Define: 41 Things Philosophy is: 1. Ignorant 2. Selfish 3. Ironic 4. Plain 5. Misunderstood 6. A failure 7. Poor 8. Unscientific 9. Unteachable 10. Foolish 11. Abnormal 12. Divine trickery 13. Egalitarian 14. A divine calling 15. Laborious 16. Countercultural 17. Uncomfortable 18. Virtuous 19. Dangerous 20. Simplistic<br />21. Polemical 22. Therapeutic 23. “conformist” 24. Embarrassi ng 25. Invulnerable 26. Annoying 27. Pneumatic 28. Apolitic al 29. Docile/teachable 30. Messianic 31. Pious 32. Impract ical 33. Happy 34. Necessary 35. Death-defying 36. Fallible 37. Immortal 38. Confident 39. Painful 40. agnostic</br

Define: 41 Things Philosophy is: 1. Ignorant 2. Selfish 3. Ironic 4. Plain 5. Misunderstood 6. A failure 7. Poor 8. Unscientific 9. Unteachable 10. Foolish 11. Abnormal 12. Divine trickery 13. Egalitarian 14. A divine calling 15. Laborious 16. Countercultural 17. Uncomfortable 18. Virtuous 19. Dangerous 20. Simplistic
21. Polemical 22. Therapeutic 23. “conformist” 24. Embarrassi ng 25. Invulnerable 26. Annoying 27. Pneumatic 28. Apolitic al 29. Docile/teachable 30. Messianic 31. Pious 32. Impract ical 33. Happy 34. Necessary 35. Death-defying 36. Fallible 37. Immortal 38. Confident 39. Painful 40. agnostic

Ignorant- A person is said to be ignorant if he … Read More...
Ronald Wright, Stolen Continents, Ch. 3, pp. 72-83. It’s posted here on Moodle as a PDF( attached) 1.)What’s your gut reaction to this reading? 2.) Give a summary of the meeting and dialogue between the Inca Emperor Atawallpa and the Spanish. 3.) Give the date, place and basic elements of the successful confrontation the Spanish had with Inca Atawallpa and his soldiers. 4.) According to Wright’s account, what do you think is the main reason or reasons that Inca Atawallpa lost this confrontation? What is the evidence for your conclusion?”

Ronald Wright, Stolen Continents, Ch. 3, pp. 72-83. It’s posted here on Moodle as a PDF( attached) 1.)What’s your gut reaction to this reading? 2.) Give a summary of the meeting and dialogue between the Inca Emperor Atawallpa and the Spanish. 3.) Give the date, place and basic elements of the successful confrontation the Spanish had with Inca Atawallpa and his soldiers. 4.) According to Wright’s account, what do you think is the main reason or reasons that Inca Atawallpa lost this confrontation? What is the evidence for your conclusion?”

1) The book named “Stolen Continents” is written by Ronald … Read More...
AUCS 340: Ethics in the Professions Individual Written Assignment #1 Medical Ethics: Historical names, dates and ethical theories assignment As you read chapters 1 and 2 in the “Ethics and Basic Law for Medical Imaging Professionals” textbook you will be responsible for identifying and explaining each of the following items from the list below. You will respond in paragraph format with correct spelling and grammar expected for each paragraph. Feel free to have more than one paragraph for each item, although in most instances a single paragraph response is sufficient. If you reference material in addition to what is available in the textbook it must be appropriately cited in your work using either APA or MLA including a references cited page. The use of Wikipedia.com is not a recognized peer reviewed source so please do not use that as a reference. When responding about individuals it is necessary to indicate a year or time period that the person discussed/developed their particular ethical theory so that you can look at and appreciate the historical background to the development of ethical theories and decision making. Respond to the following sixteen items. (They are in random order from your reading) 1. Francis Bacon 2. Isaac Newton 3. Prima Facie Duties – Why do they exist? LIST AND DEFINE ALL TERMS 4. Hippocrates 5. W.D. Ross – what do the initials stand for in his name and what was his contribution to the study of ethics? 6. Microallocation – define the term and provide an example separate from the book example (You should develop your own example rather than looking for an online example; this will use your critical thinking skills. Consider an application to your own profession as microallocation is NOT limited to the medical field.) 7. Deontology – Discuss at length the basic types/concepts of this theory 8. Thomas Aquinas – 1) Discuss the ethical theory developed by Aquinas, 2) his religious affiliation, 3) why that was so important to his ethical premise and 4) discuss the type of ethical issues resolved to this day using this theory. 9. Macroallocation – define and provide an example separate from the book example (You should develop your own example rather than looking for an online example; this will use your critical thinking skills. Consider an application to your own profession as macroallocation is NOT limited to the medical field.) 10. David Hume 11. Rodericus Castro 12. Plato and “The Republic” 13. Pythagoras 14. Teleology – Discuss at length the basic types/concepts of this theory 15. Core Values – Why do they exist? LIST AND DEFINE ALL TERMS 16. Develop a timeline that reflects the ethical theories as developed by the INDIVIDUALS presented in this assignment. This assignment is due Saturday March 14th at NOON and is graded as a homework assignment. Grading: Paragraph Formation = 20% of grade (bulleted lists are acceptable for some answers) Answers inclusive of major material for answer = 40% of grade Creation of Timeline = 10% of grade Sentence structure, application of correct spelling and grammar = 20% of grade References (if utilized) = 10% of grade; references should be submitted on a separate references cited page. Otherwise this 10% of the assignment grade will be considered under the sentence structure component for 30% of the grade. It is expected that the finished assignment will be two – three pages of text, double spaced, using 12 font and standard page margins.

AUCS 340: Ethics in the Professions Individual Written Assignment #1 Medical Ethics: Historical names, dates and ethical theories assignment As you read chapters 1 and 2 in the “Ethics and Basic Law for Medical Imaging Professionals” textbook you will be responsible for identifying and explaining each of the following items from the list below. You will respond in paragraph format with correct spelling and grammar expected for each paragraph. Feel free to have more than one paragraph for each item, although in most instances a single paragraph response is sufficient. If you reference material in addition to what is available in the textbook it must be appropriately cited in your work using either APA or MLA including a references cited page. The use of Wikipedia.com is not a recognized peer reviewed source so please do not use that as a reference. When responding about individuals it is necessary to indicate a year or time period that the person discussed/developed their particular ethical theory so that you can look at and appreciate the historical background to the development of ethical theories and decision making. Respond to the following sixteen items. (They are in random order from your reading) 1. Francis Bacon 2. Isaac Newton 3. Prima Facie Duties – Why do they exist? LIST AND DEFINE ALL TERMS 4. Hippocrates 5. W.D. Ross – what do the initials stand for in his name and what was his contribution to the study of ethics? 6. Microallocation – define the term and provide an example separate from the book example (You should develop your own example rather than looking for an online example; this will use your critical thinking skills. Consider an application to your own profession as microallocation is NOT limited to the medical field.) 7. Deontology – Discuss at length the basic types/concepts of this theory 8. Thomas Aquinas – 1) Discuss the ethical theory developed by Aquinas, 2) his religious affiliation, 3) why that was so important to his ethical premise and 4) discuss the type of ethical issues resolved to this day using this theory. 9. Macroallocation – define and provide an example separate from the book example (You should develop your own example rather than looking for an online example; this will use your critical thinking skills. Consider an application to your own profession as macroallocation is NOT limited to the medical field.) 10. David Hume 11. Rodericus Castro 12. Plato and “The Republic” 13. Pythagoras 14. Teleology – Discuss at length the basic types/concepts of this theory 15. Core Values – Why do they exist? LIST AND DEFINE ALL TERMS 16. Develop a timeline that reflects the ethical theories as developed by the INDIVIDUALS presented in this assignment. This assignment is due Saturday March 14th at NOON and is graded as a homework assignment. Grading: Paragraph Formation = 20% of grade (bulleted lists are acceptable for some answers) Answers inclusive of major material for answer = 40% of grade Creation of Timeline = 10% of grade Sentence structure, application of correct spelling and grammar = 20% of grade References (if utilized) = 10% of grade; references should be submitted on a separate references cited page. Otherwise this 10% of the assignment grade will be considered under the sentence structure component for 30% of the grade. It is expected that the finished assignment will be two – three pages of text, double spaced, using 12 font and standard page margins.

Francis Bacon was a 16th century ethical theorist who was … Read More...
Watch this video and answer the multi choices: https://www.youtube.com/watch?v=D4lB4SowAQA PART 1 _______1. Sociologists obtained their knowledge of human behavior through _______, which is this process of systematically collecting information for the purpose of testing an existing theory or generating a new one. a. Common sense ideas b. Research c. Myths d. scientific laws _______2. With ____Research, the goal is scientific objectivity, and the focus is on data that can be measured numerically a. qualitative b. observational c. c. quantitative d. d. explanatory _______3. With _______research, interpretative description (words) rather than statistics (numbers) are used to analyze underlying meaning and patterns of social relationships. a. qualitative b. observational c. quantitative d. explanatory _______4. Researchers in one study systematically analyzed the contents of the notes of suicide victims to determine recurring themes, such as feeling of despair or failure. They hoped to determine if any patterns could be found that would help in understating why people might kill themselves. This is an example of __________. a. Qualitative research b. Explanatory research c. Quantitative research d. Descriptive research ______5. the first step in the research process is to: a. select and define the research problem b. review previous research. c. develop a research design d. formulate the hypothesis ______6. A_____sample is a selection from a larger population and has the essential characteristics of the total population. a. selective b. random c. representative d. longitudinal _______7. _________is the extent to which a study or research instrument accurately measures what it is supposed to measure;_________is the extent to which a study or research instrument yields consistent results. a. Validity; replication b. Replication; validity c. Validity; reliability d. Reliability; validity _______8. Researchers who use existing material and analyze data that originally was collected by others are engaged in: a. unethical conduct b. primary analysis. c. secondary analysis d. survey analysis _______9. In an experiment, the subjects in the control group a. are exposed to the independent variable. b. are not exposed to the independent variable. c. are exposed to the dependent variable. d. are not exposed to the dependent variable. _______10. A tentative statement that predicts the relationship between variable is called a. a hypothesis b. a research model. c. a probability sample. d. a generalization. ______11. John wants to test this idea: “people who attend church regularly are less likely to express prejudice toward other races than people who do not attend church regularly.’ This idea is John’s a. hypothesis. b. research model. c. conclusion. d. operational definition _______12. In a research project, which of the following steps would come after the other three? a. choosing a research design b. reviewing the literature c. formulating a hypothesis d. collecting the data ________13. The variable hypothesized to cause or influence another is called the a. dependent variable. b. hypothetical variable c. correlation variable d. independent variable ________14. An explanation of an abstract concept that is specific enough to allow a research to measure the concept is a a. Hypothesis b. correlation. c. operatonal definition. d. variable _____15. Observation, ethnography, and case studies are examples of: a. survey research b. experiments. c. Secondary analysis of existing data. d. Field research. ______16. Theory and research are interrelated because a. theory always precedes research. b. research always precedes theory c. both put limits on each other. d. they are parts of a constant cycle. ______17. A dependent variable is one that a. always occurs first. b. is influenced by another variable. c. Causes another variable to change. d. is the most important ______18. In a study designed to test the relationship between gender and voting behavior, the independent variable would be a. the age of the candidates b. voting behavior. c. The political party of the candidates. d. Gender ______19. Differences in age, sex, race, and social class are treated as ____________in sociological research. a. variables b. references c. causes d. controls ______20. Researchers in agriculture decided to test the effects of a new fertilizer on crop growth. In this study, crop growth is the a. independent variable b. dependent variable c. control variable d. correlation e. _____21. The ______is appropriate for studying the relationships among variables under carefully controlled conditions. a. experiment b. survey c. observational study d. in-depth study _____22. In every experiment, some subjects are exposed to an independent variable, and are then watched closely for their reactions. These subjects are known as the a. reference group b. experimental group c. control group d. survey group. ______23. A usual research method for learning the attitudes of a population would be a. an experiment. b. A survey. c. An observational study. d. Content analysis ______24. In survey research, the total group of people the researcher is interested in is called a. the population b. the sample, c. the control group d. the random sample ______25. In the experiment method, the subjects who are exposed to all the experimental conditions except the independent variable are referred to as the_________________group. a. peer b. alternate c. control d. experimental ______26. A__________Sample is one in which every member of the population in The population has an equal chance of being selected. a. defined b. random c. purposive d. convenience ______27. A sociologist is following the research model outlined in the text. After reviewing the literature, the next step will be to a. find a suitable subject b. formulate a hypothesis c. collect the data. d. Choose a research design. ______28. Sociologists use two approaches when answering important questions. a. Explanatory and descriptive Approaches b. Direct and systematic Approaches c. Normative and systematic Approaches d. Normative and Empirical Approaches ______29. Sociologists use types of empirical studies a. Research and Theoretical Studies b. Descriptive and Explanatory Studies c. Hypothesis and Correlations Studies d. Longitudinal and Cross-sectional Studies ______30. The deductive approach begin with the a. Collecting data b. Theory and uses research to test the theory. c. Hypothesis d. Observation ______31. The inductive approach begin with a a. Theory b. Data Collection c. Reviewing the Literature d. The Problem State ______32. Quantitative Research deals with a. Words b. Numbers c. Interpretive descriptive d. Use number to analyze underlying meanings and patterns of social relationships. ______33. ________is the study of social life in its natural setting: observing and interviewing people where they live, work, and play. a. The survey b. Secondary analysis c. Field research d. The experiment ______34. ________refers to the process of collecting data while being part of the activities of the group that the researcher is studying a. The experiment b. Survey research c. Participant observation d. Secondary analysis _______35. A/an________is a detailed study of the life and activities of a group of people by researchers who may live with that group over a period of years. a. Correlational study b. ethnography c. experiment d. content analysis _______36. A/an _________is a carefully designed situation in which the researcher studies the impact of certain variables on subjects’ attitudes or behavior. a. case study b. correlational study c. experiment d. Participant observation _______37. In an experiment, the_______contains the subjects who are exposed to an independent variable to study its effect on them. a. Experiment group b. Dependent group c. Control group d. Independent group _______38. In an experiment, the_________contains the subjects who are not exposed to the independent variable. a. Experimental group b. Independent group c. Dependent group d. Control group _______39. ________is the extent to which a study or research instrument accurately measures what it is supposed to measure a. Validity b. Reliability c. Predictability d. Variability ______40. ________is the extent to which a study or research instrument yields consistent results when applied to different individual at one time or to same individuals over time. a. Validity b. Reliability c. Predictability d. Variability TRUE/FALSE ______41. In social science research, individuals are the most typical units of analysis. ______42. With qualitative research, statistics are used to analyze patterns of social relationship. ______43. Reliability is when a study gives consistent results to different research over time.

Watch this video and answer the multi choices: https://www.youtube.com/watch?v=D4lB4SowAQA PART 1 _______1. Sociologists obtained their knowledge of human behavior through _______, which is this process of systematically collecting information for the purpose of testing an existing theory or generating a new one. a. Common sense ideas b. Research c. Myths d. scientific laws _______2. With ____Research, the goal is scientific objectivity, and the focus is on data that can be measured numerically a. qualitative b. observational c. c. quantitative d. d. explanatory _______3. With _______research, interpretative description (words) rather than statistics (numbers) are used to analyze underlying meaning and patterns of social relationships. a. qualitative b. observational c. quantitative d. explanatory _______4. Researchers in one study systematically analyzed the contents of the notes of suicide victims to determine recurring themes, such as feeling of despair or failure. They hoped to determine if any patterns could be found that would help in understating why people might kill themselves. This is an example of __________. a. Qualitative research b. Explanatory research c. Quantitative research d. Descriptive research ______5. the first step in the research process is to: a. select and define the research problem b. review previous research. c. develop a research design d. formulate the hypothesis ______6. A_____sample is a selection from a larger population and has the essential characteristics of the total population. a. selective b. random c. representative d. longitudinal _______7. _________is the extent to which a study or research instrument accurately measures what it is supposed to measure;_________is the extent to which a study or research instrument yields consistent results. a. Validity; replication b. Replication; validity c. Validity; reliability d. Reliability; validity _______8. Researchers who use existing material and analyze data that originally was collected by others are engaged in: a. unethical conduct b. primary analysis. c. secondary analysis d. survey analysis _______9. In an experiment, the subjects in the control group a. are exposed to the independent variable. b. are not exposed to the independent variable. c. are exposed to the dependent variable. d. are not exposed to the dependent variable. _______10. A tentative statement that predicts the relationship between variable is called a. a hypothesis b. a research model. c. a probability sample. d. a generalization. ______11. John wants to test this idea: “people who attend church regularly are less likely to express prejudice toward other races than people who do not attend church regularly.’ This idea is John’s a. hypothesis. b. research model. c. conclusion. d. operational definition _______12. In a research project, which of the following steps would come after the other three? a. choosing a research design b. reviewing the literature c. formulating a hypothesis d. collecting the data ________13. The variable hypothesized to cause or influence another is called the a. dependent variable. b. hypothetical variable c. correlation variable d. independent variable ________14. An explanation of an abstract concept that is specific enough to allow a research to measure the concept is a a. Hypothesis b. correlation. c. operatonal definition. d. variable _____15. Observation, ethnography, and case studies are examples of: a. survey research b. experiments. c. Secondary analysis of existing data. d. Field research. ______16. Theory and research are interrelated because a. theory always precedes research. b. research always precedes theory c. both put limits on each other. d. they are parts of a constant cycle. ______17. A dependent variable is one that a. always occurs first. b. is influenced by another variable. c. Causes another variable to change. d. is the most important ______18. In a study designed to test the relationship between gender and voting behavior, the independent variable would be a. the age of the candidates b. voting behavior. c. The political party of the candidates. d. Gender ______19. Differences in age, sex, race, and social class are treated as ____________in sociological research. a. variables b. references c. causes d. controls ______20. Researchers in agriculture decided to test the effects of a new fertilizer on crop growth. In this study, crop growth is the a. independent variable b. dependent variable c. control variable d. correlation e. _____21. The ______is appropriate for studying the relationships among variables under carefully controlled conditions. a. experiment b. survey c. observational study d. in-depth study _____22. In every experiment, some subjects are exposed to an independent variable, and are then watched closely for their reactions. These subjects are known as the a. reference group b. experimental group c. control group d. survey group. ______23. A usual research method for learning the attitudes of a population would be a. an experiment. b. A survey. c. An observational study. d. Content analysis ______24. In survey research, the total group of people the researcher is interested in is called a. the population b. the sample, c. the control group d. the random sample ______25. In the experiment method, the subjects who are exposed to all the experimental conditions except the independent variable are referred to as the_________________group. a. peer b. alternate c. control d. experimental ______26. A__________Sample is one in which every member of the population in The population has an equal chance of being selected. a. defined b. random c. purposive d. convenience ______27. A sociologist is following the research model outlined in the text. After reviewing the literature, the next step will be to a. find a suitable subject b. formulate a hypothesis c. collect the data. d. Choose a research design. ______28. Sociologists use two approaches when answering important questions. a. Explanatory and descriptive Approaches b. Direct and systematic Approaches c. Normative and systematic Approaches d. Normative and Empirical Approaches ______29. Sociologists use types of empirical studies a. Research and Theoretical Studies b. Descriptive and Explanatory Studies c. Hypothesis and Correlations Studies d. Longitudinal and Cross-sectional Studies ______30. The deductive approach begin with the a. Collecting data b. Theory and uses research to test the theory. c. Hypothesis d. Observation ______31. The inductive approach begin with a a. Theory b. Data Collection c. Reviewing the Literature d. The Problem State ______32. Quantitative Research deals with a. Words b. Numbers c. Interpretive descriptive d. Use number to analyze underlying meanings and patterns of social relationships. ______33. ________is the study of social life in its natural setting: observing and interviewing people where they live, work, and play. a. The survey b. Secondary analysis c. Field research d. The experiment ______34. ________refers to the process of collecting data while being part of the activities of the group that the researcher is studying a. The experiment b. Survey research c. Participant observation d. Secondary analysis _______35. A/an________is a detailed study of the life and activities of a group of people by researchers who may live with that group over a period of years. a. Correlational study b. ethnography c. experiment d. content analysis _______36. A/an _________is a carefully designed situation in which the researcher studies the impact of certain variables on subjects’ attitudes or behavior. a. case study b. correlational study c. experiment d. Participant observation _______37. In an experiment, the_______contains the subjects who are exposed to an independent variable to study its effect on them. a. Experiment group b. Dependent group c. Control group d. Independent group _______38. In an experiment, the_________contains the subjects who are not exposed to the independent variable. a. Experimental group b. Independent group c. Dependent group d. Control group _______39. ________is the extent to which a study or research instrument accurately measures what it is supposed to measure a. Validity b. Reliability c. Predictability d. Variability ______40. ________is the extent to which a study or research instrument yields consistent results when applied to different individual at one time or to same individuals over time. a. Validity b. Reliability c. Predictability d. Variability TRUE/FALSE ______41. In social science research, individuals are the most typical units of analysis. ______42. With qualitative research, statistics are used to analyze patterns of social relationship. ______43. Reliability is when a study gives consistent results to different research over time.

info@checkyourstudy.com Watch this video and answer the multi choices:  https://www.youtube.com/watch?v=D4lB4SowAQA   … Read More...
Which of following characteristics does not differentiate Mental health counseling from the medical of care ? a) It deals with normal human development b) It deals with problem of living c) It deals with psychopathology d) Diagnosis is largely irrelevant o treatment method

Which of following characteristics does not differentiate Mental health counseling from the medical of care ? a) It deals with normal human development b) It deals with problem of living c) It deals with psychopathology d) Diagnosis is largely irrelevant o treatment method

answer c Which of following characteristics does not differentiate Mental … Read More...
Tacit knowledge deals with: Answers: Data, documents, and things written down or stored on computers. “How-to” knowledge, which resides in workers. Using data mining techniques to capture external information. None of the choices are correct.

Tacit knowledge deals with: Answers: Data, documents, and things written down or stored on computers. “How-to” knowledge, which resides in workers. Using data mining techniques to capture external information. None of the choices are correct.

Tacit knowledge deals with: Answers: Data, documents, and things written … Read More...
Learning Objectives This part begins with what are probably the basic questions for a designer of a computing sytem’s human interface: • How should the functionality of the system be described and presented to the user? • How can the design of the interface help the user to understand and successfully use the system? Learning Goals At the conclusion of this module you will be able to: • define the user’s movement among the displays that make up the system; • the addition of visual and spatial cues to the information organization; and • methods of structuring and presenting the interface. Introduction This module deals with the development and utilization of a system. We all have systems for doing things. For instance, we may have a system for handling routine situations around the house that makes sense only to us. Or, we may be oriented toward systems that have a more widespread understanding such as personal finance or how to fill out our IRS forms. When humans use a system, whether natural or man-made, they do so based on their understanding of that system. A totally accurate understanding of a system is not a necessary condition for effective use of that system. Key Terms Systems, User Model, Model, Metaphor, Concept Modeling The Development of Human Systems I. The organization of knowledge about a phenomenon or system constitutes the human’s conceptual model of that system. Information gained from experience with a system contributes to the model, and the model in turn provides a reference or guide for future experience with the system. A. (Reinstein and Hersh, 1984) – a set of concepts a person gradually acquires to explain the behavior of a system. …. That enables that person to understand and interact with the system. 1. For the user, the important thing about a model is its ability to predict: when confronted with unfamiliar or incompletely understood situations, the user relies on their model, their conceptual understanding of the system, to make educated guesses about how to proceed. If the user’s model accurately reflects the effects of the system, then he will be more successful in learning and using the system, and likely will perceive the system as easy to use. 2. Because the model can server this important role in design of helping to create an understandable and predictable system, the creation of the user’s conceptual model should be the first task of system development. One of the more important examples of the use of conceptual model, the XEROX Star office automation system (whose design greatly influenced Apple’s Lisa and Macintosh systems), started with thirty man-years of design work on the user interface before either the hardware or the system software was designed (Smith, Irby, Kimball, Verplank and Harselm, 1982). 3. The conceptual model does not have to be an accurate representation of how the system actually functions. Indeed, it can be quite different from reality, and in most if not all circumstances for systems as complex as computers, should be. 4. The model may be a myth or metaphor, that explains the system: it “suggests that the computer is like something with which the user is already familiar” (Rubinstein and Hersh, 1984, p. 43), or provides a simple explanation of the system which can be used to predict the system’s behavior. 5. ….the conceptual models people form are based on their interactions with an environment … “people who have different roles within an environment … will form different conceptual systems of those environments. 6. People whose essential interaction with an environment is to create it will almost inevitably have an understanding and conceptualization of it which is different from those whose major interaction with it is to use it” Action Assignment Based on the readings for this module, please identify a personal “system” with which you act and perform within. This should be from personal experience and one that assists in providing a model for organization, understanding and problem solving.

Learning Objectives This part begins with what are probably the basic questions for a designer of a computing sytem’s human interface: • How should the functionality of the system be described and presented to the user? • How can the design of the interface help the user to understand and successfully use the system? Learning Goals At the conclusion of this module you will be able to: • define the user’s movement among the displays that make up the system; • the addition of visual and spatial cues to the information organization; and • methods of structuring and presenting the interface. Introduction This module deals with the development and utilization of a system. We all have systems for doing things. For instance, we may have a system for handling routine situations around the house that makes sense only to us. Or, we may be oriented toward systems that have a more widespread understanding such as personal finance or how to fill out our IRS forms. When humans use a system, whether natural or man-made, they do so based on their understanding of that system. A totally accurate understanding of a system is not a necessary condition for effective use of that system. Key Terms Systems, User Model, Model, Metaphor, Concept Modeling The Development of Human Systems I. The organization of knowledge about a phenomenon or system constitutes the human’s conceptual model of that system. Information gained from experience with a system contributes to the model, and the model in turn provides a reference or guide for future experience with the system. A. (Reinstein and Hersh, 1984) – a set of concepts a person gradually acquires to explain the behavior of a system. …. That enables that person to understand and interact with the system. 1. For the user, the important thing about a model is its ability to predict: when confronted with unfamiliar or incompletely understood situations, the user relies on their model, their conceptual understanding of the system, to make educated guesses about how to proceed. If the user’s model accurately reflects the effects of the system, then he will be more successful in learning and using the system, and likely will perceive the system as easy to use. 2. Because the model can server this important role in design of helping to create an understandable and predictable system, the creation of the user’s conceptual model should be the first task of system development. One of the more important examples of the use of conceptual model, the XEROX Star office automation system (whose design greatly influenced Apple’s Lisa and Macintosh systems), started with thirty man-years of design work on the user interface before either the hardware or the system software was designed (Smith, Irby, Kimball, Verplank and Harselm, 1982). 3. The conceptual model does not have to be an accurate representation of how the system actually functions. Indeed, it can be quite different from reality, and in most if not all circumstances for systems as complex as computers, should be. 4. The model may be a myth or metaphor, that explains the system: it “suggests that the computer is like something with which the user is already familiar” (Rubinstein and Hersh, 1984, p. 43), or provides a simple explanation of the system which can be used to predict the system’s behavior. 5. ….the conceptual models people form are based on their interactions with an environment … “people who have different roles within an environment … will form different conceptual systems of those environments. 6. People whose essential interaction with an environment is to create it will almost inevitably have an understanding and conceptualization of it which is different from those whose major interaction with it is to use it” Action Assignment Based on the readings for this module, please identify a personal “system” with which you act and perform within. This should be from personal experience and one that assists in providing a model for organization, understanding and problem solving.

Morgan Extra Pages Graphing with Excel to be carried out in a computer lab, 3rd floor Calloway Hall or elsewhere The Excel spreadsheet consists of vertical columns and horizontal rows; a column and row intersect at a cell. A cell can contain data for use in calculations of all sorts. The Name Box shows the currently selected cell (Fig. 1). In the Excel 2007 and 2010 versions the drop-down menus familiar in most software screens have been replaced by tabs with horizontally-arranged command buttons of various categories (Fig. 2) ___________________________________________________________________ Open Excel, click on the Microsoft circle, upper left, and Save As your surname. xlsx on the desktop. Before leaving the lab e-mail the file to yourself and/or save to a flash drive. Also e-mail it to your instructor. Figure 1. Parts of an Excel spreadsheet. Name Box Figure 2. Tabs. Click to buy NOW! PDF-XChange Viewer www.docu-track.com Click to buy NOW! PDF-XChange Viewer www.docu-track.com EXERCISE 1: BASIC OPERATIONS Click Save often as you work. 1. Type the heading “Edge Length” in Cell A1 and double click the crack between the A and B column heading for automatic widening of column A. Similarly, write headings for columns B and C and enter numbers in Cells A2 and A3 as in Fig. 3. Highlight Cells A2 and A3 by dragging the cursor (chunky plus-shape) over the two of them and letting go. 2. Note that there are three types of cursor crosses: chunky for selecting, barbed for moving entries or blocks of entries from cell to cell, and tiny (appearing only at the little square in the lower-right corner of a cell). Obtain a tiny arrow for Cell A3 and perform a plus-drag down Column A until the cells are filled up to 40 (in Cell A8). Note that the two highlighted cells set both the starting value of the fill and the intervals. 3. Click on Cell B2 and enter a formula for face area of a cube as follows: type =, click on Cell A2, type ^2, and press Enter (note the formula bar in Fig. 4). 4. Enter the formula for cube volume in Cell C2 (same procedure, but “=, click on A2, ^3, Enter”). 5. Highlight Cells B2 and C2; plus-drag down to Row 8 (Fig. 5). Do the numbers look correct? Click on some cells in the newly filled area and notice how Excel steps the row designations as it moves down the column (it can do it for horizontal plusdrags along rows also). This is the major programming development that has led to the popularity of spreadsheets. Figure 3. Entries. Figure 4. A formula. Figure 5. Plus-dragging formulas. Click to buy NOW! PDF-XChange Viewer www.docu-track.com Click to buy NOW! PDF-XChange Viewer www.docu-track.com 6. Now let’s graph the Face Area versus Edge Length: select Cells A1 through B8, choose the Insert tab, and click the Scatter drop-down menu and select “Scatter with only Markers” (Fig. 6). 7. Move the graph (Excel calls it a “chart”) that appears up alongside your number table and dress it up as follows: a. Note that some Chart Layouts have appeared above. Click Layout 1 and alter each title to read Face Area for the vertical axis, Edge Length for the horizontal and Face Area vs. Edge Length for the Graph Title. b. Activate the Excel Least squares routine, called “fitting a trendline” in the program: right click any of the data markers and click Add Trendline. Choose Power and also check “Display equation on chart” and “Display R-squared value on chart.” Fig. 7 shows what the graph will look like at this point. c. The titles are explicit, so the legend is unnecessary. Click on it and press the delete button to remove it. Figure 6. Creating a scatter graph. Figure 7. A graph with a fitted curve. Click to buy NOW! PDF-XChange Viewer www.docu-track.com Click to buy NOW! PDF-XChange Viewer www.docu-track.com 8. Now let’s overlay the Volume vs. Edge Length curve onto the same graph (optional for 203L/205L): Make a copy of your graph by clicking on the outer white area, clicking ctrl-c (or right click, copy), and pasting the copy somewhere else (ctrl-v). If you wish, delete the trendline as in Fig. 8. a. Right click on the outer white space, choose Select Data and click the Add button. b. You can type in the cell ranges by hand in the dialog box that comes up, but it is easier to click the red, white, and blue button on the right of each space and highlight what you want to go in. Click the red, white, and blue of the bar that has appeared, and you will bounce back to the Add dialog box. Use the Edge Length column for the x’s and Volume for the y’s. c. Right-click on any volume data point and choose Format Data Series. Clicking Secondary Axis will place its scale on the right of the graph as in Fig. 8. d. Dress up your graph with two axis titles (Layout-Labels-Axis Titles), etc. Figure 8. Adding a second curve and y-axis to the graph Click to buy NOW! PDF-XChange Viewer www.docu-track.com Click to buy NOW! PDF-XChange Viewer www.docu-track.com EXERCISE 2: INTERPRETING A LINEAR GRAPH Introduction: Many experiments are repeated a number of times with one of the parameters involved varied from run to run. Often the goal is to measure the rate of change of a dependent variable, rather than a particular value. If the dependent variable can be expressed as a linear function of the independent parameter, then the slope and yintercept of an appropriate graph will give the rate of change and a particular value, respectively. An example of such an experiment in PHYS.203L/205L is the first part of Lab 20, in which weights are added to the bottom of a suspended spring (Figure 9). This experiment shows that a spring exerts a force Fs proportional to the distance stretched y = (y-yo), a relationship known as Hooke’s Law: Fs = – k(y – yo) (Eq. 1) where k is called the Hooke’s Law constant. The minus sign shows that the spring opposes any push or pull on it. In Lab 20 Fs is equal to (- Mg) and y is given by the reading on a meter stick. Masses were added to the bottom of the spring in 50-g increments giving weights in newtons of 0.49, 0.98, etc. The weight pan was used as the pointer for reading y and had a mass of 50 g, so yo could not be directly measured. For convenient graphing Equation 1 can be rewritten: -(Mg) = – ky + kyo Or (Mg) = ky – kyo (Eq. 1′) Procedure 1. On your spreadsheet note the tabs at the bottom left and double-click Sheet1. Type in “Basics,” and then click the Sheet2 tab to bring up a fresh worksheet. Change the sheet name to “Linear Fit” and fill in data as in this table. Hooke’s Law Experiment y (m) -Fs = Mg (N) 0.337 0.49 0.388 0.98 0.446 1.47 0.498 1.96 0.550 2.45 2. Highlight the cells with the numbers, and graph (Mg) versus y as in Steps 6 and 7 of the Basics section. Your Trendline this time will be Linear of course. If you are having trouble remembering what’s versus what, “y” looks like “v”, so what comes before the “v” of “versus” goes on the y (vertical) axis. Yes, this graph is confusing: the horizontal (“x”) axis is distance y, and the “y” axis is something else. 3. Click on the Equation/R2 box on the graph and highlight just the slope, that is, only the number that comes before the “x.” Copy it (control-c is a fast way to Figure 9. A spring with a weight stretching it Click to buy NOW! PDF-XChange Viewer www.docu-track.com Click to buy NOW! PDF-XChange Viewer www.docu-track.com do it) and paste it (control-v) into an empty cell. Do likewise for the intercept (including the minus sign). SAVE YOUR FILE! 5. The next steps use the standard procedure for obtaining information from linear data. Write the general equation for a straight line immediately below a hand-written copy of Equation 1′ then circle matching items: (Mg) = k y + (- k yo) (Eq. 1′) y = m x + b Note the parentheses around the intercept term of Equation 1′ to emphasize that the minus sign is part of it. Equating above and below, you can create two useful new equations: slope m = k (Eq. 2) y-intercept b = -kyo (Eq. 3) 6. Solve Equation 2 for k, that is, rewrite left to right. Then substitute the value for slope m from your graph, and you have an experimental value for the Hooke’s Law constant k. Next solve Equation 3 for yo, substitute the value for intercept b from your graph and the value of k that you just found, and calculate yo. 7. Examine your linear graph for clues to finding the units of the slope and the yintercept. Use these units to find the units of k and yo. 8. Present your values of k and yo with their units neatly at the bottom of your spreadsheet. 9. R2 in Excel, like r in our lab manual and Corr. in the LoggerPro software, is a measure of how well the calculated line matches the data points. 1.00 would indicate a perfect match. State how good a match you think was made in this case? 10. Do the Homework, Further Exercises on Interpreting Linear Graphs, on the following pages. Click to buy NOW! PDF-XChange Viewer www.docu-track.com Click to buy NOW! PDF-XChange Viewer www.docu-track.com Eq.1 M m f M a g               , (Eq.2) M slope m g       (Eq.3) M b f        Morgan Extra Pages Homework: Graph Interpretation Exercises EXAMPLE WITH COMPLETE SOLUTION In PHYS.203L and 205L we do Lab 9 Newton’s Second Law on Atwood’s Machine using a photogate sensor (Fig. 1). The Atwood’s apparatus can slow the rate of fall enough to be measured even with primitive timing devices. In our experiment LoggerPro software automatically collects and analyzes the data giving reliable measurements of g, the acceleration of gravity. The equation governing motion for Atwood’s Machine can be written: where a is the acceleration of the masses and string, g is the acceleration of gravity, M is the total mass at both ends of the string, m is the difference between the masses, and f is the frictional force at the hub of the pulley wheel. In this exercise you are given a graph of a vs. m obtained in this experiment with the values of M and the slope and intercept (Fig. 2). The goal is to extract values for acceleration of gravity g and frictional force f from this information. To analyze the graph we write y = mx + b, the general equation for a straight line, directly under Equation 1 and match up the various parameters: Equating above and below, you can create two new equations: and y m x b M m f M a g                Figure 1. The Atwood’s Machine setup (from the LoggerPro handout). Figure 2. Graph of acceleration versus mass difference; data from a Physics I experiment. Atwood’s Machine M = 0.400 kg a = 24.4 m – 0.018 R2 = 0.998 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 0.000 0.010 0.020 0.030 0.040 0.050 0.060  m (kg) a (m/s2) Click to buy NOW! PDF-XChange Viewer www.docu-track.com Click to buy NOW! PDF-XChange Viewer www.docu-track.com 2 2 9.76 / 0.400 24.4 /( ) m s kg m kg s g Mm      To handle Equation 2 it pays to consider what the units of the slope are. A slope is “the rise over the run,“ so its units must be the units of the vertical axis divided by those of the horizontal axis. In this case: Now let’s solve Equation 2 for g and substitute the values of total mass M and of the slope m from the graph: Using 9.80 m/s2 as the Baltimore accepted value for g, we can calculate the percent error: A similar process with Equation 3 leads to a value for f, the frictional force at the hub of the pulley wheel. Note that the units of intercept b are simply whatever the vertical axis units are, m/s2 in this case. Solving Equation 3 for f: EXERCISE 1 The Picket Fence experiment makes use of LoggerPro software to calculate velocities at regular time intervals as the striped plate passes through the photogate (Fig. 3). The theoretical equation is v = vi + at (Eq. 4) where vi = 0 (the fence is dropped from rest) and a = g. a. Write Equation 4 with y = mx + b under it and circle matching factors as in the Example. b. What is the experimental value of the acceleration of gravity? What is its percent error from the accepted value for Baltimore, 9.80 m/s2? c. Does the value of the y-intercept make sense? d. How well did the straight Trendline match the data? 2 / 2 kg s m kg m s   0.4% 100 9.80 9.76 9.80 100 . . . %        Acc Exp Acc Error kg m s mN kg m s f Mb 7.2 10 / 7.2 0.400 ( 0.018 / ) 3 2 2           Figure 3. Graph of speed versus time as calculated by LoggerPro as a picket fence falls freely through a photogate. Picket Fence Drop y = 9.8224x + 0.0007 R2 = 0.9997 0 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1 1.2 t (s) v (m/s) Click to buy NOW! PDF-XChange Viewer www.docu-track.com Click to buy NOW! PDF-XChange Viewer www.docu-track.com EXERCISE 2 This is an electrical example from PHYS.204L/206L, potential difference, V, versus current, I (Fig. 4). The theoretical equation is V = IR (Eq. 5) and is known as “Ohm’s Law.” The unit symbols stand for volts, V, and Amperes, A. The factor R stands for resistance and is measured in units of ohms, symbol  (capital omega). The definition of the ohm is: V (Eq. 6) By coincidence the letter symbols for potential (a quantity ) and volts (its unit) are identical. Thus “voltage” has become the laboratory slang name for potential. a. Rearrange the Ohm’s Law equation to match y = mx + b.. b. What is the experimental resistance? c. Comment on the experimental intercept: is its value reasonable? EXERCISE 3 This graph (Fig. 5) also follows Ohm’s Law, but solved for current I. For this graph the experimenter held potential difference V constant at 15.0V and measured the current for resistances of 100, 50, 40, and 30  Solve Ohm’s Law for I and you will see that 1/R is the logical variable to use on the x axis. For units, someone once jokingly referred to a “reciprocal ohm” as a “mho,” and the name stuck. a. Rearrange Equation 5 solved for I to match y = mx + b. b. What is the experimental potential difference? c. Calculate the percent difference from the 15.0 V that the experimenter set on the power supply (the instrument used for such experiments). d. Comment on the experimental intercept: is its value reasonable? Figure 4. Graph of potential difference versus current; data from a Physics II experiment. The theoretical equation, V = IR, is known as “Ohm’s Law.” Ohm’s Law y = 0.628x – 0.0275 R2 = 0.9933 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 0.5 0.6 Current, I (A) Potential difference, V (V) Figure 5. Another application of Ohm’s Law: a graph of current versus the inverse of resistance, from a different electric circuit experiment. Current versus (1/Resistance) y = 14.727x – 0.2214 R2 = 0.9938 0 100 200 300 400 500 600 5 10 15 20 25 30 35 R-1 (millimhos) I (milliamperes) Click to buy NOW! PDF-XChange Viewer www.docu-track.com Click to buy NOW! PDF-XChange Viewer www.docu-track.com EXERCISE 4 The Atwood’s Machine experiment (see the solved example above) can be done in another way: keep mass difference m the same and vary the total mass M (Fig. 6). a. Rewrite Equation 1 and factor out (1/M). b. Equate the coefficient of (1/M) with the experimental slope and solve for acceleration of gravity g. c. Substitute the values for slope, mass difference, and frictional force and calculate the experimental of g. d. Derive the units of the slope and show that the units of g come out as they should. e. Is the value of the experimental intercept reasonable? EXERCISE 5 In the previous two exercises the reciprocal of a variable was used to make the graph come out linear. In this one the trick will be to use the square root of a variable (Fig. 7). In PHYS.203L and 205L Lab 19 The Pendulum the theoretical equation is where the period T is the time per cycle, L is the length of the string, and g is the acceleration of gravity. a. Rewrite Equation 7 with the square root of L factored out and placed at the end. b. Equate the coefficient of √L with the experimental slope and solve for acceleration of gravity g. c. Substitute the value for slope and calculate the experimental of g. d. Derive the units of the slope and show that the units of g come out as they should. e. Is the value of the experimental intercept reasonable? 2 (Eq . 7) g T   L Figure 6. Graph of acceleration versus the reciprocal of total mass; data from a another Physics I experiment. Atwood’s Machine m = 0.020 kg f = 7.2 mN y = 0.1964x – 0.0735 R2 = 0.995 0.400 0.600 0.800 1.000 2.000 2.500 3.000 3.500 4.000 4.500 5.000 1/M (1/kg) a (m/s2) Effect of Pendulum Length on Period y = 2.0523x – 0.0331 R2 = 0.999 0.400 0.800 1.200 1.600 2.000 2.400 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 L1/2 (m1/2) T (s) Figure 7. Graph of period T versus the square root of pendulum length; data from a Physics I experiment. Click to buy NOW! PDF-XChange Viewer www.docu-track.com Click to buy NOW! PDF-XChange Viewer www.docu-track.com EXERCISE 6 In Exercise 5 another approach would have been to square both sides of Equation 7 and plot T2 versus L. Lab 20 directs us to use that alternative. It involves another case of periodic or harmonic motion with a similar, but more complicated, equation for the period: where T is the period of the bobbing (Fig. 8), M is the suspended mass, ms is the mass of the spring, k is a measure of stiffness called the spring constant, and C is a dimensionless factor showing how much of the spring mass is effectively bobbing. a. Square both sides of Equation 8 and rearrange it to match y = mx + b. b. Write y = mx + b under your rearranged equation and circle matching factors as in the Example. c. Write two new equations analogous to Equations 2 and 3 in the Example. Use the first of the two for calculating k and the second for finding C from the data of Fig. 9. d. A theoretical analysis has shown that for most springs C = 1/3. Find the percent error from that value. e. Derive the units of the slope and intercept; show that the units of k come out as N/m and that C is dimensionless. 2 (Eq . 8) k T M Cm s    Figure 8. In Lab 20 mass M is suspended from a spring which is set to bobbing up and down, a good approximation to simple harmonic motion (SHM), described by Equation 8. Lab 20: SHM of a Spring Mass of the spring, ms = 25.1 g y = 3.0185x + 0.0197 R2 = 0.9965 0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 0 0.05 0.1 0.15 0.2 0.25 0.3 M (kg) T 2 2 Figure 9. Graph of the square of the period T2 versus suspended mass M data from a Physics I experiment. Click to buy NOW! PDF-XChange Viewer www.docu-track.com Click to buy NOW! PDF-XChange Viewer www.docu-track.com EXERCISE 7 This last exercise deals with an exponential equation, and the trick is to take the logarithm of both sides. In PHYS.204L/206L we do Lab 33 The RC Time Constant with theoretical equation: where V is the potential difference at time t across a circuit element called a capacitor (the  is dropped for simplicity), Vo is V at t = 0 (try it), and  (tau) is a characteristic of the circuit called the time constant. a. Take the natural log of both sides and apply the addition rule for logarithms of a product on the right-hand side. b. Noting that the graph (Fig. 10) plots lnV versus t, arrange your equation in y = mx + b order, write y = mx + b under it, and circle the parts as in the Example. c. Write two new equations analogous to Equations 2 and 3 in the Example. Use the first of the two for calculating  and the second for finding lnVo and then Vo. d. Note that the units of lnV are the natural log of volts, lnV. As usual derive the units of the slope and interecept and use them to obtain the units of your experimental V and t. V V e (Eq. 9) t o    Figure 10. Graph of a logarithm versus time; data from Lab 33, a Physics II experiment. Discharge of a Capacitor y = -9.17E-03x + 2.00E+00 R2 = 9.98E-01 0.00 0.50 1.00 1.50 2.00 2.50

Morgan Extra Pages Graphing with Excel to be carried out in a computer lab, 3rd floor Calloway Hall or elsewhere The Excel spreadsheet consists of vertical columns and horizontal rows; a column and row intersect at a cell. A cell can contain data for use in calculations of all sorts. The Name Box shows the currently selected cell (Fig. 1). In the Excel 2007 and 2010 versions the drop-down menus familiar in most software screens have been replaced by tabs with horizontally-arranged command buttons of various categories (Fig. 2) ___________________________________________________________________ Open Excel, click on the Microsoft circle, upper left, and Save As your surname. xlsx on the desktop. Before leaving the lab e-mail the file to yourself and/or save to a flash drive. Also e-mail it to your instructor. Figure 1. Parts of an Excel spreadsheet. Name Box Figure 2. Tabs. Click to buy NOW! PDF-XChange Viewer www.docu-track.com Click to buy NOW! PDF-XChange Viewer www.docu-track.com EXERCISE 1: BASIC OPERATIONS Click Save often as you work. 1. Type the heading “Edge Length” in Cell A1 and double click the crack between the A and B column heading for automatic widening of column A. Similarly, write headings for columns B and C and enter numbers in Cells A2 and A3 as in Fig. 3. Highlight Cells A2 and A3 by dragging the cursor (chunky plus-shape) over the two of them and letting go. 2. Note that there are three types of cursor crosses: chunky for selecting, barbed for moving entries or blocks of entries from cell to cell, and tiny (appearing only at the little square in the lower-right corner of a cell). Obtain a tiny arrow for Cell A3 and perform a plus-drag down Column A until the cells are filled up to 40 (in Cell A8). Note that the two highlighted cells set both the starting value of the fill and the intervals. 3. Click on Cell B2 and enter a formula for face area of a cube as follows: type =, click on Cell A2, type ^2, and press Enter (note the formula bar in Fig. 4). 4. Enter the formula for cube volume in Cell C2 (same procedure, but “=, click on A2, ^3, Enter”). 5. Highlight Cells B2 and C2; plus-drag down to Row 8 (Fig. 5). Do the numbers look correct? Click on some cells in the newly filled area and notice how Excel steps the row designations as it moves down the column (it can do it for horizontal plusdrags along rows also). This is the major programming development that has led to the popularity of spreadsheets. Figure 3. Entries. Figure 4. A formula. Figure 5. Plus-dragging formulas. Click to buy NOW! PDF-XChange Viewer www.docu-track.com Click to buy NOW! PDF-XChange Viewer www.docu-track.com 6. Now let’s graph the Face Area versus Edge Length: select Cells A1 through B8, choose the Insert tab, and click the Scatter drop-down menu and select “Scatter with only Markers” (Fig. 6). 7. Move the graph (Excel calls it a “chart”) that appears up alongside your number table and dress it up as follows: a. Note that some Chart Layouts have appeared above. Click Layout 1 and alter each title to read Face Area for the vertical axis, Edge Length for the horizontal and Face Area vs. Edge Length for the Graph Title. b. Activate the Excel Least squares routine, called “fitting a trendline” in the program: right click any of the data markers and click Add Trendline. Choose Power and also check “Display equation on chart” and “Display R-squared value on chart.” Fig. 7 shows what the graph will look like at this point. c. The titles are explicit, so the legend is unnecessary. Click on it and press the delete button to remove it. Figure 6. Creating a scatter graph. Figure 7. A graph with a fitted curve. Click to buy NOW! PDF-XChange Viewer www.docu-track.com Click to buy NOW! PDF-XChange Viewer www.docu-track.com 8. Now let’s overlay the Volume vs. Edge Length curve onto the same graph (optional for 203L/205L): Make a copy of your graph by clicking on the outer white area, clicking ctrl-c (or right click, copy), and pasting the copy somewhere else (ctrl-v). If you wish, delete the trendline as in Fig. 8. a. Right click on the outer white space, choose Select Data and click the Add button. b. You can type in the cell ranges by hand in the dialog box that comes up, but it is easier to click the red, white, and blue button on the right of each space and highlight what you want to go in. Click the red, white, and blue of the bar that has appeared, and you will bounce back to the Add dialog box. Use the Edge Length column for the x’s and Volume for the y’s. c. Right-click on any volume data point and choose Format Data Series. Clicking Secondary Axis will place its scale on the right of the graph as in Fig. 8. d. Dress up your graph with two axis titles (Layout-Labels-Axis Titles), etc. Figure 8. Adding a second curve and y-axis to the graph Click to buy NOW! PDF-XChange Viewer www.docu-track.com Click to buy NOW! PDF-XChange Viewer www.docu-track.com EXERCISE 2: INTERPRETING A LINEAR GRAPH Introduction: Many experiments are repeated a number of times with one of the parameters involved varied from run to run. Often the goal is to measure the rate of change of a dependent variable, rather than a particular value. If the dependent variable can be expressed as a linear function of the independent parameter, then the slope and yintercept of an appropriate graph will give the rate of change and a particular value, respectively. An example of such an experiment in PHYS.203L/205L is the first part of Lab 20, in which weights are added to the bottom of a suspended spring (Figure 9). This experiment shows that a spring exerts a force Fs proportional to the distance stretched y = (y-yo), a relationship known as Hooke’s Law: Fs = – k(y – yo) (Eq. 1) where k is called the Hooke’s Law constant. The minus sign shows that the spring opposes any push or pull on it. In Lab 20 Fs is equal to (- Mg) and y is given by the reading on a meter stick. Masses were added to the bottom of the spring in 50-g increments giving weights in newtons of 0.49, 0.98, etc. The weight pan was used as the pointer for reading y and had a mass of 50 g, so yo could not be directly measured. For convenient graphing Equation 1 can be rewritten: -(Mg) = – ky + kyo Or (Mg) = ky – kyo (Eq. 1′) Procedure 1. On your spreadsheet note the tabs at the bottom left and double-click Sheet1. Type in “Basics,” and then click the Sheet2 tab to bring up a fresh worksheet. Change the sheet name to “Linear Fit” and fill in data as in this table. Hooke’s Law Experiment y (m) -Fs = Mg (N) 0.337 0.49 0.388 0.98 0.446 1.47 0.498 1.96 0.550 2.45 2. Highlight the cells with the numbers, and graph (Mg) versus y as in Steps 6 and 7 of the Basics section. Your Trendline this time will be Linear of course. If you are having trouble remembering what’s versus what, “y” looks like “v”, so what comes before the “v” of “versus” goes on the y (vertical) axis. Yes, this graph is confusing: the horizontal (“x”) axis is distance y, and the “y” axis is something else. 3. Click on the Equation/R2 box on the graph and highlight just the slope, that is, only the number that comes before the “x.” Copy it (control-c is a fast way to Figure 9. A spring with a weight stretching it Click to buy NOW! PDF-XChange Viewer www.docu-track.com Click to buy NOW! PDF-XChange Viewer www.docu-track.com do it) and paste it (control-v) into an empty cell. Do likewise for the intercept (including the minus sign). SAVE YOUR FILE! 5. The next steps use the standard procedure for obtaining information from linear data. Write the general equation for a straight line immediately below a hand-written copy of Equation 1′ then circle matching items: (Mg) = k y + (- k yo) (Eq. 1′) y = m x + b Note the parentheses around the intercept term of Equation 1′ to emphasize that the minus sign is part of it. Equating above and below, you can create two useful new equations: slope m = k (Eq. 2) y-intercept b = -kyo (Eq. 3) 6. Solve Equation 2 for k, that is, rewrite left to right. Then substitute the value for slope m from your graph, and you have an experimental value for the Hooke’s Law constant k. Next solve Equation 3 for yo, substitute the value for intercept b from your graph and the value of k that you just found, and calculate yo. 7. Examine your linear graph for clues to finding the units of the slope and the yintercept. Use these units to find the units of k and yo. 8. Present your values of k and yo with their units neatly at the bottom of your spreadsheet. 9. R2 in Excel, like r in our lab manual and Corr. in the LoggerPro software, is a measure of how well the calculated line matches the data points. 1.00 would indicate a perfect match. State how good a match you think was made in this case? 10. Do the Homework, Further Exercises on Interpreting Linear Graphs, on the following pages. Click to buy NOW! PDF-XChange Viewer www.docu-track.com Click to buy NOW! PDF-XChange Viewer www.docu-track.com Eq.1 M m f M a g               , (Eq.2) M slope m g       (Eq.3) M b f        Morgan Extra Pages Homework: Graph Interpretation Exercises EXAMPLE WITH COMPLETE SOLUTION In PHYS.203L and 205L we do Lab 9 Newton’s Second Law on Atwood’s Machine using a photogate sensor (Fig. 1). The Atwood’s apparatus can slow the rate of fall enough to be measured even with primitive timing devices. In our experiment LoggerPro software automatically collects and analyzes the data giving reliable measurements of g, the acceleration of gravity. The equation governing motion for Atwood’s Machine can be written: where a is the acceleration of the masses and string, g is the acceleration of gravity, M is the total mass at both ends of the string, m is the difference between the masses, and f is the frictional force at the hub of the pulley wheel. In this exercise you are given a graph of a vs. m obtained in this experiment with the values of M and the slope and intercept (Fig. 2). The goal is to extract values for acceleration of gravity g and frictional force f from this information. To analyze the graph we write y = mx + b, the general equation for a straight line, directly under Equation 1 and match up the various parameters: Equating above and below, you can create two new equations: and y m x b M m f M a g                Figure 1. The Atwood’s Machine setup (from the LoggerPro handout). Figure 2. Graph of acceleration versus mass difference; data from a Physics I experiment. Atwood’s Machine M = 0.400 kg a = 24.4 m – 0.018 R2 = 0.998 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 0.000 0.010 0.020 0.030 0.040 0.050 0.060  m (kg) a (m/s2) Click to buy NOW! PDF-XChange Viewer www.docu-track.com Click to buy NOW! PDF-XChange Viewer www.docu-track.com 2 2 9.76 / 0.400 24.4 /( ) m s kg m kg s g Mm      To handle Equation 2 it pays to consider what the units of the slope are. A slope is “the rise over the run,“ so its units must be the units of the vertical axis divided by those of the horizontal axis. In this case: Now let’s solve Equation 2 for g and substitute the values of total mass M and of the slope m from the graph: Using 9.80 m/s2 as the Baltimore accepted value for g, we can calculate the percent error: A similar process with Equation 3 leads to a value for f, the frictional force at the hub of the pulley wheel. Note that the units of intercept b are simply whatever the vertical axis units are, m/s2 in this case. Solving Equation 3 for f: EXERCISE 1 The Picket Fence experiment makes use of LoggerPro software to calculate velocities at regular time intervals as the striped plate passes through the photogate (Fig. 3). The theoretical equation is v = vi + at (Eq. 4) where vi = 0 (the fence is dropped from rest) and a = g. a. Write Equation 4 with y = mx + b under it and circle matching factors as in the Example. b. What is the experimental value of the acceleration of gravity? What is its percent error from the accepted value for Baltimore, 9.80 m/s2? c. Does the value of the y-intercept make sense? d. How well did the straight Trendline match the data? 2 / 2 kg s m kg m s   0.4% 100 9.80 9.76 9.80 100 . . . %        Acc Exp Acc Error kg m s mN kg m s f Mb 7.2 10 / 7.2 0.400 ( 0.018 / ) 3 2 2           Figure 3. Graph of speed versus time as calculated by LoggerPro as a picket fence falls freely through a photogate. Picket Fence Drop y = 9.8224x + 0.0007 R2 = 0.9997 0 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1 1.2 t (s) v (m/s) Click to buy NOW! PDF-XChange Viewer www.docu-track.com Click to buy NOW! PDF-XChange Viewer www.docu-track.com EXERCISE 2 This is an electrical example from PHYS.204L/206L, potential difference, V, versus current, I (Fig. 4). The theoretical equation is V = IR (Eq. 5) and is known as “Ohm’s Law.” The unit symbols stand for volts, V, and Amperes, A. The factor R stands for resistance and is measured in units of ohms, symbol  (capital omega). The definition of the ohm is: V (Eq. 6) By coincidence the letter symbols for potential (a quantity ) and volts (its unit) are identical. Thus “voltage” has become the laboratory slang name for potential. a. Rearrange the Ohm’s Law equation to match y = mx + b.. b. What is the experimental resistance? c. Comment on the experimental intercept: is its value reasonable? EXERCISE 3 This graph (Fig. 5) also follows Ohm’s Law, but solved for current I. For this graph the experimenter held potential difference V constant at 15.0V and measured the current for resistances of 100, 50, 40, and 30  Solve Ohm’s Law for I and you will see that 1/R is the logical variable to use on the x axis. For units, someone once jokingly referred to a “reciprocal ohm” as a “mho,” and the name stuck. a. Rearrange Equation 5 solved for I to match y = mx + b. b. What is the experimental potential difference? c. Calculate the percent difference from the 15.0 V that the experimenter set on the power supply (the instrument used for such experiments). d. Comment on the experimental intercept: is its value reasonable? Figure 4. Graph of potential difference versus current; data from a Physics II experiment. The theoretical equation, V = IR, is known as “Ohm’s Law.” Ohm’s Law y = 0.628x – 0.0275 R2 = 0.9933 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 0.5 0.6 Current, I (A) Potential difference, V (V) Figure 5. Another application of Ohm’s Law: a graph of current versus the inverse of resistance, from a different electric circuit experiment. Current versus (1/Resistance) y = 14.727x – 0.2214 R2 = 0.9938 0 100 200 300 400 500 600 5 10 15 20 25 30 35 R-1 (millimhos) I (milliamperes) Click to buy NOW! PDF-XChange Viewer www.docu-track.com Click to buy NOW! PDF-XChange Viewer www.docu-track.com EXERCISE 4 The Atwood’s Machine experiment (see the solved example above) can be done in another way: keep mass difference m the same and vary the total mass M (Fig. 6). a. Rewrite Equation 1 and factor out (1/M). b. Equate the coefficient of (1/M) with the experimental slope and solve for acceleration of gravity g. c. Substitute the values for slope, mass difference, and frictional force and calculate the experimental of g. d. Derive the units of the slope and show that the units of g come out as they should. e. Is the value of the experimental intercept reasonable? EXERCISE 5 In the previous two exercises the reciprocal of a variable was used to make the graph come out linear. In this one the trick will be to use the square root of a variable (Fig. 7). In PHYS.203L and 205L Lab 19 The Pendulum the theoretical equation is where the period T is the time per cycle, L is the length of the string, and g is the acceleration of gravity. a. Rewrite Equation 7 with the square root of L factored out and placed at the end. b. Equate the coefficient of √L with the experimental slope and solve for acceleration of gravity g. c. Substitute the value for slope and calculate the experimental of g. d. Derive the units of the slope and show that the units of g come out as they should. e. Is the value of the experimental intercept reasonable? 2 (Eq . 7) g T   L Figure 6. Graph of acceleration versus the reciprocal of total mass; data from a another Physics I experiment. Atwood’s Machine m = 0.020 kg f = 7.2 mN y = 0.1964x – 0.0735 R2 = 0.995 0.400 0.600 0.800 1.000 2.000 2.500 3.000 3.500 4.000 4.500 5.000 1/M (1/kg) a (m/s2) Effect of Pendulum Length on Period y = 2.0523x – 0.0331 R2 = 0.999 0.400 0.800 1.200 1.600 2.000 2.400 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 L1/2 (m1/2) T (s) Figure 7. Graph of period T versus the square root of pendulum length; data from a Physics I experiment. Click to buy NOW! PDF-XChange Viewer www.docu-track.com Click to buy NOW! PDF-XChange Viewer www.docu-track.com EXERCISE 6 In Exercise 5 another approach would have been to square both sides of Equation 7 and plot T2 versus L. Lab 20 directs us to use that alternative. It involves another case of periodic or harmonic motion with a similar, but more complicated, equation for the period: where T is the period of the bobbing (Fig. 8), M is the suspended mass, ms is the mass of the spring, k is a measure of stiffness called the spring constant, and C is a dimensionless factor showing how much of the spring mass is effectively bobbing. a. Square both sides of Equation 8 and rearrange it to match y = mx + b. b. Write y = mx + b under your rearranged equation and circle matching factors as in the Example. c. Write two new equations analogous to Equations 2 and 3 in the Example. Use the first of the two for calculating k and the second for finding C from the data of Fig. 9. d. A theoretical analysis has shown that for most springs C = 1/3. Find the percent error from that value. e. Derive the units of the slope and intercept; show that the units of k come out as N/m and that C is dimensionless. 2 (Eq . 8) k T M Cm s    Figure 8. In Lab 20 mass M is suspended from a spring which is set to bobbing up and down, a good approximation to simple harmonic motion (SHM), described by Equation 8. Lab 20: SHM of a Spring Mass of the spring, ms = 25.1 g y = 3.0185x + 0.0197 R2 = 0.9965 0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 0 0.05 0.1 0.15 0.2 0.25 0.3 M (kg) T 2 2 Figure 9. Graph of the square of the period T2 versus suspended mass M data from a Physics I experiment. Click to buy NOW! PDF-XChange Viewer www.docu-track.com Click to buy NOW! PDF-XChange Viewer www.docu-track.com EXERCISE 7 This last exercise deals with an exponential equation, and the trick is to take the logarithm of both sides. In PHYS.204L/206L we do Lab 33 The RC Time Constant with theoretical equation: where V is the potential difference at time t across a circuit element called a capacitor (the  is dropped for simplicity), Vo is V at t = 0 (try it), and  (tau) is a characteristic of the circuit called the time constant. a. Take the natural log of both sides and apply the addition rule for logarithms of a product on the right-hand side. b. Noting that the graph (Fig. 10) plots lnV versus t, arrange your equation in y = mx + b order, write y = mx + b under it, and circle the parts as in the Example. c. Write two new equations analogous to Equations 2 and 3 in the Example. Use the first of the two for calculating  and the second for finding lnVo and then Vo. d. Note that the units of lnV are the natural log of volts, lnV. As usual derive the units of the slope and interecept and use them to obtain the units of your experimental V and t. V V e (Eq. 9) t o    Figure 10. Graph of a logarithm versus time; data from Lab 33, a Physics II experiment. Discharge of a Capacitor y = -9.17E-03x + 2.00E+00 R2 = 9.98E-01 0.00 0.50 1.00 1.50 2.00 2.50

checkyourstudy.com Whatsapp +919911743277