What is the prime purpose of selecting a composite material over material from the other family groups? MODULE 3 – STRUCTURE OF SOLID MATERIALS The ability of a material to exist in different space lattices is called a. Allotropic b. Crystalline c. Solvent d. Amorphous Amorphous metals develop their microstructure as a result of ___________. a. Dendrites b. Directional solidification c. Slip d. Extremely rapid cooling In an alloy, the material that dissolves the alloying element is the ___________. a. Solute b. Solvent c. Matrix d. Allotrope What is the coordination number (CN) for the fcc structure formed by ions of sodium and chlorine that is in the chemical compound NaCl (salt) ? a. 6 b. 8 c. 14 d. 16 What pressure is normally used in constructing a phase diagram? a. 100 psi b. Depends on material c. Ambient d. Normal atmospheric pressure What line on a binary diagram indicates the upper limit of the solid solution phase? a. Liquidus b. Eutectic c. Eutectoid d. Solidus What holds the atoms (ions) together in a compound such as NaCl are electrostatic forces between ___________. a. Atom and ion b. Covalent bonds c. Electrons and nuclei d. Neutrons Diffusion of atoms through a solid takes place by two main mechanisms. One is diffusion through vacancies in the atomic structure. Another method of diffusion is ___________. a. Cold b. APF c. Substitutional d. Interstitial Give a brief explanation of the Lever rule (P117) Grain boundaries ___________ movement of dislocations through a solid. a. Improve b. Inhibit c. Do not affect Iron can be alloyed with carbon because it is ___________. a. Crystalline b. Amorphous c. A mixture d. Allotropic Metals can be cooled only to crystalline solids. a. T (true) b. F (false) Sketch an fcc unit cell. Metals are classified as crystalline materials. Name one metal that is an amorphous solid and name at least one recent application in which its use is saving energy or providing greater strength and/or corrosion resistance. MODULE 4 – MECHANICAL PROPERTIES Give two examples of a mechanical property. a. Thermal resistance b. Wear resistance c. Hardness d. Strength Scissors used in the home cut material by concentrating forces that ultimately produce a certain type of stress within the material. Identify this stress. a. Bearing stress b. Shearing stress c. Compressive stress An aluminum rod 1 in. in diameter (E =10.4 x 106psi) experiences an elastic tensile strain of 0.0048 in./in. Calculate the stress in the rod. a. 49,920 ksi b. 49,920 psi c. 49,920 msi A 1-in.-diameter steel circular rod is subject to a tensile load that reduces its cross-sectional area to 0.64 in2. Express the rod’s ductility using a standard unit of measure. a. 18.5% b. 1.85% c. 18.5 d. (a) and (c) What term is used to describe the low-temperature creep of polymerics? a. Springback b. Creep rupture c. Cold flow d. Creep forming MODULE 7 – TESTING, FAILURE ANALYSIS, STANDARDS, & INSPECTION Factors of safety are defined either in terms of the ultimate strength of a material or its yield strength. In other words, by the use of a suitable factor, the ultimate or yield strength is reduced in size to what is known as the design stress or safe working stress. Which factor of safety would be more appropriate for a material that will be subjected to repetitious, suddenly applied loads? Product liability court cases have risen sharply in recent years because of poor procedures in selecting materials for particular applications. Assuming that a knowledge of a material’s properties is a valid step in the selection process, cite two examples where such lack of knowledge could or did lead to failure or unsatisfactory performance. Make a sketch and fully dimension an Izod impact test specimen. Which agency publishes the Annual Book of standard test methods used worldwide for evaluation of materials? a. NASA b. NIST c. ASTM d. SPE

What is the prime purpose of selecting a composite material over material from the other family groups? MODULE 3 – STRUCTURE OF SOLID MATERIALS The ability of a material to exist in different space lattices is called a. Allotropic b. Crystalline c. Solvent d. Amorphous Amorphous metals develop their microstructure as a result of ___________. a. Dendrites b. Directional solidification c. Slip d. Extremely rapid cooling In an alloy, the material that dissolves the alloying element is the ___________. a. Solute b. Solvent c. Matrix d. Allotrope What is the coordination number (CN) for the fcc structure formed by ions of sodium and chlorine that is in the chemical compound NaCl (salt) ? a. 6 b. 8 c. 14 d. 16 What pressure is normally used in constructing a phase diagram? a. 100 psi b. Depends on material c. Ambient d. Normal atmospheric pressure What line on a binary diagram indicates the upper limit of the solid solution phase? a. Liquidus b. Eutectic c. Eutectoid d. Solidus What holds the atoms (ions) together in a compound such as NaCl are electrostatic forces between ___________. a. Atom and ion b. Covalent bonds c. Electrons and nuclei d. Neutrons Diffusion of atoms through a solid takes place by two main mechanisms. One is diffusion through vacancies in the atomic structure. Another method of diffusion is ___________. a. Cold b. APF c. Substitutional d. Interstitial Give a brief explanation of the Lever rule (P117) Grain boundaries ___________ movement of dislocations through a solid. a. Improve b. Inhibit c. Do not affect Iron can be alloyed with carbon because it is ___________. a. Crystalline b. Amorphous c. A mixture d. Allotropic Metals can be cooled only to crystalline solids. a. T (true) b. F (false) Sketch an fcc unit cell. Metals are classified as crystalline materials. Name one metal that is an amorphous solid and name at least one recent application in which its use is saving energy or providing greater strength and/or corrosion resistance. MODULE 4 – MECHANICAL PROPERTIES Give two examples of a mechanical property. a. Thermal resistance b. Wear resistance c. Hardness d. Strength Scissors used in the home cut material by concentrating forces that ultimately produce a certain type of stress within the material. Identify this stress. a. Bearing stress b. Shearing stress c. Compressive stress An aluminum rod 1 in. in diameter (E =10.4 x 106psi) experiences an elastic tensile strain of 0.0048 in./in. Calculate the stress in the rod. a. 49,920 ksi b. 49,920 psi c. 49,920 msi A 1-in.-diameter steel circular rod is subject to a tensile load that reduces its cross-sectional area to 0.64 in2. Express the rod’s ductility using a standard unit of measure. a. 18.5% b. 1.85% c. 18.5 d. (a) and (c) What term is used to describe the low-temperature creep of polymerics? a. Springback b. Creep rupture c. Cold flow d. Creep forming MODULE 7 – TESTING, FAILURE ANALYSIS, STANDARDS, & INSPECTION Factors of safety are defined either in terms of the ultimate strength of a material or its yield strength. In other words, by the use of a suitable factor, the ultimate or yield strength is reduced in size to what is known as the design stress or safe working stress. Which factor of safety would be more appropriate for a material that will be subjected to repetitious, suddenly applied loads? Product liability court cases have risen sharply in recent years because of poor procedures in selecting materials for particular applications. Assuming that a knowledge of a material’s properties is a valid step in the selection process, cite two examples where such lack of knowledge could or did lead to failure or unsatisfactory performance. Make a sketch and fully dimension an Izod impact test specimen. Which agency publishes the Annual Book of standard test methods used worldwide for evaluation of materials? a. NASA b. NIST c. ASTM d. SPE

info@checkyourstudy.com
Rationale In order to communicate in a business environment, you need to know the language. The questions below are basic concepts that all business professionals should know. Instructions Answer each of the questions below in complete sentences. At the end of the answer include the source. This does not need to be in formal MLA documentation; the URL is sufficient. Remember that plagiarism results in a 0. Do not cut and paste. Write the answers in your own words. Be prepared to discuss the answers in class. What are the differences between the board of directors and the chief executive officer (CEO)? (4 points) List and define the four functions of management. Hint: The answer is in the textbook (8 points) List and define 7 departments that would be found at a mid-size helicopter manufacturing company. (14 points) What are the difference between public relations (PR), advertising, and marketing? (6 points) List and define 3 communication concerns in the aviation industry. (6 points) List the 3 major accounting reports and what they tell about the company. (6 points) What are the differences between stock, bonds, and mutual funds? (6 points) Formatting Memo Format – Use your personal letterhead and address the memo to me. THIS IS FOR A BUSINESS COMMUNICATION CLASS

Rationale In order to communicate in a business environment, you need to know the language. The questions below are basic concepts that all business professionals should know. Instructions Answer each of the questions below in complete sentences. At the end of the answer include the source. This does not need to be in formal MLA documentation; the URL is sufficient. Remember that plagiarism results in a 0. Do not cut and paste. Write the answers in your own words. Be prepared to discuss the answers in class. What are the differences between the board of directors and the chief executive officer (CEO)? (4 points) List and define the four functions of management. Hint: The answer is in the textbook (8 points) List and define 7 departments that would be found at a mid-size helicopter manufacturing company. (14 points) What are the difference between public relations (PR), advertising, and marketing? (6 points) List and define 3 communication concerns in the aviation industry. (6 points) List the 3 major accounting reports and what they tell about the company. (6 points) What are the differences between stock, bonds, and mutual funds? (6 points) Formatting Memo Format – Use your personal letterhead and address the memo to me. THIS IS FOR A BUSINESS COMMUNICATION CLASS

info@checkyourstudy.com
MECET 423: Mechanics of Materials Chap. 7 HW Chap. 7 Homework Set 1. Consider the beam shown in the image below. Let F1 = 2 kN and F2 = 3 kN. Assume that points A, B and C represent pin connections and a wire rope connects points B and C. Consider the dimensions L1, L2, L3 and L4 to be 2 m, 4 m, 6 m, and 10 m, respectively. The beam is made from HSS 152 X 51 X 6.4 (Appendix A-9) and the longer side of the rectangle is vertical. What is the maximum normal stress (units: MPa) experienced by the beam? 2. Consider the beam and loading shown below. The beam has a total length of 12 ft. and a uniformly distributed load, w, of 125 lb./ft. The cross section of the beam is comprised of a standard steel channel (C6 X 13) which has a ½ in. plate of steel attached to its bottom. Determine the maximum normal stress in tension and compression that is experienced by this beam due to the described loading. MECET 423: Mechanics of Materials Chap. 7 HW 3. Consider the cantilever beam shown in the image below. The beam is experiencing a linearly varying distributed load with w1 = 50 lb./ft. and w2 = 10 lb./ft. The beam is to be made from ASTM A36 structural steel and is to be 8 ft. in length. Select the smallest standard schedule 40 steel pipe size (Appendix A-12) which will ensure a factor of safety of at least 3. 4. The beam shown below has been fabricated by combining two wooden boards into a T-section. The dimensions for these sizes can be found in Appendix A-4. The beam is 9 ft. in length overall and dimension L1 = 3 ft. Assume the beam is made from a wood which has an allowable bending stress of 1500 psi (in both tension and compression). What is the largest value of the force which can be applied? MECET 423: Mechanics of Materials Chap. 7 HW 5. The image below shows a hydraulic cylinder which is being utilized in a simple press-fit operation. As can be seen the cylinder is being suspended over the work piece using a cantilever beam. Note from the right view that there is a beam on either side of the cylinder. You may assume that each will be equally loaded by the cylinder. The beams are to be cut from AISI 1040 HR steel plate which has a thickness of 0.750 in. The proposed design includes the following dimensions (units: inch): H = 2.00, h = 1.00, r = 0.08, L1 = 8, and L2 = 18. Evaluate the design by calculating the resulting factor of safety with respect to the yield strength of the material at the location of the step if the total force generated by the cylinder is 1,000 lb. Also state whether or not yielding is predicted to occur. You may assume that bending in the thickness direction of the beams is negligible. 6. Consider the cantilever beam shown below. The beam has a length of 4 ft. and is made from a material whose design stress, σd, is equal to 10,000 psi. It is to carry a load of 200 lb. applied at its free end. The beam is to be designed as a beam of constant strength where the maximum normal stress experienced at each cross section is equal to the design normal stress. To achieve this the height will be held constant at 1.5 in. while the base will vary as a function of the position along the length of the beam. Determine the equation which describes the required length of the base as a function of the position along the length of the beam. For consistency, let the origin be located at point A and the positive x axis be directed toward the right. MECET 423: Mechanics of Materials Chap. 7 HW 7. Consider the overhanging beam shown in the image below. Assume that L = 5 ft. and L1 = 3 ft. The beam’s cross section is shown below. The centerline marks the horizontal centroidal axis. The moment of inertia about this axis is approx. 0.208 in4. Due to the geometry of the cross section and the material, the beam has different maximum allowable normal stresses in tension and compression. The design normal stress in tension is 24,000 psi while the design normal stress in compression is 18,000 psi. Using this data determine the maximum force, F, which can be applied to the beam.

MECET 423: Mechanics of Materials Chap. 7 HW Chap. 7 Homework Set 1. Consider the beam shown in the image below. Let F1 = 2 kN and F2 = 3 kN. Assume that points A, B and C represent pin connections and a wire rope connects points B and C. Consider the dimensions L1, L2, L3 and L4 to be 2 m, 4 m, 6 m, and 10 m, respectively. The beam is made from HSS 152 X 51 X 6.4 (Appendix A-9) and the longer side of the rectangle is vertical. What is the maximum normal stress (units: MPa) experienced by the beam? 2. Consider the beam and loading shown below. The beam has a total length of 12 ft. and a uniformly distributed load, w, of 125 lb./ft. The cross section of the beam is comprised of a standard steel channel (C6 X 13) which has a ½ in. plate of steel attached to its bottom. Determine the maximum normal stress in tension and compression that is experienced by this beam due to the described loading. MECET 423: Mechanics of Materials Chap. 7 HW 3. Consider the cantilever beam shown in the image below. The beam is experiencing a linearly varying distributed load with w1 = 50 lb./ft. and w2 = 10 lb./ft. The beam is to be made from ASTM A36 structural steel and is to be 8 ft. in length. Select the smallest standard schedule 40 steel pipe size (Appendix A-12) which will ensure a factor of safety of at least 3. 4. The beam shown below has been fabricated by combining two wooden boards into a T-section. The dimensions for these sizes can be found in Appendix A-4. The beam is 9 ft. in length overall and dimension L1 = 3 ft. Assume the beam is made from a wood which has an allowable bending stress of 1500 psi (in both tension and compression). What is the largest value of the force which can be applied? MECET 423: Mechanics of Materials Chap. 7 HW 5. The image below shows a hydraulic cylinder which is being utilized in a simple press-fit operation. As can be seen the cylinder is being suspended over the work piece using a cantilever beam. Note from the right view that there is a beam on either side of the cylinder. You may assume that each will be equally loaded by the cylinder. The beams are to be cut from AISI 1040 HR steel plate which has a thickness of 0.750 in. The proposed design includes the following dimensions (units: inch): H = 2.00, h = 1.00, r = 0.08, L1 = 8, and L2 = 18. Evaluate the design by calculating the resulting factor of safety with respect to the yield strength of the material at the location of the step if the total force generated by the cylinder is 1,000 lb. Also state whether or not yielding is predicted to occur. You may assume that bending in the thickness direction of the beams is negligible. 6. Consider the cantilever beam shown below. The beam has a length of 4 ft. and is made from a material whose design stress, σd, is equal to 10,000 psi. It is to carry a load of 200 lb. applied at its free end. The beam is to be designed as a beam of constant strength where the maximum normal stress experienced at each cross section is equal to the design normal stress. To achieve this the height will be held constant at 1.5 in. while the base will vary as a function of the position along the length of the beam. Determine the equation which describes the required length of the base as a function of the position along the length of the beam. For consistency, let the origin be located at point A and the positive x axis be directed toward the right. MECET 423: Mechanics of Materials Chap. 7 HW 7. Consider the overhanging beam shown in the image below. Assume that L = 5 ft. and L1 = 3 ft. The beam’s cross section is shown below. The centerline marks the horizontal centroidal axis. The moment of inertia about this axis is approx. 0.208 in4. Due to the geometry of the cross section and the material, the beam has different maximum allowable normal stresses in tension and compression. The design normal stress in tension is 24,000 psi while the design normal stress in compression is 18,000 psi. Using this data determine the maximum force, F, which can be applied to the beam.

info@checkyourstudy.com Whatsapp +919911743277
Read this article and answer this question in 2 pages : Answers should be from the below article only. What is the difference between “standards-based” and “standards-embedded” curriculum? what are the curricular implications of this difference? Article: In 2007, at the dawn of 21st century in education, it is impossible to talk about teaching, curriculum, schools, or education without discussing standards . standards-based v. standards-embedded curriculum We are in an age of accountability where our success as educators is determined by individual and group mastery of specific standards dem- onstrated by standardized test per- formance. Even before No Child Left Behind (NCLB), standards and measures were used to determine if schools and students were success- ful (McClure, 2005). But, NCLB has increased the pace, intensity, and high stakes of this trend. Gifted and talented students and their teach- ers are significantly impacted by these local or state proficiency stan- dards and grade-level assessments (VanTassel-Baska & Stambaugh, 2006). This article explores how to use these standards in the develop- ment of high-quality curriculum for gifted students. NCLB, High-Stakes State Testing, and Standards- Based Instruction There are a few potentially positive outcomes of this evolution to public accountability. All stakeholders have had to ask themselves, “Are students learning? If so, what are they learning and how do we know?” In cases where we have been allowed to thoughtfully evaluate curriculum and instruction, we have also asked, “What’s worth learning?” “When’s the best time to learn it?” and “Who needs to learn it?” Even though state achievement tests are only a single measure, citizens are now offered a yardstick, albeit a nar- row one, for comparing communities, schools, and in some cases, teachers. Some testing reports allow teachers to identify for parents what their chil- dren can do and what they can not do. Testing also has focused attention on the not-so-new observations that pov- erty, discrimination and prejudices, and language proficiency impacts learning. With enough ceiling (e.g., above-grade-level assessments), even gifted students’ actual achievement and readiness levels can be identi- fied and provide a starting point for appropriately differentiated instruc- tion (Tomlinson, 2001). Unfortunately, as a veteran teacher for more than three decades and as a teacher-educator, my recent observa- tions of and conversations with class- room and gifted teachers have usually revealed negative outcomes. For gifted children, their actual achievement level is often unrecognized by teachers because both the tests and the reporting of the results rarely reach above the student’s grade-level placement. Assessments also focus on a huge number of state stan- dards for a given school year that cre- ate “overload” (Tomlinson & McTighe, 2006) and have a devastating impact on the development and implementation of rich and relevant curriculum and instruction. In too many scenarios, I see teachers teach- ing directly to the test. And, in the worst cases, some teachers actually teach The Test. In those cases, The Test itself becomes the curriculum. Consistently I hear, “Oh, I used to teach a great unit on ________ but I can’t do it any- more because I have to teach the standards.” Or, “I have to teach my favorite units in April and May after testing.” If the outcomes can’t be boiled down to simple “I can . . .” state- ments that can be posted on a school’s walls, then teachers seem to omit poten- tially meaningful learning opportunities from the school year. In many cases, real education and learning are being trivial- ized. We seem to have lost sight of the more significant purpose of teaching and learning: individual growth and develop- ment. We also have surrendered much of the joy of learning, as the incidentals, the tangents, the “bird walks” are cut short or elimi- nated because teachers hear the con- stant ticking clock of the countdown to the state test and feel the pressure of the way-too-many standards that have to be covered in a mere 180 school days. The accountability movement has pushed us away from seeing the whole child: “Students are not machines, as the standards movement suggests; they are volatile, complicated, and paradoxical” (Cookson, 2001, p. 42). How does this impact gifted chil- dren? In many heterogeneous class- rooms, teachers have retreated to traditional subject delineations and traditional instruction in an effort to ensure direct standards-based instruc- tion even though “no solid basis exists in the research literature for the ways we currently develop, place, and align educational standards in school cur- ricula” (Zenger & Zenger, 2002, p. 212). Grade-level standards are often particularly inappropriate for the gifted and talented whose pace of learning, achievement levels, and depth of knowledge are significantly beyond their chronological peers. A broad-based, thematically rich, and challenging curriculum is the heart of education for the gifted. Virgil Ward, one of the earliest voices for a differen- tial education for the gifted, said, “It is insufficient to consider the curriculum for the gifted in terms of traditional subjects and instructional processes” (Ward, 1980, p. 5). VanTassel-Baska Standards-Based v. Standards-Embedded Curriculum gifted child today 45 Standards-Based v. Standards-Embedded Curriculum and Stambaugh (2006) described three dimensions of successful curriculum for gifted students: content mastery, pro- cess and product, and epistemological concept, “understanding and appre- ciating systems of knowledge rather than individual elements of those systems” (p. 9). Overemphasis on testing and grade-level standards limits all three and therefore limits learning for gifted students. Hirsch (2001) concluded that “broad gen- eral knowledge is the best entrée to deep knowledge” (p. 23) and that it is highly correlated with general ability to learn. He continued, “the best way to learn a subject is to learn its gen- eral principles and to study an ample number of diverse examples that illustrate those principles” (Hirsch, 2001, p. 23). Principle-based learn- ing applies to both gifted and general education children. In order to meet the needs of gifted and general education students, cur- riculum should be differentiated in ways that are relevant and engaging. Curriculum content, processes, and products should provide challenge, depth, and complexity, offering multiple opportunities for problem solving, creativity, and exploration. In specific content areas, the cur- riculum should reflect the elegance and sophistication unique to the discipline. Even with this expanded view of curriculum in mind, we still must find ways to address the current reality of state standards and assess- ments. Standards-Embedded Curriculum How can educators address this chal- lenge? As in most things, a change of perspective can be helpful. Standards- based curriculum as described above should be replaced with standards- embedded curriculum. Standards- embedded curriculum begins with broad questions and topics, either discipline specific or interdisciplinary. Once teachers have given thoughtful consideration to relevant, engaging, and important content and the con- nections that support meaning-making (Jensen, 1998), they next select stan- dards that are relevant to this content and to summative assessments. This process is supported by the backward planning advocated in Understanding by Design by Wiggins and McTighe (2005) and its predecessors, as well as current thinkers in other fields, such as Covey (Tomlinson & McTighe, 2006). It is a critical component of differenti- ating instruction for advanced learners (Tomlinson, 2001) and a significant factor in the Core Parallel in the Parallel Curriculum Model (Tomlinson et al., 2002). Teachers choose from standards in multiple disciplines at both above and below grade level depending on the needs of the students and the classroom or program structure. Preassessment data and the results of prior instruc- tion also inform this process of embed- ding appropriate standards. For gifted students, this formative assessment will result in “more advanced curricula available at younger ages, ensuring that all levels of the standards are traversed in the process” (VanTassel-Baska & Little, 2003, p. 3). Once the essential questions, key content, and relevant standards are selected and sequenced, they are embedded into a coherent unit design and instructional decisions (grouping, pacing, instructional methodology) can be made. For gifted students, this includes the identification of appropri- ate resources, often including advanced texts, mentors, and independent research, as appropriate to the child’s developmental level and interest. Applying Standards- Embedded Curriculum What does this look like in practice? In reading the possible class- room applications below, consider these three Ohio Academic Content Standards for third grade: 1. Math: “Read thermometers in both Fahrenheit and Celsius scales” (“Academic Content Standards: K–12 Mathematics,” n.d., p. 71). 2. Social Studies: “Compare some of the cultural practices and products of various groups of people who have lived in the local community including artistic expression, religion, language, and food. Compare the cultural practices and products of the local community with those of other communities in Ohio, the United States, and countries of the world” (Academic Content Standards: K–12 Social Studies, n.d., p. 122). 3. Life Science: “Observe and explore how fossils provide evidence about animals that lived long ago and the nature of the environment at that time” (Academic Content Standards: K–12 Science, n.d., p. 57). When students are fortunate to have a teacher who is dedicated to helping all of them make good use of their time, the gifted may have a preassessment opportunity where they can demonstrate their familiarity with the content and potential mastery of a standard at their grade level. Students who pass may get to read by them- selves for the brief period while the rest of the class works on the single outcome. Sometimes more experienced teachers will create opportunities for gifted and advanced students Standards-Based v. Standards-Embedded Curriculum to work on a standard in the same domain or strand at the next higher grade level (i.e., accelerate through the standards). For example, a stu- dent might be able to work on a Life Science standard for fourth grade that progresses to other communities such as ecosystems. These above-grade-level standards can provide rich material for differentiation, advanced problem solving, and more in-depth curriculum integration. In another classroom scenario, a teacher may focus on the math stan- dard above, identifying the standard number on his lesson plan. He creates or collects paper thermometers, some showing measurement in Celsius and some in Fahrenheit. He also has some real thermometers. He demonstrates thermometer use with boiling water and with freezing water and reads the different temperatures. Students complete a worksheet that has them read thermometers in Celsius and Fahrenheit. The more advanced students may learn how to convert between the two scales. Students then practice with several questions on the topic that are similar in structure and content to those that have been on past proficiency tests. They are coached in how to answer them so that the stan- dard, instruction, formative assess- ment, and summative assessment are all aligned. Then, each student writes a statement that says, “I can read a thermometer using either Celsius or Fahrenheit scales.” Both of these examples describe a standards-based environment, where the starting point is the standard. Direct instruction to that standard is followed by an observable student behavior that demonstrates specific mastery of that single standard. The standard becomes both the start- ing point and the ending point of the curriculum. Education, rather than opening up a student’s mind, becomes a series of closed links in a chain. Whereas the above lessons may be differentiated to some extent, they have no context; they may relate only to the next standard on the list, such as, “Telling time to the nearest minute and finding elapsed time using a cal- endar or a clock.” How would a “standards-embed- ded” model of curriculum design be different? It would begin with the development of an essential ques- tion such as, “Who or what lived here before me? How were they different from me? How were they the same? How do we know?” These questions might be more relevant to our con- temporary highly mobile students. It would involve place and time. Using this intriguing line of inquiry, students might work on the social studies stan- dard as part of the study of their home- town, their school, or even their house or apartment. Because where people live and what they do is influenced by the weather, students could look into weather patterns of their area and learn how to measure temperature using a Fahrenheit scale so they could see if it is similar now to what it was a century ago. Skipping ahead to consideration of the social studies standard, students could then choose another country, preferably one that uses Celsius, and do the same investigation of fossils, communities, and the like. Students could complete a weather comparison, looking at the temperature in Celsius as people in other parts of the world, such as those in Canada, do. Thus, learning is contextualized and connected, dem- onstrating both depth and complexity. This approach takes a lot more work and time. It is a sophisticated integrated view of curriculum devel- opment and involves in-depth knowl- edge of the content areas, as well as an understanding of the scope and sequence of the standards in each dis- cipline. Teachers who develop vital single-discipline units, as well as inter- disciplinary teaching units, begin with a central topic surrounded by subtopics and connections to other areas. Then they connect important terms, facts, or concepts to the subtopics. Next, the skilled teacher/curriculum devel- oper embeds relevant, multileveled standards and objectives appropriate to a given student or group of stu- dents into the unit. Finally, teachers select the instructional strategies and develop student assessments. These assessments include, but are not lim- ited to, the types of questions asked on standardized and state assessments. Comparing Standards- Based and Standards- Embedded Curriculum Design Following is an articulation of the differences between standards-based and standards-embedded curriculum design. (See Figure 1.) 1. The starting point. Standards- based curriculum begins with the grade-level standard and the underlying assumption that every student needs to master that stan- dard at that moment in time. In standards-embedded curriculum, the multifaceted essential ques- tion and students’ needs are the starting points. 2. Preassessment. In standards- based curriculum and teaching, if a preassessment is provided, it cov- ers a single standard or two. In a standards-embedded curriculum, preassessment includes a broader range of grade-level and advanced standards, as well as students’ knowledge of surrounding content such as background experiences with the subject, relevant skills (such as reading and writing), and continued on page ?? even learning style or interests. gifted child today 47 Standards-Based v. Standards-Embedded Curriculum Standards Based Standards Embedded Starting Points The grade-level standard. Whole class’ general skill level Essential questions and content relevant to individual students and groups. Preassessment Targeted to a single grade-level standard. Short-cycle assessments. Background knowledge. Multiple grade-level standards from multiple areas connected by the theme of the unit. Includes annual learning style and interest inventories. Acceleration/ Enrichment To next grade-level standard in the same strand. To above-grade-level standards, as well as into broader thematically connected content. Language Arts Divided into individual skills. Reading and writing skills often separated from real-world relevant contexts. The language arts are embedded in all units and themes and connected to differentiated processes and products across all content areas. Instruction Lesson planning begins with the standard as the objective. Sequential direct instruction progresses through the standards in each content area separately. Strategies are selected to introduce, practice, and demonstrate mastery of all grade-level standards in all content areas in one school year. Lesson planning begins with essential questions, topics, and significant themes. Integrated instruction is designed around connections among content areas and embeds all relevant standards. Assessment Format modeled after the state test. Variety of assessments including questions similar to the state test format. Teacher Role Monitor of standards mastery. Time manager. Facilitator of instructional design and student engagement with learning, as well as assessor of achievement. Student Self- Esteem “I can . . .” statements. Star Charts. Passing “the test.” Completed projects/products. Making personal connections to learning and the theme/topic. Figure 1. Standards based v. standards-embedded instruction and gifted students. and the potential political outcry of “stepping on the toes” of the next grade’s teacher. Few classroom teachers have been provided with the in-depth professional develop- ment and understanding of curric- ulum compacting that would allow them to implement this effectively. In standards-embedded curricu- lum, enrichment and extensions of learning are more possible and more interesting because ideas, top- ics, and questions lend themselves more easily to depth and complex- ity than isolated skills. 4. Language arts. In standards- based classrooms, the language arts have been redivided into sepa- rate skills, with reading separated from writing, and writing sepa- rated from grammar. To many concrete thinkers, whole-language approaches seem antithetical to teaching “to the standards.” In a standards-embedded classroom, integrated language arts skills (reading, writing, listening, speak- ing, presenting, and even pho- nics) are embedded into the study of every unit. Especially for the gifted, the communication and language arts are essential, regard- less of domain-specific talents (Ward, 1980) and should be com- ponents of all curriculum because they are the underpinnings of scholarship in all areas. 5. Instruction. A standards-based classroom lends itself to direct instruction and sequential pro- gression from one standard to the next. A standards-embedded class- room requires a variety of more open-ended instructional strate- gies and materials that extend and diversify learning rather than focus it narrowly. Creativity and differ- entiation in instruction and stu- dent performance are supported more effectively in a standards- embedded approach. 6. Assessment. A standards-based classroom uses targeted assess- ments focused on the structure and content of questions on the externally imposed standardized test (i.e., proficiency tests). A stan- dards-embedded classroom lends itself to greater use of authentic assessment and differentiated 3. Acceleration/Enrichment. In a standards-based curriculum, the narrow definition of the learning outcome (a test item) often makes acceleration or curriculum compact- ing the only path for differentiating instruction for gifted, talented, and/ or advanced learners. This rarely happens, however, because of lack of materials, knowledge, o

Read this article and answer this question in 2 pages : Answers should be from the below article only. What is the difference between “standards-based” and “standards-embedded” curriculum? what are the curricular implications of this difference? Article: In 2007, at the dawn of 21st century in education, it is impossible to talk about teaching, curriculum, schools, or education without discussing standards . standards-based v. standards-embedded curriculum We are in an age of accountability where our success as educators is determined by individual and group mastery of specific standards dem- onstrated by standardized test per- formance. Even before No Child Left Behind (NCLB), standards and measures were used to determine if schools and students were success- ful (McClure, 2005). But, NCLB has increased the pace, intensity, and high stakes of this trend. Gifted and talented students and their teach- ers are significantly impacted by these local or state proficiency stan- dards and grade-level assessments (VanTassel-Baska & Stambaugh, 2006). This article explores how to use these standards in the develop- ment of high-quality curriculum for gifted students. NCLB, High-Stakes State Testing, and Standards- Based Instruction There are a few potentially positive outcomes of this evolution to public accountability. All stakeholders have had to ask themselves, “Are students learning? If so, what are they learning and how do we know?” In cases where we have been allowed to thoughtfully evaluate curriculum and instruction, we have also asked, “What’s worth learning?” “When’s the best time to learn it?” and “Who needs to learn it?” Even though state achievement tests are only a single measure, citizens are now offered a yardstick, albeit a nar- row one, for comparing communities, schools, and in some cases, teachers. Some testing reports allow teachers to identify for parents what their chil- dren can do and what they can not do. Testing also has focused attention on the not-so-new observations that pov- erty, discrimination and prejudices, and language proficiency impacts learning. With enough ceiling (e.g., above-grade-level assessments), even gifted students’ actual achievement and readiness levels can be identi- fied and provide a starting point for appropriately differentiated instruc- tion (Tomlinson, 2001). Unfortunately, as a veteran teacher for more than three decades and as a teacher-educator, my recent observa- tions of and conversations with class- room and gifted teachers have usually revealed negative outcomes. For gifted children, their actual achievement level is often unrecognized by teachers because both the tests and the reporting of the results rarely reach above the student’s grade-level placement. Assessments also focus on a huge number of state stan- dards for a given school year that cre- ate “overload” (Tomlinson & McTighe, 2006) and have a devastating impact on the development and implementation of rich and relevant curriculum and instruction. In too many scenarios, I see teachers teach- ing directly to the test. And, in the worst cases, some teachers actually teach The Test. In those cases, The Test itself becomes the curriculum. Consistently I hear, “Oh, I used to teach a great unit on ________ but I can’t do it any- more because I have to teach the standards.” Or, “I have to teach my favorite units in April and May after testing.” If the outcomes can’t be boiled down to simple “I can . . .” state- ments that can be posted on a school’s walls, then teachers seem to omit poten- tially meaningful learning opportunities from the school year. In many cases, real education and learning are being trivial- ized. We seem to have lost sight of the more significant purpose of teaching and learning: individual growth and develop- ment. We also have surrendered much of the joy of learning, as the incidentals, the tangents, the “bird walks” are cut short or elimi- nated because teachers hear the con- stant ticking clock of the countdown to the state test and feel the pressure of the way-too-many standards that have to be covered in a mere 180 school days. The accountability movement has pushed us away from seeing the whole child: “Students are not machines, as the standards movement suggests; they are volatile, complicated, and paradoxical” (Cookson, 2001, p. 42). How does this impact gifted chil- dren? In many heterogeneous class- rooms, teachers have retreated to traditional subject delineations and traditional instruction in an effort to ensure direct standards-based instruc- tion even though “no solid basis exists in the research literature for the ways we currently develop, place, and align educational standards in school cur- ricula” (Zenger & Zenger, 2002, p. 212). Grade-level standards are often particularly inappropriate for the gifted and talented whose pace of learning, achievement levels, and depth of knowledge are significantly beyond their chronological peers. A broad-based, thematically rich, and challenging curriculum is the heart of education for the gifted. Virgil Ward, one of the earliest voices for a differen- tial education for the gifted, said, “It is insufficient to consider the curriculum for the gifted in terms of traditional subjects and instructional processes” (Ward, 1980, p. 5). VanTassel-Baska Standards-Based v. Standards-Embedded Curriculum gifted child today 45 Standards-Based v. Standards-Embedded Curriculum and Stambaugh (2006) described three dimensions of successful curriculum for gifted students: content mastery, pro- cess and product, and epistemological concept, “understanding and appre- ciating systems of knowledge rather than individual elements of those systems” (p. 9). Overemphasis on testing and grade-level standards limits all three and therefore limits learning for gifted students. Hirsch (2001) concluded that “broad gen- eral knowledge is the best entrée to deep knowledge” (p. 23) and that it is highly correlated with general ability to learn. He continued, “the best way to learn a subject is to learn its gen- eral principles and to study an ample number of diverse examples that illustrate those principles” (Hirsch, 2001, p. 23). Principle-based learn- ing applies to both gifted and general education children. In order to meet the needs of gifted and general education students, cur- riculum should be differentiated in ways that are relevant and engaging. Curriculum content, processes, and products should provide challenge, depth, and complexity, offering multiple opportunities for problem solving, creativity, and exploration. In specific content areas, the cur- riculum should reflect the elegance and sophistication unique to the discipline. Even with this expanded view of curriculum in mind, we still must find ways to address the current reality of state standards and assess- ments. Standards-Embedded Curriculum How can educators address this chal- lenge? As in most things, a change of perspective can be helpful. Standards- based curriculum as described above should be replaced with standards- embedded curriculum. Standards- embedded curriculum begins with broad questions and topics, either discipline specific or interdisciplinary. Once teachers have given thoughtful consideration to relevant, engaging, and important content and the con- nections that support meaning-making (Jensen, 1998), they next select stan- dards that are relevant to this content and to summative assessments. This process is supported by the backward planning advocated in Understanding by Design by Wiggins and McTighe (2005) and its predecessors, as well as current thinkers in other fields, such as Covey (Tomlinson & McTighe, 2006). It is a critical component of differenti- ating instruction for advanced learners (Tomlinson, 2001) and a significant factor in the Core Parallel in the Parallel Curriculum Model (Tomlinson et al., 2002). Teachers choose from standards in multiple disciplines at both above and below grade level depending on the needs of the students and the classroom or program structure. Preassessment data and the results of prior instruc- tion also inform this process of embed- ding appropriate standards. For gifted students, this formative assessment will result in “more advanced curricula available at younger ages, ensuring that all levels of the standards are traversed in the process” (VanTassel-Baska & Little, 2003, p. 3). Once the essential questions, key content, and relevant standards are selected and sequenced, they are embedded into a coherent unit design and instructional decisions (grouping, pacing, instructional methodology) can be made. For gifted students, this includes the identification of appropri- ate resources, often including advanced texts, mentors, and independent research, as appropriate to the child’s developmental level and interest. Applying Standards- Embedded Curriculum What does this look like in practice? In reading the possible class- room applications below, consider these three Ohio Academic Content Standards for third grade: 1. Math: “Read thermometers in both Fahrenheit and Celsius scales” (“Academic Content Standards: K–12 Mathematics,” n.d., p. 71). 2. Social Studies: “Compare some of the cultural practices and products of various groups of people who have lived in the local community including artistic expression, religion, language, and food. Compare the cultural practices and products of the local community with those of other communities in Ohio, the United States, and countries of the world” (Academic Content Standards: K–12 Social Studies, n.d., p. 122). 3. Life Science: “Observe and explore how fossils provide evidence about animals that lived long ago and the nature of the environment at that time” (Academic Content Standards: K–12 Science, n.d., p. 57). When students are fortunate to have a teacher who is dedicated to helping all of them make good use of their time, the gifted may have a preassessment opportunity where they can demonstrate their familiarity with the content and potential mastery of a standard at their grade level. Students who pass may get to read by them- selves for the brief period while the rest of the class works on the single outcome. Sometimes more experienced teachers will create opportunities for gifted and advanced students Standards-Based v. Standards-Embedded Curriculum to work on a standard in the same domain or strand at the next higher grade level (i.e., accelerate through the standards). For example, a stu- dent might be able to work on a Life Science standard for fourth grade that progresses to other communities such as ecosystems. These above-grade-level standards can provide rich material for differentiation, advanced problem solving, and more in-depth curriculum integration. In another classroom scenario, a teacher may focus on the math stan- dard above, identifying the standard number on his lesson plan. He creates or collects paper thermometers, some showing measurement in Celsius and some in Fahrenheit. He also has some real thermometers. He demonstrates thermometer use with boiling water and with freezing water and reads the different temperatures. Students complete a worksheet that has them read thermometers in Celsius and Fahrenheit. The more advanced students may learn how to convert between the two scales. Students then practice with several questions on the topic that are similar in structure and content to those that have been on past proficiency tests. They are coached in how to answer them so that the stan- dard, instruction, formative assess- ment, and summative assessment are all aligned. Then, each student writes a statement that says, “I can read a thermometer using either Celsius or Fahrenheit scales.” Both of these examples describe a standards-based environment, where the starting point is the standard. Direct instruction to that standard is followed by an observable student behavior that demonstrates specific mastery of that single standard. The standard becomes both the start- ing point and the ending point of the curriculum. Education, rather than opening up a student’s mind, becomes a series of closed links in a chain. Whereas the above lessons may be differentiated to some extent, they have no context; they may relate only to the next standard on the list, such as, “Telling time to the nearest minute and finding elapsed time using a cal- endar or a clock.” How would a “standards-embed- ded” model of curriculum design be different? It would begin with the development of an essential ques- tion such as, “Who or what lived here before me? How were they different from me? How were they the same? How do we know?” These questions might be more relevant to our con- temporary highly mobile students. It would involve place and time. Using this intriguing line of inquiry, students might work on the social studies stan- dard as part of the study of their home- town, their school, or even their house or apartment. Because where people live and what they do is influenced by the weather, students could look into weather patterns of their area and learn how to measure temperature using a Fahrenheit scale so they could see if it is similar now to what it was a century ago. Skipping ahead to consideration of the social studies standard, students could then choose another country, preferably one that uses Celsius, and do the same investigation of fossils, communities, and the like. Students could complete a weather comparison, looking at the temperature in Celsius as people in other parts of the world, such as those in Canada, do. Thus, learning is contextualized and connected, dem- onstrating both depth and complexity. This approach takes a lot more work and time. It is a sophisticated integrated view of curriculum devel- opment and involves in-depth knowl- edge of the content areas, as well as an understanding of the scope and sequence of the standards in each dis- cipline. Teachers who develop vital single-discipline units, as well as inter- disciplinary teaching units, begin with a central topic surrounded by subtopics and connections to other areas. Then they connect important terms, facts, or concepts to the subtopics. Next, the skilled teacher/curriculum devel- oper embeds relevant, multileveled standards and objectives appropriate to a given student or group of stu- dents into the unit. Finally, teachers select the instructional strategies and develop student assessments. These assessments include, but are not lim- ited to, the types of questions asked on standardized and state assessments. Comparing Standards- Based and Standards- Embedded Curriculum Design Following is an articulation of the differences between standards-based and standards-embedded curriculum design. (See Figure 1.) 1. The starting point. Standards- based curriculum begins with the grade-level standard and the underlying assumption that every student needs to master that stan- dard at that moment in time. In standards-embedded curriculum, the multifaceted essential ques- tion and students’ needs are the starting points. 2. Preassessment. In standards- based curriculum and teaching, if a preassessment is provided, it cov- ers a single standard or two. In a standards-embedded curriculum, preassessment includes a broader range of grade-level and advanced standards, as well as students’ knowledge of surrounding content such as background experiences with the subject, relevant skills (such as reading and writing), and continued on page ?? even learning style or interests. gifted child today 47 Standards-Based v. Standards-Embedded Curriculum Standards Based Standards Embedded Starting Points The grade-level standard. Whole class’ general skill level Essential questions and content relevant to individual students and groups. Preassessment Targeted to a single grade-level standard. Short-cycle assessments. Background knowledge. Multiple grade-level standards from multiple areas connected by the theme of the unit. Includes annual learning style and interest inventories. Acceleration/ Enrichment To next grade-level standard in the same strand. To above-grade-level standards, as well as into broader thematically connected content. Language Arts Divided into individual skills. Reading and writing skills often separated from real-world relevant contexts. The language arts are embedded in all units and themes and connected to differentiated processes and products across all content areas. Instruction Lesson planning begins with the standard as the objective. Sequential direct instruction progresses through the standards in each content area separately. Strategies are selected to introduce, practice, and demonstrate mastery of all grade-level standards in all content areas in one school year. Lesson planning begins with essential questions, topics, and significant themes. Integrated instruction is designed around connections among content areas and embeds all relevant standards. Assessment Format modeled after the state test. Variety of assessments including questions similar to the state test format. Teacher Role Monitor of standards mastery. Time manager. Facilitator of instructional design and student engagement with learning, as well as assessor of achievement. Student Self- Esteem “I can . . .” statements. Star Charts. Passing “the test.” Completed projects/products. Making personal connections to learning and the theme/topic. Figure 1. Standards based v. standards-embedded instruction and gifted students. and the potential political outcry of “stepping on the toes” of the next grade’s teacher. Few classroom teachers have been provided with the in-depth professional develop- ment and understanding of curric- ulum compacting that would allow them to implement this effectively. In standards-embedded curricu- lum, enrichment and extensions of learning are more possible and more interesting because ideas, top- ics, and questions lend themselves more easily to depth and complex- ity than isolated skills. 4. Language arts. In standards- based classrooms, the language arts have been redivided into sepa- rate skills, with reading separated from writing, and writing sepa- rated from grammar. To many concrete thinkers, whole-language approaches seem antithetical to teaching “to the standards.” In a standards-embedded classroom, integrated language arts skills (reading, writing, listening, speak- ing, presenting, and even pho- nics) are embedded into the study of every unit. Especially for the gifted, the communication and language arts are essential, regard- less of domain-specific talents (Ward, 1980) and should be com- ponents of all curriculum because they are the underpinnings of scholarship in all areas. 5. Instruction. A standards-based classroom lends itself to direct instruction and sequential pro- gression from one standard to the next. A standards-embedded class- room requires a variety of more open-ended instructional strate- gies and materials that extend and diversify learning rather than focus it narrowly. Creativity and differ- entiation in instruction and stu- dent performance are supported more effectively in a standards- embedded approach. 6. Assessment. A standards-based classroom uses targeted assess- ments focused on the structure and content of questions on the externally imposed standardized test (i.e., proficiency tests). A stan- dards-embedded classroom lends itself to greater use of authentic assessment and differentiated 3. Acceleration/Enrichment. In a standards-based curriculum, the narrow definition of the learning outcome (a test item) often makes acceleration or curriculum compact- ing the only path for differentiating instruction for gifted, talented, and/ or advanced learners. This rarely happens, however, because of lack of materials, knowledge, o

Standard based Curriculum In standard based curriculum, the initial point … Read More...
Fact Debate Brief Introduction Crime doesn’t pay; it should be punished. Even since childhood, a slap on the hand has prevented possible criminals from ever committing the same offense; whether it was successful or not depended on how much that child wanted that cookie. While a slap on the wrist might or might not be an effective deterrent, the same can be said about the death penalty. Every day, somewhere in the world, a criminal is stopped permanently from committing any future costs, but this is by the means of the death. While effective in stopping one person permanently, it does nothing about the crime world as a whole. While it is necessary to end the career of a criminal, no matter what his or her crime is, we must not end it by taking a life. Through this paper, the death penalty will be proven ineffective at deterring crime by use of other environmental factors. Definition: The death penalty is defined as the universal punishment of death as legally applied by a fair court system. It is important for it to be a fair legal system, as not to confuse it with genocide, mob mentality, or any other ruling without trial. Claim 1: Use of the death penalty is in decline Ground 1: According to the book The Death Penalty: A Worldwide Perspective by Roger Hood and Carolyn Hoyle, published Dec. 8th, 2014, the Oxford professors in criminology say “As in most of the rest of the world, the death penalty in the US is in decline and distributed unevenly in frequency of use” even addressing that, as of April 2014, 18 states no longer have a death penalty, and even Oregon and Washington are considering removing their death penalty laws. Furthermore, in 2013, only 9 of these states still retaining the death penalty actually executed someone. Warrant 1: The death penalty can be reinstated at any time, but so far, it hasn’t been. At the same time, more states consider getting rid of it altogether. Therefore, it becomes clear that even states don’t want to be involved with this process showing that this is a disliked process. Claim 2: Even states with death penalty in effect still have high crime rates. Ground 2: With the reports gathered from fbi.gov, lawstreetmedia.com, a website based around political expertise and research determined the ranking of each state based on violent crime, published September 12th, 2014. Of the top ten most violent states, only three of which had the death penalty instituted (Maryland #9, New Mexico #4, Alaska #3). The other seven still had the system in place, and, despite it, still have a high amount of violent crime. On the opposite end of the spectrum, at the bottom ten most violent states, four of which, including the bottom-most states, do not have the death penalty in place. Warrant 2: With this ranking, it literally proves that the death penalty does not deter crime, or that there is a correlation between having the death penalty and having a decrease in the crime rate. Therefore, the idea of death penalty deterring crime is a null term in the sense that there is no, or a flawed connection. Claim 3: Violent crime is decreasing (but not because if the death penalty) Ground 3 A: According to an article published by The Economist, dated July 23rd, 2013, the rate of violent crime is in fact decreasing, but not because of the death penalty, but rather, because we have more police. From 1995 to 2010, policing has increased one-fifth, and with it, a decline in crime rate. In fact, in cities such as Detroit where policing has been cut, an opposite effect, an increase in crime, has been reported. Ground 3 B: An article from the Wall Street Journal, dated May 28th, 2011, also cites a decline in violent, only this time, citing the reason as a correlation with poverty levels. In 2009, at the start of the housing crisis, crime rates also dropped noticeably. Oddly enough, this article points out the belief that unemployment is often associated with crime; instead, the evidence presented is environmental in nature. Warrant 3: Crime rate isn’t deterred by death penalty, but rather, our surroundings. Seeing as how conditions have improved, so has the state of peace. Therefore, it becomes clear that the death penalty is ineffective at deterring crime because other key factors present more possibility for improvement of society. Claim 4: The death penalty is a historically flawed system. Ground 4A: According to the book The Death Penalty: Constitutional Issues, Commentaries, and Case Briefs by Scott Vollum, published in 2005, addresses how the case of the death penalty emerged to where it is today. While the book is now a decade old, it is used for historical context, particularly, in describing the first execution that took place in 1608. While it is true that most of these executions weren’t as well-grounded as the modern ones that take place now, they still had no effect in deterring crime. Why? Because even after America was established and more sane, the death penalty still had to be used because criminals still had violent behaviors. Ground 4B: According to data from Mother Jones, published May 17th, 2013, the reason why the crime rate was so high in the past could possibly be due to yet another environmental factor (affected by change over time), exposure to lead. Since the removal of lead from paint started over a hundred years ago, there has been a decline in homicide. Why is this important? Lead poisoning in child’s brain, if not lethal, can affect development and lead to mental disability, lower IQ, and lack of reasoning. Warrant 4: By examining history as a whole, there is a greater correlation between other factors that have resulted in a decline in violent crime. The decline in the crime rate has been an ongoing process, but has shown a faster decline due to other environmental factors, rather than the instatement of the death penalty. Claim 5: The world’s violent crime rate is changing, but not due to the death penalty. Ground 5A: According to article published by Amnesty USA in March of 2014, the number of executions under the death penalty reported in 2013 had increased by 15%. However, the rate of violent crime in the world has decreased significantly in the last decade. But, Latvia, for example, has permanently banned the death penalty since 2012. In 2014, the country was viewed overall as safe and low in violent crime rate. Ground 5B: However, while it is true that there is a decline in violent crime rate worldwide, The World Bank, April 17, 2013, reports that the rate of global poverty is decreasing. In a similar vein to the US, because wealth is being distributed better and conditions are improving overall, there is a steady decline in crime rate. Warrant 5: By examining the world as a whole, it becomes clear that it doesn’t matter if the death penalty is in place, violent crime will still exist. However, mirroring the US, as simple conditions improve, so does lifestyle. The death penalty does not deter crime in the world, rather a better quality of life is responsible for that. Works Cited “Death Sentences and Executions 2013.” Amnesty International USA. Amnesty USA, 26 Mar. 2014. Web. 15 Mar. 2015. <http://www.amnestyusa.org/research/reports/death-sentences-and-executions-2013>. D. K. “Why Is Crime Falling?” The Economist. The Economist Newspaper, 23 July 2013. Web. 12 Mar. 2015. <http://www.economist.com/blogs/economist-explains/2013/07/economist-explains-16>. Drum, Kevin. “The US Murder Rate Is on Track to Be Lowest in a Century.”Mother Jones. Mother Jones, 17 May 2013. Web. 13 Mar. 2015. <http://www.motherjones.com/kevin-drum/2013/05/us-murder-rate-track-be-lowest-century>. Hood, Roger, and Carolyn Hoyle. The Death Penalty: A Worldwide Perspective. Oxford: Oxford UP, 2002. 45. Print. Rizzo, Kevin. “Slideshow: America’s Safest and Most Dangerous States 2014.”Law Street Media. Law Street TM, 12 Sept. 2014. Web. 12 Mar. 2015. <http://lawstreetmedia.com/blogs/crime/safest-and-most-dangerous-states-2014/#slideshow>. Vollum, Scott. The Death Penalty: Constitutional Issues, Commentaries, and Case Briefs. Newark, NJ: LexisNexis, 2005. 2. Print. Theis, David. “Remarkable Declines in Global Poverty, But Major Challenges Remain.” The World Bank. The World Bank, 17 Apr. 2013. Web. 15 Mar. 2015. <http://www.worldbank.org/en/news/press-release/2013/04/17/remarkable-declines-in-global-poverty-but-major-challenges-remain>. Wilson, James Q. “Hard Times, Fewer Crimes.” WSJ. The Wall Street Journal, 28 May 2011. Web. 13 Mar. 2015. <http://www.wsj.com/articles/SB10001424052702304066504576345553135009870>.

Fact Debate Brief Introduction Crime doesn’t pay; it should be punished. Even since childhood, a slap on the hand has prevented possible criminals from ever committing the same offense; whether it was successful or not depended on how much that child wanted that cookie. While a slap on the wrist might or might not be an effective deterrent, the same can be said about the death penalty. Every day, somewhere in the world, a criminal is stopped permanently from committing any future costs, but this is by the means of the death. While effective in stopping one person permanently, it does nothing about the crime world as a whole. While it is necessary to end the career of a criminal, no matter what his or her crime is, we must not end it by taking a life. Through this paper, the death penalty will be proven ineffective at deterring crime by use of other environmental factors. Definition: The death penalty is defined as the universal punishment of death as legally applied by a fair court system. It is important for it to be a fair legal system, as not to confuse it with genocide, mob mentality, or any other ruling without trial. Claim 1: Use of the death penalty is in decline Ground 1: According to the book The Death Penalty: A Worldwide Perspective by Roger Hood and Carolyn Hoyle, published Dec. 8th, 2014, the Oxford professors in criminology say “As in most of the rest of the world, the death penalty in the US is in decline and distributed unevenly in frequency of use” even addressing that, as of April 2014, 18 states no longer have a death penalty, and even Oregon and Washington are considering removing their death penalty laws. Furthermore, in 2013, only 9 of these states still retaining the death penalty actually executed someone. Warrant 1: The death penalty can be reinstated at any time, but so far, it hasn’t been. At the same time, more states consider getting rid of it altogether. Therefore, it becomes clear that even states don’t want to be involved with this process showing that this is a disliked process. Claim 2: Even states with death penalty in effect still have high crime rates. Ground 2: With the reports gathered from fbi.gov, lawstreetmedia.com, a website based around political expertise and research determined the ranking of each state based on violent crime, published September 12th, 2014. Of the top ten most violent states, only three of which had the death penalty instituted (Maryland #9, New Mexico #4, Alaska #3). The other seven still had the system in place, and, despite it, still have a high amount of violent crime. On the opposite end of the spectrum, at the bottom ten most violent states, four of which, including the bottom-most states, do not have the death penalty in place. Warrant 2: With this ranking, it literally proves that the death penalty does not deter crime, or that there is a correlation between having the death penalty and having a decrease in the crime rate. Therefore, the idea of death penalty deterring crime is a null term in the sense that there is no, or a flawed connection. Claim 3: Violent crime is decreasing (but not because if the death penalty) Ground 3 A: According to an article published by The Economist, dated July 23rd, 2013, the rate of violent crime is in fact decreasing, but not because of the death penalty, but rather, because we have more police. From 1995 to 2010, policing has increased one-fifth, and with it, a decline in crime rate. In fact, in cities such as Detroit where policing has been cut, an opposite effect, an increase in crime, has been reported. Ground 3 B: An article from the Wall Street Journal, dated May 28th, 2011, also cites a decline in violent, only this time, citing the reason as a correlation with poverty levels. In 2009, at the start of the housing crisis, crime rates also dropped noticeably. Oddly enough, this article points out the belief that unemployment is often associated with crime; instead, the evidence presented is environmental in nature. Warrant 3: Crime rate isn’t deterred by death penalty, but rather, our surroundings. Seeing as how conditions have improved, so has the state of peace. Therefore, it becomes clear that the death penalty is ineffective at deterring crime because other key factors present more possibility for improvement of society. Claim 4: The death penalty is a historically flawed system. Ground 4A: According to the book The Death Penalty: Constitutional Issues, Commentaries, and Case Briefs by Scott Vollum, published in 2005, addresses how the case of the death penalty emerged to where it is today. While the book is now a decade old, it is used for historical context, particularly, in describing the first execution that took place in 1608. While it is true that most of these executions weren’t as well-grounded as the modern ones that take place now, they still had no effect in deterring crime. Why? Because even after America was established and more sane, the death penalty still had to be used because criminals still had violent behaviors. Ground 4B: According to data from Mother Jones, published May 17th, 2013, the reason why the crime rate was so high in the past could possibly be due to yet another environmental factor (affected by change over time), exposure to lead. Since the removal of lead from paint started over a hundred years ago, there has been a decline in homicide. Why is this important? Lead poisoning in child’s brain, if not lethal, can affect development and lead to mental disability, lower IQ, and lack of reasoning. Warrant 4: By examining history as a whole, there is a greater correlation between other factors that have resulted in a decline in violent crime. The decline in the crime rate has been an ongoing process, but has shown a faster decline due to other environmental factors, rather than the instatement of the death penalty. Claim 5: The world’s violent crime rate is changing, but not due to the death penalty. Ground 5A: According to article published by Amnesty USA in March of 2014, the number of executions under the death penalty reported in 2013 had increased by 15%. However, the rate of violent crime in the world has decreased significantly in the last decade. But, Latvia, for example, has permanently banned the death penalty since 2012. In 2014, the country was viewed overall as safe and low in violent crime rate. Ground 5B: However, while it is true that there is a decline in violent crime rate worldwide, The World Bank, April 17, 2013, reports that the rate of global poverty is decreasing. In a similar vein to the US, because wealth is being distributed better and conditions are improving overall, there is a steady decline in crime rate. Warrant 5: By examining the world as a whole, it becomes clear that it doesn’t matter if the death penalty is in place, violent crime will still exist. However, mirroring the US, as simple conditions improve, so does lifestyle. The death penalty does not deter crime in the world, rather a better quality of life is responsible for that. Works Cited “Death Sentences and Executions 2013.” Amnesty International USA. Amnesty USA, 26 Mar. 2014. Web. 15 Mar. 2015. . D. K. “Why Is Crime Falling?” The Economist. The Economist Newspaper, 23 July 2013. Web. 12 Mar. 2015. . Drum, Kevin. “The US Murder Rate Is on Track to Be Lowest in a Century.”Mother Jones. Mother Jones, 17 May 2013. Web. 13 Mar. 2015. . Hood, Roger, and Carolyn Hoyle. The Death Penalty: A Worldwide Perspective. Oxford: Oxford UP, 2002. 45. Print. Rizzo, Kevin. “Slideshow: America’s Safest and Most Dangerous States 2014.”Law Street Media. Law Street TM, 12 Sept. 2014. Web. 12 Mar. 2015. . Vollum, Scott. The Death Penalty: Constitutional Issues, Commentaries, and Case Briefs. Newark, NJ: LexisNexis, 2005. 2. Print. Theis, David. “Remarkable Declines in Global Poverty, But Major Challenges Remain.” The World Bank. The World Bank, 17 Apr. 2013. Web. 15 Mar. 2015. . Wilson, James Q. “Hard Times, Fewer Crimes.” WSJ. The Wall Street Journal, 28 May 2011. Web. 13 Mar. 2015. .

Fact Debate Brief Introduction Crime doesn’t pay; it should be … Read More...
7. Analysts who follow Howe Industries recently noted that, relative to the previous year, the company’s net cash provided from operations increased, yet cash as reported on the balance sheet decreased. Which of the following factors could explain this situation? a. The company cut its dividend. b. The company made large investments in fixed assets. c. The company sold a division and received cash in return. d. The company issued new common stock. e. The company issued new long-term debt.

7. Analysts who follow Howe Industries recently noted that, relative to the previous year, the company’s net cash provided from operations increased, yet cash as reported on the balance sheet decreased. Which of the following factors could explain this situation? a. The company cut its dividend. b. The company made large investments in fixed assets. c. The company sold a division and received cash in return. d. The company issued new common stock. e. The company issued new long-term debt.

Answer: b
Sex, Gender, and Popular Culture Spring 2015 Look through popular magazines, and see if you can find advertisements that objectify women in order to sell a product. Alternately, you may use an advertisement on television (but make sure to provide a link to the ad so I can see it!). Study these images then write a paper about objectification that deals with all or some of the following: • What effect(s), if any, do you think the objectification of women’s bodies has on our culture? • Jean Kilbourne states “turning a human being into a thing is almost always the first step toward justifying violence against that person.” What do you think she means by this? Do you agree with her reasoning? Why or why not? • Some people would argue that depicting a woman’s body as an object is a form of art. What is your opinion of this point of view? Explain your reasoning. • Why do you think that women are objectified more often than men are? • How does sexualization and objectification play out differently across racial lines? • Kilbourne explains that the consequences of being objectified are different – and more serious – for women than for men. Do you agree? How is the world different for women than it is for men? How do objectified images of women interact with those in our culture differently from the way images of men do? Why is it important to look at images in the context of the culture? • What is the difference between sexual objectification and sexual subjectification? (Ros Gill ) • How do ads construct violent white masculinity and how does that vision of masculinity hurt both men and women? Throughout your written analysis, be sure to make clear and specific reference to the images you selected, and please submit these images with your paper. Make sure you engage with and reference to at least 4 of the following authors: Kilbourne, Bordo, Hunter & Soto, Rose, Durham, Gill, Katz, Schuchardt, Ono and Buescher. Guidelines:  Keep your content focused on structural, systemic, institutional factors rather than the individual: BE ANALYTICAL NOT ANECDOTAL.  Avoid using the first person or including personal stories/reactions. You must make sure to actively engage with your readings: these essays need to be informed and framed by the theoretical material you have been reading this semester.  Keep within the 4-6 page limit; use 12-point font, double spacing and 1-inch margins.  Use formal writing conventions (introduction/thesis statement, body, conclusion) and correct grammar. Resources may be cited within the text of your paper, i.e. (Walters, 2013).

Sex, Gender, and Popular Culture Spring 2015 Look through popular magazines, and see if you can find advertisements that objectify women in order to sell a product. Alternately, you may use an advertisement on television (but make sure to provide a link to the ad so I can see it!). Study these images then write a paper about objectification that deals with all or some of the following: • What effect(s), if any, do you think the objectification of women’s bodies has on our culture? • Jean Kilbourne states “turning a human being into a thing is almost always the first step toward justifying violence against that person.” What do you think she means by this? Do you agree with her reasoning? Why or why not? • Some people would argue that depicting a woman’s body as an object is a form of art. What is your opinion of this point of view? Explain your reasoning. • Why do you think that women are objectified more often than men are? • How does sexualization and objectification play out differently across racial lines? • Kilbourne explains that the consequences of being objectified are different – and more serious – for women than for men. Do you agree? How is the world different for women than it is for men? How do objectified images of women interact with those in our culture differently from the way images of men do? Why is it important to look at images in the context of the culture? • What is the difference between sexual objectification and sexual subjectification? (Ros Gill ) • How do ads construct violent white masculinity and how does that vision of masculinity hurt both men and women? Throughout your written analysis, be sure to make clear and specific reference to the images you selected, and please submit these images with your paper. Make sure you engage with and reference to at least 4 of the following authors: Kilbourne, Bordo, Hunter & Soto, Rose, Durham, Gill, Katz, Schuchardt, Ono and Buescher. Guidelines:  Keep your content focused on structural, systemic, institutional factors rather than the individual: BE ANALYTICAL NOT ANECDOTAL.  Avoid using the first person or including personal stories/reactions. You must make sure to actively engage with your readings: these essays need to be informed and framed by the theoretical material you have been reading this semester.  Keep within the 4-6 page limit; use 12-point font, double spacing and 1-inch margins.  Use formal writing conventions (introduction/thesis statement, body, conclusion) and correct grammar. Resources may be cited within the text of your paper, i.e. (Walters, 2013).

The objectification of women has been a very controversial topic … Read More...
When you cut into most active plant tissue, water appears almost immediately because plant cells contain Select one: a hypertonic solution that produces turgor pressure. a hypotonic solution that produces turgor pressure. an isotonic condition and you cut the cell open. a hypertonic condition and cutting it reversed this to hypotonic. a hypotonic condition and cutting it reversed this to hypertonic.

When you cut into most active plant tissue, water appears almost immediately because plant cells contain Select one: a hypertonic solution that produces turgor pressure. a hypotonic solution that produces turgor pressure. an isotonic condition and you cut the cell open. a hypertonic condition and cutting it reversed this to hypotonic. a hypotonic condition and cutting it reversed this to hypertonic.

When you cut into most active plant tissue, water appears … Read More...
AUCS 340: Ethics in the Professions Individual Written Assignment #1 Medical Ethics: Historical names, dates and ethical theories assignment As you read chapters 1 and 2 in the “Ethics and Basic Law for Medical Imaging Professionals” textbook you will be responsible for identifying and explaining each of the following items from the list below. You will respond in paragraph format with correct spelling and grammar expected for each paragraph. Feel free to have more than one paragraph for each item, although in most instances a single paragraph response is sufficient. If you reference material in addition to what is available in the textbook it must be appropriately cited in your work using either APA or MLA including a references cited page. The use of Wikipedia.com is not a recognized peer reviewed source so please do not use that as a reference. When responding about individuals it is necessary to indicate a year or time period that the person discussed/developed their particular ethical theory so that you can look at and appreciate the historical background to the development of ethical theories and decision making. Respond to the following sixteen items. (They are in random order from your reading) 1. Francis Bacon 2. Isaac Newton 3. Prima Facie Duties – Why do they exist? LIST AND DEFINE ALL TERMS 4. Hippocrates 5. W.D. Ross – what do the initials stand for in his name and what was his contribution to the study of ethics? 6. Microallocation – define the term and provide an example separate from the book example (You should develop your own example rather than looking for an online example; this will use your critical thinking skills. Consider an application to your own profession as microallocation is NOT limited to the medical field.) 7. Deontology – Discuss at length the basic types/concepts of this theory 8. Thomas Aquinas – 1) Discuss the ethical theory developed by Aquinas, 2) his religious affiliation, 3) why that was so important to his ethical premise and 4) discuss the type of ethical issues resolved to this day using this theory. 9. Macroallocation – define and provide an example separate from the book example (You should develop your own example rather than looking for an online example; this will use your critical thinking skills. Consider an application to your own profession as macroallocation is NOT limited to the medical field.) 10. David Hume 11. Rodericus Castro 12. Plato and “The Republic” 13. Pythagoras 14. Teleology – Discuss at length the basic types/concepts of this theory 15. Core Values – Why do they exist? LIST AND DEFINE ALL TERMS 16. Develop a timeline that reflects the ethical theories as developed by the INDIVIDUALS presented in this assignment. This assignment is due Saturday March 14th at NOON and is graded as a homework assignment. Grading: Paragraph Formation = 20% of grade (bulleted lists are acceptable for some answers) Answers inclusive of major material for answer = 40% of grade Creation of Timeline = 10% of grade Sentence structure, application of correct spelling and grammar = 20% of grade References (if utilized) = 10% of grade; references should be submitted on a separate references cited page. Otherwise this 10% of the assignment grade will be considered under the sentence structure component for 30% of the grade. It is expected that the finished assignment will be two – three pages of text, double spaced, using 12 font and standard page margins.

AUCS 340: Ethics in the Professions Individual Written Assignment #1 Medical Ethics: Historical names, dates and ethical theories assignment As you read chapters 1 and 2 in the “Ethics and Basic Law for Medical Imaging Professionals” textbook you will be responsible for identifying and explaining each of the following items from the list below. You will respond in paragraph format with correct spelling and grammar expected for each paragraph. Feel free to have more than one paragraph for each item, although in most instances a single paragraph response is sufficient. If you reference material in addition to what is available in the textbook it must be appropriately cited in your work using either APA or MLA including a references cited page. The use of Wikipedia.com is not a recognized peer reviewed source so please do not use that as a reference. When responding about individuals it is necessary to indicate a year or time period that the person discussed/developed their particular ethical theory so that you can look at and appreciate the historical background to the development of ethical theories and decision making. Respond to the following sixteen items. (They are in random order from your reading) 1. Francis Bacon 2. Isaac Newton 3. Prima Facie Duties – Why do they exist? LIST AND DEFINE ALL TERMS 4. Hippocrates 5. W.D. Ross – what do the initials stand for in his name and what was his contribution to the study of ethics? 6. Microallocation – define the term and provide an example separate from the book example (You should develop your own example rather than looking for an online example; this will use your critical thinking skills. Consider an application to your own profession as microallocation is NOT limited to the medical field.) 7. Deontology – Discuss at length the basic types/concepts of this theory 8. Thomas Aquinas – 1) Discuss the ethical theory developed by Aquinas, 2) his religious affiliation, 3) why that was so important to his ethical premise and 4) discuss the type of ethical issues resolved to this day using this theory. 9. Macroallocation – define and provide an example separate from the book example (You should develop your own example rather than looking for an online example; this will use your critical thinking skills. Consider an application to your own profession as macroallocation is NOT limited to the medical field.) 10. David Hume 11. Rodericus Castro 12. Plato and “The Republic” 13. Pythagoras 14. Teleology – Discuss at length the basic types/concepts of this theory 15. Core Values – Why do they exist? LIST AND DEFINE ALL TERMS 16. Develop a timeline that reflects the ethical theories as developed by the INDIVIDUALS presented in this assignment. This assignment is due Saturday March 14th at NOON and is graded as a homework assignment. Grading: Paragraph Formation = 20% of grade (bulleted lists are acceptable for some answers) Answers inclusive of major material for answer = 40% of grade Creation of Timeline = 10% of grade Sentence structure, application of correct spelling and grammar = 20% of grade References (if utilized) = 10% of grade; references should be submitted on a separate references cited page. Otherwise this 10% of the assignment grade will be considered under the sentence structure component for 30% of the grade. It is expected that the finished assignment will be two – three pages of text, double spaced, using 12 font and standard page margins.

Francis Bacon was a 16th century ethical theorist who was … Read More...
Chapter 4 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, February 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Advice for the Quarterback A quarterback is set up to throw the football to a receiver who is running with a constant velocity directly away from the quarterback and is now a distance away from the quarterback. The quarterback figures that the ball must be thrown at an angle to the horizontal and he estimates that the receiver must catch the ball a time interval after it is thrown to avoid having opposition players prevent the receiver from making the catch. In the following you may assume that the ball is thrown and caught at the same height above the level playing field. Assume that the y coordinate of the ball at the instant it is thrown or caught is and that the horizontal position of the quaterback is . Use for the magnitude of the acceleration due to gravity, and use the pictured inertial coordinate system when solving the problem. Part A Find , the vertical component of the velocity of the ball when the quarterback releases it. Express in terms of and . Hint 1. Equation of motion in y direction What is the expression for , the height of the ball as a function of time? Answer in terms of , , and . v r D  tc y = 0 x = 0 g v0y v0y tc g y(t) t g v0y ANSWER: Incorrect; Try Again Hint 2. Height at which the ball is caught, Remember that after time the ball was caught at the same height as it had been released. That is, . ANSWER: Answer Requested Part B Find , the initial horizontal component of velocity of the ball. Express your answer for in terms of , , and . Hint 1. Receiver’s position Find , the receiver’s position before he catches the ball. Answer in terms of , , and . ANSWER: Football’s position y(t) = v0yt− g 1 2 t2 y(tc) tc y(tc) = y0 = 0 v0y = gtc 2 v0x v0x D tc vr xr D vr tc xr = D + vrtc Typesetting math: 100% Find , the horizontal distance that the ball travels before reaching the receiver. Answer in terms of and . ANSWER: ANSWER: Answer Requested Part C Find the speed with which the quarterback must throw the ball. Answer in terms of , , , and . Hint 1. How to approach the problem Remember that velocity is a vector; from solving Parts A and B you have the two components, from which you can find the magnitude of this vector. ANSWER: Answer Requested Part D xc v0x tc xc = v0xtc v0x = + D tc vr v0 D tc vr g v0 = ( + ) + D tc vr 2 ( ) gtc 2 2 −−−−−−−−−−−−−−−−−−−  Typesetting math: 100% Assuming that the quarterback throws the ball with speed , find the angle above the horizontal at which he should throw it. Your solution should contain an inverse trig function (entered as asin, acos, or atan). Give your answer in terms of already known quantities, , , and . Hint 1. Find angle from and Think of velocity as a vector with Cartesian coordinates and . Find the angle that this vector would make with the x axis using the results of Parts A and B. ANSWER: Answer Requested Direction of Velocity at Various Times in Flight for Projectile Motion Conceptual Question For each of the motions described below, determine the algebraic sign (positive, negative, or zero) of the x component and y component of velocity of the object at the time specified. For all of the motions, the positive x axis points to the right and the positive y axis points upward. Alex, a mountaineer, must leap across a wide crevasse. The other side of the crevasse is below the point from which he leaps, as shown in the figure. Alex leaps horizontally and successfully makes the jump. v0  v0x v0y v0  v0x v0y v0xx^ v0yy^   = atan( ) v0y v0x Typesetting math: 100% Part A Determine the algebraic sign of Alex’s x velocity and y velocity at the instant he leaves the ground at the beginning of the jump. Type the algebraic signs of the x velocity and the y velocity separated by a comma (examples: +,- and 0,+). Typesetting math: 100% Hint 1. Algebraic sign of velocity The algebraic sign of the velocity is determined solely by comparing the direction in which the object is moving with the direction that is defined to be positive. In this example, to the right is defined to be the positive x direction and upward the positive y direction. Therefore, any object moving to the right, whether speeding up, slowing down, or even simultaneously moving upward or downward, has a positive x velocity. Similarly, if the object is moving downward, regardless of any other aspect of its motion, its y velocity is negative. Hint 2. Sketch Alex’s initial velocity On the diagram below, sketch the vector representing Alex’s velocity the instant after he leaves the ground at the beginning of the jump. ANSWER: ANSWER: Typesetting math: 100% Answer Requested Part B Determine the algebraic signs of Alex’s x velocity and y velocity the instant before he lands at the end of the jump. Type the algebraic signs of the x velocity and the y velocity separated by a comma (examples: +,- and 0,+). Typesetting math: 100% Hint 1. Sketch Alex’s final velocity On the diagram below, sketch the vector representing Alex’s velocity the instant before he safely lands on the other side of the crevasse. ANSWER: Answer Requested ANSWER: Answer Requested Typesetting math: 100% At the buzzer, a basketball player shoots a desperation shot. The ball goes in! Part C Determine the algebraic signs of the ball’s x velocity and y velocity the instant after it leaves the player’s hands. Type the algebraic signs of the x velocity and the y velocity separated by a comma (examples: +,- and 0,+). Hint 1. Sketch the basketball’s initial velocity On the diagram below, sketch the vector representing the velocity of the basketball the instant after it leaves the player’s hands. ANSWER: Typesetting math: 100% ANSWER: Correct Part D Determine the algebraic signs of the ball’s x velocity and y velocity at the ball’s maximum height. Type the algebraic signs of the x velocity and the y velocity separated by a comma (examples: +,- and 0,+). Hint 1. Sketch the basketball’s velocity at maximum height Typesetting math: 100% On the diagram below, sketch the vector representing the velocity of the basketball the instant it reaches its maximum height. ANSWER: ANSWER: Answer Requested PSS 4.1 Projectile Motion Problems Learning Goal: Typesetting math: 100% To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 9.00 and launch angle 30.0 (above the horizontal) travels a horizontal distance of = 17.0 before hitting the ground. From what height was the rock thrown? Use the value = 9.810 for the free-fall acceleration. PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Make simplifying assumptions, such as treating the object as a particle. Is it reasonable to ignore air resistance? VISUALIZE: Use a pictorial representation. Establish a coordinate system with the x axis horizontal and the y axis vertical. Show important points in the motion on a sketch. Define symbols, and identify what you are trying to find. SOLVE: The acceleration is known: and . Thus, the problem becomes one of two-dimensional kinematics. The kinematic equations are , . is the same for the horizontal and vertical components of the motion. Find from one component, and then use that value for the other component. ASSESS: Check that your result has the correct units, is reasonable, and answers the question. Model Start by making simplifying assumptions: Model the rock as a particle in free fall. You can ignore air resistance because the rock is a relatively heavy object moving relatively slowly. Visualize Part A Which diagram represents an accurate sketch of the rock’s trajectory? Hint 1. The launch angle In a projectile’s motion, the angle of the initial velocity above the horizontal is called the launch angle. ANSWER: m/s  d m g m/s2 ax = 0 ay = −g xf = xi +vixt, yf = yi +viyt− g(t 1 2 )2 vfx = vix = constant, and vfy = viy − gt t t v i Typesetting math: 100% Typesetting math: 100% Correct Part B As stated in the strategy, choose a coordinate system where the x axis is horizontal and the y axis is vertical. Note that in the strategy, the y component of the projectile’s acceleration, , is taken to be negative. This implies that the positive y axis is upward. Use the same convention for your y axis, and take the positive x axis to be to the right. Where you choose your origin doesn’t change the answer to the question, but choosing an origin can make a problem easier to solve (even if only a bit). Usually it is nice if the majority of the quantities you are given and the quantity you are trying to solve for take positive values relative to your chosen origin. Given this goal, what location for the origin of the coordinate system would make this problem easiest? ANSWER: ay At ground level below the point where the rock is launched At the point where the rock strikes the ground At the peak of the trajectory At the point where the rock is released At ground level below the peak of the trajectory Typesetting math: 100% Correct It’s best to place the origin of the coordinate system at ground level below the launching point because in this way all the points of interest (the launching point and the landing point) will have positive coordinates. (Based on your experience, you know that it’s generally easier to work with positive coordinates.) Keep in mind, however, that this is an arbitrary choice. The correct solution of the problem will not depend on the location of the origin of your coordinate system. Now, define symbols representing initial and final position, velocity, and time. Your target variable is , the initial y coordinate of the rock. Your pictorial representation should be complete now, and similar to the picture below: Solve Part C Find the height from which the rock was launched. Express your answer in meters to three significant figures. yi yi Typesetting math: 100% Hint 1. How to approach the problem The time needed to move horizontally to the final position = 17.0 is the same time needed for the rock to rise from the initial position to the peak of its trajectory and then fall to the ground. Use the information you have about motion in the horizontal direction to solve for . Knowing this time will allow you to use the equations of motion for the vertical direction to solve for . Hint 2. Find the time spent in the air How long ( ) is the rock in the air? Express your answer in seconds to three significant figures. Hint 1. Determine which equation to use Which of the equations given in the strategy and shown below is the most appropriate to calculate the time the rock spent in the air? ANSWER: Hint 2. Find the x component of the initial velocity What is the x component of the rock’s initial velocity? Express your answer in meters per second to three significant figures. ANSWER: ANSWER: t xf = d m yi t yi t t xf = xi + vixt yf = yi + viyt− g(t 1 2 )2 vfy = viy − gt vix = 7.79 m/s Typesetting math: 100% Hint 3. Find the y component of the initial velocity What is the y component of the rock’s initial velocity? Express your answer in meters per second to three significant figures. ANSWER: ANSWER: Answer Requested Assess Part D A second rock is thrown straight upward with a speed 4.500 . If this rock takes 2.181 to fall to the ground, from what height was it released? Express your answer in meters to three significant figures. Hint 1. Identify the known variables What are the values of , , , and for the second rock? Take the positive y axis to be upward and the origin to be located on the ground where the rock lands. Express your answers to four significant figures in the units shown to the right, separated by commas. ANSWER: t = 2.18 s viy = 4.50 m/s yi = 13.5 m m/s s H yf viy t a Typesetting math: 100% Answer Requested Hint 2. Determine which equation to use to find the height Which equation should you use to find ? Keep in mind that if the positive y axis is upward and the origin is located on the ground, . ANSWER: ANSWER: Answer Requested Projectile motion is made up of two independent motions: uniform motion at constant velocity in the horizontal direction and free-fall motion in the vertical direction. Because both rocks were thrown with the same initial vertical velocity, 4.500 , and fell the same vertical distance of 13.5 , they were in the air for the same amount of time. This result was expected and helps to confirm that you did the calculation in Part C correctly. ± Arrow Hits Apple An arrow is shot at an angle of above the horizontal. The arrow hits a tree a horizontal distance away, at the same height above the ground as it was shot. Use for the magnitude of the acceleration due to gravity. Part A , , , = 0,4.500,2.181,-yf viy t a 9.810 m, m/s, s, m/s2 H yi = H yf = yi + viyt− g(t 1 2 )2 vfy = viy − gt = − 2g( − ) v2f y v2i y yf yi H = 13.5 m viy = m/s m  = 45 D = 220 m g = 9.8 m/s2 Typesetting math: 100% Find , the time that the arrow spends in the air. Answer numerically in seconds, to two significant figures. Hint 1. Find the initial upward component of velocity in terms of D. Introduce the (unknown) variables and for the initial components of velocity. Then use kinematics to relate them and solve for . What is the vertical component of the initial velocity? Express your answer symbolically in terms of and . Hint 1. Find Find the horizontal component of the initial velocity. Express your answer symbolically in terms of and given symbolic quantities. ANSWER: Hint 2. Find What is the vertical component of the initial velocity? Express your answer symbolically in terms of . ANSWER: ANSWER: ta vy0 vx0 ta vy0 ta D vx0 vx0 ta vx0 = D ta vy0 vy0 vx0 vy0 = vx0 vy0 = D ta Typesetting math: 100% Hint 2. Find the time of flight in terms of the initial vertical component of velocity. From the change in the vertical component of velocity, you should be able to find in terms of and . Give your answer in terms of and . Hint 1. Find When applied to the y-component of velocity, in this problem the formula for with constant acceleration is What is , the vertical component of velocity when the arrow hits the tree? Answer symbolically in terms of only. ANSWER: ANSWER: Hint 3. Put the algebra together to find symbolically. If you have an expression for the initial vertical velocity component in terms in terms of and , and another in terms of and , you should be able to eliminate this initial component to find an expression for Express your answer symbolically in terms of given variables. ANSWER: ta vy0 g vy0 g vy(ta) v(t) −g vy(t) = vy0 − g t vy(ta ) vy0 vy(ta) = −vy0 ta = 2vy0 g ta D ta g ta ta2 t2 = a 2D g Typesetting math: 100% ANSWER: Answer Requested Suppose someone drops an apple from a vertical distance of 6.0 meters, directly above the point where the arrow hits the tree. Part B How long after the arrow was shot should the apple be dropped, in order for the arrow to pierce the apple as the arrow hits the tree? Express your answer numerically in seconds, to two significant figures. Hint 1. When should the apple be dropped The apple should be dropped at the time equal to the total time it takes the arrow to reach the tree minus the time it takes the apple to fall 6.0 meters. Hint 2. Find the time it takes for the apple to fall 6.0 meters How long does it take an apple to fall 6.0 meters? Express your answer numerically in seconds, to two significant figures. ANSWER: Answer Requested ANSWER: ta = 6.7 s tf = 1.1 s td = 5.6 s Typesetting math: 100% Answer Requested Video Tutor: Ball Fired Upward from Accelerating Cart First, launch the video below. You will be asked to use your knowledge of physics to predict the outcome of an experiment. Then, close the video window and answer the questions at right. You can watch the video again at any point. Part A Consider the video you just watched. Suppose we replace the original launcher with one that fires the ball upward at twice the speed. We make no other changes. How far behind the cart will the ball land, compared to the distance in the original experiment? Hint 1. Determine how long the ball is in the air How will doubling the initial upward speed of the ball change the time the ball spends in the air? A kinematic equation may be helpful here. The time in the air will ANSWER: be cut in half. stay the same. double. quadruple. Typesetting math: 100% Hint 2. Determine the appropriate kinematic expression Which of the following kinematic equations correctly describes the horizontal distance between the ball and the cart at the moment the ball lands? The cart’s initial horizontal velocity is , its horizontal acceleration is , and is the time elapsed between launch and impact. ANSWER: ANSWER: Correct The ball will spend twice as much time in the air ( , where is the ball’s initial upward velocity), so it will land four times farther behind the cart: (where is the cart’s horizontal acceleration). Video Tutor: Ball Fired Upward from Moving Cart First, launch the video below. You will be asked to use your knowledge of physics to predict the outcome of an experiment. Then, close the video window and answer the questions at right. You can watch the video again at any point. d v0x ax t d = v0x t d = 1 2 axv0x t2 d = v0x t+ 1 2 axt2 d = 1 2 axt2 the same distance twice as far half as far four times as far by a factor not listed above t = 2v0y/g v0y d = 1 2 axt2 ax Typesetting math: 100% Part A The crew of a cargo plane wishes to drop a crate of supplies on a target below. To hit the target, when should the crew drop the crate? Ignore air resistance. Hint 1. How to approach the problem While the crate is on the plane, it shares the plane’s velocity. What is the crate’s velocity immediately after it is released? Hint 2. What affects the motion of the crate? Gravity will accelerate the crate downward. What, if anything, affects the crate’s horizontal motion? (Keep in mind that we are told to ignore air resistance, even though that’s not very realistic in this situation.) ANSWER: Correct At the moment it is released, the crate shares the plane’s horizontal velocity. In the absence of air resistance, the crate would remain directly below the plane as it fell. Score Summary: Your score on this assignment is 0%. Before the plane is directly over the target After the plane has flown over the target When the plane is directly over the target Typesetting math: 100% You received 0 out of a possible total of 0 points. Typesetting math: 100%

Chapter 4 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, February 14, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Advice for the Quarterback A quarterback is set up to throw the football to a receiver who is running with a constant velocity directly away from the quarterback and is now a distance away from the quarterback. The quarterback figures that the ball must be thrown at an angle to the horizontal and he estimates that the receiver must catch the ball a time interval after it is thrown to avoid having opposition players prevent the receiver from making the catch. In the following you may assume that the ball is thrown and caught at the same height above the level playing field. Assume that the y coordinate of the ball at the instant it is thrown or caught is and that the horizontal position of the quaterback is . Use for the magnitude of the acceleration due to gravity, and use the pictured inertial coordinate system when solving the problem. Part A Find , the vertical component of the velocity of the ball when the quarterback releases it. Express in terms of and . Hint 1. Equation of motion in y direction What is the expression for , the height of the ball as a function of time? Answer in terms of , , and . v r D  tc y = 0 x = 0 g v0y v0y tc g y(t) t g v0y ANSWER: Incorrect; Try Again Hint 2. Height at which the ball is caught, Remember that after time the ball was caught at the same height as it had been released. That is, . ANSWER: Answer Requested Part B Find , the initial horizontal component of velocity of the ball. Express your answer for in terms of , , and . Hint 1. Receiver’s position Find , the receiver’s position before he catches the ball. Answer in terms of , , and . ANSWER: Football’s position y(t) = v0yt− g 1 2 t2 y(tc) tc y(tc) = y0 = 0 v0y = gtc 2 v0x v0x D tc vr xr D vr tc xr = D + vrtc Typesetting math: 100% Find , the horizontal distance that the ball travels before reaching the receiver. Answer in terms of and . ANSWER: ANSWER: Answer Requested Part C Find the speed with which the quarterback must throw the ball. Answer in terms of , , , and . Hint 1. How to approach the problem Remember that velocity is a vector; from solving Parts A and B you have the two components, from which you can find the magnitude of this vector. ANSWER: Answer Requested Part D xc v0x tc xc = v0xtc v0x = + D tc vr v0 D tc vr g v0 = ( + ) + D tc vr 2 ( ) gtc 2 2 −−−−−−−−−−−−−−−−−−−  Typesetting math: 100% Assuming that the quarterback throws the ball with speed , find the angle above the horizontal at which he should throw it. Your solution should contain an inverse trig function (entered as asin, acos, or atan). Give your answer in terms of already known quantities, , , and . Hint 1. Find angle from and Think of velocity as a vector with Cartesian coordinates and . Find the angle that this vector would make with the x axis using the results of Parts A and B. ANSWER: Answer Requested Direction of Velocity at Various Times in Flight for Projectile Motion Conceptual Question For each of the motions described below, determine the algebraic sign (positive, negative, or zero) of the x component and y component of velocity of the object at the time specified. For all of the motions, the positive x axis points to the right and the positive y axis points upward. Alex, a mountaineer, must leap across a wide crevasse. The other side of the crevasse is below the point from which he leaps, as shown in the figure. Alex leaps horizontally and successfully makes the jump. v0  v0x v0y v0  v0x v0y v0xx^ v0yy^   = atan( ) v0y v0x Typesetting math: 100% Part A Determine the algebraic sign of Alex’s x velocity and y velocity at the instant he leaves the ground at the beginning of the jump. Type the algebraic signs of the x velocity and the y velocity separated by a comma (examples: +,- and 0,+). Typesetting math: 100% Hint 1. Algebraic sign of velocity The algebraic sign of the velocity is determined solely by comparing the direction in which the object is moving with the direction that is defined to be positive. In this example, to the right is defined to be the positive x direction and upward the positive y direction. Therefore, any object moving to the right, whether speeding up, slowing down, or even simultaneously moving upward or downward, has a positive x velocity. Similarly, if the object is moving downward, regardless of any other aspect of its motion, its y velocity is negative. Hint 2. Sketch Alex’s initial velocity On the diagram below, sketch the vector representing Alex’s velocity the instant after he leaves the ground at the beginning of the jump. ANSWER: ANSWER: Typesetting math: 100% Answer Requested Part B Determine the algebraic signs of Alex’s x velocity and y velocity the instant before he lands at the end of the jump. Type the algebraic signs of the x velocity and the y velocity separated by a comma (examples: +,- and 0,+). Typesetting math: 100% Hint 1. Sketch Alex’s final velocity On the diagram below, sketch the vector representing Alex’s velocity the instant before he safely lands on the other side of the crevasse. ANSWER: Answer Requested ANSWER: Answer Requested Typesetting math: 100% At the buzzer, a basketball player shoots a desperation shot. The ball goes in! Part C Determine the algebraic signs of the ball’s x velocity and y velocity the instant after it leaves the player’s hands. Type the algebraic signs of the x velocity and the y velocity separated by a comma (examples: +,- and 0,+). Hint 1. Sketch the basketball’s initial velocity On the diagram below, sketch the vector representing the velocity of the basketball the instant after it leaves the player’s hands. ANSWER: Typesetting math: 100% ANSWER: Correct Part D Determine the algebraic signs of the ball’s x velocity and y velocity at the ball’s maximum height. Type the algebraic signs of the x velocity and the y velocity separated by a comma (examples: +,- and 0,+). Hint 1. Sketch the basketball’s velocity at maximum height Typesetting math: 100% On the diagram below, sketch the vector representing the velocity of the basketball the instant it reaches its maximum height. ANSWER: ANSWER: Answer Requested PSS 4.1 Projectile Motion Problems Learning Goal: Typesetting math: 100% To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 9.00 and launch angle 30.0 (above the horizontal) travels a horizontal distance of = 17.0 before hitting the ground. From what height was the rock thrown? Use the value = 9.810 for the free-fall acceleration. PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Make simplifying assumptions, such as treating the object as a particle. Is it reasonable to ignore air resistance? VISUALIZE: Use a pictorial representation. Establish a coordinate system with the x axis horizontal and the y axis vertical. Show important points in the motion on a sketch. Define symbols, and identify what you are trying to find. SOLVE: The acceleration is known: and . Thus, the problem becomes one of two-dimensional kinematics. The kinematic equations are , . is the same for the horizontal and vertical components of the motion. Find from one component, and then use that value for the other component. ASSESS: Check that your result has the correct units, is reasonable, and answers the question. Model Start by making simplifying assumptions: Model the rock as a particle in free fall. You can ignore air resistance because the rock is a relatively heavy object moving relatively slowly. Visualize Part A Which diagram represents an accurate sketch of the rock’s trajectory? Hint 1. The launch angle In a projectile’s motion, the angle of the initial velocity above the horizontal is called the launch angle. ANSWER: m/s  d m g m/s2 ax = 0 ay = −g xf = xi +vixt, yf = yi +viyt− g(t 1 2 )2 vfx = vix = constant, and vfy = viy − gt t t v i Typesetting math: 100% Typesetting math: 100% Correct Part B As stated in the strategy, choose a coordinate system where the x axis is horizontal and the y axis is vertical. Note that in the strategy, the y component of the projectile’s acceleration, , is taken to be negative. This implies that the positive y axis is upward. Use the same convention for your y axis, and take the positive x axis to be to the right. Where you choose your origin doesn’t change the answer to the question, but choosing an origin can make a problem easier to solve (even if only a bit). Usually it is nice if the majority of the quantities you are given and the quantity you are trying to solve for take positive values relative to your chosen origin. Given this goal, what location for the origin of the coordinate system would make this problem easiest? ANSWER: ay At ground level below the point where the rock is launched At the point where the rock strikes the ground At the peak of the trajectory At the point where the rock is released At ground level below the peak of the trajectory Typesetting math: 100% Correct It’s best to place the origin of the coordinate system at ground level below the launching point because in this way all the points of interest (the launching point and the landing point) will have positive coordinates. (Based on your experience, you know that it’s generally easier to work with positive coordinates.) Keep in mind, however, that this is an arbitrary choice. The correct solution of the problem will not depend on the location of the origin of your coordinate system. Now, define symbols representing initial and final position, velocity, and time. Your target variable is , the initial y coordinate of the rock. Your pictorial representation should be complete now, and similar to the picture below: Solve Part C Find the height from which the rock was launched. Express your answer in meters to three significant figures. yi yi Typesetting math: 100% Hint 1. How to approach the problem The time needed to move horizontally to the final position = 17.0 is the same time needed for the rock to rise from the initial position to the peak of its trajectory and then fall to the ground. Use the information you have about motion in the horizontal direction to solve for . Knowing this time will allow you to use the equations of motion for the vertical direction to solve for . Hint 2. Find the time spent in the air How long ( ) is the rock in the air? Express your answer in seconds to three significant figures. Hint 1. Determine which equation to use Which of the equations given in the strategy and shown below is the most appropriate to calculate the time the rock spent in the air? ANSWER: Hint 2. Find the x component of the initial velocity What is the x component of the rock’s initial velocity? Express your answer in meters per second to three significant figures. ANSWER: ANSWER: t xf = d m yi t yi t t xf = xi + vixt yf = yi + viyt− g(t 1 2 )2 vfy = viy − gt vix = 7.79 m/s Typesetting math: 100% Hint 3. Find the y component of the initial velocity What is the y component of the rock’s initial velocity? Express your answer in meters per second to three significant figures. ANSWER: ANSWER: Answer Requested Assess Part D A second rock is thrown straight upward with a speed 4.500 . If this rock takes 2.181 to fall to the ground, from what height was it released? Express your answer in meters to three significant figures. Hint 1. Identify the known variables What are the values of , , , and for the second rock? Take the positive y axis to be upward and the origin to be located on the ground where the rock lands. Express your answers to four significant figures in the units shown to the right, separated by commas. ANSWER: t = 2.18 s viy = 4.50 m/s yi = 13.5 m m/s s H yf viy t a Typesetting math: 100% Answer Requested Hint 2. Determine which equation to use to find the height Which equation should you use to find ? Keep in mind that if the positive y axis is upward and the origin is located on the ground, . ANSWER: ANSWER: Answer Requested Projectile motion is made up of two independent motions: uniform motion at constant velocity in the horizontal direction and free-fall motion in the vertical direction. Because both rocks were thrown with the same initial vertical velocity, 4.500 , and fell the same vertical distance of 13.5 , they were in the air for the same amount of time. This result was expected and helps to confirm that you did the calculation in Part C correctly. ± Arrow Hits Apple An arrow is shot at an angle of above the horizontal. The arrow hits a tree a horizontal distance away, at the same height above the ground as it was shot. Use for the magnitude of the acceleration due to gravity. Part A , , , = 0,4.500,2.181,-yf viy t a 9.810 m, m/s, s, m/s2 H yi = H yf = yi + viyt− g(t 1 2 )2 vfy = viy − gt = − 2g( − ) v2f y v2i y yf yi H = 13.5 m viy = m/s m  = 45 D = 220 m g = 9.8 m/s2 Typesetting math: 100% Find , the time that the arrow spends in the air. Answer numerically in seconds, to two significant figures. Hint 1. Find the initial upward component of velocity in terms of D. Introduce the (unknown) variables and for the initial components of velocity. Then use kinematics to relate them and solve for . What is the vertical component of the initial velocity? Express your answer symbolically in terms of and . Hint 1. Find Find the horizontal component of the initial velocity. Express your answer symbolically in terms of and given symbolic quantities. ANSWER: Hint 2. Find What is the vertical component of the initial velocity? Express your answer symbolically in terms of . ANSWER: ANSWER: ta vy0 vx0 ta vy0 ta D vx0 vx0 ta vx0 = D ta vy0 vy0 vx0 vy0 = vx0 vy0 = D ta Typesetting math: 100% Hint 2. Find the time of flight in terms of the initial vertical component of velocity. From the change in the vertical component of velocity, you should be able to find in terms of and . Give your answer in terms of and . Hint 1. Find When applied to the y-component of velocity, in this problem the formula for with constant acceleration is What is , the vertical component of velocity when the arrow hits the tree? Answer symbolically in terms of only. ANSWER: ANSWER: Hint 3. Put the algebra together to find symbolically. If you have an expression for the initial vertical velocity component in terms in terms of and , and another in terms of and , you should be able to eliminate this initial component to find an expression for Express your answer symbolically in terms of given variables. ANSWER: ta vy0 g vy0 g vy(ta) v(t) −g vy(t) = vy0 − g t vy(ta ) vy0 vy(ta) = −vy0 ta = 2vy0 g ta D ta g ta ta2 t2 = a 2D g Typesetting math: 100% ANSWER: Answer Requested Suppose someone drops an apple from a vertical distance of 6.0 meters, directly above the point where the arrow hits the tree. Part B How long after the arrow was shot should the apple be dropped, in order for the arrow to pierce the apple as the arrow hits the tree? Express your answer numerically in seconds, to two significant figures. Hint 1. When should the apple be dropped The apple should be dropped at the time equal to the total time it takes the arrow to reach the tree minus the time it takes the apple to fall 6.0 meters. Hint 2. Find the time it takes for the apple to fall 6.0 meters How long does it take an apple to fall 6.0 meters? Express your answer numerically in seconds, to two significant figures. ANSWER: Answer Requested ANSWER: ta = 6.7 s tf = 1.1 s td = 5.6 s Typesetting math: 100% Answer Requested Video Tutor: Ball Fired Upward from Accelerating Cart First, launch the video below. You will be asked to use your knowledge of physics to predict the outcome of an experiment. Then, close the video window and answer the questions at right. You can watch the video again at any point. Part A Consider the video you just watched. Suppose we replace the original launcher with one that fires the ball upward at twice the speed. We make no other changes. How far behind the cart will the ball land, compared to the distance in the original experiment? Hint 1. Determine how long the ball is in the air How will doubling the initial upward speed of the ball change the time the ball spends in the air? A kinematic equation may be helpful here. The time in the air will ANSWER: be cut in half. stay the same. double. quadruple. Typesetting math: 100% Hint 2. Determine the appropriate kinematic expression Which of the following kinematic equations correctly describes the horizontal distance between the ball and the cart at the moment the ball lands? The cart’s initial horizontal velocity is , its horizontal acceleration is , and is the time elapsed between launch and impact. ANSWER: ANSWER: Correct The ball will spend twice as much time in the air ( , where is the ball’s initial upward velocity), so it will land four times farther behind the cart: (where is the cart’s horizontal acceleration). Video Tutor: Ball Fired Upward from Moving Cart First, launch the video below. You will be asked to use your knowledge of physics to predict the outcome of an experiment. Then, close the video window and answer the questions at right. You can watch the video again at any point. d v0x ax t d = v0x t d = 1 2 axv0x t2 d = v0x t+ 1 2 axt2 d = 1 2 axt2 the same distance twice as far half as far four times as far by a factor not listed above t = 2v0y/g v0y d = 1 2 axt2 ax Typesetting math: 100% Part A The crew of a cargo plane wishes to drop a crate of supplies on a target below. To hit the target, when should the crew drop the crate? Ignore air resistance. Hint 1. How to approach the problem While the crate is on the plane, it shares the plane’s velocity. What is the crate’s velocity immediately after it is released? Hint 2. What affects the motion of the crate? Gravity will accelerate the crate downward. What, if anything, affects the crate’s horizontal motion? (Keep in mind that we are told to ignore air resistance, even though that’s not very realistic in this situation.) ANSWER: Correct At the moment it is released, the crate shares the plane’s horizontal velocity. In the absence of air resistance, the crate would remain directly below the plane as it fell. Score Summary: Your score on this assignment is 0%. Before the plane is directly over the target After the plane has flown over the target When the plane is directly over the target Typesetting math: 100% You received 0 out of a possible total of 0 points. Typesetting math: 100%

please email info@checkyourstudy.com