Describe and discuss: how you will work collaboratively with professionals to meet the needs of students with disabilities

## Describe and discuss: how you will work collaboratively with professionals to meet the needs of students with disabilities

Children with a disability frequently have a huge number of … Read More...

info@checkyourstudy.com Whatsapp +919911743277
The Agawam High School band is playing some lively marches while the coaches are giving pep talks to their respective football squads. Although it is September, it is unseasonably hot (88°F/31°C) and the band uniforms are wool. Suddenly, Harry the tuba player becomes light-headed and faints. Explain his fainting in terms of vascular events

## The Agawam High School band is playing some lively marches while the coaches are giving pep talks to their respective football squads. Although it is September, it is unseasonably hot (88°F/31°C) and the band uniforms are wool. Suddenly, Harry the tuba player becomes light-headed and faints. Explain his fainting in terms of vascular events

Harry’s condition suggests that this is a case of transient … Read More...

WEEKLY ASSIGNMENT #5 (WOW THAT TOOK A WHILE) NAME: 1. Find the linear approximation of the function f(x; y; z) = p x2 + y2 + z2 at some point to approximate a value of the number p (3:02)2 + (1:97)2 + (5:99)2. 1 2. Consider your favorite function, the Cobb-Douglas production function. P(L;K) = 1:5L:65K:35 modeling the production of the state of Idaho. Over time we discover that capitol is gradually increasing at an approximate rate of 0:02 units per year. If we decide as a group that we are perfectly happy with our production level and would rather have additional vacation time then how much can we decrease labor by each year and keep the same level of production. In how long(rounded up to the nearest year) will we have an additional week of vacation? 2 3. Use the chain rule to find dz dt or dw=dt (a) z = x?y x+2y x = et; y = e?t. (b) w = sin x cos x x = p t; y = 1=t. 4. Use the chain rule to find @z=@t or @z=@s (a) z = (x ? y)5 x = s2t; y = st2 (b) z = er cos  r = st;  = p x2 + y2. 3 5. The temperature at a point (x; y; z) is given by the function T(x; y; z) = 200e?x2?3y2?9z2 where T is measure in C and x; y; z in meters. (a) Find the rate of change of temperature at the point (2;?1; 2) in the direction toward the point (3;?3; 3). (b) In which direction does the temperature increase fastest, and what is that fastest rate? 4 6. Suppose (1; 1) is a critical point of a function f with continuous second derivatives. In each case, what can you say about f. (a) fxx(1; 1) = 4; fxy(1; 1) = 1; fyy(1; 1) = 2 (b) fxx(1; 1) = 4; fxy(1; 1) = 3; fyy(1; 1) = 2 (c) fxx(1; 1) = ?1; fxy(1; 1) = 6; fyy(1; 1) = 1 (d) fxx(1; 1) = ?1; fxy(1; 1) = 2; fyy(1; 1) = ?8 (e) fxx(1; 1) = 4; fxy(1; 1) = 6; fyy(1; 1) = 9 5 Bonus Show that f(x; y) = x2 + 4y2 ? 4xy + 2 has an infinite number of critical points, and for all of them D = 0 at each one. Then show that f has a local (and absolute) minimum at each critical point. 6

## WEEKLY ASSIGNMENT #5 (WOW THAT TOOK A WHILE) NAME: 1. Find the linear approximation of the function f(x; y; z) = p x2 + y2 + z2 at some point to approximate a value of the number p (3:02)2 + (1:97)2 + (5:99)2. 1 2. Consider your favorite function, the Cobb-Douglas production function. P(L;K) = 1:5L:65K:35 modeling the production of the state of Idaho. Over time we discover that capitol is gradually increasing at an approximate rate of 0:02 units per year. If we decide as a group that we are perfectly happy with our production level and would rather have additional vacation time then how much can we decrease labor by each year and keep the same level of production. In how long(rounded up to the nearest year) will we have an additional week of vacation? 2 3. Use the chain rule to find dz dt or dw=dt (a) z = x?y x+2y x = et; y = e?t. (b) w = sin x cos x x = p t; y = 1=t. 4. Use the chain rule to find @z=@t or @z=@s (a) z = (x ? y)5 x = s2t; y = st2 (b) z = er cos  r = st;  = p x2 + y2. 3 5. The temperature at a point (x; y; z) is given by the function T(x; y; z) = 200e?x2?3y2?9z2 where T is measure in C and x; y; z in meters. (a) Find the rate of change of temperature at the point (2;?1; 2) in the direction toward the point (3;?3; 3). (b) In which direction does the temperature increase fastest, and what is that fastest rate? 4 6. Suppose (1; 1) is a critical point of a function f with continuous second derivatives. In each case, what can you say about f. (a) fxx(1; 1) = 4; fxy(1; 1) = 1; fyy(1; 1) = 2 (b) fxx(1; 1) = 4; fxy(1; 1) = 3; fyy(1; 1) = 2 (c) fxx(1; 1) = ?1; fxy(1; 1) = 6; fyy(1; 1) = 1 (d) fxx(1; 1) = ?1; fxy(1; 1) = 2; fyy(1; 1) = ?8 (e) fxx(1; 1) = 4; fxy(1; 1) = 6; fyy(1; 1) = 9 5 Bonus Show that f(x; y) = x2 + 4y2 ? 4xy + 2 has an infinite number of critical points, and for all of them D = 0 at each one. Then show that f has a local (and absolute) minimum at each critical point. 6

As cell size increases, the volume and surface area decrease. surface area increases faster than the volume. surface area and volume increase at the same rate. volume increases faster than the surface area.

## As cell size increases, the volume and surface area decrease. surface area increases faster than the volume. surface area and volume increase at the same rate. volume increases faster than the surface area.

volume increases faster than the surface area