in projectile motion, a particle has some initial velocity . In general, this velocity can point in any direction on the xy plane and can have any magnitude. To make a problem more managable, it is common to break up such a quantity into its x component and its y component . 5.53×10−2 s x(t) x(t) 922 ms v vx vy Consider a particle with initial velocity that has magnitude 12.0 and is directed 60.0 above the negative x axis. Part A What is the x component of ? Express your answer in meters per second. ANSWER: Correct Part B What is the y component of ? Express your answer in meters per second. ANSWER: Correct Breaking up the velocities into components is particularly useful when the components do not affect each other. Eventually, you will learn about situations in which the components of velocity do affect one another, but for now you will only be looking at problems where they do not. So, if there is acceleration in the x direction but not in the y direction, then the x component of the velocity will change, but the y component of the velocity will not. Part C Look at this applet. The motion diagram for a projectile is displayed, as are the motion diagrams for each component. The x-component motion diagram is what you would get if you shined a spotlight down on the particle as it moved and recorded the motion of its shadow. Similarly, if you shined a spotlight to the left and recorded the particle’s shadow, you would get the motion diagram for its y component. How would you describe the two motion diagrams for the components? ANSWER: v m/s degrees vx v vx = -6.00 m/s vy v vy = 10.4 m/s Correct As you can see, the two components of the motion obey their own independent kinematic laws. For the vertical component, there is an acceleration downward with magnitude . Thus, you can calculate the vertical position of the particle at any time using the standard kinematic equation . Similarly, there is no acceleration in the horizontal direction, so the horizontal position of the particle is given by the standard kinematic equation . Now, consider this applet. Two balls are simultaneously dropped from a height of 5.0 . Part D How long does it take for the balls to reach the ground? Use 10 for the magnitude of the acceleration due to gravity. Express your answer in seconds to two significant figures. Hint 1. How to approach the problem The balls are released from rest at a height of 5.0 at time . Using these numbers and basic kinematics, you can determine the amount of time it takes for the balls to reach the ground. ANSWER: Correct This situation, which you have dealt with before (motion under the constant acceleration of gravity), is actually a special case of projectile motion. Think of this as projectile motion where the horizontal component of the initial velocity is zero. Both the vertical and horizontal components exhibit motion with constant nonzero acceleration. The vertical component exhibits motion with constant nonzero acceleration, whereas the horizontal component exhibits constant-velocity motion. The vertical component exhibits constant-velocity motion, whereas the horizontal component exhibits motion with constant nonzero acceleration. Both the vertical and horizontal components exhibit motion with constant velocity. g = 10 m/s2 y = y0 + v0 t + (1/2)at2 x = x0 + v0 t m tg m/s2 m t = 0 s tg = 1.0 s Part E Imagine the ball on the left is given a nonzero initial speed in the horizontal direction, while the ball on the right continues to fall with zero initial velocity. What horizontal speed must the ball on the left start with so that it hits the ground at the same position as the ball on the right? Remember that the two balls are released, starting a horizontal distance of 3.0 apart. Express your answer in meters per second to two significant figures. Hint 1. How to approach the problem Recall from Part B that the horizontal component of velocity does not change during projectile motion. Therefore, you need to find the horizontal component of velocity such that, in a time , the ball will move horizontally 3.0 . You can assume that its initial x coordinate is . ANSWER: Correct You can adjust the horizontal speeds in this applet. Notice that regardless of what horizontal speeds you give to the balls, they continue to move vertically in the same way (i.e., they are at the same y coordinate at the same time). Problem 4.12 A ball thrown horizontally at 27 travels a horizontal distance of 49 before hitting the ground. Part A From what height was the ball thrown? Express your answer using two significant figures with the appropriate units. ANSWER: vx m vx tg = 1.0 s m x0 = 0.0 m vx = 3.0 m/s m/s m h = 16 m Correct Enhanced EOC: Problem 4.20 The figure shows the angular-velocity-versus-time graph for a particle moving in a circle. You may want to review ( page ) . For help with math skills, you may want to review: The Definite Integral Part A How many revolutions does the object make during the first 3.5 ? Express your answer using two significant figures. You did not open hints for this part. ANSWER: s n = Incorrect; Try Again Problem 4.26 To withstand “g-forces” of up to 10 g’s, caused by suddenly pulling out of a steep dive, fighter jet pilots train on a “human centrifuge.” 10 g’s is an acceleration of . Part A If the length of the centrifuge arm is 10.0 , at what speed is the rider moving when she experiences 10 g’s? Express your answer with the appropriate units. ANSWER: Correct Problem 4.28 Your roommate is working on his bicycle and has the bike upside down. He spins the 60.0 -diameter wheel, and you notice that a pebble stuck in the tread goes by three times every second. Part A What is the pebble’s speed? Express your answer with the appropriate units. ANSWER: Correct 98 m/s2 m 31.3 ms cm 5.65 ms Part B What is the pebble’s acceleration? Express your answer with the appropriate units. ANSWER: Correct Enhanced EOC: Problem 4.43 On the Apollo 14 mission to the moon, astronaut Alan Shepard hit a golf ball with a 6 iron. The acceleration due to gravity on the moon is 1/6 of its value on earth. Suppose he hits the ball with a speed of 13 at an angle 50 above the horizontal. You may want to review ( pages 90 – 95) . For help with math skills, you may want to review: Quadratic Equations Part A How much farther did the ball travel on the moon than it would have on earth? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Start by drawing a picture of the path of the golf ball, showing its starting and ending points. Choose a coordinate system, and label the origin. It is conventional to let x be the horizontal direction and y the vertical direction. What is the initial velocity in the x and y directions? What is the acceleration in the x and y directions on the moon and on the earth? What are the equations for and as a function of time, and , respectively? What is the y coordinate when the golf ball hits the ground? Can you use this information to determine the time of flight on the moon and on the earth? 107 m s2 m/s  x y x(t) y(t) Once you have the time of flight, how can you use the equation to determine the total distance traveled? Compare the distance traveled on the moon to the distance traveled on the earth . ANSWER: Correct Part B For how much more time was the ball in flight? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the equation describing as a function of time? What is the initial x component of the ball’s velocity? How are the initial x component of the ball’s velocity and the distance traveled related to the time of flight? What is the difference between the time of flight on the moon and on earth? ANSWER: Correct Problem 4.42 In the Olympic shotput event, an athlete throws the shot with an initial speed of 12 at a 40.0 angle from the horizontal. The shot leaves her hand at a height of 1.8 above the ground. x(t) L = 85 m x(t) x t = 10 s m/s  m Part A How far does the shot travel? Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part B Repeat the calculation of part (a) for angles of 42.5 , 45.0 , and 47.5 . Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part C Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part D x = 16.36 m    x(42.5 ) = 16.39 m x(45.0 ) = 16.31 m Express your answer to four significant figures and include the appropriate units. ANSWER: Correct Part E At what angle of release does she throw the farthest? ANSWER: Correct Problem 4.44 A ball is thrown toward a cliff of height with a speed of 32 and an angle of 60 above horizontal. It lands on the edge of the cliff 3.2 later. Part A How high is the cliff? Express your answer to two significant figures and include the appropriate units. ANSWER: x(47.5 ) = 16.13 m 40.0 42.5 45.0 47.5 h m/s  s h = 39 m Answer Requested Part B What was the maximum height of the ball? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the ball’s impact speed? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 4.58 A typical laboratory centrifuge rotates at 3600 . Test tubes have to be placed into a centrifuge very carefully because of the very large accelerations. Part A What is the acceleration at the end of a test tube that is 10 from the axis of rotation? Express your answer with the appropriate units. hmax = 39 m v = 16 ms rpm cm ANSWER: Correct Part B For comparison, what is the magnitude of the acceleration a test tube would experience if dropped from a height of 1.0 and stopped in a 1.7-ms-long encounter with a hard floor? Express your answer with the appropriate units. ANSWER: Correct Problem 4.62 Communications satellites are placed in a circular orbit where they stay directly over a fixed point on the equator as the earth rotates. These are called geosynchronous orbits. The radius of the earth is , and the altitude of a geosynchronous orbit is ( 22000 miles). Part A What is the speed of a satellite in a geosynchronous orbit? Express your answer with the appropriate units. ANSWER: Correct a = 1.42×104 m s2 m a = 2610 m s2 6.37 × 106m 3.58 × 107m  v = 3070 ms Part B What is the magnitude of the acceleration of a satellite in a geosynchronous orbit? Express your answer with the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 89.5%. You received 103.82 out of a possible total of 116 points. a = 0.223 m s2

please email info@checkyourstudy.com
The type of health care used INSTEAD of the predominant system in a given culture is known as: Question 5 options: 1) Conventional 2) Traditional 3) Complementary 4) Alternative

The type of health care used INSTEAD of the predominant system in a given culture is known as: Question 5 options: 1) Conventional 2) Traditional 3) Complementary 4) Alternative

The type of health care used INSTEAD of the predominant … Read More...
Ask-Tell is a campaign with this goal: Question 8 options: Encourage discussion of herbal supplement use with conventional healthcare providers Encourage disclosure of unhealthy patient activities to healthcare providers Encourage use of patient CIH among CIH practitioners Encourage discusssion of all healthcare use with all healthcare providers

Ask-Tell is a campaign with this goal: Question 8 options: Encourage discussion of herbal supplement use with conventional healthcare providers Encourage disclosure of unhealthy patient activities to healthcare providers Encourage use of patient CIH among CIH practitioners Encourage discusssion of all healthcare use with all healthcare providers

Ask-Tell is a campaign with this goal: Question 8 options: … Read More...
Define: 41 Things Philosophy is: 1. Ignorant 2. Selfish 3. Ironic 4. Plain 5. Misunderstood 6. A failure 7. Poor 8. Unscientific 9. Unteachable 10. Foolish 11. Abnormal 12. Divine trickery 13. Egalitarian 14. A divine calling 15. Laborious 16. Countercultural 17. Uncomfortable 18. Virtuous 19. Dangerous 20. Simplistic<br />21. Polemical 22. Therapeutic 23. “conformist” 24. Embarrassi ng 25. Invulnerable 26. Annoying 27. Pneumatic 28. Apolitic al 29. Docile/teachable 30. Messianic 31. Pious 32. Impract ical 33. Happy 34. Necessary 35. Death-defying 36. Fallible 37. Immortal 38. Confident 39. Painful 40. agnostic</br

Define: 41 Things Philosophy is: 1. Ignorant 2. Selfish 3. Ironic 4. Plain 5. Misunderstood 6. A failure 7. Poor 8. Unscientific 9. Unteachable 10. Foolish 11. Abnormal 12. Divine trickery 13. Egalitarian 14. A divine calling 15. Laborious 16. Countercultural 17. Uncomfortable 18. Virtuous 19. Dangerous 20. Simplistic
21. Polemical 22. Therapeutic 23. “conformist” 24. Embarrassi ng 25. Invulnerable 26. Annoying 27. Pneumatic 28. Apolitic al 29. Docile/teachable 30. Messianic 31. Pious 32. Impract ical 33. Happy 34. Necessary 35. Death-defying 36. Fallible 37. Immortal 38. Confident 39. Painful 40. agnostic

Ignorant- A person is said to be ignorant if he … Read More...