Q2 A device in a cell base station which changes direct current from one voltage label to another voltage label is known as a what ?

## Q2 A device in a cell base station which changes direct current from one voltage label to another voltage label is known as a what ?

Ans     DC to DC power converter
Two wires #1 carries a current I, toward the top of the page and is held rigidly in place. wire #2 carries a current I to the left and is free to move. wire # 2 will experience a magnatic force which cause it to; 1) move down , 2) move up , 3) rotate clockwise , 4) rotate counterclockwise, 5) move right.

## Two wires #1 carries a current I, toward the top of the page and is held rigidly in place. wire #2 carries a current I to the left and is free to move. wire # 2 will experience a magnatic force which cause it to; 1) move down , 2) move up , 3) rotate clockwise , 4) rotate counterclockwise, 5) move right.

What is the phase θ of the complex power if the voltage phase is 136° and the current phase is 82°? (0 decimal in °)

## What is the phase θ of the complex power if the voltage phase is 136° and the current phase is 82°? (0 decimal in °)

ELEC153 Circuit Theory II M2A3 Lab: AC Series Circuits Introduction Previously you worked with two simple AC series circuits, R-C and R-L circuits. We continue that work in this experiment. Procedure 1. Setup the following circuit in MultiSim.The voltage source is 10 volts peak at 1000 Hz. Figure 1: Circuit for analysis using MultiSim 2. Change R1 to 1 k and C1 to 0.1 uF. Connect the oscilloscope to measure both the source voltage and the voltage across the resistor.You should have the following arrangement. Figure 2: Circuit of figure 1 connected to oscilloscope To color the wires, right click the desired wire and select “Color Segment…” and follow the instructions. Start the simulation and open the oscilloscope. You should get the following plot: Figure 3: Source voltage (red) and the voltage (blue) across the resistor The red signal is the voltage of the source and the blue is the voltage across the resistor. The colors correspond to the colors of the wires from the oscilloscope. 3. From the resulting analysis plotdetermine the peak current. To determine the peak current measure the peak voltage across the resistor and divide by the value of the resistor (1000 Ohms). Record it here. Measured Peak Current 4. Determine the peak current by calculation. Record it here. Does it match the measured peak current? Explain. Calculated Peak Current 5 Determine the phase shift between the current in the circuit and the source voltage. We look at the time between zero crossings to determine the phase shift between two waveforms. In our plot, the blue waveform (representing the circuit current or the voltage across the resistor) crosses zero before the red waveform (the circuit voltage). So, current is leading voltage in this circuit. This is exactly what should happen when we have a capacitive circuit. 6. To determine the phase shift, we first have to measure the time between zero crossings on the red and blue waveforms. This is done by moving the oscillator probes to the two zero crossing as is shown in the following figure Figure 4: Determining the phase shift between the two voltage waveforms We can see from the figure that the zero crossing difference (T2 – T1) is approximately 134 us. The ratio of the zero-crossing time difference to the period of the waveform determines the phase shift, as follows: Using our time values, we have: How do we know if this phase shift is correct? In step 4 when you did your manual calculations to find the peak current, you had to find the total impedance of the circuit, which was: Now, the current will be: Here, the positive angle on the current indicates it is leading the circuit voltage. 7. Change the frequency of the voltage source to 5000 Hz. Estimulate and perform a Transient Analysis to find the new circuit current and phase angle. Measure them and record them here: Measured Current Measured Phase Shift 8. Perform the manual calculations needed to find the circuit current and phase shift. Record the calculated values here. Do they match the measured values within reason? What has happened to the circuit with an increase in frequency? Calculated Current Calculated Phase Shift Writeup and Submission In general, for each lab you do, you will be asked to setup certain circuits, simulate them, record the results, verify the results are correct by hand, and then discuss the solution. Your lab write-up should contain a one page, single spaced discussion of the lab experiment, what went right for you, what you had difficulty with, what you learned from the experiment, how it applies to our coursework, and any other comment you can think of. In addition, you should include screen shots from the MultiSim software and any other figure, table, or diagram as necessary.

## ELEC153 Circuit Theory II M2A3 Lab: AC Series Circuits Introduction Previously you worked with two simple AC series circuits, R-C and R-L circuits. We continue that work in this experiment. Procedure 1. Setup the following circuit in MultiSim.The voltage source is 10 volts peak at 1000 Hz. Figure 1: Circuit for analysis using MultiSim 2. Change R1 to 1 k and C1 to 0.1 uF. Connect the oscilloscope to measure both the source voltage and the voltage across the resistor.You should have the following arrangement. Figure 2: Circuit of figure 1 connected to oscilloscope To color the wires, right click the desired wire and select “Color Segment…” and follow the instructions. Start the simulation and open the oscilloscope. You should get the following plot: Figure 3: Source voltage (red) and the voltage (blue) across the resistor The red signal is the voltage of the source and the blue is the voltage across the resistor. The colors correspond to the colors of the wires from the oscilloscope. 3. From the resulting analysis plotdetermine the peak current. To determine the peak current measure the peak voltage across the resistor and divide by the value of the resistor (1000 Ohms). Record it here. Measured Peak Current 4. Determine the peak current by calculation. Record it here. Does it match the measured peak current? Explain. Calculated Peak Current 5 Determine the phase shift between the current in the circuit and the source voltage. We look at the time between zero crossings to determine the phase shift between two waveforms. In our plot, the blue waveform (representing the circuit current or the voltage across the resistor) crosses zero before the red waveform (the circuit voltage). So, current is leading voltage in this circuit. This is exactly what should happen when we have a capacitive circuit. 6. To determine the phase shift, we first have to measure the time between zero crossings on the red and blue waveforms. This is done by moving the oscillator probes to the two zero crossing as is shown in the following figure Figure 4: Determining the phase shift between the two voltage waveforms We can see from the figure that the zero crossing difference (T2 – T1) is approximately 134 us. The ratio of the zero-crossing time difference to the period of the waveform determines the phase shift, as follows: Using our time values, we have: How do we know if this phase shift is correct? In step 4 when you did your manual calculations to find the peak current, you had to find the total impedance of the circuit, which was: Now, the current will be: Here, the positive angle on the current indicates it is leading the circuit voltage. 7. Change the frequency of the voltage source to 5000 Hz. Estimulate and perform a Transient Analysis to find the new circuit current and phase angle. Measure them and record them here: Measured Current Measured Phase Shift 8. Perform the manual calculations needed to find the circuit current and phase shift. Record the calculated values here. Do they match the measured values within reason? What has happened to the circuit with an increase in frequency? Calculated Current Calculated Phase Shift Writeup and Submission In general, for each lab you do, you will be asked to setup certain circuits, simulate them, record the results, verify the results are correct by hand, and then discuss the solution. Your lab write-up should contain a one page, single spaced discussion of the lab experiment, what went right for you, what you had difficulty with, what you learned from the experiment, how it applies to our coursework, and any other comment you can think of. In addition, you should include screen shots from the MultiSim software and any other figure, table, or diagram as necessary.

No expert has answered this question yet. You can browse … Read More...
salt water contains n sodium ions (Na+) per cubic meter and n chloride ions (cI-) per cubic meter. A battery is connected to metal. A battery is connected to metal rods that dip into a narrow pipe full of the salt water. the cross sectional area of the pipe is A what is the direction of conventional current flow in the salt water? 1. to the right, 2. to the left, 3. there is no conventional current because the motion of the positive and negative ions cancel each other out.

## salt water contains n sodium ions (Na+) per cubic meter and n chloride ions (cI-) per cubic meter. A battery is connected to metal. A battery is connected to metal rods that dip into a narrow pipe full of the salt water. the cross sectional area of the pipe is A what is the direction of conventional current flow in the salt water? 1. to the right, 2. to the left, 3. there is no conventional current because the motion of the positive and negative ions cancel each other out.

23. If the current through a 5.00  10 W heater is 4.00 A, what is the potential difference across the ends of the heating element? a. 2.00  10 V c. 2.50  10 V b. 1.25  10 V d. 8.00  10 V

## 23. If the current through a 5.00  10 W heater is 4.00 A, what is the potential difference across the ends of the heating element? a. 2.00  10 V c. 2.50  10 V b. 1.25  10 V d. 8.00  10 V

23. ANS: B Given P = 5.00  10 W … Read More...
what is the magnitude of the current through the 4 ohm resistor ? 1) 1A , 2) 2A. 3) 4A , 4) 5A, 5) 6A.