Lab 1: Introduction to Motion  You must make the following changes to your lab manual before coming to lab, not during lab!  Do not plan to consult this sheet during lab. There is not enough time.  The required changes must be in your lab manual in the proper sequence to complete the lab in a smooth and timely manner.  You should bring this paper to lab but only for reference to the images printed below. You have been warned! A note about vector addition: Adding Vectors: To add these two vectors: means to place them head-to-tail like so: and therefore they equal: Subtracting Vectors: Subtracting these two vectors: is the same as the sum of one vector and the negative of the other: which is the same as: which means to place them head-to-tail like so: and therefore they equal: Pg. 7 Activity 1-3 Cross off Step 1 Cross off Step 2 Pg. 7 Step 3) Replace “Try to make each of the graphs …” with “Try to make one of the graphs…” Pg. 7 Step 4) Replace this step with: “Describe how you must move to produce the graph you selected. Note if you selected graph C your description is at the top of page 8. Pg. 8 Activity 2-1 Step 2) Replace: “(Just draw smooth patterns; leave out…” with “(Quickly draw smooth patterns; leave out…” Then highlight this entire sentence. + − + (− ) + Pg. 10 Step 3) Where it states “(Be sure to adjust the time scale to 15 s.)” The way to do this is to click this clock icon And change the “Duration:” value Pg. 11 Question 2-3) At the end of the question add the following: “See the top of page 12 for the rest of the question.” Pg. 13 Step 2) Highlight the part that states: “Get the times right. Get the velocities right. Each person should take a turn.” At the end of the paragraph add: “But do not spend too much time getting things perfect.” Pg. 15 Step 1) Where is states: “Use the analysis feature of the software to read values of velocity…” Do this: Click here and then move the mouse over the graph. You can now quickly read data from the graph.

Lab 1: Introduction to Motion  You must make the following changes to your lab manual before coming to lab, not during lab!  Do not plan to consult this sheet during lab. There is not enough time.  The required changes must be in your lab manual in the proper sequence to complete the lab in a smooth and timely manner.  You should bring this paper to lab but only for reference to the images printed below. You have been warned! A note about vector addition: Adding Vectors: To add these two vectors: means to place them head-to-tail like so: and therefore they equal: Subtracting Vectors: Subtracting these two vectors: is the same as the sum of one vector and the negative of the other: which is the same as: which means to place them head-to-tail like so: and therefore they equal: Pg. 7 Activity 1-3 Cross off Step 1 Cross off Step 2 Pg. 7 Step 3) Replace “Try to make each of the graphs …” with “Try to make one of the graphs…” Pg. 7 Step 4) Replace this step with: “Describe how you must move to produce the graph you selected. Note if you selected graph C your description is at the top of page 8. Pg. 8 Activity 2-1 Step 2) Replace: “(Just draw smooth patterns; leave out…” with “(Quickly draw smooth patterns; leave out…” Then highlight this entire sentence. + − + (− ) + Pg. 10 Step 3) Where it states “(Be sure to adjust the time scale to 15 s.)” The way to do this is to click this clock icon And change the “Duration:” value Pg. 11 Question 2-3) At the end of the question add the following: “See the top of page 12 for the rest of the question.” Pg. 13 Step 2) Highlight the part that states: “Get the times right. Get the velocities right. Each person should take a turn.” At the end of the paragraph add: “But do not spend too much time getting things perfect.” Pg. 15 Step 1) Where is states: “Use the analysis feature of the software to read values of velocity…” Do this: Click here and then move the mouse over the graph. You can now quickly read data from the graph.

info@checkyourstudy.com
Chapter 15 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, May 16, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Fluid Pressure in a U-Tube A U-tube is filled with water, and the two arms are capped. The tube is cylindrical, and the right arm has twice the radius of the left arm. The caps have negligible mass, are watertight, and can freely slide up and down the tube. Part A A one-inch depth of sand is poured onto the cap on each arm. After the caps have moved (if necessary) to reestablish equilibrium, is the right cap higher, lower, or the same height as the left cap? You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Pressure in the Ocean The pressure at 10 below the surface of the ocean is about 2.00×105 . Part A higher lower the same height m Pa Which of the following statements is true? You did not open hints for this part. ANSWER: Part B Now consider the pressure 20 below the surface of the ocean. Which of the following statements is true? You did not open hints for this part. ANSWER: Relating Pressure and Height in a Container Learning Goal: To understand the derivation of the law relating height and pressure in a container. The weight of a column of seawater 1 in cross section and 10 high is about 2.00×105 . The weight of a column of seawater 1 in cross section and 10 high plus the weight of a column of air with the same cross section extending up to the top of the atmosphere is about 2.00×105 . The weight of 1 of seawater at 10 below the surface of the ocean is about 2.00×105 . The density of seawater is about 2.00×105 times the density of air at sea level. m2 m N m2 m N m3 m N m The pressure is twice that at a depth of 10 . The pressure is the same as that at a depth of 10 . The pressure is equal to that at a depth of 10 plus the weight per 1 cross sectional area of a column of seawater 10 high. The pressure is equal to the weight per 1 cross sectional area of a column of seawater 20 high. m m m m2 m m2 m In this problem, you will derive the law relating pressure to height in a container by analyzing a particular system. A container of uniform cross-sectional area is filled with liquid of uniform density . Consider a thin horizontal layer of liquid (thickness ) at a height as measured from the bottom of the container. Let the pressure exerted upward on the bottom of the layer be and the pressure exerted downward on the top be . Assume throughout the problem that the system is in equilibrium (the container has not been recently shaken or moved, etc.). Part A What is , the magnitude of the force exerted upward on the bottom of the liquid? You did not open hints for this part. ANSWER: Part B What is , the magnitude of the force exerted downward on the top of the liquid? A  dy y p p + dp Fup Fup = Fdown You did not open hints for this part. ANSWER: Part C What is the weight of the thin layer of liquid? Express your answer in terms of quantities given in the problem introduction and , the magnitude of the acceleration due to gravity. You did not open hints for this part. ANSWER: Part D Since the liquid is in equilibrium, the net force on the thin layer of liquid is zero. Complete the force equation for the sum of the vertical forces acting on the liquid layer described in the problem introduction. Express your answer in terms of quantities given in the problem introduction and taking upward forces to be positive. You did not open hints for this part. ANSWER: Fdown = wlayer g wlayer = Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). A Submerged Ball A ball of mass and volume is lowered on a string into a fluid of density . Assume that the object would sink to the bottom if it were not supported by the string. Part A  = = i Fy,i mb V f What is the tension in the string when the ball is fully submerged but not touching the bottom, as shown in the figure? Express your answer in terms of any or all of the given quantities and , the magnitude of the acceleration due to gravity. You did not open hints for this part. ANSWER: Archimedes’ Principle Learning Goal: To understand the applications of Archimedes’ principle. Archimedes’ principle is a powerful tool for solving many problems involving equilibrium in fluids. It states the following: When a body is partially or completely submerged in a fluid (either a liquid or a gas), the fluid exerts an upward force on the body equal to the weight of the fluid displaced by the body. As a result of the upward Archimedes force (often called the buoyant force), some objects may float in a fluid, and all of them appear to weigh less. This is the familiar phenomenon of buoyancy. Quantitatively, the buoyant force can be found as , where is the force, is the density of the fluid, is the magnitude of the acceleration due to gravity, and is the volume of the displaced fluid. In this problem, you will be asked several qualitative questions that should help you develop a feel for Archimedes’ principle. An object is placed in a fluid and then released. Assume that the object either floats to the surface (settling so that the object is partly above and partly below the fluid surface) or sinks to the bottom. (Note that for Parts A through D, you should assume that the object has settled in equilibrium.) Part A Consider the following statement: The magnitude of the buoyant force is equal to the weight of fluid displaced by the object. Under what circumstances is this statement true? T g T = Fbuoyant = fluidgV Fbuoyant fluid g V You did not open hints for this part. ANSWER: Part B Consider the following statement: The magnitude of the buoyant force is equal to the weight of the amount of fluid that has the same total volume as the object. Under what circumstances is this statement true? You did not open hints for this part. ANSWER: Part C Consider the following statement: The magnitude of the buoyant force equals the weight of the object. Under what circumstances is this statement true? for every object submerged partially or completely in a fluid only for an object that floats only for an object that sinks for no object submerged in a fluid for an object that is partially submerged in a fluid only for an object that floats for an object completely submerged in a fluid for no object partially or completely submerged in a fluid You did not open hints for this part. ANSWER: Part D Consider the following statement: The magnitude of the buoyant force is less than the weight of the object. Under what circumstances is this statement true? ANSWER: Now apply what you know to some more complicated situations. Part E An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, filled with a denser liquid. What would you observe? You did not open hints for this part. ANSWER: for every object submerged partially or completely in a fluid for an object that floats only for an object that sinks for no object submerged in a fluid for every object submerged partially or completely in a fluid for an object that floats for an object that sinks for no object submerged in a fluid Part F An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, filled with a less dense liquid. What would you observe? You did not open hints for this part. ANSWER: Part G Two objects, T and B, have identical size and shape and have uniform density. They are carefully placed in a container filled with a liquid. Both objects float in equilibrium. Less of object T is submerged than of object B, which floats, fully submerged, closer to the bottom of the container. Which of the following statements is true? ANSWER: The object would sink all the way to the bottom. The object would float submerged more deeply than in the first container. The object would float submerged less deeply than in the first container. More than one of these outcomes is possible. The object would sink all the way to the bottom. The object would float submerged more deeply than in the first container. The object would float submerged less deeply than in the first container. More than one of these outcomes is possible. Object T has a greater density than object B. Object B has a greater density than object T. Both objects have the same density. ± Buoyant Force Conceptual Question A rectangular wooden block of weight floats with exactly one-half of its volume below the waterline. Part A What is the buoyant force acting on the block? You did not open hints for this part. ANSWER: Part B W The buoyant force cannot be determined. 2W W 1 W 2 The density of water is 1.00 . What is the density of the block? You did not open hints for this part. ANSWER: Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). g/cm3 2.00 between 1.00 and 2.00 1.00 between 0.50 and 1.00 0.50 The density cannot be determined. g/cm3 g/cm3 g/cm3 g/cm3 g/cm3 Flow Velocity of Blood Conceptual Question Arteriosclerotic plaques forming on the inner walls of arteries can decrease the effective cross-sectional area of an artery. Even small changes in the effective area of an artery can lead to very large changes in the blood pressure in the artery and possibly to the collapse of the blood vessel. Imagine a healthy artery, with blood flow velocity of and mass per unit volume of . The kinetic energy per unit volume of blood is given by Imagine that plaque has narrowed an artery to one-fifth of its normal cross-sectional area (an 80% blockage). Part A Compared to normal blood flow velocity, , what is the velocity of blood as it passes through this blockage? You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C v0 = 0.14 m/s  = 1050 kg/m3 K0 =  . 1 2 v20 v0 80v0 20v0 5v0 v0/5 This question will be shown after you complete previous question(s). For parts D – F imagine that plaque has grown to a 90% blockage. Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). ± Playing with a Water Hose Two children, Ferdinand and Isabella, are playing with a water hose on a sunny summer day. Isabella is holding the hose in her hand 1.0 meters above the ground and is trying to spray Ferdinand, who is standing 10.0 meters away. Part A Will Isabella be able to spray Ferdinand if the water is flowing out of the hose at a constant speed of 3.5 meters per second? Assume that the hose is pointed parallel to the ground and take the magnitude of the acceleration due to gravity to be 9.81 meters per second, per second. You did not open hints for this part. v0 g ANSWER: Part B This question will be shown after you complete previous question(s). Tactics Box 15.2 Finding Whether an Object Floats or Sinks Learning Goal: To practice Tactics Box 15.2 Finding whether an object floats or sinks. If you hold an object underwater and then release it, it can float to the surface, sink, or remain “hanging” in the water, depending on whether the fluid density is larger than, smaller than, or equal to the object’s average density . These conditions are summarized in this Tactics Box. Yes No f avg TACTICS BOX 15.2 Finding whether an object floats or sinks Object sinks Object floats Object has neutral buoyancy An object sinks if it weighs more than the fluid it displaces, that is, if its average density is greater than the density of the fluid: . An object floats on the surface if it weighs less than the fluid it displaces, that is, if its average density is less than the density of the fluid: . An object hangs motionless in the fluid if it weighs exactly the same as the fluid it displaces. It has neutral buoyancy if its average density equals the density of the fluid: . Part A Ice at 0.0 has a density of 917 . A 3.00 ice cube is gently released inside a small container filled with oil and is observed to be neutrally buoyant. What is the density of the oil, ? Express your answer in kilograms per meter cubed to three significant figures. ANSWER: Part B Once the ice cube melts, what happens to the liquid water that it produces? You did not open hints for this part. ANSWER: avg > f avg < f avg = f 'C kg/m3 cm3 oil oil = kg/m3 Part C What happens if some ethyl alcohol of density 790 is poured into the container after the ice cube has melted? ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. The liquid water sinks to the bottom of the container. The liquid water rises to the surface and floats on top of the oil. The liquid water is in static equilibrium at the location where the ice cube was originally placed. kg/m3 A layer of ethyl alcohol forms between the oil and the water. The layer of ethyl alcohol forms at the bottom of the container. The layer of ethyl alcohol forms on the surface.

Chapter 15 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, May 16, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Fluid Pressure in a U-Tube A U-tube is filled with water, and the two arms are capped. The tube is cylindrical, and the right arm has twice the radius of the left arm. The caps have negligible mass, are watertight, and can freely slide up and down the tube. Part A A one-inch depth of sand is poured onto the cap on each arm. After the caps have moved (if necessary) to reestablish equilibrium, is the right cap higher, lower, or the same height as the left cap? You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Pressure in the Ocean The pressure at 10 below the surface of the ocean is about 2.00×105 . Part A higher lower the same height m Pa Which of the following statements is true? You did not open hints for this part. ANSWER: Part B Now consider the pressure 20 below the surface of the ocean. Which of the following statements is true? You did not open hints for this part. ANSWER: Relating Pressure and Height in a Container Learning Goal: To understand the derivation of the law relating height and pressure in a container. The weight of a column of seawater 1 in cross section and 10 high is about 2.00×105 . The weight of a column of seawater 1 in cross section and 10 high plus the weight of a column of air with the same cross section extending up to the top of the atmosphere is about 2.00×105 . The weight of 1 of seawater at 10 below the surface of the ocean is about 2.00×105 . The density of seawater is about 2.00×105 times the density of air at sea level. m2 m N m2 m N m3 m N m The pressure is twice that at a depth of 10 . The pressure is the same as that at a depth of 10 . The pressure is equal to that at a depth of 10 plus the weight per 1 cross sectional area of a column of seawater 10 high. The pressure is equal to the weight per 1 cross sectional area of a column of seawater 20 high. m m m m2 m m2 m In this problem, you will derive the law relating pressure to height in a container by analyzing a particular system. A container of uniform cross-sectional area is filled with liquid of uniform density . Consider a thin horizontal layer of liquid (thickness ) at a height as measured from the bottom of the container. Let the pressure exerted upward on the bottom of the layer be and the pressure exerted downward on the top be . Assume throughout the problem that the system is in equilibrium (the container has not been recently shaken or moved, etc.). Part A What is , the magnitude of the force exerted upward on the bottom of the liquid? You did not open hints for this part. ANSWER: Part B What is , the magnitude of the force exerted downward on the top of the liquid? A  dy y p p + dp Fup Fup = Fdown You did not open hints for this part. ANSWER: Part C What is the weight of the thin layer of liquid? Express your answer in terms of quantities given in the problem introduction and , the magnitude of the acceleration due to gravity. You did not open hints for this part. ANSWER: Part D Since the liquid is in equilibrium, the net force on the thin layer of liquid is zero. Complete the force equation for the sum of the vertical forces acting on the liquid layer described in the problem introduction. Express your answer in terms of quantities given in the problem introduction and taking upward forces to be positive. You did not open hints for this part. ANSWER: Fdown = wlayer g wlayer = Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). A Submerged Ball A ball of mass and volume is lowered on a string into a fluid of density . Assume that the object would sink to the bottom if it were not supported by the string. Part A  = = i Fy,i mb V f What is the tension in the string when the ball is fully submerged but not touching the bottom, as shown in the figure? Express your answer in terms of any or all of the given quantities and , the magnitude of the acceleration due to gravity. You did not open hints for this part. ANSWER: Archimedes’ Principle Learning Goal: To understand the applications of Archimedes’ principle. Archimedes’ principle is a powerful tool for solving many problems involving equilibrium in fluids. It states the following: When a body is partially or completely submerged in a fluid (either a liquid or a gas), the fluid exerts an upward force on the body equal to the weight of the fluid displaced by the body. As a result of the upward Archimedes force (often called the buoyant force), some objects may float in a fluid, and all of them appear to weigh less. This is the familiar phenomenon of buoyancy. Quantitatively, the buoyant force can be found as , where is the force, is the density of the fluid, is the magnitude of the acceleration due to gravity, and is the volume of the displaced fluid. In this problem, you will be asked several qualitative questions that should help you develop a feel for Archimedes’ principle. An object is placed in a fluid and then released. Assume that the object either floats to the surface (settling so that the object is partly above and partly below the fluid surface) or sinks to the bottom. (Note that for Parts A through D, you should assume that the object has settled in equilibrium.) Part A Consider the following statement: The magnitude of the buoyant force is equal to the weight of fluid displaced by the object. Under what circumstances is this statement true? T g T = Fbuoyant = fluidgV Fbuoyant fluid g V You did not open hints for this part. ANSWER: Part B Consider the following statement: The magnitude of the buoyant force is equal to the weight of the amount of fluid that has the same total volume as the object. Under what circumstances is this statement true? You did not open hints for this part. ANSWER: Part C Consider the following statement: The magnitude of the buoyant force equals the weight of the object. Under what circumstances is this statement true? for every object submerged partially or completely in a fluid only for an object that floats only for an object that sinks for no object submerged in a fluid for an object that is partially submerged in a fluid only for an object that floats for an object completely submerged in a fluid for no object partially or completely submerged in a fluid You did not open hints for this part. ANSWER: Part D Consider the following statement: The magnitude of the buoyant force is less than the weight of the object. Under what circumstances is this statement true? ANSWER: Now apply what you know to some more complicated situations. Part E An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, filled with a denser liquid. What would you observe? You did not open hints for this part. ANSWER: for every object submerged partially or completely in a fluid for an object that floats only for an object that sinks for no object submerged in a fluid for every object submerged partially or completely in a fluid for an object that floats for an object that sinks for no object submerged in a fluid Part F An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, filled with a less dense liquid. What would you observe? You did not open hints for this part. ANSWER: Part G Two objects, T and B, have identical size and shape and have uniform density. They are carefully placed in a container filled with a liquid. Both objects float in equilibrium. Less of object T is submerged than of object B, which floats, fully submerged, closer to the bottom of the container. Which of the following statements is true? ANSWER: The object would sink all the way to the bottom. The object would float submerged more deeply than in the first container. The object would float submerged less deeply than in the first container. More than one of these outcomes is possible. The object would sink all the way to the bottom. The object would float submerged more deeply than in the first container. The object would float submerged less deeply than in the first container. More than one of these outcomes is possible. Object T has a greater density than object B. Object B has a greater density than object T. Both objects have the same density. ± Buoyant Force Conceptual Question A rectangular wooden block of weight floats with exactly one-half of its volume below the waterline. Part A What is the buoyant force acting on the block? You did not open hints for this part. ANSWER: Part B W The buoyant force cannot be determined. 2W W 1 W 2 The density of water is 1.00 . What is the density of the block? You did not open hints for this part. ANSWER: Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). g/cm3 2.00 between 1.00 and 2.00 1.00 between 0.50 and 1.00 0.50 The density cannot be determined. g/cm3 g/cm3 g/cm3 g/cm3 g/cm3 Flow Velocity of Blood Conceptual Question Arteriosclerotic plaques forming on the inner walls of arteries can decrease the effective cross-sectional area of an artery. Even small changes in the effective area of an artery can lead to very large changes in the blood pressure in the artery and possibly to the collapse of the blood vessel. Imagine a healthy artery, with blood flow velocity of and mass per unit volume of . The kinetic energy per unit volume of blood is given by Imagine that plaque has narrowed an artery to one-fifth of its normal cross-sectional area (an 80% blockage). Part A Compared to normal blood flow velocity, , what is the velocity of blood as it passes through this blockage? You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C v0 = 0.14 m/s  = 1050 kg/m3 K0 =  . 1 2 v20 v0 80v0 20v0 5v0 v0/5 This question will be shown after you complete previous question(s). For parts D – F imagine that plaque has grown to a 90% blockage. Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). ± Playing with a Water Hose Two children, Ferdinand and Isabella, are playing with a water hose on a sunny summer day. Isabella is holding the hose in her hand 1.0 meters above the ground and is trying to spray Ferdinand, who is standing 10.0 meters away. Part A Will Isabella be able to spray Ferdinand if the water is flowing out of the hose at a constant speed of 3.5 meters per second? Assume that the hose is pointed parallel to the ground and take the magnitude of the acceleration due to gravity to be 9.81 meters per second, per second. You did not open hints for this part. v0 g ANSWER: Part B This question will be shown after you complete previous question(s). Tactics Box 15.2 Finding Whether an Object Floats or Sinks Learning Goal: To practice Tactics Box 15.2 Finding whether an object floats or sinks. If you hold an object underwater and then release it, it can float to the surface, sink, or remain “hanging” in the water, depending on whether the fluid density is larger than, smaller than, or equal to the object’s average density . These conditions are summarized in this Tactics Box. Yes No f avg TACTICS BOX 15.2 Finding whether an object floats or sinks Object sinks Object floats Object has neutral buoyancy An object sinks if it weighs more than the fluid it displaces, that is, if its average density is greater than the density of the fluid: . An object floats on the surface if it weighs less than the fluid it displaces, that is, if its average density is less than the density of the fluid: . An object hangs motionless in the fluid if it weighs exactly the same as the fluid it displaces. It has neutral buoyancy if its average density equals the density of the fluid: . Part A Ice at 0.0 has a density of 917 . A 3.00 ice cube is gently released inside a small container filled with oil and is observed to be neutrally buoyant. What is the density of the oil, ? Express your answer in kilograms per meter cubed to three significant figures. ANSWER: Part B Once the ice cube melts, what happens to the liquid water that it produces? You did not open hints for this part. ANSWER: avg > f avg < f avg = f 'C kg/m3 cm3 oil oil = kg/m3 Part C What happens if some ethyl alcohol of density 790 is poured into the container after the ice cube has melted? ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. The liquid water sinks to the bottom of the container. The liquid water rises to the surface and floats on top of the oil. The liquid water is in static equilibrium at the location where the ice cube was originally placed. kg/m3 A layer of ethyl alcohol forms between the oil and the water. The layer of ethyl alcohol forms at the bottom of the container. The layer of ethyl alcohol forms on the surface.

please email info@checkyourstudy.com Chapter 15 Practice Problems (Practice – no … Read More...
A very long solenoid of circular cross section with radius r= 4.40cm has n= 76.0 turns/cm of wire. An electron is sitting outside the solenoid, at a distance r= 4.90 cm from the solenoid axis. What is the magnitude of the force on the electron while the current in the solenoid is ramped up at a rate of 35.0 Amps/second?

A very long solenoid of circular cross section with radius r= 4.40cm has n= 76.0 turns/cm of wire. An electron is sitting outside the solenoid, at a distance r= 4.90 cm from the solenoid axis. What is the magnitude of the force on the electron while the current in the solenoid is ramped up at a rate of 35.0 Amps/second?

Assignment 11 Due: 11:59pm on Wednesday, April 30, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 13.2 The gravitational force of a star on orbiting planet 1 is . Planet 2, which is twice as massive as planet 1 and orbits at twice the distance from the star, experiences gravitational force . Part A What is the ratio ? ANSWER: Correct Conceptual Question 13.3 A 1500 satellite and a 2200 satellite follow exactly the same orbit around the earth. Part A What is the ratio of the force on the first satellite to that on the second satellite? ANSWER: Correct F1 F2 F1 F2 = 2 F1 F2 kg kg F1 F2 = 0.682 F1 F2 Part B What is the ratio of the acceleration of the first satellite to that of the second satellite? ANSWER: Correct Problem 13.2 The centers of a 15.0 lead ball and a 90.0 lead ball are separated by 9.00 . Part A What gravitational force does each exert on the other? Express your answer with the appropriate units. ANSWER: Correct Part B What is the ratio of this gravitational force to the weight of the 90.0 ball? ANSWER: a1 a2 = 1 a1 a2 kg g cm 1.11×10−8 N g 1.26×10−8 Typesetting math: 100% Correct Problem 13.6 The space shuttle orbits 310 above the surface of the earth. Part A What is the gravitational force on a 7.5 sphere inside the space shuttle? Express your answer with the appropriate units. ANSWER: Correct ± A Satellite in Orbit A satellite used in a cellular telephone network has a mass of 2310 and is in a circular orbit at a height of 650 above the surface of the earth. Part A What is the gravitational force on the satellite? Take the gravitational constant to be = 6.67×10−11 , the mass of the earth to be = 5.97×1024 , and the radius of the Earth to be = 6.38×106 . Express your answer in newtons. Hint 1. How to approach the problem Use the equation for the law of gravitation to calculate the force on the satellite. Be careful about the units when performing the calculations. km kg Fe on s = 67.0 N kg km Fgrav G N m2/kg2 me kg re m Typesetting math: 100% Hint 2. Law of gravitation According to Newton’s law of gravitation, , where is the gravitational constant, and are the masses of the two objects, and is the distance between the centers of mass of the two objects. Hint 3. Calculate the distance between the centers of mass What is the distance from the center of mass of the satellite to the center of mass of the earth? Express your answer in meters. ANSWER: ANSWER: Correct Part B What fraction is this of the satellite’s weight at the surface of the earth? Take the free-fall acceleration at the surface of the earth to be = 9.80 . Hint 1. How to approach the problem All you need to do is to take the ratio of the gravitational force on the satellite to the weight of the satellite at ground level. There are two ways to do this, depending on how you define the force of gravity at the surface of the earth. ANSWER: F = Gm1m2/r2 G m1 m2 r r = 7.03×10r 6 m = 1.86×10Fgrav 4 N g m/s2 0.824 Typesetting math: 100% Correct Although it is easy to find the weight of the satellite using the constant acceleration due to gravity, it is instructional to consider the weight calculated using the law of gravitation: . Dividing the gravitational force on the satellite by , we find that the ratio of the forces due to the earth’s gravity is simply the square of the ratio of the earth’s radius to the sum of the earth’s radius and the height of the orbit of the satellite above the earth, . This will also be the fraction of the weight of, say, an astronaut in an orbit at the same altitude. Notice that an astronaut’s weight is never zero. When people speak of “weightlessness” in space, what they really mean is “free fall.” Problem 13.8 Part A What is the free-fall acceleration at the surface of the moon? Express your answer with the appropriate units. ANSWER: Correct Part B What is the free-fall acceleration at the surface of the Jupiter? Express your answer with the appropriate units. ANSWER: Correct w = G m/ me r2e Fgrav = Gmem/(re + h)2 w [re/(re + h)]2 gmoon = 1.62 m s2 gJupiter = 25.9 m s2 Typesetting math: 100% Enhanced EOC: Problem 13.14 A rocket is launched straight up from the earth’s surface at a speed of 1.90×104 . You may want to review ( pages 362 – 365) . For help with math skills, you may want to review: Mathematical Expressions Involving Squares Part A What is its speed when it is very far away from the earth? Express your answer with the appropriate units. Hint 1. How to approach the problem What is conserved in this problem? What is the rocket’s initial kinetic energy in terms of its unknown mass, ? What is the rocket’s initial gravitational potential energy in terms of its unknown mass, ? When the rocket is very far away from the Earth, what is its gravitational potential energy? Using conservation of energy, what is the rocket’s kinetic energy when it is very far away from the Earth? Therefore, what is the rocket’s velocity when it is very far away from the Earth? ANSWER: Correct Problem 13.13 Part A m/s m m 1.54×104 ms Typesetting math: 100% What is the escape speed from Venus? Express your answer with the appropriate units. ANSWER: Correct Problem 13.17 The asteroid belt circles the sun between the orbits of Mars and Jupiter. One asteroid has a period of 4.2 earth years. Part A What is the asteroid’s orbital radius? Express your answer with the appropriate units. ANSWER: Correct Part B What is the asteroid’s orbital speed? Express your answer with the appropriate units. ANSWER: vescape = 10.4 km s = 3.89×1011 R m = 1.85×104 v ms Typesetting math: 100% Correct Problem 13.32 Part A At what height above the earth is the acceleration due to gravity 15.0% of its value at the surface? Express your answer with the appropriate units. ANSWER: Correct Part B What is the speed of a satellite orbiting at that height? Express your answer with the appropriate units. ANSWER: Correct Problem 13.36 Two meteoroids are heading for earth. Their speeds as they cross the moon’s orbit are 2 . 1.01×107 m 4920 ms km/s Typesetting math: 100% Part A The first meteoroid is heading straight for earth. What is its speed of impact? Express your answer with the appropriate units. ANSWER: Correct Part B The second misses the earth by 5500 . What is its speed at its closest point? Express your answer with the appropriate units. ANSWER: Incorrect; Try Again Problem 14.2 An air-track glider attached to a spring oscillates between the 11.0 mark and the 67.0 mark on the track. The glider completes 11.0 oscillations in 32.0 . Part A What is the period of the oscillations? Express your answer with the appropriate units. v1 = 11.3 km s km v2 = cm cm s Typesetting math: 100% ANSWER: Correct Part B What is the frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part C What is the angular frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part D What is the amplitude? Express your answer with the appropriate units. 2.91 s 0.344 Hz 2.16 rad s Typesetting math: 100% ANSWER: Correct Part E What is the maximum speed of the glider? Express your answer with the appropriate units. ANSWER: Correct Good Vibes: Introduction to Oscillations Learning Goal: To learn the basic terminology and relationships among the main characteristics of simple harmonic motion. Motion that repeats itself over and over is called periodic motion. There are many examples of periodic motion: the earth revolving around the sun, an elastic ball bouncing up and down, or a block attached to a spring oscillating back and forth. The last example differs from the first two, in that it represents a special kind of periodic motion called simple harmonic motion. The conditions that lead to simple harmonic motion are as follows: There must be a position of stable equilibrium. There must be a restoring force acting on the oscillating object. The direction of this force must always point toward the equilibrium, and its magnitude must be directly proportional to the magnitude of the object’s displacement from its equilibrium position. Mathematically, the restoring force is given by , where is the displacement from equilibrium and is a constant that depends on the properties of the oscillating system. The resistive forces in the system must be reasonably small. In this problem, we will introduce some of the basic quantities that describe oscillations and the relationships among them. Consider a block of mass attached to a spring with force constant , as shown in the figure. The spring can be either stretched or compressed. The block slides on a frictionless horizontal surface, as shown. When the spring is relaxed, the block is located at . If the 28.0 cm 60.5 cms F  F = −kx x k m k x = 0 Typesetting math: 100% block is pulled to the right a distance and then released, will be the amplitude of the resulting oscillations. Assume that the mechanical energy of the block-spring system remains unchanged in the subsequent motion of the block. Part A After the block is released from , it will ANSWER: Correct As the block begins its motion to the left, it accelerates. Although the restoring force decreases as the block approaches equilibrium, it still pulls the block to the left, so by the time the equilibrium position is reached, the block has gained some speed. It will, therefore, pass the equilibrium position and keep moving, compressing the spring. The spring will now be pushing the block to the right, and the block will slow down, temporarily coming to rest at . After is reached, the block will begin its motion to the right, pushed by the spring. The block will pass the equilibrium position and continue until it reaches , completing one cycle of motion. The motion will then repeat; if, as we’ve assumed, there is no friction, the motion will repeat indefinitely. The time it takes the block to complete one cycle is called the period. Usually, the period is denoted and is measured in seconds. The frequency, denoted , is the number of cycles that are completed per unit of time: . In SI units, is measured in inverse seconds, or hertz ( ). A A x = A remain at rest. move to the left until it reaches equilibrium and stop there. move to the left until it reaches and stop there. move to the left until it reaches and then begin to move to the right. x = −A x = −A x = −A x = −A x = A T f f = 1/T f Hz Typesetting math: 100% Part B If the period is doubled, the frequency is ANSWER: Correct Part C An oscillating object takes 0.10 to complete one cycle; that is, its period is 0.10 . What is its frequency ? Express your answer in hertz. ANSWER: Correct unchanged. doubled. halved. s s f f = 10 Hz Typesetting math: 100% Part D If the frequency is 40 , what is the period ? Express your answer in seconds. ANSWER: Correct The following questions refer to the figure that graphically depicts the oscillations of the block on the spring. Note that the vertical axis represents the x coordinate of the oscillating object, and the horizontal axis represents time. Part E Which points on the x axis are located a distance from the equilibrium position? ANSWER: Hz T T = 0.025 s A Typesetting math: 100% Correct Part F Suppose that the period is . Which of the following points on the t axis are separated by the time interval ? ANSWER: Correct Now assume for the remaining Parts G – J, that the x coordinate of point R is 0.12 and the t coordinate of point K is 0.0050 . Part G What is the period ? Express your answer in seconds. Hint 1. How to approach the problem In moving from the point to the point K, what fraction of a full wavelength is covered? Call that fraction . Then you can set . Dividing by the fraction will give the R only Q only both R and Q T T K and L K and M K and P L and N M and P m s T t = 0 a aT = 0.005 s a Typesetting math: 100% period . ANSWER: Correct Part H How much time does the block take to travel from the point of maximum displacement to the opposite point of maximum displacement? Express your answer in seconds. ANSWER: Correct Part I What distance does the object cover during one period of oscillation? Express your answer in meters. ANSWER: Correct Part J What distance does the object cover between the moments labeled K and N on the graph? T T = 0.02 s t t = 0.01 s d d = 0.48 m d Typesetting math: 100% Express your answer in meters. ANSWER: Correct Problem 14.4 Part A What is the amplitude of the oscillation shown in the figure? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct d = 0.36 m A = 20.0 cm Typesetting math: 100% Part B What is the frequency of this oscillation? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the phase constant? Express your answer to two significant figures and include the appropriate units. ANSWER: Incorrect; Try Again Problem 14.10 An air-track glider attached to a spring oscillates with a period of 1.50 . At the glider is 4.60 left of the equilibrium position and moving to the right at 33.4 . Part A What is the phase constant? Express your answer to three significant figures and include the appropriate units. ANSWER: f = 0.25 Hz 0 = s t = 0 s cm cm/s Typesetting math: 100% Incorrect; Try Again Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Problem 14.12 A 140 air-track glider is attached to a spring. The glider is pushed in 12.2 and released. A student with a stopwatch finds that 14.0 oscillations take 19.0 . Part A What is the spring constant? Express your answer with the appropriate units. ANSWER: 0 = g cm s Typesetting math: 100% Correct Problem 14.14 The position of a 50 g oscillating mass is given by , where is in s. If necessary, round your answers to three significant figures. Determine: Part A The amplitude. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part B The period. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part C 3.00 Nm x(t) = (2.0 cm)cos(10t − /4) t 2.00 cm 0.628 s Typesetting math: 100% The spring constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Part D The phase constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Incorrect; Try Again Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G Typesetting math: 100% This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). Part I This question will be shown after you complete previous question(s). Enhanced EOC: Problem 14.17 A spring with spring constant 16 hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 4.0 and released. The ball makes 35 oscillations in 18 seconds. You may want to review ( pages 389 – 391) . For help with math skills, you may want to review: Differentiation of Trigonometric Functions Part A What is its the mass of the ball? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the period of oscillation? What is the angular frequency of the oscillations? How is the angular frequency related to the mass and spring constant? What is the mass? N/m cm s Typesetting math: 100% ANSWER: Correct Part B What is its maximum speed? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the amplitude of the oscillations? How is the maximum speed related to the amplitude of the oscillations and the angular frequency? ANSWER: Correct Changing the Period of a Pendulum A simple pendulum consisting of a bob of mass attached to a string of length swings with a period . Part A If the bob’s mass is doubled, approximately what will the pendulum’s new period be? Hint 1. Period of a simple pendulum The period of a simple pendulum of length is given by m = 110 g vmax = 49 cms m L T Typesetting math: 10T0% L , where is the acceleration due to gravity. ANSWER: Correct Part B If the pendulum is brought on the moon where the gravitational acceleration is about , approximately what will its period now be? Hint 1. How to approach the problem Recall the formula of the period of a simple pendulum. Since the gravitational acceleration appears in the denominator, the period must increase when the gravitational acceleration decreases. ANSWER: T = 2 Lg −−  g T/2 T &2T 2T g/6 T/6 T/&6 &6T 6T Typesetting math: 100% Correct Part C If the pendulum is taken into the orbiting space station what will happen to the bob? Hint 1. How to approach the problem Recall that the oscillations of a simple pendulum occur when a pendulum bob is raised above its equilibrium position and let go, causing the pendulum bob to fall. The gravitational force acts to bring the bob back to its equilibrium position. In the space station, the earth’s gravity acts on both the station and everything inside it, giving them the same acceleration. These objects are said to be in free fall. ANSWER: Correct In the space station, where all objects undergo the same acceleration due to the earth’s gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. Problem 14.20 A 175 ball is tied to a string. It is pulled to an angle of 8.0 and released to swing as a pendulum. A student with a stopwatch finds that 15 oscillations take 13 . Part A How long is the string? Express your answer to two significant figures and include the appropriate units. It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. It will oscillate much faster with a period that approaches zero. g ( s Typesetting math: 100% ANSWER: Correct Problem 14.22 Part A What is the length of a pendulum whose period on the moon matches the period of a 2.1- -long pendulum on the earth? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.42 An ultrasonic transducer, of the type used in medical ultrasound imaging, is a very thin disk ( = 0.17 ) driven back and forth in SHM at by an electromagnetic coil. Part A The maximum restoring force that can be applied to the disk without breaking it is 4.4×104 . What is the maximum oscillation amplitude that won’t rupture the disk? Express your answer to two significant figures and include the appropriate units. ANSWER: L = 19 cm m lmoon = 0.35 m m g 1.0 MHz N amax = 6.6 μm Typesetting math: 100% Correct Part B What is the disk’s maximum speed at this amplitude? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 81.4%. You received 117.25 out of a possible total of 144 points. vmax = 41 ms

Assignment 11 Due: 11:59pm on Wednesday, April 30, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 13.2 The gravitational force of a star on orbiting planet 1 is . Planet 2, which is twice as massive as planet 1 and orbits at twice the distance from the star, experiences gravitational force . Part A What is the ratio ? ANSWER: Correct Conceptual Question 13.3 A 1500 satellite and a 2200 satellite follow exactly the same orbit around the earth. Part A What is the ratio of the force on the first satellite to that on the second satellite? ANSWER: Correct F1 F2 F1 F2 = 2 F1 F2 kg kg F1 F2 = 0.682 F1 F2 Part B What is the ratio of the acceleration of the first satellite to that of the second satellite? ANSWER: Correct Problem 13.2 The centers of a 15.0 lead ball and a 90.0 lead ball are separated by 9.00 . Part A What gravitational force does each exert on the other? Express your answer with the appropriate units. ANSWER: Correct Part B What is the ratio of this gravitational force to the weight of the 90.0 ball? ANSWER: a1 a2 = 1 a1 a2 kg g cm 1.11×10−8 N g 1.26×10−8 Typesetting math: 100% Correct Problem 13.6 The space shuttle orbits 310 above the surface of the earth. Part A What is the gravitational force on a 7.5 sphere inside the space shuttle? Express your answer with the appropriate units. ANSWER: Correct ± A Satellite in Orbit A satellite used in a cellular telephone network has a mass of 2310 and is in a circular orbit at a height of 650 above the surface of the earth. Part A What is the gravitational force on the satellite? Take the gravitational constant to be = 6.67×10−11 , the mass of the earth to be = 5.97×1024 , and the radius of the Earth to be = 6.38×106 . Express your answer in newtons. Hint 1. How to approach the problem Use the equation for the law of gravitation to calculate the force on the satellite. Be careful about the units when performing the calculations. km kg Fe on s = 67.0 N kg km Fgrav G N m2/kg2 me kg re m Typesetting math: 100% Hint 2. Law of gravitation According to Newton’s law of gravitation, , where is the gravitational constant, and are the masses of the two objects, and is the distance between the centers of mass of the two objects. Hint 3. Calculate the distance between the centers of mass What is the distance from the center of mass of the satellite to the center of mass of the earth? Express your answer in meters. ANSWER: ANSWER: Correct Part B What fraction is this of the satellite’s weight at the surface of the earth? Take the free-fall acceleration at the surface of the earth to be = 9.80 . Hint 1. How to approach the problem All you need to do is to take the ratio of the gravitational force on the satellite to the weight of the satellite at ground level. There are two ways to do this, depending on how you define the force of gravity at the surface of the earth. ANSWER: F = Gm1m2/r2 G m1 m2 r r = 7.03×10r 6 m = 1.86×10Fgrav 4 N g m/s2 0.824 Typesetting math: 100% Correct Although it is easy to find the weight of the satellite using the constant acceleration due to gravity, it is instructional to consider the weight calculated using the law of gravitation: . Dividing the gravitational force on the satellite by , we find that the ratio of the forces due to the earth’s gravity is simply the square of the ratio of the earth’s radius to the sum of the earth’s radius and the height of the orbit of the satellite above the earth, . This will also be the fraction of the weight of, say, an astronaut in an orbit at the same altitude. Notice that an astronaut’s weight is never zero. When people speak of “weightlessness” in space, what they really mean is “free fall.” Problem 13.8 Part A What is the free-fall acceleration at the surface of the moon? Express your answer with the appropriate units. ANSWER: Correct Part B What is the free-fall acceleration at the surface of the Jupiter? Express your answer with the appropriate units. ANSWER: Correct w = G m/ me r2e Fgrav = Gmem/(re + h)2 w [re/(re + h)]2 gmoon = 1.62 m s2 gJupiter = 25.9 m s2 Typesetting math: 100% Enhanced EOC: Problem 13.14 A rocket is launched straight up from the earth’s surface at a speed of 1.90×104 . You may want to review ( pages 362 – 365) . For help with math skills, you may want to review: Mathematical Expressions Involving Squares Part A What is its speed when it is very far away from the earth? Express your answer with the appropriate units. Hint 1. How to approach the problem What is conserved in this problem? What is the rocket’s initial kinetic energy in terms of its unknown mass, ? What is the rocket’s initial gravitational potential energy in terms of its unknown mass, ? When the rocket is very far away from the Earth, what is its gravitational potential energy? Using conservation of energy, what is the rocket’s kinetic energy when it is very far away from the Earth? Therefore, what is the rocket’s velocity when it is very far away from the Earth? ANSWER: Correct Problem 13.13 Part A m/s m m 1.54×104 ms Typesetting math: 100% What is the escape speed from Venus? Express your answer with the appropriate units. ANSWER: Correct Problem 13.17 The asteroid belt circles the sun between the orbits of Mars and Jupiter. One asteroid has a period of 4.2 earth years. Part A What is the asteroid’s orbital radius? Express your answer with the appropriate units. ANSWER: Correct Part B What is the asteroid’s orbital speed? Express your answer with the appropriate units. ANSWER: vescape = 10.4 km s = 3.89×1011 R m = 1.85×104 v ms Typesetting math: 100% Correct Problem 13.32 Part A At what height above the earth is the acceleration due to gravity 15.0% of its value at the surface? Express your answer with the appropriate units. ANSWER: Correct Part B What is the speed of a satellite orbiting at that height? Express your answer with the appropriate units. ANSWER: Correct Problem 13.36 Two meteoroids are heading for earth. Their speeds as they cross the moon’s orbit are 2 . 1.01×107 m 4920 ms km/s Typesetting math: 100% Part A The first meteoroid is heading straight for earth. What is its speed of impact? Express your answer with the appropriate units. ANSWER: Correct Part B The second misses the earth by 5500 . What is its speed at its closest point? Express your answer with the appropriate units. ANSWER: Incorrect; Try Again Problem 14.2 An air-track glider attached to a spring oscillates between the 11.0 mark and the 67.0 mark on the track. The glider completes 11.0 oscillations in 32.0 . Part A What is the period of the oscillations? Express your answer with the appropriate units. v1 = 11.3 km s km v2 = cm cm s Typesetting math: 100% ANSWER: Correct Part B What is the frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part C What is the angular frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part D What is the amplitude? Express your answer with the appropriate units. 2.91 s 0.344 Hz 2.16 rad s Typesetting math: 100% ANSWER: Correct Part E What is the maximum speed of the glider? Express your answer with the appropriate units. ANSWER: Correct Good Vibes: Introduction to Oscillations Learning Goal: To learn the basic terminology and relationships among the main characteristics of simple harmonic motion. Motion that repeats itself over and over is called periodic motion. There are many examples of periodic motion: the earth revolving around the sun, an elastic ball bouncing up and down, or a block attached to a spring oscillating back and forth. The last example differs from the first two, in that it represents a special kind of periodic motion called simple harmonic motion. The conditions that lead to simple harmonic motion are as follows: There must be a position of stable equilibrium. There must be a restoring force acting on the oscillating object. The direction of this force must always point toward the equilibrium, and its magnitude must be directly proportional to the magnitude of the object’s displacement from its equilibrium position. Mathematically, the restoring force is given by , where is the displacement from equilibrium and is a constant that depends on the properties of the oscillating system. The resistive forces in the system must be reasonably small. In this problem, we will introduce some of the basic quantities that describe oscillations and the relationships among them. Consider a block of mass attached to a spring with force constant , as shown in the figure. The spring can be either stretched or compressed. The block slides on a frictionless horizontal surface, as shown. When the spring is relaxed, the block is located at . If the 28.0 cm 60.5 cms F  F = −kx x k m k x = 0 Typesetting math: 100% block is pulled to the right a distance and then released, will be the amplitude of the resulting oscillations. Assume that the mechanical energy of the block-spring system remains unchanged in the subsequent motion of the block. Part A After the block is released from , it will ANSWER: Correct As the block begins its motion to the left, it accelerates. Although the restoring force decreases as the block approaches equilibrium, it still pulls the block to the left, so by the time the equilibrium position is reached, the block has gained some speed. It will, therefore, pass the equilibrium position and keep moving, compressing the spring. The spring will now be pushing the block to the right, and the block will slow down, temporarily coming to rest at . After is reached, the block will begin its motion to the right, pushed by the spring. The block will pass the equilibrium position and continue until it reaches , completing one cycle of motion. The motion will then repeat; if, as we’ve assumed, there is no friction, the motion will repeat indefinitely. The time it takes the block to complete one cycle is called the period. Usually, the period is denoted and is measured in seconds. The frequency, denoted , is the number of cycles that are completed per unit of time: . In SI units, is measured in inverse seconds, or hertz ( ). A A x = A remain at rest. move to the left until it reaches equilibrium and stop there. move to the left until it reaches and stop there. move to the left until it reaches and then begin to move to the right. x = −A x = −A x = −A x = −A x = A T f f = 1/T f Hz Typesetting math: 100% Part B If the period is doubled, the frequency is ANSWER: Correct Part C An oscillating object takes 0.10 to complete one cycle; that is, its period is 0.10 . What is its frequency ? Express your answer in hertz. ANSWER: Correct unchanged. doubled. halved. s s f f = 10 Hz Typesetting math: 100% Part D If the frequency is 40 , what is the period ? Express your answer in seconds. ANSWER: Correct The following questions refer to the figure that graphically depicts the oscillations of the block on the spring. Note that the vertical axis represents the x coordinate of the oscillating object, and the horizontal axis represents time. Part E Which points on the x axis are located a distance from the equilibrium position? ANSWER: Hz T T = 0.025 s A Typesetting math: 100% Correct Part F Suppose that the period is . Which of the following points on the t axis are separated by the time interval ? ANSWER: Correct Now assume for the remaining Parts G – J, that the x coordinate of point R is 0.12 and the t coordinate of point K is 0.0050 . Part G What is the period ? Express your answer in seconds. Hint 1. How to approach the problem In moving from the point to the point K, what fraction of a full wavelength is covered? Call that fraction . Then you can set . Dividing by the fraction will give the R only Q only both R and Q T T K and L K and M K and P L and N M and P m s T t = 0 a aT = 0.005 s a Typesetting math: 100% period . ANSWER: Correct Part H How much time does the block take to travel from the point of maximum displacement to the opposite point of maximum displacement? Express your answer in seconds. ANSWER: Correct Part I What distance does the object cover during one period of oscillation? Express your answer in meters. ANSWER: Correct Part J What distance does the object cover between the moments labeled K and N on the graph? T T = 0.02 s t t = 0.01 s d d = 0.48 m d Typesetting math: 100% Express your answer in meters. ANSWER: Correct Problem 14.4 Part A What is the amplitude of the oscillation shown in the figure? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct d = 0.36 m A = 20.0 cm Typesetting math: 100% Part B What is the frequency of this oscillation? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the phase constant? Express your answer to two significant figures and include the appropriate units. ANSWER: Incorrect; Try Again Problem 14.10 An air-track glider attached to a spring oscillates with a period of 1.50 . At the glider is 4.60 left of the equilibrium position and moving to the right at 33.4 . Part A What is the phase constant? Express your answer to three significant figures and include the appropriate units. ANSWER: f = 0.25 Hz 0 = s t = 0 s cm cm/s Typesetting math: 100% Incorrect; Try Again Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Problem 14.12 A 140 air-track glider is attached to a spring. The glider is pushed in 12.2 and released. A student with a stopwatch finds that 14.0 oscillations take 19.0 . Part A What is the spring constant? Express your answer with the appropriate units. ANSWER: 0 = g cm s Typesetting math: 100% Correct Problem 14.14 The position of a 50 g oscillating mass is given by , where is in s. If necessary, round your answers to three significant figures. Determine: Part A The amplitude. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part B The period. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part C 3.00 Nm x(t) = (2.0 cm)cos(10t − /4) t 2.00 cm 0.628 s Typesetting math: 100% The spring constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Part D The phase constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Incorrect; Try Again Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G Typesetting math: 100% This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). Part I This question will be shown after you complete previous question(s). Enhanced EOC: Problem 14.17 A spring with spring constant 16 hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 4.0 and released. The ball makes 35 oscillations in 18 seconds. You may want to review ( pages 389 – 391) . For help with math skills, you may want to review: Differentiation of Trigonometric Functions Part A What is its the mass of the ball? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the period of oscillation? What is the angular frequency of the oscillations? How is the angular frequency related to the mass and spring constant? What is the mass? N/m cm s Typesetting math: 100% ANSWER: Correct Part B What is its maximum speed? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the amplitude of the oscillations? How is the maximum speed related to the amplitude of the oscillations and the angular frequency? ANSWER: Correct Changing the Period of a Pendulum A simple pendulum consisting of a bob of mass attached to a string of length swings with a period . Part A If the bob’s mass is doubled, approximately what will the pendulum’s new period be? Hint 1. Period of a simple pendulum The period of a simple pendulum of length is given by m = 110 g vmax = 49 cms m L T Typesetting math: 10T0% L , where is the acceleration due to gravity. ANSWER: Correct Part B If the pendulum is brought on the moon where the gravitational acceleration is about , approximately what will its period now be? Hint 1. How to approach the problem Recall the formula of the period of a simple pendulum. Since the gravitational acceleration appears in the denominator, the period must increase when the gravitational acceleration decreases. ANSWER: T = 2 Lg −−  g T/2 T &2T 2T g/6 T/6 T/&6 &6T 6T Typesetting math: 100% Correct Part C If the pendulum is taken into the orbiting space station what will happen to the bob? Hint 1. How to approach the problem Recall that the oscillations of a simple pendulum occur when a pendulum bob is raised above its equilibrium position and let go, causing the pendulum bob to fall. The gravitational force acts to bring the bob back to its equilibrium position. In the space station, the earth’s gravity acts on both the station and everything inside it, giving them the same acceleration. These objects are said to be in free fall. ANSWER: Correct In the space station, where all objects undergo the same acceleration due to the earth’s gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. Problem 14.20 A 175 ball is tied to a string. It is pulled to an angle of 8.0 and released to swing as a pendulum. A student with a stopwatch finds that 15 oscillations take 13 . Part A How long is the string? Express your answer to two significant figures and include the appropriate units. It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. It will oscillate much faster with a period that approaches zero. g ( s Typesetting math: 100% ANSWER: Correct Problem 14.22 Part A What is the length of a pendulum whose period on the moon matches the period of a 2.1- -long pendulum on the earth? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.42 An ultrasonic transducer, of the type used in medical ultrasound imaging, is a very thin disk ( = 0.17 ) driven back and forth in SHM at by an electromagnetic coil. Part A The maximum restoring force that can be applied to the disk without breaking it is 4.4×104 . What is the maximum oscillation amplitude that won’t rupture the disk? Express your answer to two significant figures and include the appropriate units. ANSWER: L = 19 cm m lmoon = 0.35 m m g 1.0 MHz N amax = 6.6 μm Typesetting math: 100% Correct Part B What is the disk’s maximum speed at this amplitude? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 81.4%. You received 117.25 out of a possible total of 144 points. vmax = 41 ms

info@checkyourstudy.com
Watch this video and answer the multi choices: https://www.youtube.com/watch?v=D4lB4SowAQA PART 1 _______1. Sociologists obtained their knowledge of human behavior through _______, which is this process of systematically collecting information for the purpose of testing an existing theory or generating a new one. a. Common sense ideas b. Research c. Myths d. scientific laws _______2. With ____Research, the goal is scientific objectivity, and the focus is on data that can be measured numerically a. qualitative b. observational c. c. quantitative d. d. explanatory _______3. With _______research, interpretative description (words) rather than statistics (numbers) are used to analyze underlying meaning and patterns of social relationships. a. qualitative b. observational c. quantitative d. explanatory _______4. Researchers in one study systematically analyzed the contents of the notes of suicide victims to determine recurring themes, such as feeling of despair or failure. They hoped to determine if any patterns could be found that would help in understating why people might kill themselves. This is an example of __________. a. Qualitative research b. Explanatory research c. Quantitative research d. Descriptive research ______5. the first step in the research process is to: a. select and define the research problem b. review previous research. c. develop a research design d. formulate the hypothesis ______6. A_____sample is a selection from a larger population and has the essential characteristics of the total population. a. selective b. random c. representative d. longitudinal _______7. _________is the extent to which a study or research instrument accurately measures what it is supposed to measure;_________is the extent to which a study or research instrument yields consistent results. a. Validity; replication b. Replication; validity c. Validity; reliability d. Reliability; validity _______8. Researchers who use existing material and analyze data that originally was collected by others are engaged in: a. unethical conduct b. primary analysis. c. secondary analysis d. survey analysis _______9. In an experiment, the subjects in the control group a. are exposed to the independent variable. b. are not exposed to the independent variable. c. are exposed to the dependent variable. d. are not exposed to the dependent variable. _______10. A tentative statement that predicts the relationship between variable is called a. a hypothesis b. a research model. c. a probability sample. d. a generalization. ______11. John wants to test this idea: “people who attend church regularly are less likely to express prejudice toward other races than people who do not attend church regularly.’ This idea is John’s a. hypothesis. b. research model. c. conclusion. d. operational definition _______12. In a research project, which of the following steps would come after the other three? a. choosing a research design b. reviewing the literature c. formulating a hypothesis d. collecting the data ________13. The variable hypothesized to cause or influence another is called the a. dependent variable. b. hypothetical variable c. correlation variable d. independent variable ________14. An explanation of an abstract concept that is specific enough to allow a research to measure the concept is a a. Hypothesis b. correlation. c. operatonal definition. d. variable _____15. Observation, ethnography, and case studies are examples of: a. survey research b. experiments. c. Secondary analysis of existing data. d. Field research. ______16. Theory and research are interrelated because a. theory always precedes research. b. research always precedes theory c. both put limits on each other. d. they are parts of a constant cycle. ______17. A dependent variable is one that a. always occurs first. b. is influenced by another variable. c. Causes another variable to change. d. is the most important ______18. In a study designed to test the relationship between gender and voting behavior, the independent variable would be a. the age of the candidates b. voting behavior. c. The political party of the candidates. d. Gender ______19. Differences in age, sex, race, and social class are treated as ____________in sociological research. a. variables b. references c. causes d. controls ______20. Researchers in agriculture decided to test the effects of a new fertilizer on crop growth. In this study, crop growth is the a. independent variable b. dependent variable c. control variable d. correlation e. _____21. The ______is appropriate for studying the relationships among variables under carefully controlled conditions. a. experiment b. survey c. observational study d. in-depth study _____22. In every experiment, some subjects are exposed to an independent variable, and are then watched closely for their reactions. These subjects are known as the a. reference group b. experimental group c. control group d. survey group. ______23. A usual research method for learning the attitudes of a population would be a. an experiment. b. A survey. c. An observational study. d. Content analysis ______24. In survey research, the total group of people the researcher is interested in is called a. the population b. the sample, c. the control group d. the random sample ______25. In the experiment method, the subjects who are exposed to all the experimental conditions except the independent variable are referred to as the_________________group. a. peer b. alternate c. control d. experimental ______26. A__________Sample is one in which every member of the population in The population has an equal chance of being selected. a. defined b. random c. purposive d. convenience ______27. A sociologist is following the research model outlined in the text. After reviewing the literature, the next step will be to a. find a suitable subject b. formulate a hypothesis c. collect the data. d. Choose a research design. ______28. Sociologists use two approaches when answering important questions. a. Explanatory and descriptive Approaches b. Direct and systematic Approaches c. Normative and systematic Approaches d. Normative and Empirical Approaches ______29. Sociologists use types of empirical studies a. Research and Theoretical Studies b. Descriptive and Explanatory Studies c. Hypothesis and Correlations Studies d. Longitudinal and Cross-sectional Studies ______30. The deductive approach begin with the a. Collecting data b. Theory and uses research to test the theory. c. Hypothesis d. Observation ______31. The inductive approach begin with a a. Theory b. Data Collection c. Reviewing the Literature d. The Problem State ______32. Quantitative Research deals with a. Words b. Numbers c. Interpretive descriptive d. Use number to analyze underlying meanings and patterns of social relationships. ______33. ________is the study of social life in its natural setting: observing and interviewing people where they live, work, and play. a. The survey b. Secondary analysis c. Field research d. The experiment ______34. ________refers to the process of collecting data while being part of the activities of the group that the researcher is studying a. The experiment b. Survey research c. Participant observation d. Secondary analysis _______35. A/an________is a detailed study of the life and activities of a group of people by researchers who may live with that group over a period of years. a. Correlational study b. ethnography c. experiment d. content analysis _______36. A/an _________is a carefully designed situation in which the researcher studies the impact of certain variables on subjects’ attitudes or behavior. a. case study b. correlational study c. experiment d. Participant observation _______37. In an experiment, the_______contains the subjects who are exposed to an independent variable to study its effect on them. a. Experiment group b. Dependent group c. Control group d. Independent group _______38. In an experiment, the_________contains the subjects who are not exposed to the independent variable. a. Experimental group b. Independent group c. Dependent group d. Control group _______39. ________is the extent to which a study or research instrument accurately measures what it is supposed to measure a. Validity b. Reliability c. Predictability d. Variability ______40. ________is the extent to which a study or research instrument yields consistent results when applied to different individual at one time or to same individuals over time. a. Validity b. Reliability c. Predictability d. Variability TRUE/FALSE ______41. In social science research, individuals are the most typical units of analysis. ______42. With qualitative research, statistics are used to analyze patterns of social relationship. ______43. Reliability is when a study gives consistent results to different research over time.

Watch this video and answer the multi choices: https://www.youtube.com/watch?v=D4lB4SowAQA PART 1 _______1. Sociologists obtained their knowledge of human behavior through _______, which is this process of systematically collecting information for the purpose of testing an existing theory or generating a new one. a. Common sense ideas b. Research c. Myths d. scientific laws _______2. With ____Research, the goal is scientific objectivity, and the focus is on data that can be measured numerically a. qualitative b. observational c. c. quantitative d. d. explanatory _______3. With _______research, interpretative description (words) rather than statistics (numbers) are used to analyze underlying meaning and patterns of social relationships. a. qualitative b. observational c. quantitative d. explanatory _______4. Researchers in one study systematically analyzed the contents of the notes of suicide victims to determine recurring themes, such as feeling of despair or failure. They hoped to determine if any patterns could be found that would help in understating why people might kill themselves. This is an example of __________. a. Qualitative research b. Explanatory research c. Quantitative research d. Descriptive research ______5. the first step in the research process is to: a. select and define the research problem b. review previous research. c. develop a research design d. formulate the hypothesis ______6. A_____sample is a selection from a larger population and has the essential characteristics of the total population. a. selective b. random c. representative d. longitudinal _______7. _________is the extent to which a study or research instrument accurately measures what it is supposed to measure;_________is the extent to which a study or research instrument yields consistent results. a. Validity; replication b. Replication; validity c. Validity; reliability d. Reliability; validity _______8. Researchers who use existing material and analyze data that originally was collected by others are engaged in: a. unethical conduct b. primary analysis. c. secondary analysis d. survey analysis _______9. In an experiment, the subjects in the control group a. are exposed to the independent variable. b. are not exposed to the independent variable. c. are exposed to the dependent variable. d. are not exposed to the dependent variable. _______10. A tentative statement that predicts the relationship between variable is called a. a hypothesis b. a research model. c. a probability sample. d. a generalization. ______11. John wants to test this idea: “people who attend church regularly are less likely to express prejudice toward other races than people who do not attend church regularly.’ This idea is John’s a. hypothesis. b. research model. c. conclusion. d. operational definition _______12. In a research project, which of the following steps would come after the other three? a. choosing a research design b. reviewing the literature c. formulating a hypothesis d. collecting the data ________13. The variable hypothesized to cause or influence another is called the a. dependent variable. b. hypothetical variable c. correlation variable d. independent variable ________14. An explanation of an abstract concept that is specific enough to allow a research to measure the concept is a a. Hypothesis b. correlation. c. operatonal definition. d. variable _____15. Observation, ethnography, and case studies are examples of: a. survey research b. experiments. c. Secondary analysis of existing data. d. Field research. ______16. Theory and research are interrelated because a. theory always precedes research. b. research always precedes theory c. both put limits on each other. d. they are parts of a constant cycle. ______17. A dependent variable is one that a. always occurs first. b. is influenced by another variable. c. Causes another variable to change. d. is the most important ______18. In a study designed to test the relationship between gender and voting behavior, the independent variable would be a. the age of the candidates b. voting behavior. c. The political party of the candidates. d. Gender ______19. Differences in age, sex, race, and social class are treated as ____________in sociological research. a. variables b. references c. causes d. controls ______20. Researchers in agriculture decided to test the effects of a new fertilizer on crop growth. In this study, crop growth is the a. independent variable b. dependent variable c. control variable d. correlation e. _____21. The ______is appropriate for studying the relationships among variables under carefully controlled conditions. a. experiment b. survey c. observational study d. in-depth study _____22. In every experiment, some subjects are exposed to an independent variable, and are then watched closely for their reactions. These subjects are known as the a. reference group b. experimental group c. control group d. survey group. ______23. A usual research method for learning the attitudes of a population would be a. an experiment. b. A survey. c. An observational study. d. Content analysis ______24. In survey research, the total group of people the researcher is interested in is called a. the population b. the sample, c. the control group d. the random sample ______25. In the experiment method, the subjects who are exposed to all the experimental conditions except the independent variable are referred to as the_________________group. a. peer b. alternate c. control d. experimental ______26. A__________Sample is one in which every member of the population in The population has an equal chance of being selected. a. defined b. random c. purposive d. convenience ______27. A sociologist is following the research model outlined in the text. After reviewing the literature, the next step will be to a. find a suitable subject b. formulate a hypothesis c. collect the data. d. Choose a research design. ______28. Sociologists use two approaches when answering important questions. a. Explanatory and descriptive Approaches b. Direct and systematic Approaches c. Normative and systematic Approaches d. Normative and Empirical Approaches ______29. Sociologists use types of empirical studies a. Research and Theoretical Studies b. Descriptive and Explanatory Studies c. Hypothesis and Correlations Studies d. Longitudinal and Cross-sectional Studies ______30. The deductive approach begin with the a. Collecting data b. Theory and uses research to test the theory. c. Hypothesis d. Observation ______31. The inductive approach begin with a a. Theory b. Data Collection c. Reviewing the Literature d. The Problem State ______32. Quantitative Research deals with a. Words b. Numbers c. Interpretive descriptive d. Use number to analyze underlying meanings and patterns of social relationships. ______33. ________is the study of social life in its natural setting: observing and interviewing people where they live, work, and play. a. The survey b. Secondary analysis c. Field research d. The experiment ______34. ________refers to the process of collecting data while being part of the activities of the group that the researcher is studying a. The experiment b. Survey research c. Participant observation d. Secondary analysis _______35. A/an________is a detailed study of the life and activities of a group of people by researchers who may live with that group over a period of years. a. Correlational study b. ethnography c. experiment d. content analysis _______36. A/an _________is a carefully designed situation in which the researcher studies the impact of certain variables on subjects’ attitudes or behavior. a. case study b. correlational study c. experiment d. Participant observation _______37. In an experiment, the_______contains the subjects who are exposed to an independent variable to study its effect on them. a. Experiment group b. Dependent group c. Control group d. Independent group _______38. In an experiment, the_________contains the subjects who are not exposed to the independent variable. a. Experimental group b. Independent group c. Dependent group d. Control group _______39. ________is the extent to which a study or research instrument accurately measures what it is supposed to measure a. Validity b. Reliability c. Predictability d. Variability ______40. ________is the extent to which a study or research instrument yields consistent results when applied to different individual at one time or to same individuals over time. a. Validity b. Reliability c. Predictability d. Variability TRUE/FALSE ______41. In social science research, individuals are the most typical units of analysis. ______42. With qualitative research, statistics are used to analyze patterns of social relationship. ______43. Reliability is when a study gives consistent results to different research over time.

info@checkyourstudy.com Watch this video and answer the multi choices:  https://www.youtube.com/watch?v=D4lB4SowAQA   … Read More...
According to Antonio Cassese, the crime of Aggression includes other so-called core-crimes” or “Crimes Against the Peace.” What are the objective and the subjective elements of the Crime of Aggression? IMT IMTFE UNGA Res. 3314 Article VII UN Charter “Criminal Intent” “Special Intent” Torture The Red Crescent The Red Cross Article 5 Geneva Convention 1949

According to Antonio Cassese, the crime of Aggression includes other so-called core-crimes” or “Crimes Against the Peace.” What are the objective and the subjective elements of the Crime of Aggression? IMT IMTFE UNGA Res. 3314 Article VII UN Charter “Criminal Intent” “Special Intent” Torture The Red Crescent The Red Cross Article 5 Geneva Convention 1949

info@checkyourstudy.com  
Homework #2: Cryptoanalysis on Monoalphabetic Ciphertext Goal: • Understand basic cipher and apply natural language statistics to decipher text encrypted using monoalphabetic cipher. Assignment Date: 9/20/2015 Description: Understand monoalphabetic substitution, basic cryptoanalysis, and apply natural language statistics to decrypt a ciphertext. Document the process you use to analyze the ciphertext. Justify your answer step by step, describing the mapping you observe and how you verify the results, until the name of the article and the author is revealed. Submit your answer as a word document through blackboard system. Here is the ciphertext: VAGXWTAXUSJEWULUJKUSXWSBA AGXVSPYUXWZXAGBYPVAXPY AJPYNWTAJPNJUJPSJUMJSPNAJ TAJTUNLUENJCNZUXPKSJE EUENTSPUEPAPYUHXAHAWNPNAJPYSP SCCIUJSXUTXUSPUEUOGSC JAMMUSXUUJBSBUENJSBXUSPTNLNCMSX PUWPNJBMYUPYUXPYSPJSPNAJAXSJKJSPNAJ WATAJTUNLUESJEWAEUENTSPUETSJCAJBUJEGXU MUSXUIUPAJSBXUSPZSPPCU-VNUCEAVPYSPMSX MUYSLUTAIUPAEUENTSPUSHAXPNAJAVPYSPVNUCE SWSVNJSCXUWPNJBHCSTUVAXPYAWU MYAYUXUBSLUPYUNXCNLUW PYSPPYSPJSPNAJINBYPCNLU IPNWSCPABUPYUXVNPPNJBSJEHXAHUX PYSPMUWYAGCEEAPYNW ZGPNJSCSXBUXWUJWUMUTSJJAPEUENTSPU MUTSJJAPTAJWUTXSPU MUTSJJAPYSCCAMPYNWBXAGJE PYUZXSLUIUJCNLNJBSJEEUSE MYAWPXGBBCUEYUXUYSLUTAJWUTXSPUENP VSXSZALUAGXHAAXHAMUXPASEEAXEUPXSTP PYUMAXCEMNCCCNPPCUJAPU JAXCAJBXUIUIZUXMYSPMUWSKYUXU ZGPNPTSJJULUXVAXBUPMYSPPYUKENEYUXU IPNWVAXGWPYUCNLNJBXSPYUX PAZUEUENTSPUEYUXUPAPYUGJVNJNWYUEMAXR MYNTYPYUKMYAVAGBYPYUXUYSLUPYGWVSXWAJAZCKSELSJTUE IPNWXSPYUXVAXGWPAZUYUXU EUENTSPUEPAPYUBXUSPPSWRXUISNJNJBZUVAXUGW PYSPVXAIPYUWUYAJAXUEEUSE MUPSRUNJTXUSWUEEULAPNAJPAPYSPTSGWU VAXMYNTYPYUKBSLUPYUCSWPVGCCIUSWGXUAVEULAPNAJ PYSPMUYUXUYNBYCKXUWACLUPYSP PYUWUEUSEWYSCCJAPYSLUENUENJLSNJ PYSPPYNWJSPNAJGJEUXGAEWYSCCYSLUSJUMZNXPYAVVXUUEAI SJEPYSPBALUXJIUJP AVPYUHUAHCU ZKPYUHUAHCU VAXPYUHUAHCU WYSCCJAPHUXNWYVXAIPYUUSXPY Hint: • This is an article with three paragraphs. Line boundary helps locating starting and ending words. • Apply Ankur Patwa’s character frequency tool to obtain the frequencies of uni-gram, di-gram, tri-gram, quad-gram in the ciphertext. Then try to generate a monalphabeic mapping using natural language statistics in viewgraph 10 of basic crypto. Normally we start by guessing the high frequency tri-grams and quad-gram. You can verify the correctness of the mapping by cross referencing among the quad-gram, tri-gram, di-gram, uni-gram, and also the starting words and ending words of a line. • On viva, use “monosub.pl <ciphter.txt> <mapfile.txt> <workfile.txt>” to geneate the current mapping. monosub.pl is available at /home/cs591/public_html/crypto/src. You can copy the monosub.pl to your directory or use /home/cs591/public_html/crypto/src/monosub.pl • Try to guess and validate as many mappings as possible, say top 4, before you proceed with monosubstituion. • Once you get the working file, try to separate word boundaries to bring out additional mappings. About 4 rounds of mapping you should be able to decipher it. • Document the key mappings, your observations (how you derive the next mappings), and intermediate cipher results.

Homework #2: Cryptoanalysis on Monoalphabetic Ciphertext Goal: • Understand basic cipher and apply natural language statistics to decipher text encrypted using monoalphabetic cipher. Assignment Date: 9/20/2015 Description: Understand monoalphabetic substitution, basic cryptoanalysis, and apply natural language statistics to decrypt a ciphertext. Document the process you use to analyze the ciphertext. Justify your answer step by step, describing the mapping you observe and how you verify the results, until the name of the article and the author is revealed. Submit your answer as a word document through blackboard system. Here is the ciphertext: VAGXWTAXUSJEWULUJKUSXWSBA AGXVSPYUXWZXAGBYPVAXPY AJPYNWTAJPNJUJPSJUMJSPNAJ TAJTUNLUENJCNZUXPKSJE EUENTSPUEPAPYUHXAHAWNPNAJPYSP SCCIUJSXUTXUSPUEUOGSC JAMMUSXUUJBSBUENJSBXUSPTNLNCMSX PUWPNJBMYUPYUXPYSPJSPNAJAXSJKJSPNAJ WATAJTUNLUESJEWAEUENTSPUETSJCAJBUJEGXU MUSXUIUPAJSBXUSPZSPPCU-VNUCEAVPYSPMSX MUYSLUTAIUPAEUENTSPUSHAXPNAJAVPYSPVNUCE SWSVNJSCXUWPNJBHCSTUVAXPYAWU MYAYUXUBSLUPYUNXCNLUW PYSPPYSPJSPNAJINBYPCNLU IPNWSCPABUPYUXVNPPNJBSJEHXAHUX PYSPMUWYAGCEEAPYNW ZGPNJSCSXBUXWUJWUMUTSJJAPEUENTSPU MUTSJJAPTAJWUTXSPU MUTSJJAPYSCCAMPYNWBXAGJE PYUZXSLUIUJCNLNJBSJEEUSE MYAWPXGBBCUEYUXUYSLUTAJWUTXSPUENP VSXSZALUAGXHAAXHAMUXPASEEAXEUPXSTP PYUMAXCEMNCCCNPPCUJAPU JAXCAJBXUIUIZUXMYSPMUWSKYUXU ZGPNPTSJJULUXVAXBUPMYSPPYUKENEYUXU IPNWVAXGWPYUCNLNJBXSPYUX PAZUEUENTSPUEYUXUPAPYUGJVNJNWYUEMAXR MYNTYPYUKMYAVAGBYPYUXUYSLUPYGWVSXWAJAZCKSELSJTUE IPNWXSPYUXVAXGWPAZUYUXU EUENTSPUEPAPYUBXUSPPSWRXUISNJNJBZUVAXUGW PYSPVXAIPYUWUYAJAXUEEUSE MUPSRUNJTXUSWUEEULAPNAJPAPYSPTSGWU VAXMYNTYPYUKBSLUPYUCSWPVGCCIUSWGXUAVEULAPNAJ PYSPMUYUXUYNBYCKXUWACLUPYSP PYUWUEUSEWYSCCJAPYSLUENUENJLSNJ PYSPPYNWJSPNAJGJEUXGAEWYSCCYSLUSJUMZNXPYAVVXUUEAI SJEPYSPBALUXJIUJP AVPYUHUAHCU ZKPYUHUAHCU VAXPYUHUAHCU WYSCCJAPHUXNWYVXAIPYUUSXPY Hint: • This is an article with three paragraphs. Line boundary helps locating starting and ending words. • Apply Ankur Patwa’s character frequency tool to obtain the frequencies of uni-gram, di-gram, tri-gram, quad-gram in the ciphertext. Then try to generate a monalphabeic mapping using natural language statistics in viewgraph 10 of basic crypto. Normally we start by guessing the high frequency tri-grams and quad-gram. You can verify the correctness of the mapping by cross referencing among the quad-gram, tri-gram, di-gram, uni-gram, and also the starting words and ending words of a line. • On viva, use “monosub.pl ” to geneate the current mapping. monosub.pl is available at /home/cs591/public_html/crypto/src. You can copy the monosub.pl to your directory or use /home/cs591/public_html/crypto/src/monosub.pl • Try to guess and validate as many mappings as possible, say top 4, before you proceed with monosubstituion. • Once you get the working file, try to separate word boundaries to bring out additional mappings. About 4 rounds of mapping you should be able to decipher it. • Document the key mappings, your observations (how you derive the next mappings), and intermediate cipher results.

info@checkyourstudy.com
Computer/information Security Q1. Identify legislative and regulative requirements relative to information security for a bank

Computer/information Security Q1. Identify legislative and regulative requirements relative to information security for a bank

Computer/information Security     Q1. Identify legislative and regulative requirements relative to … Read More...