EXPERIMENT 6 FET CHARACTERISTIC CURVES ________________________________________ Bring a diskette to save your data. ________________________________________ OBJECT: The objective of this lab is to investigate the DC characteristics and operation of a field effect transistor (FET). The FET recommended to be used in this lab is 2N5486 n-channel FET. • Gathering data for the DC characteristics ________________________________________ APPARATUS: Dual DC Power Supply, Voltmeter, and 1k resistors, 2N5486 N-Channel FET. ________________________________________ THEORY: A JFET (Junction Field Effect Transistor) is a three terminal device (drain, source, and gate) similar to the BJT. The difference between them is that the JFET is a voltage controlled constant current device, whereas BJT is a current controlled current source device. Whereas for BJT the relationship between an output parameter, iC, and an input parameter, iB, is given by a constant , the relationship in JFET between an output parameter, iD, and an input parameter, vGS, is more complex. PROCEDURE: Measuring ID versus VDS (Output Characteristics) 1. Build the circuit shown below. 2. Obtain the output characteristics i.e. ID versus VDS. a. Set VGS = 0. Vary the voltage across drain (VDS) from 0 to 8 V with steps of 1 V and measure the corresponding drain current (ID). b. Repeat the procedure for different values of VGS. (0V, -0.5V, -1V, -1.5V, -2V, -2.5V, -3.0V, -3.5V, -4.0V). 3. Record the values in Table 1 and plot the graph ID vs. VGS. VGS 0 -0.5 -1.0 -1.5` -2.0 -2.5 -3.0 -3.5 -4.0 VDS ID ID ID ID ID ID ID ID ID 0 0 0.002mA 0.002mA 0.002mA 0.002mA 0.002mA 0.002mA 0.002mA 0mA 1 0 0.7 mA 0.7 mA 0.66 mA 0.6 mA 0.6 mA 0.5 0.1mA 0mA 2 0 1.5 mA 1.3 mA 1.3mA 1.2 mA 1.1 mA 0.7 0.1mA 0mA 3 0 2.1 mA 2.6 mA 1.9 mA 1.8 mA 1.5 mA 0.8 mA 0.1mA 0mA 4 0 2.7 mA 2.6 mA 2.5 mA 2.4 mA 1.7 mA 0.8 mA 0.1mA 0mA 5 0 3.4 mA 3.3 mA 3.1 mA 2.8 mA 1.8 mA 0.9 mA 0.1mA 0mA 6 0 4.1 mA 3.4 mA 3.7 mA 3.2 mA 1.9 mA 0.9 mA 0.1mA 0mA 7 0 4.7 mA 4.5 mA 4.2 mA 3.4 mA 1.9 mA 0.9 mA 0.1mA 0mA 8 0 5.3 mA 5.1 mA 6.6 mA 3.5 mA 2.0 mA 0.9 mA 0.1mA 0mA Table 1. vds=0:8; id=[0 6.2e-3 9.7e-3 11.3e-3 11.9e-3 12.2e-3 12.3e-3 12.3e-3 12.32e-3]; plot(vds,id);grid on;hold on id2=[0 5.23e-3 8.05e-3 9.15e-3 9.57e-3 9.77e-3 9.88e-3 9.9e-3 9.92e-3]; plot(vds,id2);grid on;hold on id3=[0 4.29e-3 6.41e-3 7.17e-3 7.46e-3 7.60e-3 7.67e-3 7.73e-3 7.76e-3]; plot(vds,id3);grid on;hold on ________________________________________ Measuring ID versus VGS (Transconductance Characteristics) 1. For the same circuit, obtain the transconductance characteristics. i.e. ID versus VGS. a. Set a particular value of voltage for VDS, i.e. 5V. Start with a gate voltage VGS of 0 V, and measure the corresponding drain current (ID). b. Then decrease VGS in steps of 0.5 V until VGS is -4V. c. At each step record the drain current. VDS = 5 V VGS ID 0 3.42 mA -0.5 3.36 mA -1.00 3.27 mA -1.50 3.12 mA -2.00 2.79 mA -2.50 1.84 mA -3.00 0.71 mA -3.50 0.11 mA -4.00 0 mA Table 2. 2. Plot the graph with ID versus VGS using Excel, MATLAB, or some other program. Discussion Questions—Make sure you answer the following questions in your discussion. Use all of the data obtained to answer the following questions: 1. Discuss the output and transconductance curves obtained in lab? Are they what you expected? 2. Are the output characteristics spaced evenly? Should they be? 3. What are the applications of a JFET?

EXPERIMENT 6 FET CHARACTERISTIC CURVES ________________________________________ Bring a diskette to save your data. ________________________________________ OBJECT: The objective of this lab is to investigate the DC characteristics and operation of a field effect transistor (FET). The FET recommended to be used in this lab is 2N5486 n-channel FET. • Gathering data for the DC characteristics ________________________________________ APPARATUS: Dual DC Power Supply, Voltmeter, and 1k resistors, 2N5486 N-Channel FET. ________________________________________ THEORY: A JFET (Junction Field Effect Transistor) is a three terminal device (drain, source, and gate) similar to the BJT. The difference between them is that the JFET is a voltage controlled constant current device, whereas BJT is a current controlled current source device. Whereas for BJT the relationship between an output parameter, iC, and an input parameter, iB, is given by a constant , the relationship in JFET between an output parameter, iD, and an input parameter, vGS, is more complex. PROCEDURE: Measuring ID versus VDS (Output Characteristics) 1. Build the circuit shown below. 2. Obtain the output characteristics i.e. ID versus VDS. a. Set VGS = 0. Vary the voltage across drain (VDS) from 0 to 8 V with steps of 1 V and measure the corresponding drain current (ID). b. Repeat the procedure for different values of VGS. (0V, -0.5V, -1V, -1.5V, -2V, -2.5V, -3.0V, -3.5V, -4.0V). 3. Record the values in Table 1 and plot the graph ID vs. VGS. VGS 0 -0.5 -1.0 -1.5` -2.0 -2.5 -3.0 -3.5 -4.0 VDS ID ID ID ID ID ID ID ID ID 0 0 0.002mA 0.002mA 0.002mA 0.002mA 0.002mA 0.002mA 0.002mA 0mA 1 0 0.7 mA 0.7 mA 0.66 mA 0.6 mA 0.6 mA 0.5 0.1mA 0mA 2 0 1.5 mA 1.3 mA 1.3mA 1.2 mA 1.1 mA 0.7 0.1mA 0mA 3 0 2.1 mA 2.6 mA 1.9 mA 1.8 mA 1.5 mA 0.8 mA 0.1mA 0mA 4 0 2.7 mA 2.6 mA 2.5 mA 2.4 mA 1.7 mA 0.8 mA 0.1mA 0mA 5 0 3.4 mA 3.3 mA 3.1 mA 2.8 mA 1.8 mA 0.9 mA 0.1mA 0mA 6 0 4.1 mA 3.4 mA 3.7 mA 3.2 mA 1.9 mA 0.9 mA 0.1mA 0mA 7 0 4.7 mA 4.5 mA 4.2 mA 3.4 mA 1.9 mA 0.9 mA 0.1mA 0mA 8 0 5.3 mA 5.1 mA 6.6 mA 3.5 mA 2.0 mA 0.9 mA 0.1mA 0mA Table 1. vds=0:8; id=[0 6.2e-3 9.7e-3 11.3e-3 11.9e-3 12.2e-3 12.3e-3 12.3e-3 12.32e-3]; plot(vds,id);grid on;hold on id2=[0 5.23e-3 8.05e-3 9.15e-3 9.57e-3 9.77e-3 9.88e-3 9.9e-3 9.92e-3]; plot(vds,id2);grid on;hold on id3=[0 4.29e-3 6.41e-3 7.17e-3 7.46e-3 7.60e-3 7.67e-3 7.73e-3 7.76e-3]; plot(vds,id3);grid on;hold on ________________________________________ Measuring ID versus VGS (Transconductance Characteristics) 1. For the same circuit, obtain the transconductance characteristics. i.e. ID versus VGS. a. Set a particular value of voltage for VDS, i.e. 5V. Start with a gate voltage VGS of 0 V, and measure the corresponding drain current (ID). b. Then decrease VGS in steps of 0.5 V until VGS is -4V. c. At each step record the drain current. VDS = 5 V VGS ID 0 3.42 mA -0.5 3.36 mA -1.00 3.27 mA -1.50 3.12 mA -2.00 2.79 mA -2.50 1.84 mA -3.00 0.71 mA -3.50 0.11 mA -4.00 0 mA Table 2. 2. Plot the graph with ID versus VGS using Excel, MATLAB, or some other program. Discussion Questions—Make sure you answer the following questions in your discussion. Use all of the data obtained to answer the following questions: 1. Discuss the output and transconductance curves obtained in lab? Are they what you expected? 2. Are the output characteristics spaced evenly? Should they be? 3. What are the applications of a JFET?

No expert has answered this question yet. You can browse … Read More...
1. How might a lesson plan differ between elementary earth science and high school computer science?

1. How might a lesson plan differ between elementary earth science and high school computer science?

Elementary earth science The basic concept are more important here, … Read More...
5 { GRAVITATION Last Updated: July 16, 2012 Problem List 5.1 Total mass of a shell 5.2 Tunnel through the moon 5.3 Gravitational eld above the center of a thin hoop 5.4 Gravitational force near a metal-cored planet surrounded by a gaseous cloud 5.5 Sphere with linearly increasing mass density 5.6 Jumping o Vesta 5.7 Gravitational force between two massive rods 5.8 Potential energy { Check your answer! 5.9 Ways of solving gravitational problems 5.10 Rod with linearly increasing mass density 5.11 Sphere with constant internal gravitational eld 5.12 Throwing a rock o the moon These problems are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Un- ported License. Please share and/or modify. Back to Problem List 1 5 { GRAVITATION Last Updated: July 16, 2012 5.1 Total mass of a shell Given: Marino { Fall 2011 Consider a spherical shell that extends from r = R to r = 2R with a non-uniform density (r) = 0r. What is the total mass of the shell? Back to Problem List 2 5 { GRAVITATION Last Updated: July 16, 2012 5.2 Tunnel through the moon Given: Marino { Fall 2011 Imagine that NASA digs a straight tunnel through the center of the moon (see gure) to access the Moon’s 3He deposits. An astronaut places a rock in the tunnel at the surface of the moon, and releases it (from rest). Show that the rock obeys the force law for a mass connected to a spring. What is the spring constant? Find the oscillation period for this motion if you assume that Moon has a mass of 7.351022 kg and a radius of 1.74106 m. Assume the moon’s density is uniform throughout its volume, and ignore the moon’s rotation. Given: Pollock { Spring 2011 Imagine (in a parallel universe of unlimited budgets) that NASA digs a straight tunnel through the center of the moon (see gure). A robot place a rock in the tunnel at position r = r0 from the center of the moon, and releases it (from rest). Use Newton’s second law to write the equation of motion of the rock and solve for r(t). Explain in words the rock’s motion. Does the rock return to its initial position at any later time? If so, how long does it takes to return to it? (Give a formula, and a number.) Assume the moon’s density is uniform throughout its volume, and ignore the moon’s rotation. Given: Pollock { Spring 2012 Now lets consider our (real) planet Earth, with total mass M and radius R which we will approximate as a uniform mass density, (r) = 0. (a) Neglecting rotational and frictional e ects, show that a particle dropped into a hole drilled straight through the center of the earth all the way to the far side will oscillate between the two endpoints. (Hint: you will need to set up, and solve, an ODE for the motion) (b) Find the period of the oscillation of this motion. Get a number (in minutes) as a nal result, using data for the earth’s size and mass. (How does that compare to ying to Perth and back?!) Extra Credit: OK, even with unlimited budgets, digging a tunnel through the center of the earth is preposterous. But, suppose instead that the tunnel is a straight-line \chord” through the earth, say directly from New York to Los Angeles. Show that your nal answer for the time taken does not depend on the location of that chord! This is rather remarkable – look again at the time for a free-fall trip (no energy required, except perhaps to compensate for friction) How long would that trip take? Could this work?! Back to Problem List 3 5 { GRAVITATION Last Updated: July 16, 2012 5.3 Gravitational eld above the center of a thin hoop Given: Pollock { Spring 2011, Spring 2012 Consider a very (in nitesimally!) thin but massive loop, radius R (total mass M), centered around the origin, sitting in the x-y plane. Assume it has a uniform linear mass density  (which has units of kg/m) all around it. (So, it’s like a skinny donut that is mostly hole, centered around the z-axis) (a) What is  in terms of M and R? What is the direction of the gravitational eld generated by this mass distribution at a point in space a distance z above the center of the donut, i.e. at (0; 0; z) Explain your reasoning for the direction carefully, try not to simply \wave your hands.” (The answer is extremely intuitive, but can you justify that it is correct?) (b) Compute the gravitational eld, ~g, at the point (0; 0; z) by directly integrating Newton’s law of gravity, summing over all in nitesimal \chunks” of mass along the loop. (c) Compute the gravitational potential at the point (0; 0; z) by directly integrating ?Gdm=r, sum- ming over all in nitesimal \chunks” dm along the loop. Then, take the z-component of the gradient of this potential to check that you agree with your result from the previous part. (d) In the two separate limits z << R and z >> R, Taylor expand your g- eld (in the z-direction)out only to the rst non-zero term, and convince us that both limits make good physical sense. (e) Can you use Gauss’ law to gure out the gravitational potential at the point (0; 0; z)? (If so, do it and check your previous answers. If not, why not?) Extra credit: If you place a small mass a small distance z away from the center, use your Taylor limit for z << R above to write a simple ODE for the equation of motion. Solve it, and discuss the motion Back to Problem List 4 5 { GRAVITATION Last Updated: July 16, 2012 5.4 Gravitational force near a metal-cored planet surrounded by a gaseous cloud Given: Pollock { Spring 2011 Jupiter is composed of a dense spherical core (of liquid metallic hydrogen!) of radius Rc. It is sur- rounded by a spherical cloud of gaseous hydrogen of radius Rg, where Rg > Rc. Let’s assume that the core is of uniform density c and the gaseous cloud is also of uniform density g. What is the gravitational force on an object of mass m that is located at a radius r from the center of Jupiter? Note that you must consider the cases where the object is inside the core, within the gas layer, and outside of the planet. Back to Problem List 5 5 { GRAVITATION Last Updated: July 16, 2012 5.5 Sphere with linearly increasing mass density Given: Pollock { Spring 2011 A planet of mass M and radius R has a nonuniform density that varies with r, the distance from the center according to  = Ar for 0  r  R. (a) What is the constant A in terms of M and R? Does this density pro le strike you as physically plausible, or is just designed as a mathematical exercise? (Brie y, explain) (b) Determine the gravitational force on a satellite of mass m orbiting this planet. In words, please outline the method you plan to use for your solution. (Use the easiest method you can come up with!) In your calculation, you will need to argue that the magnitude of ~g(r; ; ) depends only on r. Be very explicit about this – how do you know that it doesn’t, in fact, depend on  or ? (c) Determine the gravitational force felt by a rock of mass m inside the planet, located at radius r < R. (If the method you use is di erent than in part b, explain why you switched. If not, just proceed!) Explicitly check your result for this part by considering the limits r ! 0 and r ! R. Back to Problem List 6 5 { GRAVITATION Last Updated: July 16, 2012 5.6 Jumping o Vesta Given: Pollock { Spring 2011 You are stranded on the surface of the asteroid Vesta. If the mass of the asteroid is M and its radius is R, how fast would you have to jump o its surface to be able to escape from its gravitational eld? (Your estimate should be based on parameters that characterize the asteroid, not parameters that describe your jumping ability.) Given your formula, look up the approximate mass and radius of the asteroid Vesta 3 and determine a numerical value of the escape velocity. Could you escape in this way? (Brie y, explain) If so, roughly how big in radius is the maximum the asteroid could be, for you to still escape this way? If not, estimate how much smaller an asteroid you would need, to escape from it in this way? Figure 1: Back to Problem List 7 5 { GRAVITATION Last Updated: July 16, 2012 5.7 Gravitational force between two massive rods Given: Pollock { Spring 2011 Consider two identical uniform rods of length L and mass m lying along the same line and having their closest points separated by a distance d as shown in the gure (a) Calculate the mutual force between these rods, both its direction and magnitude. (b) Now do several checks. First, make sure the units worked out (!) The, nd the magnitude of the force in the limit L ! 0. What do you expect? Brie y, discuss. Lastly, nd the magnitude of the force in the limit d ! 1 ? Again, is it what you expect? Brie y, discuss. Figure 2: Given: Pollock { Spring 2012 Determining the gravitational force between two rods: (a) Consider a thin, uniform rod of mass m and length L (and negligible other dimensions) lying on the x axis (from x=-L to 0), as shown in g 1a. Derive a formula for the gravitational eld \g" at any arbitrary point x to the right of the origin (but still on the x-axis!) due to this rod. (b) Now suppose a second rod of length L and mass m sits on the x axis as shown in g 1b, with the left edge a distance \d" away. Calculate the mutual gravitational force between these rods. (c) Let's do some checks! Show that the units work out in parts a and b. Find the magnitude of the force in part a, in the limit x >> L: What do you expect? Brie y, discuss! Finally, verify that your answer to part b gives what you expect in the limit d >> L. ( Hint: This is a bit harder! You need to consistently expand everything to second order, not just rst, because of some interesting cancellations) Fig 1a Fig 1b L m +x x=0 L x=0 x=d m Fig 1a Fig 1b L m +x x=0 L +x x=0 x=d L m m Back to Problem List 8 5 { GRAVITATION Last Updated: July 16, 2012 5.8 Potential energy { Check your answer! Given: Pollock { Spring 2011 On the last exam, we had a problem with a at ring, uniform mass per unit area of , inner radius of R, outer radius of 2R. A satellite (mass m) sat a distance z above the center of the ring. We asked for the gravitational potential energy, and the answer was U(z) = ?2Gm( p 4R2 + z2 ? p R2 + z2) (1) (a) If you are far from the disk (on the z axis), what do you expect for the formula for U(z)? (Don’t say \0″ – as usual, we want the functional form of U(z) as you move far away. Also, explicitly state what we mean by \far away”. (Please don’t compare something with units to something without units!) (b) Show explicitly that the formula above does indeed give precisely the functional dependence you expect. Back to Problem List 9 5 { GRAVITATION Last Updated: July 16, 2012 5.9 Ways of solving gravitational problems Given: Pollock { Spring 2011, Spring 2012 Infinite cylinder ρ=cr x z (a) Half-infinite line mass, uniform linear mass density, λ x (b) R z  P Figure 3: (a) An in nite cylinder of radius R centered on the z-axis, with non-uniform volume mass density  = cr, where r is the radius in cylindrical coordinates. (b) A half-in nite line of mass on the x-axis extending from x = 0 to x = +1, with uniform linear mass density . There are two general methods we use to solve gravitational problems (i.e. nd ~g given some distribution of mass). (a) Describe these two methods. We claim one of these methods is easiest to solve for ~g of mass distribution (a) above, and the other method is easiest to solve for ~g of the mass distribution (b) above. Which method goes with which mass distribution? Please justify your answer. (b) Find ~g of the mass distribution (a) above for any arbitrary point outside the cylinder. (c) Find the x component of the gravitational acceleration, gx, generated by the mass distribution labeled (b) above, at a point P a given distance z up the positive z-axis (as shown). Back to Problem List 10 5 { GRAVITATION Last Updated: July 16, 2012 5.10 Rod with linearly increasing mass density Given: Pollock { Spring 2012 Consider a very (in nitesimally!) thin but massive rod, length L (total mass M), centered around the origin, sitting along the x-axis. (So the left end is at (-L/2, 0,0) and the right end is at (+L/2,0,0) Assume the mass density  (which has units of kg/m)is not uniform, but instead varies linearly with distance from the origin, (x) = cjxj. (a) What is that constant \c” in terms of M and L? What is the direction of the gravitational eld generated by this mass distribution at a point in space a distance z above the center of the rod, i.e. at (0; 0; z) Explain your reasoning for the direction carefully, try not to simply \wave your hands.” (The answer is extremely intuitive, but can you justify that it is correct?) (b) Compute the gravitational eld, ~g, at the point (0; 0; z) by directly integrating Newton’s law of gravity, summing over all in nitesimal \chunks” of mass along the rod. (c) Compute the gravitational potential at the point (0; 0; z) by directly integrating ?Gdm=r, sum- ming over all in nitesimal \chunks” dm along the rod. Then, take the z-component of the gradient of this potential to check that you agree with your result from the previous part. (d) In the limit of large z what do you expect for the functional form for gravitational potential? (Hint: Don’t just say it goes to zero! It’s a rod of mass M, when you’re far away what does it look like? How does it go to zero?) What does \large z” mean here? Use the binomial (or Taylor) expansion to verify that your formula does indeed give exactly what you expect. (Hint: you cannot Taylor expand in something BIG, you have to Taylor expand in something small.) (e) Can you use Gauss’ law to gure out the gravitational potential at the point (0; 0; z)? (If so, do it and check your previous answers. If not, why not?) Back to Problem List 11 5 { GRAVITATION Last Updated: July 16, 2012 5.11 Sphere with constant internal gravitational eld Given: Pollock { Spring 2012 (a) Imagine a planet of total mass M and radius R which has a nonuniform mass density that varies just with r, the distance from the center. For this (admittedly very unusual!) planet, suppose the gravitational eld strength inside the planet turns out to be independent of the radial distance within the sphere. Find the function describing the mass density  = (r) of this planet. (Your nal answer should be written in terms of the given constants.) (b) Now, determine the gravitational force on a satellite of mass m orbiting this planet at distance r > R. (Use the easiest method you can come up with!) Explain your work in words as well as formulas. For instance, in your calculation, you will need to argue that the magnitude of ~g(r; ; ) depends only on r. Be explicit about this – how do you know that it doesn’t, in fact, depend on  or ? (c) As a nal check, explicitly show that your solutions inside and outside the planet (parts a and b) are consistent when r = R. Please also comment on whether this density pro le strikes you as physically plausible, or is it just designed as a mathematical exercise? Defend your reasoning. Back to Problem List 12 5 { GRAVITATION Last Updated: July 16, 2012 5.12 Throwing a rock o the moon Given: Pollock { Spring 2012 Assuming that asteroids have roughly the same mass density as the moon, make an estimate of the largest asteroid that an astronaut could be standing on, and still have a chance of throwing a small object (with their arms, no machinery!) so that it completely escapes the asteroid’s gravitational eld. (This minimum speed is called \escape velocity”) Is the size you computed typical for asteroids in our solar system? Back to Problem List 13

5 { GRAVITATION Last Updated: July 16, 2012 Problem List 5.1 Total mass of a shell 5.2 Tunnel through the moon 5.3 Gravitational eld above the center of a thin hoop 5.4 Gravitational force near a metal-cored planet surrounded by a gaseous cloud 5.5 Sphere with linearly increasing mass density 5.6 Jumping o Vesta 5.7 Gravitational force between two massive rods 5.8 Potential energy { Check your answer! 5.9 Ways of solving gravitational problems 5.10 Rod with linearly increasing mass density 5.11 Sphere with constant internal gravitational eld 5.12 Throwing a rock o the moon These problems are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Un- ported License. Please share and/or modify. Back to Problem List 1 5 { GRAVITATION Last Updated: July 16, 2012 5.1 Total mass of a shell Given: Marino { Fall 2011 Consider a spherical shell that extends from r = R to r = 2R with a non-uniform density (r) = 0r. What is the total mass of the shell? Back to Problem List 2 5 { GRAVITATION Last Updated: July 16, 2012 5.2 Tunnel through the moon Given: Marino { Fall 2011 Imagine that NASA digs a straight tunnel through the center of the moon (see gure) to access the Moon’s 3He deposits. An astronaut places a rock in the tunnel at the surface of the moon, and releases it (from rest). Show that the rock obeys the force law for a mass connected to a spring. What is the spring constant? Find the oscillation period for this motion if you assume that Moon has a mass of 7.351022 kg and a radius of 1.74106 m. Assume the moon’s density is uniform throughout its volume, and ignore the moon’s rotation. Given: Pollock { Spring 2011 Imagine (in a parallel universe of unlimited budgets) that NASA digs a straight tunnel through the center of the moon (see gure). A robot place a rock in the tunnel at position r = r0 from the center of the moon, and releases it (from rest). Use Newton’s second law to write the equation of motion of the rock and solve for r(t). Explain in words the rock’s motion. Does the rock return to its initial position at any later time? If so, how long does it takes to return to it? (Give a formula, and a number.) Assume the moon’s density is uniform throughout its volume, and ignore the moon’s rotation. Given: Pollock { Spring 2012 Now lets consider our (real) planet Earth, with total mass M and radius R which we will approximate as a uniform mass density, (r) = 0. (a) Neglecting rotational and frictional e ects, show that a particle dropped into a hole drilled straight through the center of the earth all the way to the far side will oscillate between the two endpoints. (Hint: you will need to set up, and solve, an ODE for the motion) (b) Find the period of the oscillation of this motion. Get a number (in minutes) as a nal result, using data for the earth’s size and mass. (How does that compare to ying to Perth and back?!) Extra Credit: OK, even with unlimited budgets, digging a tunnel through the center of the earth is preposterous. But, suppose instead that the tunnel is a straight-line \chord” through the earth, say directly from New York to Los Angeles. Show that your nal answer for the time taken does not depend on the location of that chord! This is rather remarkable – look again at the time for a free-fall trip (no energy required, except perhaps to compensate for friction) How long would that trip take? Could this work?! Back to Problem List 3 5 { GRAVITATION Last Updated: July 16, 2012 5.3 Gravitational eld above the center of a thin hoop Given: Pollock { Spring 2011, Spring 2012 Consider a very (in nitesimally!) thin but massive loop, radius R (total mass M), centered around the origin, sitting in the x-y plane. Assume it has a uniform linear mass density  (which has units of kg/m) all around it. (So, it’s like a skinny donut that is mostly hole, centered around the z-axis) (a) What is  in terms of M and R? What is the direction of the gravitational eld generated by this mass distribution at a point in space a distance z above the center of the donut, i.e. at (0; 0; z) Explain your reasoning for the direction carefully, try not to simply \wave your hands.” (The answer is extremely intuitive, but can you justify that it is correct?) (b) Compute the gravitational eld, ~g, at the point (0; 0; z) by directly integrating Newton’s law of gravity, summing over all in nitesimal \chunks” of mass along the loop. (c) Compute the gravitational potential at the point (0; 0; z) by directly integrating ?Gdm=r, sum- ming over all in nitesimal \chunks” dm along the loop. Then, take the z-component of the gradient of this potential to check that you agree with your result from the previous part. (d) In the two separate limits z << R and z >> R, Taylor expand your g- eld (in the z-direction)out only to the rst non-zero term, and convince us that both limits make good physical sense. (e) Can you use Gauss’ law to gure out the gravitational potential at the point (0; 0; z)? (If so, do it and check your previous answers. If not, why not?) Extra credit: If you place a small mass a small distance z away from the center, use your Taylor limit for z << R above to write a simple ODE for the equation of motion. Solve it, and discuss the motion Back to Problem List 4 5 { GRAVITATION Last Updated: July 16, 2012 5.4 Gravitational force near a metal-cored planet surrounded by a gaseous cloud Given: Pollock { Spring 2011 Jupiter is composed of a dense spherical core (of liquid metallic hydrogen!) of radius Rc. It is sur- rounded by a spherical cloud of gaseous hydrogen of radius Rg, where Rg > Rc. Let’s assume that the core is of uniform density c and the gaseous cloud is also of uniform density g. What is the gravitational force on an object of mass m that is located at a radius r from the center of Jupiter? Note that you must consider the cases where the object is inside the core, within the gas layer, and outside of the planet. Back to Problem List 5 5 { GRAVITATION Last Updated: July 16, 2012 5.5 Sphere with linearly increasing mass density Given: Pollock { Spring 2011 A planet of mass M and radius R has a nonuniform density that varies with r, the distance from the center according to  = Ar for 0  r  R. (a) What is the constant A in terms of M and R? Does this density pro le strike you as physically plausible, or is just designed as a mathematical exercise? (Brie y, explain) (b) Determine the gravitational force on a satellite of mass m orbiting this planet. In words, please outline the method you plan to use for your solution. (Use the easiest method you can come up with!) In your calculation, you will need to argue that the magnitude of ~g(r; ; ) depends only on r. Be very explicit about this – how do you know that it doesn’t, in fact, depend on  or ? (c) Determine the gravitational force felt by a rock of mass m inside the planet, located at radius r < R. (If the method you use is di erent than in part b, explain why you switched. If not, just proceed!) Explicitly check your result for this part by considering the limits r ! 0 and r ! R. Back to Problem List 6 5 { GRAVITATION Last Updated: July 16, 2012 5.6 Jumping o Vesta Given: Pollock { Spring 2011 You are stranded on the surface of the asteroid Vesta. If the mass of the asteroid is M and its radius is R, how fast would you have to jump o its surface to be able to escape from its gravitational eld? (Your estimate should be based on parameters that characterize the asteroid, not parameters that describe your jumping ability.) Given your formula, look up the approximate mass and radius of the asteroid Vesta 3 and determine a numerical value of the escape velocity. Could you escape in this way? (Brie y, explain) If so, roughly how big in radius is the maximum the asteroid could be, for you to still escape this way? If not, estimate how much smaller an asteroid you would need, to escape from it in this way? Figure 1: Back to Problem List 7 5 { GRAVITATION Last Updated: July 16, 2012 5.7 Gravitational force between two massive rods Given: Pollock { Spring 2011 Consider two identical uniform rods of length L and mass m lying along the same line and having their closest points separated by a distance d as shown in the gure (a) Calculate the mutual force between these rods, both its direction and magnitude. (b) Now do several checks. First, make sure the units worked out (!) The, nd the magnitude of the force in the limit L ! 0. What do you expect? Brie y, discuss. Lastly, nd the magnitude of the force in the limit d ! 1 ? Again, is it what you expect? Brie y, discuss. Figure 2: Given: Pollock { Spring 2012 Determining the gravitational force between two rods: (a) Consider a thin, uniform rod of mass m and length L (and negligible other dimensions) lying on the x axis (from x=-L to 0), as shown in g 1a. Derive a formula for the gravitational eld \g" at any arbitrary point x to the right of the origin (but still on the x-axis!) due to this rod. (b) Now suppose a second rod of length L and mass m sits on the x axis as shown in g 1b, with the left edge a distance \d" away. Calculate the mutual gravitational force between these rods. (c) Let's do some checks! Show that the units work out in parts a and b. Find the magnitude of the force in part a, in the limit x >> L: What do you expect? Brie y, discuss! Finally, verify that your answer to part b gives what you expect in the limit d >> L. ( Hint: This is a bit harder! You need to consistently expand everything to second order, not just rst, because of some interesting cancellations) Fig 1a Fig 1b L m +x x=0 L x=0 x=d m Fig 1a Fig 1b L m +x x=0 L +x x=0 x=d L m m Back to Problem List 8 5 { GRAVITATION Last Updated: July 16, 2012 5.8 Potential energy { Check your answer! Given: Pollock { Spring 2011 On the last exam, we had a problem with a at ring, uniform mass per unit area of , inner radius of R, outer radius of 2R. A satellite (mass m) sat a distance z above the center of the ring. We asked for the gravitational potential energy, and the answer was U(z) = ?2Gm( p 4R2 + z2 ? p R2 + z2) (1) (a) If you are far from the disk (on the z axis), what do you expect for the formula for U(z)? (Don’t say \0″ – as usual, we want the functional form of U(z) as you move far away. Also, explicitly state what we mean by \far away”. (Please don’t compare something with units to something without units!) (b) Show explicitly that the formula above does indeed give precisely the functional dependence you expect. Back to Problem List 9 5 { GRAVITATION Last Updated: July 16, 2012 5.9 Ways of solving gravitational problems Given: Pollock { Spring 2011, Spring 2012 Infinite cylinder ρ=cr x z (a) Half-infinite line mass, uniform linear mass density, λ x (b) R z  P Figure 3: (a) An in nite cylinder of radius R centered on the z-axis, with non-uniform volume mass density  = cr, where r is the radius in cylindrical coordinates. (b) A half-in nite line of mass on the x-axis extending from x = 0 to x = +1, with uniform linear mass density . There are two general methods we use to solve gravitational problems (i.e. nd ~g given some distribution of mass). (a) Describe these two methods. We claim one of these methods is easiest to solve for ~g of mass distribution (a) above, and the other method is easiest to solve for ~g of the mass distribution (b) above. Which method goes with which mass distribution? Please justify your answer. (b) Find ~g of the mass distribution (a) above for any arbitrary point outside the cylinder. (c) Find the x component of the gravitational acceleration, gx, generated by the mass distribution labeled (b) above, at a point P a given distance z up the positive z-axis (as shown). Back to Problem List 10 5 { GRAVITATION Last Updated: July 16, 2012 5.10 Rod with linearly increasing mass density Given: Pollock { Spring 2012 Consider a very (in nitesimally!) thin but massive rod, length L (total mass M), centered around the origin, sitting along the x-axis. (So the left end is at (-L/2, 0,0) and the right end is at (+L/2,0,0) Assume the mass density  (which has units of kg/m)is not uniform, but instead varies linearly with distance from the origin, (x) = cjxj. (a) What is that constant \c” in terms of M and L? What is the direction of the gravitational eld generated by this mass distribution at a point in space a distance z above the center of the rod, i.e. at (0; 0; z) Explain your reasoning for the direction carefully, try not to simply \wave your hands.” (The answer is extremely intuitive, but can you justify that it is correct?) (b) Compute the gravitational eld, ~g, at the point (0; 0; z) by directly integrating Newton’s law of gravity, summing over all in nitesimal \chunks” of mass along the rod. (c) Compute the gravitational potential at the point (0; 0; z) by directly integrating ?Gdm=r, sum- ming over all in nitesimal \chunks” dm along the rod. Then, take the z-component of the gradient of this potential to check that you agree with your result from the previous part. (d) In the limit of large z what do you expect for the functional form for gravitational potential? (Hint: Don’t just say it goes to zero! It’s a rod of mass M, when you’re far away what does it look like? How does it go to zero?) What does \large z” mean here? Use the binomial (or Taylor) expansion to verify that your formula does indeed give exactly what you expect. (Hint: you cannot Taylor expand in something BIG, you have to Taylor expand in something small.) (e) Can you use Gauss’ law to gure out the gravitational potential at the point (0; 0; z)? (If so, do it and check your previous answers. If not, why not?) Back to Problem List 11 5 { GRAVITATION Last Updated: July 16, 2012 5.11 Sphere with constant internal gravitational eld Given: Pollock { Spring 2012 (a) Imagine a planet of total mass M and radius R which has a nonuniform mass density that varies just with r, the distance from the center. For this (admittedly very unusual!) planet, suppose the gravitational eld strength inside the planet turns out to be independent of the radial distance within the sphere. Find the function describing the mass density  = (r) of this planet. (Your nal answer should be written in terms of the given constants.) (b) Now, determine the gravitational force on a satellite of mass m orbiting this planet at distance r > R. (Use the easiest method you can come up with!) Explain your work in words as well as formulas. For instance, in your calculation, you will need to argue that the magnitude of ~g(r; ; ) depends only on r. Be explicit about this – how do you know that it doesn’t, in fact, depend on  or ? (c) As a nal check, explicitly show that your solutions inside and outside the planet (parts a and b) are consistent when r = R. Please also comment on whether this density pro le strikes you as physically plausible, or is it just designed as a mathematical exercise? Defend your reasoning. Back to Problem List 12 5 { GRAVITATION Last Updated: July 16, 2012 5.12 Throwing a rock o the moon Given: Pollock { Spring 2012 Assuming that asteroids have roughly the same mass density as the moon, make an estimate of the largest asteroid that an astronaut could be standing on, and still have a chance of throwing a small object (with their arms, no machinery!) so that it completely escapes the asteroid’s gravitational eld. (This minimum speed is called \escape velocity”) Is the size you computed typical for asteroids in our solar system? Back to Problem List 13

The ratio of product (hydrogen gas) to reactant (magnesium) is determined by the equation: Ratio (L/g) = ( Initial mL of acid – Final mL of acid ) / ( 1000 ml/L ) Mass of magnesium (g) Calculate the ratio for using the following data: Initial mL of acid = 200 mL Final mL of acid = 93 mL Mass of magnesium = 0.1081 g Note: Show your work and be sure to report the final result with the proper number of significant figures.

The ratio of product (hydrogen gas) to reactant (magnesium) is determined by the equation: Ratio (L/g) = ( Initial mL of acid – Final mL of acid ) / ( 1000 ml/L ) Mass of magnesium (g) Calculate the ratio for using the following data: Initial mL of acid = 200 mL Final mL of acid = 93 mL Mass of magnesium = 0.1081 g Note: Show your work and be sure to report the final result with the proper number of significant figures.

  Solution: Ratio (L/g)   =             (200 – 93 ) … Read More...
UDC CSI Quiz 1 (Close book) Name_________________________________ Student Number_____________________________ 1. Write down the code structure of a typical C++ program. 2. What are the most important components in a computer? Explain in your own words the functionality of each component. 3. Explain the following concepts: (1) Data type, (2) Identifiers, (3) Reserved words , (4) the ASCII format, (5) what are the most important components in a computer 4. Write an if-Statement tell the meaning of the sentence 5. Write a program that take an input value from keyboard. When the input value is 1, you print a square using *’s; otherwise you print a triangle. 6. Write a program that counts the summation 1+2+…+100.

UDC CSI Quiz 1 (Close book) Name_________________________________ Student Number_____________________________ 1. Write down the code structure of a typical C++ program. 2. What are the most important components in a computer? Explain in your own words the functionality of each component. 3. Explain the following concepts: (1) Data type, (2) Identifiers, (3) Reserved words , (4) the ASCII format, (5) what are the most important components in a computer 4. Write an if-Statement tell the meaning of the sentence 5. Write a program that take an input value from keyboard. When the input value is 1, you print a square using *’s; otherwise you print a triangle. 6. Write a program that counts the summation 1+2+…+100.

Discuss the following questions and topics. Interact with at least two other students and do more than just agree with their comments. Provide expanded ideas or other informative comments related to their posts. What is the difference betweenqualitative and quantitative research? Given the topic you havechosen to study and assuming you were going to use a qualitative approach,which of the five designs (case, ethnography, phenomenological, grounded theoryor content analysis) would be best suited to answer your research questions?Explain your decision. Review the approachesdiscussed in your text for collecting quantitative data and determine which(sampling, observation, or interview) might be best suited for your study.Explain your decision. When conducting interviewswhy is it critical to develop specific interview questions? Is it useful to includescaled questions (e.g., Likert scale such as 1 to 5) as part of your structuredinterview questions? Why or why not? Should open-ended questionsbe included? Why or why not? What are useful data sourcesfor conducting historical research?

Discuss the following questions and topics. Interact with at least two other students and do more than just agree with their comments. Provide expanded ideas or other informative comments related to their posts. What is the difference betweenqualitative and quantitative research? Given the topic you havechosen to study and assuming you were going to use a qualitative approach,which of the five designs (case, ethnography, phenomenological, grounded theoryor content analysis) would be best suited to answer your research questions?Explain your decision. Review the approachesdiscussed in your text for collecting quantitative data and determine which(sampling, observation, or interview) might be best suited for your study.Explain your decision. When conducting interviewswhy is it critical to develop specific interview questions? Is it useful to includescaled questions (e.g., Likert scale such as 1 to 5) as part of your structuredinterview questions? Why or why not? Should open-ended questionsbe included? Why or why not? What are useful data sourcesfor conducting historical research?

info@checkyourstudy.com
1 ACTIVITY PURPOSE The purpose of this activity is to give you practice preparing a four-week work schedule. PROCESS Follow the steps listed below to prepare a schedule. 1. Read the Information Sheet: Scheduling Employees. 2. The pay week for this medical record service runs Sunday – Saturday. The pay period is two pay weeks. Each full-time employee cannot work more than 40 hours per pay week, or 80 hours per pay period. Each part-time employee works 20 hours per pay week – 40 hours per pay period. 3. The first Friday of the four – week period is a holiday. 4. The medical record service has 24 hour coverage, seven days a week. All full-time employees work a five day pay week, eight hours per day, with rotating weekend coverage. Part-time employees work four hours Monday – Friday, except for their rotation weekend. On those days they work an eight hour shift. Remember to adjust their time accordingly. 5. The Assistant Director and all supervisors, except the Tumor Registry Supervisor, should be scheduled for rotating weekend coverage. 2 6. All employees, except the Tumor Registry employees, should be scheduled on a rotating basis for weekend coverage. 7. For weekend and holiday coverage, there needs to be at least two clerks and one transcriptionist on days and evenings, one clerk and one transcriptionist at night. 8. The Department Director has scheduled a two – week vacation for the first two full weeks of the four – week schedule. 9. Employees who work holidays must take the holiday time within the pay period in which the holiday occurs. 10.Use the following marks on the schedule: X – work eight hours V – vacation H – holiday D – day off 4 – hours for part-time employees 3 PERSONNEL OF HUFFMAN MEMORIAL MEDICAL RECORD DEPARTMENT DAYS (7:00 A.M. – 3:30 P.M.) Director Diane Lucas Assistant Director JoAnn DeWitt Coding 1 Supervisor – Nina Long 3 Coding/PAS Clerks – Cheryl Newman Pam Rogers Janet Bennett Transcription 1 Supervisor – 6 Transcribers – Jessica DuBois Eileen Andrews Iris Williams Diane Henderson Vivian Thomas Lois Fisher Emma Daily Filing/Retrieval 1 Supervisor – 4 Clerks – 1 Part-time Clerk – Bill James Darlene Cook Janice Stivers Larry Patterson Don Williamson Susan Evanston Tumor Registry 1 Supervisor – 1 Clerk – 1 Part-time Clerk – Mabel Smith Pauline Erskine Suzanne Chapman EVENING (3:00 P.M. – 11:00 P.M.) Transcription 1 Part-time – Beth Richman Filing/Retrieval 1 Supervisor – 2 Clerks – 1 Part-time Clerk – Daniel Johnson Harry Skinner Matthew Scott Anne Madison NIGHTS (11:00 P.M. – 7:00 A.M.) Transcription 3 Transcribers – Louise Wilson Jane Matters Nancy Lipman Filing/Retrieval 2 Clerks – Lily Jamison Helen Benson 4 INFORMATION SHEET SCHEDULING EMPLOYEES In addition to the planning, organizing and controlling of a medical record service, managers must accurately plan the work pattern for employees. This plan must insure that all duties are adequately covered, all shifts have sufficient numbers of people to perform duties, and employees are given appropriate days off. Scheduling encompasses both short term and long term plans. Short term scheduling involves planning work on a daily and/or weekly basis. Long term scheduling generally covers a four – to six – week time period, as well as yearly planning for holidays. In larger health care facilities with the medical record service providing 24 hour service, seven days a week, advanced planning is a requisite to a smooth operation. In smaller facilities with shorter hours of service, the schedule is less complex. The number of employees needed for weekend work for those facilities open on weekends is totally dependent upon the weekend workload. A volume of seventy (70) to ninety (90) discharges per day generally requires two (2) medical record clerks to process those discharges, as well as to perform the other daily responsibilities of the medical record service. It is also advisable to schedule a supervisor during the weekend in the event that any problems arise which a clerk might not be able to handle (i.e. medico-legal questions, irate patients or physicians). If you work in a department that has an active work 5 measurement program, valuable scheduling information can be obtained from the data reported. In planning for holidays, it is important to remember to: 1. obtain employee preferences for which holidays they might choose to work; 2. keep track of who has worked which holidays; 3. if a holiday occurs on a Friday or a Monday and the employee must work on the holiday, try to give them a Friday or Monday off to compensate. It is important for you to be fair in terms of assigning employees weekend work and scheduling Holidays. Everyone should share the responsibility equally. If you have all supervisors work one weekend per month, then that schedule should be followed. If you have clerks working every other weekend, then that pattern should be followed consistently. When preparing a schedule it is best to put in all the “givens” first. For example, if you have vacations scheduled for the four weeks you’re preparing, then those should be marked in first. Also included in this category would be employees who do not work weekends (i.e. personnel in the Tumor Registry). Once all work times have been scheduled, you must be certain that an employee receives two (2) days off for every seven (7) days. If an employee works more than forty (40) hours in one (1) week, the facility must pat time-an-a-half for all hours over forty. Some facilities are experimenting with a variety of scheduling techniques: flex time and the four-day work week. Both techniques have been 6 heavily debated. The final questions regarding these nontraditional alternatives end up being: 1. Are your employees willing to try it? 2. Are you ready to handle the extra planning these alternatives may warrant? 3. Do you have the necessary resources, including equipment, to accommodate a nontraditional scheduling alternative? 4. Will administrator of the facility support your proposal? Once you have established answers to those questions you are ready to embark on a new technique of scheduling. Scheduling employees can be one of the most challenging tasks that a manager faces. Whether you elect to try one of the nontraditional alternatives or use the five-day work week, the manager must: 1. be fair; 2. apply all guidelines to every employee consistently 3. utilize all available data to arrive at appropriate numbers for weekend and holiday staffing requirements; and 4. maximize the utilization of equipment and resources.

1 ACTIVITY PURPOSE The purpose of this activity is to give you practice preparing a four-week work schedule. PROCESS Follow the steps listed below to prepare a schedule. 1. Read the Information Sheet: Scheduling Employees. 2. The pay week for this medical record service runs Sunday – Saturday. The pay period is two pay weeks. Each full-time employee cannot work more than 40 hours per pay week, or 80 hours per pay period. Each part-time employee works 20 hours per pay week – 40 hours per pay period. 3. The first Friday of the four – week period is a holiday. 4. The medical record service has 24 hour coverage, seven days a week. All full-time employees work a five day pay week, eight hours per day, with rotating weekend coverage. Part-time employees work four hours Monday – Friday, except for their rotation weekend. On those days they work an eight hour shift. Remember to adjust their time accordingly. 5. The Assistant Director and all supervisors, except the Tumor Registry Supervisor, should be scheduled for rotating weekend coverage. 2 6. All employees, except the Tumor Registry employees, should be scheduled on a rotating basis for weekend coverage. 7. For weekend and holiday coverage, there needs to be at least two clerks and one transcriptionist on days and evenings, one clerk and one transcriptionist at night. 8. The Department Director has scheduled a two – week vacation for the first two full weeks of the four – week schedule. 9. Employees who work holidays must take the holiday time within the pay period in which the holiday occurs. 10.Use the following marks on the schedule: X – work eight hours V – vacation H – holiday D – day off 4 – hours for part-time employees 3 PERSONNEL OF HUFFMAN MEMORIAL MEDICAL RECORD DEPARTMENT DAYS (7:00 A.M. – 3:30 P.M.) Director Diane Lucas Assistant Director JoAnn DeWitt Coding 1 Supervisor – Nina Long 3 Coding/PAS Clerks – Cheryl Newman Pam Rogers Janet Bennett Transcription 1 Supervisor – 6 Transcribers – Jessica DuBois Eileen Andrews Iris Williams Diane Henderson Vivian Thomas Lois Fisher Emma Daily Filing/Retrieval 1 Supervisor – 4 Clerks – 1 Part-time Clerk – Bill James Darlene Cook Janice Stivers Larry Patterson Don Williamson Susan Evanston Tumor Registry 1 Supervisor – 1 Clerk – 1 Part-time Clerk – Mabel Smith Pauline Erskine Suzanne Chapman EVENING (3:00 P.M. – 11:00 P.M.) Transcription 1 Part-time – Beth Richman Filing/Retrieval 1 Supervisor – 2 Clerks – 1 Part-time Clerk – Daniel Johnson Harry Skinner Matthew Scott Anne Madison NIGHTS (11:00 P.M. – 7:00 A.M.) Transcription 3 Transcribers – Louise Wilson Jane Matters Nancy Lipman Filing/Retrieval 2 Clerks – Lily Jamison Helen Benson 4 INFORMATION SHEET SCHEDULING EMPLOYEES In addition to the planning, organizing and controlling of a medical record service, managers must accurately plan the work pattern for employees. This plan must insure that all duties are adequately covered, all shifts have sufficient numbers of people to perform duties, and employees are given appropriate days off. Scheduling encompasses both short term and long term plans. Short term scheduling involves planning work on a daily and/or weekly basis. Long term scheduling generally covers a four – to six – week time period, as well as yearly planning for holidays. In larger health care facilities with the medical record service providing 24 hour service, seven days a week, advanced planning is a requisite to a smooth operation. In smaller facilities with shorter hours of service, the schedule is less complex. The number of employees needed for weekend work for those facilities open on weekends is totally dependent upon the weekend workload. A volume of seventy (70) to ninety (90) discharges per day generally requires two (2) medical record clerks to process those discharges, as well as to perform the other daily responsibilities of the medical record service. It is also advisable to schedule a supervisor during the weekend in the event that any problems arise which a clerk might not be able to handle (i.e. medico-legal questions, irate patients or physicians). If you work in a department that has an active work 5 measurement program, valuable scheduling information can be obtained from the data reported. In planning for holidays, it is important to remember to: 1. obtain employee preferences for which holidays they might choose to work; 2. keep track of who has worked which holidays; 3. if a holiday occurs on a Friday or a Monday and the employee must work on the holiday, try to give them a Friday or Monday off to compensate. It is important for you to be fair in terms of assigning employees weekend work and scheduling Holidays. Everyone should share the responsibility equally. If you have all supervisors work one weekend per month, then that schedule should be followed. If you have clerks working every other weekend, then that pattern should be followed consistently. When preparing a schedule it is best to put in all the “givens” first. For example, if you have vacations scheduled for the four weeks you’re preparing, then those should be marked in first. Also included in this category would be employees who do not work weekends (i.e. personnel in the Tumor Registry). Once all work times have been scheduled, you must be certain that an employee receives two (2) days off for every seven (7) days. If an employee works more than forty (40) hours in one (1) week, the facility must pat time-an-a-half for all hours over forty. Some facilities are experimenting with a variety of scheduling techniques: flex time and the four-day work week. Both techniques have been 6 heavily debated. The final questions regarding these nontraditional alternatives end up being: 1. Are your employees willing to try it? 2. Are you ready to handle the extra planning these alternatives may warrant? 3. Do you have the necessary resources, including equipment, to accommodate a nontraditional scheduling alternative? 4. Will administrator of the facility support your proposal? Once you have established answers to those questions you are ready to embark on a new technique of scheduling. Scheduling employees can be one of the most challenging tasks that a manager faces. Whether you elect to try one of the nontraditional alternatives or use the five-day work week, the manager must: 1. be fair; 2. apply all guidelines to every employee consistently 3. utilize all available data to arrive at appropriate numbers for weekend and holiday staffing requirements; and 4. maximize the utilization of equipment and resources.

BLY 101L – Take Home Assignment (20 pts. TOTAL) Due: Start of class time – Monday, June 30, 2014 OR Tuesday, July 1, 2014 1. Calculate the % of disks floating (%DF) for each time point and both Control and Treatment groups. (5 pts.) • refer to the class notes re: how to do this… 2. Neatly graph experimental results. (5 pts.) • graph paper • Microsoft Excel • refer to the class notes re: how to do this… 3. What was the overarching QUESTION addressed by the lab exercise? (1 pt.) 4. State “null” (H0) and “alternative” (HA) HYPOTHESES. (2 pts.) 5. State your PREDICTION in “If…., then…” format, based upon your knowledge of PS and as written in your lab guide. (1 pt.) 6. Applying what you’ve learned about photosynthesis… • Undoubtedly, you have heard mention of the effect of increasing concentrations of certain gasses (one of which is CO2) in Earth’s atmosphere, and its relevance to Climate Change. Sometime around two decades ago or so, plant scientists began to earnestly think about CO2 level and its effects on plant physiology and growth. Based upon your knowledge of photosynthesis and what you’ve learned from this week’s lab experiment… Formulate testable hypotheses (H0, HA) AND a prediction for this scenario. (3 pts.) • As a follow-on to the previous question and in the context of the experiment you performed in class…Aside from affecting “aesthetics” and habitat for fuzzy wuzzy animals, why are plant and conservation scientists worried about the effects of “clear cutting” (i.e., cutting down forests for development or other agricultural and industrial uses) in combination with rising CO2 levels? (NOTE: O2 HAS NOTHING TO DO WITH THE ANSWER TO THIS QUESTION…; 3 pts.) You MUST hand in the following: o Data table o Line graph of experimental results (plot both data sets on the SAME set of axes; see lecture notes) o Neatly typed answers to questions 3-6 REMEMBER: Images, written text AND/OR ideas are intellectual property and/or copyrighted! If you consult/borrow any published material (e.g., internet webpage text, published paper or report, your textbook, etc.) to construct answers to the questions above, you MUST CITE THE SOURCE FROM WHICH YOU COPIED THE IMAGES, TEXT or IDEAS. See below… Scientific Paper Chase, J. 2010. Stochastic community assembly causes higher biodiversity in more productive environments. Science 328: 1388-1391. Book Stein, B.A., Kutner, L.S., and Adams, J.S. 2000. Precious Heritage, The Status of Biodiversity in the United States. Oxford University Press, Oxford, England. Webpage NOAA, National Atmospheric and Oceanographic Administration. Accessed 01/05/12. http://www.nhc.noaa.gov/pastall.shtml#tracks_us.

BLY 101L – Take Home Assignment (20 pts. TOTAL) Due: Start of class time – Monday, June 30, 2014 OR Tuesday, July 1, 2014 1. Calculate the % of disks floating (%DF) for each time point and both Control and Treatment groups. (5 pts.) • refer to the class notes re: how to do this… 2. Neatly graph experimental results. (5 pts.) • graph paper • Microsoft Excel • refer to the class notes re: how to do this… 3. What was the overarching QUESTION addressed by the lab exercise? (1 pt.) 4. State “null” (H0) and “alternative” (HA) HYPOTHESES. (2 pts.) 5. State your PREDICTION in “If…., then…” format, based upon your knowledge of PS and as written in your lab guide. (1 pt.) 6. Applying what you’ve learned about photosynthesis… • Undoubtedly, you have heard mention of the effect of increasing concentrations of certain gasses (one of which is CO2) in Earth’s atmosphere, and its relevance to Climate Change. Sometime around two decades ago or so, plant scientists began to earnestly think about CO2 level and its effects on plant physiology and growth. Based upon your knowledge of photosynthesis and what you’ve learned from this week’s lab experiment… Formulate testable hypotheses (H0, HA) AND a prediction for this scenario. (3 pts.) • As a follow-on to the previous question and in the context of the experiment you performed in class…Aside from affecting “aesthetics” and habitat for fuzzy wuzzy animals, why are plant and conservation scientists worried about the effects of “clear cutting” (i.e., cutting down forests for development or other agricultural and industrial uses) in combination with rising CO2 levels? (NOTE: O2 HAS NOTHING TO DO WITH THE ANSWER TO THIS QUESTION…; 3 pts.) You MUST hand in the following: o Data table o Line graph of experimental results (plot both data sets on the SAME set of axes; see lecture notes) o Neatly typed answers to questions 3-6 REMEMBER: Images, written text AND/OR ideas are intellectual property and/or copyrighted! If you consult/borrow any published material (e.g., internet webpage text, published paper or report, your textbook, etc.) to construct answers to the questions above, you MUST CITE THE SOURCE FROM WHICH YOU COPIED THE IMAGES, TEXT or IDEAS. See below… Scientific Paper Chase, J. 2010. Stochastic community assembly causes higher biodiversity in more productive environments. Science 328: 1388-1391. Book Stein, B.A., Kutner, L.S., and Adams, J.S. 2000. Precious Heritage, The Status of Biodiversity in the United States. Oxford University Press, Oxford, England. Webpage NOAA, National Atmospheric and Oceanographic Administration. Accessed 01/05/12. http://www.nhc.noaa.gov/pastall.shtml#tracks_us.

info@checkyourstudy.com