Chapter 13 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, May 16, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy A Matter of Some Gravity Learning Goal: To understand Newton’s law of gravitation and the distinction between inertial and gravitational masses. In this problem, you will practice using Newton’s law of gravitation. According to that law, the magnitude of the gravitational force between two small particles of masses and , separated by a distance , is given by , where is the universal gravitational constant, whose numerical value (in SI units) is . This formula applies not only to small particles, but also to spherical objects. In fact, the gravitational force between two uniform spheres is the same as if we concentrated all the mass of each sphere at its center. Thus, by modeling the Earth and the Moon as uniform spheres, you can use the particle approximation when calculating the force of gravity between them. Be careful in using Newton’s law to choose the correct value for . To calculate the force of gravitational attraction between two uniform spheres, the distance in the equation for Newton’s law of gravitation is the distance between the centers of the spheres. For instance, if a small object such as an elephant is located on the surface of the Earth, the radius of the Earth would be used in the equation. Note that the force of gravity acting on an object located near the surface of a planet is often called weight. Also note that in situations involving satellites, you are often given the altitude of the satellite, that is, the distance from the satellite to the surface of the planet; this is not the distance to be used in the formula for the law of gravitation. There is a potentially confusing issue involving mass. Mass is defined as a measure of an object’s inertia, that is, its ability to resist acceleration. Newton’s second law demonstrates the relationship between mass, acceleration, and the net force acting on an object: . We can now refer to this measure of inertia more precisely as the inertial mass. On the other hand, the masses of the particles that appear in the expression for the law of gravity seem to have nothing to do with inertia: Rather, they serve as a measure of the strength of gravitational interactions. It would be reasonable to call such a property gravitational mass. Does this mean that every object has two different masses? Generally speaking, yes. However, the good news is that according to the latest, highly precise, measurements, the inertial and the gravitational mass of an object are, in fact, equal to each other; it is an established consensus among physicists that there is only one mass after all, which is a measure of both the object’s inertia and its ability to engage in gravitational interactions. Note that this consensus, like everything else in science, is open to possible amendments in the future. In this problem, you will answer several questions that require the use of Newton’s law of gravitation. Part A Two particles are separated by a certain distance. The force of gravitational interaction between them is . Now the separation between the particles is tripled. Find the new force of gravitational Fg m1 m2 r Fg = G m1m2 r2 G 6.67 × 10−11 N m2 kg2 r r rEarth F  = m net a F0 interaction . Express your answer in terms of . ANSWER: Part B A satellite revolves around a planet at an altitude equal to the radius of the planet. The force of gravitational interaction between the satellite and the planet is . Then the satellite moves to a different orbit, so that its altitude is tripled. Find the new force of gravitational interaction . Express your answer in terms of . You did not open hints for this part. ANSWER: Part C A satellite revolves around a planet at an altitude equal to the radius of the planet. The force of gravitational interaction between the satellite and the planet is . Then the satellite is brought back to the surface of the planet. Find the new force of gravitational interaction . Express your answer in terms of . ANSWER: F1 F0 F1 = F0 F2 F0 F2 = F0 F4 F0 Typesetting math: 81% Part D Two satellites revolve around the Earth. Satellite A has mass and has an orbit of radius . Satellite B has mass and an orbit of unknown radius . The forces of gravitational attraction between each satellite and the Earth is the same. Find . Express your answer in terms of . ANSWER: Part E An adult elephant has a mass of about 5.0 tons. An adult elephant shrew has a mass of about 50 grams. How far from the center of the Earth should an elephant be placed so that its weight equals that of the elephant shrew on the surface of the Earth? The radius of the Earth is 6400 . ( .) Express your answer in kilometers. ANSWER: The table below gives the masses of the Earth, the Moon, and the Sun. Name Mass (kg) Earth Moon Sun F4 = m r 6m rb rb r rb = r km 1 ton = 103 kg r = km 5.97 × 1024 7.35 × 1022 1.99 × 1030 Typesetting math: 81% The average distance between the Earth and the Moon is . The average distance between the Earth and the Sun is . Use this information to answer the following questions. Part F Find the net gravitational force acting on the Earth in the Sun-Earth-Moon system during the new moon (when the moon is located directly between the Earth and the Sun). Express your answer in newtons to three significant figures. You did not open hints for this part. ANSWER: Part G Find the net gravitational force acting on the Earth in the Sun-Earth-Moon system during the full moon (when the Earth is located directly between the moon and the sun). Express your answer in newtons to three significant figures. ANSWER: ± Understanding Newton’s Law of Universal Gravitation Learning Goal: To understand Newton’s law of universal gravitation and be able to apply it in two-object situations and (collinear) three-object situations; to distinguish between the use of and . 3.84 × 108 m 1.50 × 1011 m Fnet Fnet = N Fnet Fnet = N Typesetting math: 81% G g In the late 1600s, Isaac Newton proposed a rule to quantify the attractive force known as gravity between objects that have mass, such as those shown in the figure. Newton’s law of universal gravitation describes the magnitude of the attractive gravitational force between two objects with masses and as , where is the distance between the centers of the two objects and is the gravitational constant. The gravitational force is attractive, so in the figure it pulls to the right on (toward ) and toward the left on (toward ). The gravitational force acting on is equal in size to, but exactly opposite in direction from, the gravitational force acting on , as required by Newton’s third law. The magnitude of both forces is calculated with the equation given above. The gravitational constant has the value and should not be confused with the magnitude of the gravitational free-fall acceleration constant, denoted by , which equals 9.80 near the surface of the earth. The size of in SI units is tiny. This means that gravitational forces are sizeable only in the vicinity of very massive objects, such as the earth. You are in fact gravitationally attracted toward all the objects around you, such as the computer you are using, but the size of that force is too small to be noticed without extremely sensitive equipment. Consider the earth following its nearly circular orbit (dashed curve) about the sun. The earth has mass and the sun has mass . They are separated, center to center, by . Part A What is the size of the gravitational force acting on the earth due to the sun? Express your answer in newtons. F  g m1 m2 Fg = G( ) m1m2 r2 r G m1 m2 m2 m1 m1 m2 G G = 6.67 × 10−11 N m2/kg2 g m/s2 G mearth = 5.98 × 1024 kg msun = 1.99 × 1030 kg r = 93 million miles = 150 million km Typesetting math: 81% You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F N Typesetting math: 81% This question will be shown after you complete previous question(s). Understanding Mass and Weight Learning Goal: To understand the distinction between mass and weight and to be able to calculate the weight of an object from its mass and Newton’s law of gravitation. The concepts of mass and weight are often confused. In fact, in everyday conversations, the word “weight” often replaces “mass,” as in “My weight is seventy-five kilograms” or “I need to lose some weight.” Of course, mass and weight are related; however, they are also very different. Mass, as you recall, is a measure of an object’s inertia (ability to resist acceleration). Newton’s 2nd law demonstrates the relationship among an object’s mass, its acceleration, and the net force acting on it: . Mass is an intrinsic property of an object and is independent of the object’s location. Weight, in contrast, is defined as the force due to gravity acting on the object. That force depends on the strength of the gravitational field of the planet: , where is the weight of an object, is the mass of that object, and is the local acceleration due to gravity (in other words, the strength of the gravitational field at the location of the object). Weight, unlike mass, is not an intrinsic property of the object; it is determined by both the object and its location. Part A Which of the following quantities represent mass? Check all that apply. ANSWER: Fnet = ma w = mg w m g 12.0 lbs 0.34 g 120 kg 1600 kN 0.34 m 411 cm 899 MN Typesetting math: 81% Part B This question will be shown after you complete previous question(s). Using the universal law of gravity, we can find the weight of an object feeling the gravitational pull of a nearby planet. We can write an expression , where is the weight of the object, is the gravitational constant, is the mass of that object, is mass of the planet, and is the distance from the center of the planet to the object. If the object is on the surface of the planet, is simply the radius of the planet. Part C The gravitational field on the surface of the earth is stronger than that on the surface of the moon. If a rock is transported from the moon to the earth, which properties of the rock change? ANSWER: Part D This question will be shown after you complete previous question(s). Part E If acceleration due to gravity on the earth is , which formula gives the acceleration due to gravity on Loput? You did not open hints for this part. ANSWER: w = GmM/r2 w G m M r r mass only weight only both mass and weight neither mass nor weight g Typesetting math: 81% Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). ± Weight on a Neutron Star Neutron stars, such as the one at the center of the Crab Nebula, have about the same mass as our sun but a much smaller diameter. g 1.7 5.6 g 1.72 5.6 g 1.72 5.62 g 5.6 1.7 g 5.62 1.72 g 5.6 1.72 Typesetting math: 81% Part A If you weigh 655 on the earth, what would be your weight on the surface of a neutron star that has the same mass as our sun and a diameter of 19.0 ? Take the mass of the sun to be = 1.99×1030 , the gravitational constant to be = 6.67×10−11 , and the acceleration due to gravity at the earth’s surface to be = 9.810 . Express your weight in newtons. You did not open hints for this part. ANSWER: ± Escape Velocity Learning Goal: To introduce you to the concept of escape velocity for a rocket. The escape velocity is defined to be the minimum speed with which an object of mass must move to escape from the gravitational attraction of a much larger body, such as a planet of total mass . The escape velocity is a function of the distance of the object from the center of the planet , but unless otherwise specified this distance is taken to be the radius of the planet because it addresses the question “How fast does my rocket have to go to escape from the surface of the planet?” Part A The key to making a concise mathematical definition of escape velocity is to consider the energy. If an object is launched at its escape velocity, what is the total mechanical energy of the object at a very large (i.e., infinite) distance from the planet? Follow the usual convention and take the gravitational potential energy to be zero at very large distances. You did not open hints for this part. ANSWER: N km ms kg G N m2/kg2 g m/s2 wstar wstar = N m M R Etotal Typesetting math: 81% Consider the motion of an object between a point close to the planet and a point very very far from the planet. Indicate whether the following statements are true or false. Part B Angular momentum about the center of the planet is conserved. ANSWER: Part C Total mechanical energy is conserved. ANSWER: Part D Kinetic energy is conserved. ANSWER: Etotal = true false true false Typesetting math: 81% Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). A Satellite in a Circular Orbit Consider a satellite of mass that orbits a planet of mass in a circle a distance from the center of the planet. The satellite’s mass is negligible compared with that of the planet. Indicate whether each of the statements in this problem is true or false. Part A The information given is sufficient to uniquely specify the speed, potential energy, and angular momentum of the satellite. You did not open hints for this part. ANSWER: true false m1 m2 r true false Typesetting math: 81% Part B The total mechanical energy of the satellite is conserved. You did not open hints for this part. ANSWER: Part C The linear momentum vector of the satellite is conserved. You did not open hints for this part. ANSWER: Part D The angular momentum of the satellite about the center of the planet is conserved. You did not open hints for this part. ANSWER: true false true false Typesetting math: 81% Part E The equations that express the conservation laws of total mechanical energy and linear momentum are sufficient to solve for the speed necessary to maintain a circular orbit at without using . You did not open hints for this part. ANSWER: At the Galaxy’s Core Astronomers have observed a small, massive object at the center of our Milky Way galaxy. A ring of material orbits this massive object; the ring has a diameter of about 15 light years and an orbital speed of about 200 . Part A Determine the mass of the massive object at the center of the Milky Way galaxy. Take the distance of one light year to be . Express your answer in kilograms. You did not open hints for this part. true false R F = ma true false km/s M 9.461 × 1015 m Typesetting math: 81% ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Properties of Circular Orbits Learning Goal: To teach you how to find the parameters characterizing an object in a circular orbit around a much heavier body like the earth. M = kg Typesetting math: 81% The motivation for Isaac Newton to discover his laws of motion was to explain the properties of planetary orbits that were observed by Tycho Brahe and analyzed by Johannes Kepler. A good starting point for understanding this (as well as the speed of the space shuttle and the height of geostationary satellites) is the simplest orbit–a circular one. This problem concerns the properties of circular orbits for a satellite orbiting a planet of mass . For all parts of this problem, where appropriate, use for the universal gravitational constant. Part A Find the orbital speed for a satellite in a circular orbit of radius . Express the orbital speed in terms of , , and . You did not open hints for this part. ANSWER: Part B Find the kinetic energy of a satellite with mass in a circular orbit with radius . Express your answer in terms of \texttip{m}{m}, \texttip{M}{M}, \texttip{G}{G}, and \texttip{R}{R}. ANSWER: Part C M G v R G M R v = K m R \texttip{K}{K} = Typesetting math: 81% This question will be shown after you complete previous question(s). Part D Find the orbital period \texttip{T}{T}. Express your answer in terms of \texttip{G}{G}, \texttip{M}{M}, \texttip{R}{R}, and \texttip{\pi }{pi}. You did not open hints for this part. ANSWER: Part E This question will be shown after you complete previous question(s). Part F Find \texttip{L}{L}, the magnitude of the angular momentum of the satellite with respect to the center of the planet. Express your answer in terms of \texttip{m}{m}, \texttip{M}{M}, \texttip{G}{G}, and \texttip{R}{R}. You did not open hints for this part. ANSWER: \texttip{T}{T} = Typesetting math: 81% Part G The quantities \texttip{v}{v}, \texttip{K}{K}, \texttip{U}{U}, and \texttip{L}{L} all represent physical quantities characterizing the orbit that depend on radius \texttip{R}{R}. Indicate the exponent (power) of the radial dependence of the absolute value of each. Express your answer as a comma-separated list of exponents corresponding to \texttip{v}{v}, \texttip{K}{K}, \texttip{U}{U}, and \texttip{L}{L}, in that order. For example, -1,-1/2,-0.5,-3/2 would mean v \propto R^{-1}, K \propto R^{-1/2}, and so forth. You did not open hints for this part. ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. \texttip{L}{L} = Typesetting math: 81%

Chapter 13 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, May 16, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy A Matter of Some Gravity Learning Goal: To understand Newton’s law of gravitation and the distinction between inertial and gravitational masses. In this problem, you will practice using Newton’s law of gravitation. According to that law, the magnitude of the gravitational force between two small particles of masses and , separated by a distance , is given by , where is the universal gravitational constant, whose numerical value (in SI units) is . This formula applies not only to small particles, but also to spherical objects. In fact, the gravitational force between two uniform spheres is the same as if we concentrated all the mass of each sphere at its center. Thus, by modeling the Earth and the Moon as uniform spheres, you can use the particle approximation when calculating the force of gravity between them. Be careful in using Newton’s law to choose the correct value for . To calculate the force of gravitational attraction between two uniform spheres, the distance in the equation for Newton’s law of gravitation is the distance between the centers of the spheres. For instance, if a small object such as an elephant is located on the surface of the Earth, the radius of the Earth would be used in the equation. Note that the force of gravity acting on an object located near the surface of a planet is often called weight. Also note that in situations involving satellites, you are often given the altitude of the satellite, that is, the distance from the satellite to the surface of the planet; this is not the distance to be used in the formula for the law of gravitation. There is a potentially confusing issue involving mass. Mass is defined as a measure of an object’s inertia, that is, its ability to resist acceleration. Newton’s second law demonstrates the relationship between mass, acceleration, and the net force acting on an object: . We can now refer to this measure of inertia more precisely as the inertial mass. On the other hand, the masses of the particles that appear in the expression for the law of gravity seem to have nothing to do with inertia: Rather, they serve as a measure of the strength of gravitational interactions. It would be reasonable to call such a property gravitational mass. Does this mean that every object has two different masses? Generally speaking, yes. However, the good news is that according to the latest, highly precise, measurements, the inertial and the gravitational mass of an object are, in fact, equal to each other; it is an established consensus among physicists that there is only one mass after all, which is a measure of both the object’s inertia and its ability to engage in gravitational interactions. Note that this consensus, like everything else in science, is open to possible amendments in the future. In this problem, you will answer several questions that require the use of Newton’s law of gravitation. Part A Two particles are separated by a certain distance. The force of gravitational interaction between them is . Now the separation between the particles is tripled. Find the new force of gravitational Fg m1 m2 r Fg = G m1m2 r2 G 6.67 × 10−11 N m2 kg2 r r rEarth F  = m net a F0 interaction . Express your answer in terms of . ANSWER: Part B A satellite revolves around a planet at an altitude equal to the radius of the planet. The force of gravitational interaction between the satellite and the planet is . Then the satellite moves to a different orbit, so that its altitude is tripled. Find the new force of gravitational interaction . Express your answer in terms of . You did not open hints for this part. ANSWER: Part C A satellite revolves around a planet at an altitude equal to the radius of the planet. The force of gravitational interaction between the satellite and the planet is . Then the satellite is brought back to the surface of the planet. Find the new force of gravitational interaction . Express your answer in terms of . ANSWER: F1 F0 F1 = F0 F2 F0 F2 = F0 F4 F0 Typesetting math: 81% Part D Two satellites revolve around the Earth. Satellite A has mass and has an orbit of radius . Satellite B has mass and an orbit of unknown radius . The forces of gravitational attraction between each satellite and the Earth is the same. Find . Express your answer in terms of . ANSWER: Part E An adult elephant has a mass of about 5.0 tons. An adult elephant shrew has a mass of about 50 grams. How far from the center of the Earth should an elephant be placed so that its weight equals that of the elephant shrew on the surface of the Earth? The radius of the Earth is 6400 . ( .) Express your answer in kilometers. ANSWER: The table below gives the masses of the Earth, the Moon, and the Sun. Name Mass (kg) Earth Moon Sun F4 = m r 6m rb rb r rb = r km 1 ton = 103 kg r = km 5.97 × 1024 7.35 × 1022 1.99 × 1030 Typesetting math: 81% The average distance between the Earth and the Moon is . The average distance between the Earth and the Sun is . Use this information to answer the following questions. Part F Find the net gravitational force acting on the Earth in the Sun-Earth-Moon system during the new moon (when the moon is located directly between the Earth and the Sun). Express your answer in newtons to three significant figures. You did not open hints for this part. ANSWER: Part G Find the net gravitational force acting on the Earth in the Sun-Earth-Moon system during the full moon (when the Earth is located directly between the moon and the sun). Express your answer in newtons to three significant figures. ANSWER: ± Understanding Newton’s Law of Universal Gravitation Learning Goal: To understand Newton’s law of universal gravitation and be able to apply it in two-object situations and (collinear) three-object situations; to distinguish between the use of and . 3.84 × 108 m 1.50 × 1011 m Fnet Fnet = N Fnet Fnet = N Typesetting math: 81% G g In the late 1600s, Isaac Newton proposed a rule to quantify the attractive force known as gravity between objects that have mass, such as those shown in the figure. Newton’s law of universal gravitation describes the magnitude of the attractive gravitational force between two objects with masses and as , where is the distance between the centers of the two objects and is the gravitational constant. The gravitational force is attractive, so in the figure it pulls to the right on (toward ) and toward the left on (toward ). The gravitational force acting on is equal in size to, but exactly opposite in direction from, the gravitational force acting on , as required by Newton’s third law. The magnitude of both forces is calculated with the equation given above. The gravitational constant has the value and should not be confused with the magnitude of the gravitational free-fall acceleration constant, denoted by , which equals 9.80 near the surface of the earth. The size of in SI units is tiny. This means that gravitational forces are sizeable only in the vicinity of very massive objects, such as the earth. You are in fact gravitationally attracted toward all the objects around you, such as the computer you are using, but the size of that force is too small to be noticed without extremely sensitive equipment. Consider the earth following its nearly circular orbit (dashed curve) about the sun. The earth has mass and the sun has mass . They are separated, center to center, by . Part A What is the size of the gravitational force acting on the earth due to the sun? Express your answer in newtons. F  g m1 m2 Fg = G( ) m1m2 r2 r G m1 m2 m2 m1 m1 m2 G G = 6.67 × 10−11 N m2/kg2 g m/s2 G mearth = 5.98 × 1024 kg msun = 1.99 × 1030 kg r = 93 million miles = 150 million km Typesetting math: 81% You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F N Typesetting math: 81% This question will be shown after you complete previous question(s). Understanding Mass and Weight Learning Goal: To understand the distinction between mass and weight and to be able to calculate the weight of an object from its mass and Newton’s law of gravitation. The concepts of mass and weight are often confused. In fact, in everyday conversations, the word “weight” often replaces “mass,” as in “My weight is seventy-five kilograms” or “I need to lose some weight.” Of course, mass and weight are related; however, they are also very different. Mass, as you recall, is a measure of an object’s inertia (ability to resist acceleration). Newton’s 2nd law demonstrates the relationship among an object’s mass, its acceleration, and the net force acting on it: . Mass is an intrinsic property of an object and is independent of the object’s location. Weight, in contrast, is defined as the force due to gravity acting on the object. That force depends on the strength of the gravitational field of the planet: , where is the weight of an object, is the mass of that object, and is the local acceleration due to gravity (in other words, the strength of the gravitational field at the location of the object). Weight, unlike mass, is not an intrinsic property of the object; it is determined by both the object and its location. Part A Which of the following quantities represent mass? Check all that apply. ANSWER: Fnet = ma w = mg w m g 12.0 lbs 0.34 g 120 kg 1600 kN 0.34 m 411 cm 899 MN Typesetting math: 81% Part B This question will be shown after you complete previous question(s). Using the universal law of gravity, we can find the weight of an object feeling the gravitational pull of a nearby planet. We can write an expression , where is the weight of the object, is the gravitational constant, is the mass of that object, is mass of the planet, and is the distance from the center of the planet to the object. If the object is on the surface of the planet, is simply the radius of the planet. Part C The gravitational field on the surface of the earth is stronger than that on the surface of the moon. If a rock is transported from the moon to the earth, which properties of the rock change? ANSWER: Part D This question will be shown after you complete previous question(s). Part E If acceleration due to gravity on the earth is , which formula gives the acceleration due to gravity on Loput? You did not open hints for this part. ANSWER: w = GmM/r2 w G m M r r mass only weight only both mass and weight neither mass nor weight g Typesetting math: 81% Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). ± Weight on a Neutron Star Neutron stars, such as the one at the center of the Crab Nebula, have about the same mass as our sun but a much smaller diameter. g 1.7 5.6 g 1.72 5.6 g 1.72 5.62 g 5.6 1.7 g 5.62 1.72 g 5.6 1.72 Typesetting math: 81% Part A If you weigh 655 on the earth, what would be your weight on the surface of a neutron star that has the same mass as our sun and a diameter of 19.0 ? Take the mass of the sun to be = 1.99×1030 , the gravitational constant to be = 6.67×10−11 , and the acceleration due to gravity at the earth’s surface to be = 9.810 . Express your weight in newtons. You did not open hints for this part. ANSWER: ± Escape Velocity Learning Goal: To introduce you to the concept of escape velocity for a rocket. The escape velocity is defined to be the minimum speed with which an object of mass must move to escape from the gravitational attraction of a much larger body, such as a planet of total mass . The escape velocity is a function of the distance of the object from the center of the planet , but unless otherwise specified this distance is taken to be the radius of the planet because it addresses the question “How fast does my rocket have to go to escape from the surface of the planet?” Part A The key to making a concise mathematical definition of escape velocity is to consider the energy. If an object is launched at its escape velocity, what is the total mechanical energy of the object at a very large (i.e., infinite) distance from the planet? Follow the usual convention and take the gravitational potential energy to be zero at very large distances. You did not open hints for this part. ANSWER: N km ms kg G N m2/kg2 g m/s2 wstar wstar = N m M R Etotal Typesetting math: 81% Consider the motion of an object between a point close to the planet and a point very very far from the planet. Indicate whether the following statements are true or false. Part B Angular momentum about the center of the planet is conserved. ANSWER: Part C Total mechanical energy is conserved. ANSWER: Part D Kinetic energy is conserved. ANSWER: Etotal = true false true false Typesetting math: 81% Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). A Satellite in a Circular Orbit Consider a satellite of mass that orbits a planet of mass in a circle a distance from the center of the planet. The satellite’s mass is negligible compared with that of the planet. Indicate whether each of the statements in this problem is true or false. Part A The information given is sufficient to uniquely specify the speed, potential energy, and angular momentum of the satellite. You did not open hints for this part. ANSWER: true false m1 m2 r true false Typesetting math: 81% Part B The total mechanical energy of the satellite is conserved. You did not open hints for this part. ANSWER: Part C The linear momentum vector of the satellite is conserved. You did not open hints for this part. ANSWER: Part D The angular momentum of the satellite about the center of the planet is conserved. You did not open hints for this part. ANSWER: true false true false Typesetting math: 81% Part E The equations that express the conservation laws of total mechanical energy and linear momentum are sufficient to solve for the speed necessary to maintain a circular orbit at without using . You did not open hints for this part. ANSWER: At the Galaxy’s Core Astronomers have observed a small, massive object at the center of our Milky Way galaxy. A ring of material orbits this massive object; the ring has a diameter of about 15 light years and an orbital speed of about 200 . Part A Determine the mass of the massive object at the center of the Milky Way galaxy. Take the distance of one light year to be . Express your answer in kilograms. You did not open hints for this part. true false R F = ma true false km/s M 9.461 × 1015 m Typesetting math: 81% ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Properties of Circular Orbits Learning Goal: To teach you how to find the parameters characterizing an object in a circular orbit around a much heavier body like the earth. M = kg Typesetting math: 81% The motivation for Isaac Newton to discover his laws of motion was to explain the properties of planetary orbits that were observed by Tycho Brahe and analyzed by Johannes Kepler. A good starting point for understanding this (as well as the speed of the space shuttle and the height of geostationary satellites) is the simplest orbit–a circular one. This problem concerns the properties of circular orbits for a satellite orbiting a planet of mass . For all parts of this problem, where appropriate, use for the universal gravitational constant. Part A Find the orbital speed for a satellite in a circular orbit of radius . Express the orbital speed in terms of , , and . You did not open hints for this part. ANSWER: Part B Find the kinetic energy of a satellite with mass in a circular orbit with radius . Express your answer in terms of \texttip{m}{m}, \texttip{M}{M}, \texttip{G}{G}, and \texttip{R}{R}. ANSWER: Part C M G v R G M R v = K m R \texttip{K}{K} = Typesetting math: 81% This question will be shown after you complete previous question(s). Part D Find the orbital period \texttip{T}{T}. Express your answer in terms of \texttip{G}{G}, \texttip{M}{M}, \texttip{R}{R}, and \texttip{\pi }{pi}. You did not open hints for this part. ANSWER: Part E This question will be shown after you complete previous question(s). Part F Find \texttip{L}{L}, the magnitude of the angular momentum of the satellite with respect to the center of the planet. Express your answer in terms of \texttip{m}{m}, \texttip{M}{M}, \texttip{G}{G}, and \texttip{R}{R}. You did not open hints for this part. ANSWER: \texttip{T}{T} = Typesetting math: 81% Part G The quantities \texttip{v}{v}, \texttip{K}{K}, \texttip{U}{U}, and \texttip{L}{L} all represent physical quantities characterizing the orbit that depend on radius \texttip{R}{R}. Indicate the exponent (power) of the radial dependence of the absolute value of each. Express your answer as a comma-separated list of exponents corresponding to \texttip{v}{v}, \texttip{K}{K}, \texttip{U}{U}, and \texttip{L}{L}, in that order. For example, -1,-1/2,-0.5,-3/2 would mean v \propto R^{-1}, K \propto R^{-1/2}, and so forth. You did not open hints for this part. ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. \texttip{L}{L} = Typesetting math: 81%

please email info@checkyourstudy.com
In case the body have to stay in lower temperature for extended time period (more than 1 hour), how does the body regulate its response?

In case the body have to stay in lower temperature for extended time period (more than 1 hour), how does the body regulate its response?

Arterioles transporting blood to external capillaries beneath the surface of … Read More...
AUCS 340: Ethics in the Professions Individual Written Assignment #1 Medical Ethics: Historical names, dates and ethical theories assignment As you read chapters 1 and 2 in the “Ethics and Basic Law for Medical Imaging Professionals” textbook you will be responsible for identifying and explaining each of the following items from the list below. You will respond in paragraph format with correct spelling and grammar expected for each paragraph. Feel free to have more than one paragraph for each item, although in most instances a single paragraph response is sufficient. If you reference material in addition to what is available in the textbook it must be appropriately cited in your work using either APA or MLA including a references cited page. The use of Wikipedia.com is not a recognized peer reviewed source so please do not use that as a reference. When responding about individuals it is necessary to indicate a year or time period that the person discussed/developed their particular ethical theory so that you can look at and appreciate the historical background to the development of ethical theories and decision making. Respond to the following sixteen items. (They are in random order from your reading) 1. Francis Bacon 2. Isaac Newton 3. Prima Facie Duties – Why do they exist? LIST AND DEFINE ALL TERMS 4. Hippocrates 5. W.D. Ross – what do the initials stand for in his name and what was his contribution to the study of ethics? 6. Microallocation – define the term and provide an example separate from the book example (You should develop your own example rather than looking for an online example; this will use your critical thinking skills. Consider an application to your own profession as microallocation is NOT limited to the medical field.) 7. Deontology – Discuss at length the basic types/concepts of this theory 8. Thomas Aquinas – 1) Discuss the ethical theory developed by Aquinas, 2) his religious affiliation, 3) why that was so important to his ethical premise and 4) discuss the type of ethical issues resolved to this day using this theory. 9. Macroallocation – define and provide an example separate from the book example (You should develop your own example rather than looking for an online example; this will use your critical thinking skills. Consider an application to your own profession as macroallocation is NOT limited to the medical field.) 10. David Hume 11. Rodericus Castro 12. Plato and “The Republic” 13. Pythagoras 14. Teleology – Discuss at length the basic types/concepts of this theory 15. Core Values – Why do they exist? LIST AND DEFINE ALL TERMS 16. Develop a timeline that reflects the ethical theories as developed by the INDIVIDUALS presented in this assignment. This assignment is due Saturday March 14th at NOON and is graded as a homework assignment. Grading: Paragraph Formation = 20% of grade (bulleted lists are acceptable for some answers) Answers inclusive of major material for answer = 40% of grade Creation of Timeline = 10% of grade Sentence structure, application of correct spelling and grammar = 20% of grade References (if utilized) = 10% of grade; references should be submitted on a separate references cited page. Otherwise this 10% of the assignment grade will be considered under the sentence structure component for 30% of the grade. It is expected that the finished assignment will be two – three pages of text, double spaced, using 12 font and standard page margins.

AUCS 340: Ethics in the Professions Individual Written Assignment #1 Medical Ethics: Historical names, dates and ethical theories assignment As you read chapters 1 and 2 in the “Ethics and Basic Law for Medical Imaging Professionals” textbook you will be responsible for identifying and explaining each of the following items from the list below. You will respond in paragraph format with correct spelling and grammar expected for each paragraph. Feel free to have more than one paragraph for each item, although in most instances a single paragraph response is sufficient. If you reference material in addition to what is available in the textbook it must be appropriately cited in your work using either APA or MLA including a references cited page. The use of Wikipedia.com is not a recognized peer reviewed source so please do not use that as a reference. When responding about individuals it is necessary to indicate a year or time period that the person discussed/developed their particular ethical theory so that you can look at and appreciate the historical background to the development of ethical theories and decision making. Respond to the following sixteen items. (They are in random order from your reading) 1. Francis Bacon 2. Isaac Newton 3. Prima Facie Duties – Why do they exist? LIST AND DEFINE ALL TERMS 4. Hippocrates 5. W.D. Ross – what do the initials stand for in his name and what was his contribution to the study of ethics? 6. Microallocation – define the term and provide an example separate from the book example (You should develop your own example rather than looking for an online example; this will use your critical thinking skills. Consider an application to your own profession as microallocation is NOT limited to the medical field.) 7. Deontology – Discuss at length the basic types/concepts of this theory 8. Thomas Aquinas – 1) Discuss the ethical theory developed by Aquinas, 2) his religious affiliation, 3) why that was so important to his ethical premise and 4) discuss the type of ethical issues resolved to this day using this theory. 9. Macroallocation – define and provide an example separate from the book example (You should develop your own example rather than looking for an online example; this will use your critical thinking skills. Consider an application to your own profession as macroallocation is NOT limited to the medical field.) 10. David Hume 11. Rodericus Castro 12. Plato and “The Republic” 13. Pythagoras 14. Teleology – Discuss at length the basic types/concepts of this theory 15. Core Values – Why do they exist? LIST AND DEFINE ALL TERMS 16. Develop a timeline that reflects the ethical theories as developed by the INDIVIDUALS presented in this assignment. This assignment is due Saturday March 14th at NOON and is graded as a homework assignment. Grading: Paragraph Formation = 20% of grade (bulleted lists are acceptable for some answers) Answers inclusive of major material for answer = 40% of grade Creation of Timeline = 10% of grade Sentence structure, application of correct spelling and grammar = 20% of grade References (if utilized) = 10% of grade; references should be submitted on a separate references cited page. Otherwise this 10% of the assignment grade will be considered under the sentence structure component for 30% of the grade. It is expected that the finished assignment will be two – three pages of text, double spaced, using 12 font and standard page margins.

Francis Bacon was a 16th century ethical theorist who was … Read More...
1 BACKGROUND The new generation of enhanced mid core PICs such as the 16F1847 and the 12F1840 have an inbuilt temperature sensor. This sensor consists of a current source which flows through four diodes in series and the voltage drop across the diodes which is proportional to temperature can be measured by internally connecting the sensor to the ADC and determining the temperature based on the ADC value In this assignment the temperature sensor is used to create a simple thermometer application and to create an alarm should the sensor go outside the set value. Assignment Details 1) Determine the register settings needed to switch the sensor on and connect the temperature sensor to the ADC. Using appropriate values for Vref+ and Vref- display the ADC count value on the 7 segment display. 2) With reference to Microchip Application Note AN1333, “Use and Calibration of the Internal Temperature Indicator” (DS01333) determine an appropriate algorithm to convert from the ADC value to the temperature in degrees centigrade and implement it using a lookup table or otherwise. Display this value on the 7 segment display. Additional marks will be given for accuracy, calibration and averaging the temperature readings to give a more accurate, and a more stable temperature reading. . 2 In order to meet the specification the following will be required. i) Selection of appropriate microcontroller to meet the requirement of the task. ii) Development of an assembly language program to control the operation of the embedded system. iii) Thorough testing to ensure correct operation of the system. iv) Produce a project report to evidence all of the above. Follow Report Requirements (20 pages max) 1) Introduction – Clearly state the scope and aims and objectives of the project: Include Aims and Objectives, i.e. break down the project into smaller attainable aims and objectives for example one objective could be to develop a program to control the LED display. If all objectives are met then the overall project should have been completed. 2) Theory – Include any relevant theory 3) Procedure, Results Discussion – The report should show a methodical, systematic design approach. The microcontroller kits in the laboratory can be used as the hardware platform, however circuit diagrams should be included in the report and explanations of operation is expected. 4) Include flowcharts and detailed explanations of software development. Include appropriate simulation screen shots. Show and discuss results e.g. ADC program, LED program, etc. Include final/complete program. Were results as expected, do they compare favourably with simulated results, what could be done to improve the operation and accuracy of the system? 5) Conclusion – Reflect back on the original aims and objectives. Were they met if not why not? What further work could be carried out to meet aims and objectives etc? 3 Marks ALLOCATION Marks are allocated for the given activities as follows: MARK (%) PROJECT WORK 60 PROJECT REPORT 30 PRESENTATION MARK 10 ______ Total 100 The marks awarded for the microcontrollers in embedded system module will be made up as follows:- PROJECT MARK Have all of the specifications been met? Correct Register settings to switch on sensor and connect temperature sensor to ADC 5% Display two different characters on the 7 segment display 5% Display the ADC count value on the 7 segment display 10% Display the temperature on the seven segment display 20% Calibration 10% Accuraccy 10% Total 60% REPORT MARK Introduction and Theory 5% Procedure, Results and Discussion 20% Report Presentation 5% Total 30% PRESENTATION (POWER POINT) & DEMO Demonstration 10% Total 10% TOTAL 100% 4 Schematic for the Assignment Seven Segment Display Code ;************************************************ ;Appropriate values to illuminate a seven segment display ;with numbers 0 – 9 are extracted from a look up table ;and output on PORTB. ;A software delay is incorporated between displaying ;successive values so that they can be observed. ;(This program is useful demonstrating software delays, ; and look up tables. ; ;************************************************ ; list p=16F1937A #include <p=16f1937.inc> ; ; ****** PROGRAM EQUATES ****** ; temp equ 0x20 value equ 0x21 outer equ 0x22 RB0 RB1 RB2 RB3 RB4 RB5 RB6 RB7 a b c d e f g dp RA1 RA0 +5V 16F84 VDD Vss 220Ω x 8 CA2 CA1 100K x 2 5K6 5K6 +5V +5V a b c d e f g a b c d e f g middle equ 0x23 inner equ 0x24 w equ 0 f equ 1 ; ; ; ****** MAIN PROGRAM ****** ; org 0x00 banksel PORTB clrf PORTB banksel ANSELB clrf ANSELB clrf ANSELA banksel TRISB movlw 0x00 ;Set port b all outputs movwf TRISB movlw 0x00 ;Set port a all inputs movwf TRISA banksel PORTB ; movlw 0x00 movwf PORTB ;turn off display ; ; ; **** DISPLAY COUNT SEQUENCE *** ; display movlw 0x00 ;Use value as a counter ie movwf value ;value is incremented every begin movf value,w ;time a value is extracted from table bsf PORTA,0 ;turn on LSB display call get ;call subroutine to get value movwf PORTB ;output value to portb call wait ;call delay subroutine incf value ;increment counter btfsc value,3 ;test to see if counter = %1010 btfss value,1 ;if not get next value, if yes goto begin ; goto display ;go to display again ; ; **** LOOK UP TABLE FOR VALUES **** ; get brw ;look up table to illuminate retlw 0xc0 ;the numbers 0 – 9 on seven segment retlw 0xf9 ;display (outputs from port are retlw 0xa4 ;active low retlw 0xb0 retlw 0x99 retlw 0x92 retlw 0x82 retlw 0xf8 retlw 0x80 retlw 0x90 ; ; **** TIME DELAY ROUTINE **** ; ( THREE NESTED LOOPS ) ; wait ;delay subroutine movlw 0x02 ;-outer loop movwf outer ; wait3 movlw 0 xff ; -middle loop movwf middle wait2 movlw 0xff ;-inner loop movwf inner wait1 decfsz inner,f goto wait1 ;-inner loop decfsz middle,f goto wait2 ;-middle loop decfsz outer,f goto wait3 ;-outer loop return end

1 BACKGROUND The new generation of enhanced mid core PICs such as the 16F1847 and the 12F1840 have an inbuilt temperature sensor. This sensor consists of a current source which flows through four diodes in series and the voltage drop across the diodes which is proportional to temperature can be measured by internally connecting the sensor to the ADC and determining the temperature based on the ADC value In this assignment the temperature sensor is used to create a simple thermometer application and to create an alarm should the sensor go outside the set value. Assignment Details 1) Determine the register settings needed to switch the sensor on and connect the temperature sensor to the ADC. Using appropriate values for Vref+ and Vref- display the ADC count value on the 7 segment display. 2) With reference to Microchip Application Note AN1333, “Use and Calibration of the Internal Temperature Indicator” (DS01333) determine an appropriate algorithm to convert from the ADC value to the temperature in degrees centigrade and implement it using a lookup table or otherwise. Display this value on the 7 segment display. Additional marks will be given for accuracy, calibration and averaging the temperature readings to give a more accurate, and a more stable temperature reading. . 2 In order to meet the specification the following will be required. i) Selection of appropriate microcontroller to meet the requirement of the task. ii) Development of an assembly language program to control the operation of the embedded system. iii) Thorough testing to ensure correct operation of the system. iv) Produce a project report to evidence all of the above. Follow Report Requirements (20 pages max) 1) Introduction – Clearly state the scope and aims and objectives of the project: Include Aims and Objectives, i.e. break down the project into smaller attainable aims and objectives for example one objective could be to develop a program to control the LED display. If all objectives are met then the overall project should have been completed. 2) Theory – Include any relevant theory 3) Procedure, Results Discussion – The report should show a methodical, systematic design approach. The microcontroller kits in the laboratory can be used as the hardware platform, however circuit diagrams should be included in the report and explanations of operation is expected. 4) Include flowcharts and detailed explanations of software development. Include appropriate simulation screen shots. Show and discuss results e.g. ADC program, LED program, etc. Include final/complete program. Were results as expected, do they compare favourably with simulated results, what could be done to improve the operation and accuracy of the system? 5) Conclusion – Reflect back on the original aims and objectives. Were they met if not why not? What further work could be carried out to meet aims and objectives etc? 3 Marks ALLOCATION Marks are allocated for the given activities as follows: MARK (%) PROJECT WORK 60 PROJECT REPORT 30 PRESENTATION MARK 10 ______ Total 100 The marks awarded for the microcontrollers in embedded system module will be made up as follows:- PROJECT MARK Have all of the specifications been met? Correct Register settings to switch on sensor and connect temperature sensor to ADC 5% Display two different characters on the 7 segment display 5% Display the ADC count value on the 7 segment display 10% Display the temperature on the seven segment display 20% Calibration 10% Accuraccy 10% Total 60% REPORT MARK Introduction and Theory 5% Procedure, Results and Discussion 20% Report Presentation 5% Total 30% PRESENTATION (POWER POINT) & DEMO Demonstration 10% Total 10% TOTAL 100% 4 Schematic for the Assignment Seven Segment Display Code ;************************************************ ;Appropriate values to illuminate a seven segment display ;with numbers 0 – 9 are extracted from a look up table ;and output on PORTB. ;A software delay is incorporated between displaying ;successive values so that they can be observed. ;(This program is useful demonstrating software delays, ; and look up tables. ; ;************************************************ ; list p=16F1937A #include ; ; ****** PROGRAM EQUATES ****** ; temp equ 0x20 value equ 0x21 outer equ 0x22 RB0 RB1 RB2 RB3 RB4 RB5 RB6 RB7 a b c d e f g dp RA1 RA0 +5V 16F84 VDD Vss 220Ω x 8 CA2 CA1 100K x 2 5K6 5K6 +5V +5V a b c d e f g a b c d e f g middle equ 0x23 inner equ 0x24 w equ 0 f equ 1 ; ; ; ****** MAIN PROGRAM ****** ; org 0x00 banksel PORTB clrf PORTB banksel ANSELB clrf ANSELB clrf ANSELA banksel TRISB movlw 0x00 ;Set port b all outputs movwf TRISB movlw 0x00 ;Set port a all inputs movwf TRISA banksel PORTB ; movlw 0x00 movwf PORTB ;turn off display ; ; ; **** DISPLAY COUNT SEQUENCE *** ; display movlw 0x00 ;Use value as a counter ie movwf value ;value is incremented every begin movf value,w ;time a value is extracted from table bsf PORTA,0 ;turn on LSB display call get ;call subroutine to get value movwf PORTB ;output value to portb call wait ;call delay subroutine incf value ;increment counter btfsc value,3 ;test to see if counter = %1010 btfss value,1 ;if not get next value, if yes goto begin ; goto display ;go to display again ; ; **** LOOK UP TABLE FOR VALUES **** ; get brw ;look up table to illuminate retlw 0xc0 ;the numbers 0 – 9 on seven segment retlw 0xf9 ;display (outputs from port are retlw 0xa4 ;active low retlw 0xb0 retlw 0x99 retlw 0x92 retlw 0x82 retlw 0xf8 retlw 0x80 retlw 0x90 ; ; **** TIME DELAY ROUTINE **** ; ( THREE NESTED LOOPS ) ; wait ;delay subroutine movlw 0x02 ;-outer loop movwf outer ; wait3 movlw 0 xff ; -middle loop movwf middle wait2 movlw 0xff ;-inner loop movwf inner wait1 decfsz inner,f goto wait1 ;-inner loop decfsz middle,f goto wait2 ;-middle loop decfsz outer,f goto wait3 ;-outer loop return end

No expert has answered this question yet. You can browse … Read More...
ESL 091 Cause and Effect Worksheet 1: Steps 1-4 of the Writing Process Name ______________________________ Class___________ Section______ THE WRITNG PROCES: STEPS 1, 2, 3, AND 4 Step 1: THINKING. Your first essay assignment is to write an Explaining/Evaluation essay about a restaurant. Begin the writing process by thinking about your topic. Think! Think! Think! Step 2: BRAINSTORMING. The purpose of brainstorming is for you to write down all of the ideas, thoughts, and pieces of information that you think about your topic before you forge them. You can use one of three brainstorming techniques, but the journalist’s questions will get you’re the most information to write an 800-word essay. We talked about three brainstorming techniques: 1) Writing down all your thoughts in a list format. 2) Creating an idea map. 3) Asking and answering the journalist’s questions that are important for your topic: Who? What? Where? When? Why? How? As you are thinking and writing down your ideas, ask yourself the following questions about your cause and effect topic: A. What is the cord cause of issue? Is there more than one cause? What is the immediate (first) effect of the cause? Does this first effect also become a cause? If so, what effect does this new cause have? Are there other effects caused by the core cause? What are they? Do they also become new causes with their own effects? If so, what are they? Core Cause/s__________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Immediate (first) Effect of the Core Cause/s_________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Other Cause and Effect Relationships_______________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ ____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Brainstorming Technique 1: Listing Your Thoughts and Ideas 1.___________________________________________________________________________________ _____________________________________________________________________________________ 2.___________________________________________________________________________________ _____________________________________________________________________________________ 3.___________________________________________________________________________________ _____________________________________________________________________________________ 4.___________________________________________________________________________________ _____________________________________________________________________________________ 5.___________________________________________________________________________________ _____________________________________________________________________________________ 6.___________________________________________________________________________________ _____________________________________________________________________________________ 7.___________________________________________________________________________________ _____________________________________________________________________________________ 8.___________________________________________________________________________________ _____________________________________________________________________________________ 9.___________________________________________________________________________________ ____________________________________________________________________________________ 10.__________________________________________________________________________________ _____________________________________________________________________________________ More information: Brainstorming Technique 2: Creating an Idea Map Sample Mind Maps for Cause and Effect Multiple Levels of Cause and Effect Brainstorming Technique 3: Asking AND Answering the Journalist’s Questions Question: Who _______________________________________________________________________ Answer____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Question: Where______________________________________________________________________ Answer____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Question: What_______________________________________________________________________ Answer_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Question: Where_______________________________________________________________________ Answer________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________¬¬_ Question: Why________________________________________________________________________ Answer______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Question: How________________________________________________________________________ Answer_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Step 3: Dropping and Selecting Information. Read your brainstorming notes and determine which information you would like to include in your cause and effect essay. Also decide which information you do NOT need for your essay. Keep what you DO need. A. Information that I will keep ___________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _________________________________________________________________________¬¬¬¬____________ ____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _________________________________________________________________________¬¬¬¬____________ B. Information that I need to add ________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _________________________________________________________________________¬¬¬¬____________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _________________________________________________________________________¬¬¬¬____________ Step 4. Writing a Working Thesis. First, decide who your audience is and what your purpose is. A. Audience: Think about who would be interested in reading your cause and effect topic. If you say: “Anyone who is interested in my topic,” your audience is too big. Think about who might benefit from knowing the information you are writing about. Be specific. _____________________________________________________________________________________ B. Purpose: The purpose in your writing is the message you want your audience to know about the topic. You can find out your purpose by asking yourself what you want your audience to know about the topic and put that in a complete sentence. _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ C. Working Thesis: A thesis is a statement that tells your audience what your overall attitude is about your topic. In a cause and effect essay, your thesis would state the core causes and major effects of the core cause. A working thesis can change as your essay changes and improves. Your thesis should include: 1) The core cause/s 2) The major effects that you will discuss in the body of the paper. Example: CORE CAUSE/S MAJOR EFFECTS Fast food and lack of movement are the core reasons for obesity, which results in disease such as heart trouble, diabetes, and joint failure. _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ ________________________________________________________________________ **********Save this worksheet and bring it to the next class meeting.***********

ESL 091 Cause and Effect Worksheet 1: Steps 1-4 of the Writing Process Name ______________________________ Class___________ Section______ THE WRITNG PROCES: STEPS 1, 2, 3, AND 4 Step 1: THINKING. Your first essay assignment is to write an Explaining/Evaluation essay about a restaurant. Begin the writing process by thinking about your topic. Think! Think! Think! Step 2: BRAINSTORMING. The purpose of brainstorming is for you to write down all of the ideas, thoughts, and pieces of information that you think about your topic before you forge them. You can use one of three brainstorming techniques, but the journalist’s questions will get you’re the most information to write an 800-word essay. We talked about three brainstorming techniques: 1) Writing down all your thoughts in a list format. 2) Creating an idea map. 3) Asking and answering the journalist’s questions that are important for your topic: Who? What? Where? When? Why? How? As you are thinking and writing down your ideas, ask yourself the following questions about your cause and effect topic: A. What is the cord cause of issue? Is there more than one cause? What is the immediate (first) effect of the cause? Does this first effect also become a cause? If so, what effect does this new cause have? Are there other effects caused by the core cause? What are they? Do they also become new causes with their own effects? If so, what are they? Core Cause/s__________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Immediate (first) Effect of the Core Cause/s_________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Other Cause and Effect Relationships_______________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ ____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Brainstorming Technique 1: Listing Your Thoughts and Ideas 1.___________________________________________________________________________________ _____________________________________________________________________________________ 2.___________________________________________________________________________________ _____________________________________________________________________________________ 3.___________________________________________________________________________________ _____________________________________________________________________________________ 4.___________________________________________________________________________________ _____________________________________________________________________________________ 5.___________________________________________________________________________________ _____________________________________________________________________________________ 6.___________________________________________________________________________________ _____________________________________________________________________________________ 7.___________________________________________________________________________________ _____________________________________________________________________________________ 8.___________________________________________________________________________________ _____________________________________________________________________________________ 9.___________________________________________________________________________________ ____________________________________________________________________________________ 10.__________________________________________________________________________________ _____________________________________________________________________________________ More information: Brainstorming Technique 2: Creating an Idea Map Sample Mind Maps for Cause and Effect Multiple Levels of Cause and Effect Brainstorming Technique 3: Asking AND Answering the Journalist’s Questions Question: Who _______________________________________________________________________ Answer____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Question: Where______________________________________________________________________ Answer____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Question: What_______________________________________________________________________ Answer_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Question: Where_______________________________________________________________________ Answer________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________¬¬_ Question: Why________________________________________________________________________ Answer______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Question: How________________________________________________________________________ Answer_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Step 3: Dropping and Selecting Information. Read your brainstorming notes and determine which information you would like to include in your cause and effect essay. Also decide which information you do NOT need for your essay. Keep what you DO need. A. Information that I will keep ___________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _________________________________________________________________________¬¬¬¬____________ ____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _________________________________________________________________________¬¬¬¬____________ B. Information that I need to add ________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _________________________________________________________________________¬¬¬¬____________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _________________________________________________________________________¬¬¬¬____________ Step 4. Writing a Working Thesis. First, decide who your audience is and what your purpose is. A. Audience: Think about who would be interested in reading your cause and effect topic. If you say: “Anyone who is interested in my topic,” your audience is too big. Think about who might benefit from knowing the information you are writing about. Be specific. _____________________________________________________________________________________ B. Purpose: The purpose in your writing is the message you want your audience to know about the topic. You can find out your purpose by asking yourself what you want your audience to know about the topic and put that in a complete sentence. _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ C. Working Thesis: A thesis is a statement that tells your audience what your overall attitude is about your topic. In a cause and effect essay, your thesis would state the core causes and major effects of the core cause. A working thesis can change as your essay changes and improves. Your thesis should include: 1) The core cause/s 2) The major effects that you will discuss in the body of the paper. Example: CORE CAUSE/S MAJOR EFFECTS Fast food and lack of movement are the core reasons for obesity, which results in disease such as heart trouble, diabetes, and joint failure. _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ ________________________________________________________________________ **********Save this worksheet and bring it to the next class meeting.***********

info@checkyourstudy.com Whatsapp +919911743277
Essay Assignment: Due December 6th, on Blackboard by 11:59 PM. Note: At least one draft (hardcopy, handed up in class) should be given to the instructor one week before due date (last date to give instructor draft is 1st December). If draft is not given, 20% will be taken off final grade for essay. Assignment Objective: This assignment is intended to provide you with the opportunity to reflect upon the course and material over the semester. Instructions: In this essay you will need think back prior to the semester and construct how you would have described ‘the self.’ Consider as your guide the many ways that the self has been studied over the course of the semester. For instance, you might consider the ways we have discussed: (1) the nature of the soul, (2) personal identity, (3) the relationship to others, (4) the ‘racial’ or ‘gendered’ self, (5) the self and freedom, (6) the social influences (economics, technology, and consumerism, for example) upon your self-development, etc. You should select one to two dimensions of the self and provide a description of what you thought about those prior to the course. Then, give a description of what you think about that or those dimension(s) of the self now. Be sure to reference the course material, either through the literature, or an author, or a driving concept from the course that you can explain in reference to the concept(s) you now hold. Within your discussion provide a comparison of what you thought prior to the course to what you now think of those dimension(s) of the self. In what ways has your conception of the ‘self’ changed, stayed the same, become enriched (or not). Be sure to give some explanation as to what has changed, or has not changed, and in what ways. Format: The paper should be in Times New Roman font, size 12, and double spaced. It should be about 1,200 words (approx. 4-5 pages). You will be required to have a bibliography and a cover page which includes the following: 1) The title of your paper. 2) Your name. 3) Your Student ID number. Citations: The recommended style of citation is Chicago (please see Blackboard for guidelines). You can use other styles if you like but the most important thing is to remain clear and consistent in the referencing style that you use. Please use at least 2-3 citations. Instruction for upload: Please upload it online onto Blackboard on the tab on the left hand side, entitled ‘Final Essay’ before midnight on December 6th. No hard copy is needed, but, as stated above, you will be required to give a hard copy of the draft at least one week before to the instructor. Grading: The final essay will be graded on: (1) how the instructions of the assignment were followed, (2) the accurateness and clarity in descriptions of course material (authors, core concepts, arguments, etc.), (3) the precision/correctness of writing, and (4) accuracy of referencing style.

Essay Assignment: Due December 6th, on Blackboard by 11:59 PM. Note: At least one draft (hardcopy, handed up in class) should be given to the instructor one week before due date (last date to give instructor draft is 1st December). If draft is not given, 20% will be taken off final grade for essay. Assignment Objective: This assignment is intended to provide you with the opportunity to reflect upon the course and material over the semester. Instructions: In this essay you will need think back prior to the semester and construct how you would have described ‘the self.’ Consider as your guide the many ways that the self has been studied over the course of the semester. For instance, you might consider the ways we have discussed: (1) the nature of the soul, (2) personal identity, (3) the relationship to others, (4) the ‘racial’ or ‘gendered’ self, (5) the self and freedom, (6) the social influences (economics, technology, and consumerism, for example) upon your self-development, etc. You should select one to two dimensions of the self and provide a description of what you thought about those prior to the course. Then, give a description of what you think about that or those dimension(s) of the self now. Be sure to reference the course material, either through the literature, or an author, or a driving concept from the course that you can explain in reference to the concept(s) you now hold. Within your discussion provide a comparison of what you thought prior to the course to what you now think of those dimension(s) of the self. In what ways has your conception of the ‘self’ changed, stayed the same, become enriched (or not). Be sure to give some explanation as to what has changed, or has not changed, and in what ways. Format: The paper should be in Times New Roman font, size 12, and double spaced. It should be about 1,200 words (approx. 4-5 pages). You will be required to have a bibliography and a cover page which includes the following: 1) The title of your paper. 2) Your name. 3) Your Student ID number. Citations: The recommended style of citation is Chicago (please see Blackboard for guidelines). You can use other styles if you like but the most important thing is to remain clear and consistent in the referencing style that you use. Please use at least 2-3 citations. Instruction for upload: Please upload it online onto Blackboard on the tab on the left hand side, entitled ‘Final Essay’ before midnight on December 6th. No hard copy is needed, but, as stated above, you will be required to give a hard copy of the draft at least one week before to the instructor. Grading: The final essay will be graded on: (1) how the instructions of the assignment were followed, (2) the accurateness and clarity in descriptions of course material (authors, core concepts, arguments, etc.), (3) the precision/correctness of writing, and (4) accuracy of referencing style.

No expert has answered this question yet. You can browse … Read More...
The magnetic circuit in the figure has a current of 18 A in the coil of 3000 turns. Assume that all the branches have a cross section of 5 cm2 and the material of the core us soft-iron (u=5000 u0) Calculate R,F and y for the following: 1) The core 2) The air gap

The magnetic circuit in the figure has a current of 18 A in the coil of 3000 turns. Assume that all the branches have a cross section of 5 cm2 and the material of the core us soft-iron (u=5000 u0) Calculate R,F and y for the following: 1) The core 2) The air gap