Describe and discuss: how you will work collaboratively with professionals to meet the needs of students with disabilities

Describe and discuss: how you will work collaboratively with professionals to meet the needs of students with disabilities

Children with a disability frequently have a huge number of … Read More...
BI 102 Lab 1 Writing Assignment How did the different concentrations of sucrose impact osmotic rate? This assignment requires you to evaluate a hypothesis and communicate the results of your experiment on the rate of osmosis into sucrose solutions of varying concentrations. The questions below are meant to guide you to reporting the key findings of your experiment and help you think through how to explain the findings and draw conclusions from them in a scientific manner. ASSIGNMENT: Please respond to the following questions to complete your laboratory write up. For this assignment you will only focus on the osmosis of water into sucrose concentrations of varying concentration. Make sure that your write up is accurate, and clearly written so that it is easily readable. A grading rubric is provided on the second page of this assignment. To earn full points on your write up, you must provide answers that align to the “meets” column of your grading rubric as well as meeting all “Quality of Writing and Mechanics” elements described in the rubric. There are also some tips on pages 3-4 of this assignment to help you succeed. FORMAT: • Type your responses, using 1.5 or double spacing. • Include the section headings (Hypothesis, Results, Analysis) and question number (example: 1, 2, 3, etc) in your answers but do not rewrite the question. • Graphs may be made with a computer program (example: Microsoft excel, Mac numbers, etc) or may be neatly produced with a ruler on graphing paper. • Print out the cover sheet on page 2 of this assignment, read and sign the academic honesty statement, and submit it with your write up. Your instructor WILL NOT accept a write up without the signed cover sheet. DUE DATE: Your write up is due at the beginning of class next week. Late assignments will have 1 point deducted per day up to 5 days, at which point the assignment will be assigned 0 points. Hypothesis and Prediction – Part 1 of Rubric 1. What did you think was going to happen in this experiment and why? You may find it helpful to state your answers to these questions as an “if-then” hypothesis-prediction. Be sure you have included a biological rationale that explains WHY you made this hypothesis/prediction. (You worked on this in question 2 on page 10 of this lab activity) Results – Part 2 of Rubric 2. How did the different concentrations of sucrose impact osmotic rate? Answer this question by creating a line graph that shows the results of your experiment. If you need assistance building a graph, there is a Guide to Graphing resource available on your Moodle lab course site. Analysis- Part 3 of Rubric 3. Explain why you think that the results shown in your graph support or refute your hypothesis (remember we never “prove” anything in science). Consider all your data and the overall data pattern as you answer this question. Don’t ignore unusual data that may not seem to fit into a specific patterns (“outliers”). Explain what you think might be behind these unusual data points. 4. What is the biological significance of your results? What biological concepts explain completely why these events happened in the experiment? How do these results help you understand the biology of the cell and how materials move back and forth across the cell membrane? (A hint: refer back to questions 1A-1F on page 10 of this lab activity). Think about giving a specific example. References- Mechanics Checklist 5. Provide at least one full citation (make sure you include an in-text citation that pinpoints where you used this resource) for a resource you made use of in performing the experiment, understanding the concepts and writing this assignment. (Perhaps your lab manual? Your textbook? A website?) If you used more than one resource, you need to cite each one! If you need help with citations, a Guide to Citing References is available on your Moodle lab course site. Please print out and submit this cover sheet with your lab writeup! Lab Writeup Assignment (1) Assessment Rubric-­‐ 10 points total Name: ________________________________________ Element Misses (1 point) Approaches (2 points) Meets (3 points) Hypothesis Clarity/Specificity Testability Rationale ___Hypothesis is unclear and hardto- understand ___Hypothesis is not testable ___No biological rationale for hypothesis or rationale is fully inaccurate ___Hypothesis included is clearly stated, but not specific or lacks specific details __Hypothesis is testable, but not in a feasible way in this lab ___Some foundation for hypothesis, but based in part on biological inaccuracy ___Hypothesis included is clearly stated and very specific ___Hypothesis is testable and could be tested within lab parameters ___Rationale for hypothesis is grounded in accurate biological information Graph Title Axes Variables Key Graph clarity Data accuracy ___Graph lacks a title ___Axes are not labeled ___Variables not addressed in graph ___No key or way to tell data points apart ___Graph is hard to read and comparisons cannot be made: Inappropriate graph type or use of scale ___Data graphed is inaccurate or does not relate to experiment ___Graph has a title that is not very descriptive ___Axes are either unlabeled, or units are unclear or wrong ___Variables addressed in graph, but not on correct axes ___Key included, but is hard to understand ___Graph is somewhat readable, comparisons can be made with difficulty: Appropriate graph type, but not scaled well ___Data graphed is partially accurate; some data is missing ___Graph has a concise, descriptive title ___Axes are labeled, including clarification of units used ___Variables on correct axes ___A clear, easy-to-use key to data points is included ___Graph is clearly readable and comparisons between treatments are easy to make: Graph type and scale are appropriate to data ___Data graphed is accurate and includes all relevant data, including controls (if needed) Analysis Hypothesis Scientific language Data addressed Explanation ___Hypothesis is not addressed ___Hypothesis is described using language like proven, true, or right ___No explanations for data patterns observed in graph or data does not support conclusions. ___No biological explanation for data trends or explanations are completely inaccurate ___Hypothesis is mentioned, but not linked well to data ___Hypothesis is not consistently described as supported or refuted ___Some data considered in conclusions but other data is ignored. Any unusual “outliers” are ignored ___Explanations include minimal or some inaccurate biological concepts ___Hypothesis is evaluated based upon data ___Hypothesis is consistently described as supported or refuted ___All data collected is considered and addressed by conclusions, including presence of outliers, ___Explanations include relevant and accurate biological concepts Quality of Writing and Mechanics: Worth 1 point. Writeup should meet all of the following criteria! Yes No ☐ ☐ Write up includes your name, the date, and your lab section ☐ ☐ Write up is free from spelling and grammatical errors (make sure you proofread!!) ☐ ☐ Write up is clear and easy-to-understand ☐ ☐ Write up includes full citation for at least one reference with corresponding in-text citation ☐ ☐ All portions of write up are clearly labeled, and question numbers are included Plagiarism refers to the use of original work, ideas, or text that are not your own. This includes cut-and-paste from websites, copying directly from texts, and copying the work of others, including fellow students. Telling someone your answers to the questions (including telling someone how to make their graph, question #2), or asking for the answers to any question, is cheating. (Asking someone how to make the graph for this assignment is NOT the same as asking for help learning excel or some other software). All forms of cheating, including plagiarism and copying of work will result in an immediate zero for the exam, quiz, or assignment. In the case of copying, all parties involved in the unethical behavior will earn zeros. Cheating students will be referred to the Student Conduct Committee for further action. You also have the right to appeal to the Student Conduct Committee. I have read and understand the plagiarism statement. ____________________________________________________ Signature Guidelines for Good Quality Scientific Reports Hypothesis and Prediction: The hypothesis is a tentative explanation for the phenomenon. Remember that: • A good hypothesis and prediction is testable (and should be testable under the conditions of our lab environment; For example, if your hypothesis requires shooting a rocket into space, then its not really testable under our laboratory conditions). • Your explanation can be ruled out through testing, or falsified. • A good hypothesis and prediction is detailed and specific in what it is testing. • A good hypothesis provides a rationale or explanation for why you think your prediction is reasonable and this rationale is based on what we know about biology. • A good prediction is specific and can be tested with a specific experiment. Examples*: I think that diet soda will float and regular soda will sink. {This hypothesis misses the goal. It is not specific as we don’t know where the sodas are floating and sinking, and it does not provide any explanation to explain why the hypothesis makes sense} Because diet soda does not contain sugar and regular soda does, the diet soda will float in a bucket of water, while regular soda will sink. {This hypothesis approaches the goal. It is more specific about the conditions, and it provides a partial explanation about why the hypothesis makes sense, but the connection between sugar and sinking is unclear} If diet soda does not contain sugar, then its density (mass/volume) is lower than that of regular soda which does contain sugar, and so diet soda will float in a bucket of water while regular soda sinks. {This hypothesis meets the goal. It is specific and the rationale- sugar affects density and density is what determines floating or sinking in water- is clearly articulated} *Note that these examples are for different experiments and investigations and NOT about your osmosis lab. They are provided only to help you think about what you need to include in your write up. Graph: The graph is a visual representation of the data you gathered while testing your hypothesis. Remember that: • A graph needs a concise title that clearly describes the data that it is showing. • Data must be put on the correct axes of the graph. In general, the data you collected (representing what you are trying to find out about) goes on the vertical (Y) axis. The supporting data that that describes how, when or under what conditions you collected your data goes on the horizontal (X) axis. (For this reason time nearly always goes on the X-axis). • Axes must be labeled, including the units in which data were recorded • Data points should be clearly marked and identified; a key is helpful if more than one group of data is included in the graph. • The scale of a graph is important. It should be consistent (there should be no change in the units or increments on a single axis) and appropriate to the data you collected Examples: {This graph misses the goal. There is no title, nor is there a key to help distinguish what the data points mean. The scale is too large- from 0 to 100 with an increment of 50, when the maximum number in the graph is 25- and makes it hard to interpret this graph. The x-axis is labeled, but without units (the months) and the y-axis has units, but the label is incomplete- number of what?} {This graph meets the goal. There is a descriptive title, and all of the axes are clearly labeled with units. There is a key so that we can distinguish what each set of data points represent. The dependent variable (number of individuals) is correctly placed on the y-axis with the independent variable of time placed on the x-axis. The scale of 0-30 is appropriate to the data, with each line on the x-axis representing an increment of 5.} 0 50 100 Number Month 0 5 10 15 20 25 30 March April May June July Number of individuals Month (2011) Population size of three different madtom catiCish in the Marais de Cygnes River in Spring/Summer 2011 Brindled madtom Neosho madtom Slender madtom Analysis: You need to evaluate your hypothesis based on the data patterns shown by your graph. Remember that: • You use data to determine support or refute your hypothesis. It is only possible to support a hypothesis, not to “prove” one (that would require testing every possible permutation and combination of factors). Your evaluation of your hypothesis should not be contradicted by the pattern shown by your data. • Refer back to the prediction you made as part of your hypothesis and use your data to justify your decision to support or refute your hypothesis. • In the “if” part of your hypothesis you should have provided a rationale, or explanation for the prediction you made in your hypothesis (“then” part of hypothesis”). Use this to help you explain why you think you observed the specific pattern of data revealed in your graph. • You should consider all of the data you collected in examining the support (or lack of support for your hypothesis). If there are unusual data points or “outliers” that don’t seem to fit the general pattern in your graph, explain what you think those mean. Examples: I was right. Diet Pepsi floated and so did Apricot Nectar. Regular Pepsi sank. Obviously the regular Pepsi was heavier. This helps us understand the concept of density, which is a really important one. {This analysis misses the goal. The hypothesis isn’t actually mentioned and the data is only briefly described. There is no explanation of the importance of the Apricot Nectar results. Finally, there is no connection to how these results help understand density or why it is biologically important} I hypothesized that diet soda would float, and all three cans of diet Pepsi did float while the regular Pepsi sank. This supports my hypothesis. Both types of Pepsi were 8.5 fluid ounces in volume, but the regular Pepsi also contained 16 grams of sugar. This means that the regular Pepsi had 16 more grams of mass provided by the sugar in the same amount of volume. This would lead to an increase in density, which explains why the regular soda cans sank. When we put in a can of Apricot Nectar, which had 19 grams of sugar, it floated. This was unexpected, but I think it is explained by the fact that an Apricot Nectar can had a volume of 7 fluid ounces, but the dimensions of the can are the same as that of a Pepsi can. A same-sized can with less liquid probably has an air space that helped it float. The results of this experiment help us understand how the air bladder of a fish, which creates an air space inside the fish, helps it float in the water and also how seaweeds and other living things with air spaces or other factors that decrease their density keep from sinking to the bottom of the water. {This analysis meets the goal. It clearly ties the hypothesis to the results and outlines what they mean. It describes how the results support the hypothesis, but also explains a possible reason behind the unusual results of the Apricot Nectar. Finally, there is a link to how this experiment helps us understand biology}

BI 102 Lab 1 Writing Assignment How did the different concentrations of sucrose impact osmotic rate? This assignment requires you to evaluate a hypothesis and communicate the results of your experiment on the rate of osmosis into sucrose solutions of varying concentrations. The questions below are meant to guide you to reporting the key findings of your experiment and help you think through how to explain the findings and draw conclusions from them in a scientific manner. ASSIGNMENT: Please respond to the following questions to complete your laboratory write up. For this assignment you will only focus on the osmosis of water into sucrose concentrations of varying concentration. Make sure that your write up is accurate, and clearly written so that it is easily readable. A grading rubric is provided on the second page of this assignment. To earn full points on your write up, you must provide answers that align to the “meets” column of your grading rubric as well as meeting all “Quality of Writing and Mechanics” elements described in the rubric. There are also some tips on pages 3-4 of this assignment to help you succeed. FORMAT: • Type your responses, using 1.5 or double spacing. • Include the section headings (Hypothesis, Results, Analysis) and question number (example: 1, 2, 3, etc) in your answers but do not rewrite the question. • Graphs may be made with a computer program (example: Microsoft excel, Mac numbers, etc) or may be neatly produced with a ruler on graphing paper. • Print out the cover sheet on page 2 of this assignment, read and sign the academic honesty statement, and submit it with your write up. Your instructor WILL NOT accept a write up without the signed cover sheet. DUE DATE: Your write up is due at the beginning of class next week. Late assignments will have 1 point deducted per day up to 5 days, at which point the assignment will be assigned 0 points. Hypothesis and Prediction – Part 1 of Rubric 1. What did you think was going to happen in this experiment and why? You may find it helpful to state your answers to these questions as an “if-then” hypothesis-prediction. Be sure you have included a biological rationale that explains WHY you made this hypothesis/prediction. (You worked on this in question 2 on page 10 of this lab activity) Results – Part 2 of Rubric 2. How did the different concentrations of sucrose impact osmotic rate? Answer this question by creating a line graph that shows the results of your experiment. If you need assistance building a graph, there is a Guide to Graphing resource available on your Moodle lab course site. Analysis- Part 3 of Rubric 3. Explain why you think that the results shown in your graph support or refute your hypothesis (remember we never “prove” anything in science). Consider all your data and the overall data pattern as you answer this question. Don’t ignore unusual data that may not seem to fit into a specific patterns (“outliers”). Explain what you think might be behind these unusual data points. 4. What is the biological significance of your results? What biological concepts explain completely why these events happened in the experiment? How do these results help you understand the biology of the cell and how materials move back and forth across the cell membrane? (A hint: refer back to questions 1A-1F on page 10 of this lab activity). Think about giving a specific example. References- Mechanics Checklist 5. Provide at least one full citation (make sure you include an in-text citation that pinpoints where you used this resource) for a resource you made use of in performing the experiment, understanding the concepts and writing this assignment. (Perhaps your lab manual? Your textbook? A website?) If you used more than one resource, you need to cite each one! If you need help with citations, a Guide to Citing References is available on your Moodle lab course site. Please print out and submit this cover sheet with your lab writeup! Lab Writeup Assignment (1) Assessment Rubric-­‐ 10 points total Name: ________________________________________ Element Misses (1 point) Approaches (2 points) Meets (3 points) Hypothesis Clarity/Specificity Testability Rationale ___Hypothesis is unclear and hardto- understand ___Hypothesis is not testable ___No biological rationale for hypothesis or rationale is fully inaccurate ___Hypothesis included is clearly stated, but not specific or lacks specific details __Hypothesis is testable, but not in a feasible way in this lab ___Some foundation for hypothesis, but based in part on biological inaccuracy ___Hypothesis included is clearly stated and very specific ___Hypothesis is testable and could be tested within lab parameters ___Rationale for hypothesis is grounded in accurate biological information Graph Title Axes Variables Key Graph clarity Data accuracy ___Graph lacks a title ___Axes are not labeled ___Variables not addressed in graph ___No key or way to tell data points apart ___Graph is hard to read and comparisons cannot be made: Inappropriate graph type or use of scale ___Data graphed is inaccurate or does not relate to experiment ___Graph has a title that is not very descriptive ___Axes are either unlabeled, or units are unclear or wrong ___Variables addressed in graph, but not on correct axes ___Key included, but is hard to understand ___Graph is somewhat readable, comparisons can be made with difficulty: Appropriate graph type, but not scaled well ___Data graphed is partially accurate; some data is missing ___Graph has a concise, descriptive title ___Axes are labeled, including clarification of units used ___Variables on correct axes ___A clear, easy-to-use key to data points is included ___Graph is clearly readable and comparisons between treatments are easy to make: Graph type and scale are appropriate to data ___Data graphed is accurate and includes all relevant data, including controls (if needed) Analysis Hypothesis Scientific language Data addressed Explanation ___Hypothesis is not addressed ___Hypothesis is described using language like proven, true, or right ___No explanations for data patterns observed in graph or data does not support conclusions. ___No biological explanation for data trends or explanations are completely inaccurate ___Hypothesis is mentioned, but not linked well to data ___Hypothesis is not consistently described as supported or refuted ___Some data considered in conclusions but other data is ignored. Any unusual “outliers” are ignored ___Explanations include minimal or some inaccurate biological concepts ___Hypothesis is evaluated based upon data ___Hypothesis is consistently described as supported or refuted ___All data collected is considered and addressed by conclusions, including presence of outliers, ___Explanations include relevant and accurate biological concepts Quality of Writing and Mechanics: Worth 1 point. Writeup should meet all of the following criteria! Yes No ☐ ☐ Write up includes your name, the date, and your lab section ☐ ☐ Write up is free from spelling and grammatical errors (make sure you proofread!!) ☐ ☐ Write up is clear and easy-to-understand ☐ ☐ Write up includes full citation for at least one reference with corresponding in-text citation ☐ ☐ All portions of write up are clearly labeled, and question numbers are included Plagiarism refers to the use of original work, ideas, or text that are not your own. This includes cut-and-paste from websites, copying directly from texts, and copying the work of others, including fellow students. Telling someone your answers to the questions (including telling someone how to make their graph, question #2), or asking for the answers to any question, is cheating. (Asking someone how to make the graph for this assignment is NOT the same as asking for help learning excel or some other software). All forms of cheating, including plagiarism and copying of work will result in an immediate zero for the exam, quiz, or assignment. In the case of copying, all parties involved in the unethical behavior will earn zeros. Cheating students will be referred to the Student Conduct Committee for further action. You also have the right to appeal to the Student Conduct Committee. I have read and understand the plagiarism statement. ____________________________________________________ Signature Guidelines for Good Quality Scientific Reports Hypothesis and Prediction: The hypothesis is a tentative explanation for the phenomenon. Remember that: • A good hypothesis and prediction is testable (and should be testable under the conditions of our lab environment; For example, if your hypothesis requires shooting a rocket into space, then its not really testable under our laboratory conditions). • Your explanation can be ruled out through testing, or falsified. • A good hypothesis and prediction is detailed and specific in what it is testing. • A good hypothesis provides a rationale or explanation for why you think your prediction is reasonable and this rationale is based on what we know about biology. • A good prediction is specific and can be tested with a specific experiment. Examples*: I think that diet soda will float and regular soda will sink. {This hypothesis misses the goal. It is not specific as we don’t know where the sodas are floating and sinking, and it does not provide any explanation to explain why the hypothesis makes sense} Because diet soda does not contain sugar and regular soda does, the diet soda will float in a bucket of water, while regular soda will sink. {This hypothesis approaches the goal. It is more specific about the conditions, and it provides a partial explanation about why the hypothesis makes sense, but the connection between sugar and sinking is unclear} If diet soda does not contain sugar, then its density (mass/volume) is lower than that of regular soda which does contain sugar, and so diet soda will float in a bucket of water while regular soda sinks. {This hypothesis meets the goal. It is specific and the rationale- sugar affects density and density is what determines floating or sinking in water- is clearly articulated} *Note that these examples are for different experiments and investigations and NOT about your osmosis lab. They are provided only to help you think about what you need to include in your write up. Graph: The graph is a visual representation of the data you gathered while testing your hypothesis. Remember that: • A graph needs a concise title that clearly describes the data that it is showing. • Data must be put on the correct axes of the graph. In general, the data you collected (representing what you are trying to find out about) goes on the vertical (Y) axis. The supporting data that that describes how, when or under what conditions you collected your data goes on the horizontal (X) axis. (For this reason time nearly always goes on the X-axis). • Axes must be labeled, including the units in which data were recorded • Data points should be clearly marked and identified; a key is helpful if more than one group of data is included in the graph. • The scale of a graph is important. It should be consistent (there should be no change in the units or increments on a single axis) and appropriate to the data you collected Examples: {This graph misses the goal. There is no title, nor is there a key to help distinguish what the data points mean. The scale is too large- from 0 to 100 with an increment of 50, when the maximum number in the graph is 25- and makes it hard to interpret this graph. The x-axis is labeled, but without units (the months) and the y-axis has units, but the label is incomplete- number of what?} {This graph meets the goal. There is a descriptive title, and all of the axes are clearly labeled with units. There is a key so that we can distinguish what each set of data points represent. The dependent variable (number of individuals) is correctly placed on the y-axis with the independent variable of time placed on the x-axis. The scale of 0-30 is appropriate to the data, with each line on the x-axis representing an increment of 5.} 0 50 100 Number Month 0 5 10 15 20 25 30 March April May June July Number of individuals Month (2011) Population size of three different madtom catiCish in the Marais de Cygnes River in Spring/Summer 2011 Brindled madtom Neosho madtom Slender madtom Analysis: You need to evaluate your hypothesis based on the data patterns shown by your graph. Remember that: • You use data to determine support or refute your hypothesis. It is only possible to support a hypothesis, not to “prove” one (that would require testing every possible permutation and combination of factors). Your evaluation of your hypothesis should not be contradicted by the pattern shown by your data. • Refer back to the prediction you made as part of your hypothesis and use your data to justify your decision to support or refute your hypothesis. • In the “if” part of your hypothesis you should have provided a rationale, or explanation for the prediction you made in your hypothesis (“then” part of hypothesis”). Use this to help you explain why you think you observed the specific pattern of data revealed in your graph. • You should consider all of the data you collected in examining the support (or lack of support for your hypothesis). If there are unusual data points or “outliers” that don’t seem to fit the general pattern in your graph, explain what you think those mean. Examples: I was right. Diet Pepsi floated and so did Apricot Nectar. Regular Pepsi sank. Obviously the regular Pepsi was heavier. This helps us understand the concept of density, which is a really important one. {This analysis misses the goal. The hypothesis isn’t actually mentioned and the data is only briefly described. There is no explanation of the importance of the Apricot Nectar results. Finally, there is no connection to how these results help understand density or why it is biologically important} I hypothesized that diet soda would float, and all three cans of diet Pepsi did float while the regular Pepsi sank. This supports my hypothesis. Both types of Pepsi were 8.5 fluid ounces in volume, but the regular Pepsi also contained 16 grams of sugar. This means that the regular Pepsi had 16 more grams of mass provided by the sugar in the same amount of volume. This would lead to an increase in density, which explains why the regular soda cans sank. When we put in a can of Apricot Nectar, which had 19 grams of sugar, it floated. This was unexpected, but I think it is explained by the fact that an Apricot Nectar can had a volume of 7 fluid ounces, but the dimensions of the can are the same as that of a Pepsi can. A same-sized can with less liquid probably has an air space that helped it float. The results of this experiment help us understand how the air bladder of a fish, which creates an air space inside the fish, helps it float in the water and also how seaweeds and other living things with air spaces or other factors that decrease their density keep from sinking to the bottom of the water. {This analysis meets the goal. It clearly ties the hypothesis to the results and outlines what they mean. It describes how the results support the hypothesis, but also explains a possible reason behind the unusual results of the Apricot Nectar. Finally, there is a link to how this experiment helps us understand biology}

info@checkyourstudy.com Whatsapp +919911743277
ECON 101 FALL 2015 EXAM 1 NAME:______________________________ 1. Suppose the price elasticity of demand for cheeseburgers equals 1.37. This means the overall demand for cheeseburgers is: A) price elastic. B) price inelastic. C) price unit-elastic. D) perfectly price inelastic. 2. The price elasticity of demand for skiing lessons in New Hampshire is less than 1.00. This means that the demand is ______ in New Hampshire. A) price elastic B) price inelastic C) price unit-elastic D) perfectly price elastic 3. If the demand for textbooks is price inelastic, which of the following would explain this? A) Many alternative textbooks can be used as substitutes. B) Students have a lot of time to adjust to price changes. C) Textbook purchases consume a large portion of most students’ income. D) The good is a necessity. 4. A major state university in the South recently raised tuition by 12%. An economics professor at this university asked his students, “Due to the increase in tuition, how many of you will transfer to another university?” One student out of about 300 said that he or she would transfer. Based on this information, the price elasticity of demand for education at this university is: (Hint: one out of 300 is how much of a percentage change? Which percentage change is greater – tuition or transfer? Apply the basic formula for elasticity that I put on the board a few times.) A) one. B) highly elastic. C) highly inelastic. D) zero. 5. Suppose the price elasticity of demand for fishing lures equals 1 in South Carolina and 0.63 in Alabama. To increase revenue, fishing lure manufacturers should: (Hint: If the demand for a product is inelastic, the price can go up and you’ll still buy it, since there are no or few substitutes. If the demand for a product is elastic, the price can go up and you’ll probably walk away from it, since substitutes are available. How might this info impact the pricing strategies of firms?) A) lower prices in each state. B) raise prices in each state. C) lower prices in South Carolina and raise prices in Alabama. D) leave prices unchanged in South Carolina and raise prices in Alabama. Read your syllabus and answer questions 6 through 10: 6. T or F: Disruptive classroom behavior includes the following: chatting with fellow students, use of electronic devices such as laptops, tablets, notebooks, and cell phones, reading or studying during class, sleeping, arriving late, departing early, studying for another class, or in any other way disturbing the class. 7. T or F: It’s OK to use my computer in class or play with my phone. There is no penalty attached to these activities and Keiser doesn’t really mind. 8. T or F: It’s OK to show up late for class and disrupt one of Keiser’s swashbuckling lectures. 9. T or F: Attendance is highly optional since it doesn’t impact my final course grade. 10. T or F: I should blow off the career plan/business plan assignment in this course because it’s unimportant to my future and not worth many points. 11. Jacquelyn is a student at a major state university. Which of the following is not an example of an explicit, or direct, cost of her attending college? A) Tuition B) Textbooks C) the salary that she could have earned working full time D) computer lab fees 12. The two principles of tax fairness are: A) the minimize distortions principle and the maximize revenue principle. B) the benefits principle and the ability-to-pay principle. C) the proportional tax principle and the ability-to-pay principle. D) the equity principle and the efficiency principle. 13. The benefits principles says: A) the amount of tax paid depends on the measure of value. B) those who benefit from public spending should bear the burden of the tax that pays for that spending. C) those with greater ability to pay should pay more tax. D) those who benefit from the tax should pay the same percentage of the tax base as those who do not benefit. 14. A tax that rises less than in proportion to income is described as: (Hint: This would have more of a negative impact on lower income earners vs. higher income earners.) A) progressive. B) proportional. C) regressive. D) structural. 15. The U.S. income tax is _______, while the payroll tax is _______. (Hint: Think income tax vs. Social Security tax.) A) progressive; progressive C) regressive; progressive B) progressive; regressive D) regressive; regressive 16. Who is currently leading in the polls to receive the Republican nomination as that party’s presidential candidate? A) Qasem Soleimani B) Abu Bakr al-Baghdadi C) Osama bin Laden D) Donald J. Trump 17. The single most important thing I’ve learned in class this term is: A) stay in frickin’ school B) stay in school and make a plan for life and my career C) the use of cheese for skyscraper construction D) both A and B above 18. Market equilibrium occurs when: A) there is no incentive for prices to change in the market. B) quantity demanded equals quantity supplied. C) the market clears. D) all of the above occur. 19. Excess supply occurs when: (Hint: Draw a supply and demand graph! Think about price ceilings and floors and the graphs of these we discussed in class.) A) the price is above the equilibrium price. B) the quantity demanded exceeds the quantity supplied. C) the price is below the equilibrium price. D) both b and c occur. 20. The single most important thing I’ve learned in class this term is: a. stay in school and look into either a study abroad or internship experience b. stay in school and make a plan for life and my career c. the untimely demise of Cecil the lion in Zimbabwe d. both a. and b. above 21. According to the textbook definition, mainstream microeconomics generally focuses on a. how individual decision-making units, like households and firms, make economic decisions. b. the performance of the national economy and policies to improve this performance. c. the relationship between economic and political institutions. d. the general level of prices in the national economy. 22. Which of the following is the best summary of the three basic economic questions? a. Who? Why? and When? b. What? How? and Who? c. When? Where? and Why? d. What? Where? and Who? 23. Which of the following is not one of the basic economic resources? a. land b. labor c. capital d. cheese e. entrepreneurship 24. The largest country in the Arabian Peninsula and home to the cities of Riyadh, Jeddah, Mecca, and Medina is: a. The Kingdom of Saudi Arabia b. California c. Spain d. Kentucky 25. T or F: The law of demand explains the upward slope of the supply curve. 26. In economics, a “marginal” value refers to: a. the value associated with an important or marginal activity. b. a value entered as an explanatory item in the margin of a balance sheet or other accounts. c. the value associated with one more unit of an activity. d. a value that is most appropriately identified in a footnote. 27. A government mandated price that is below the market equilibrium price is sometimes called. . . (Hint: Draw a graph again and think about what the government is trying to accomplish.) a. a price ceiling. b. a price floor. c. a market clearing price. d. a reservation price. 28. T or F: Entering the US job market without any education or training is crazy and should be avoided. Stay in frickin’ school, baby! 29. The law of demand states that, other things equal: a. as the price increases, the quantity demanded will increase. b. as the price decreases, the demand curve will shift to the right. c. as the price increases, the quantity demanded will decrease. d. none of the above. 30. The law of supply says: a. other things equal, the quantity supplied of a good is inversely related to the price of the good. b. other things equal, the supply of a good creates its own demand. c. other things equal, the quantity supplied of a good is positively related to the price of the good. d. none of the above. 31. A perfectly inelastic demand curve is: a. horizontal. b. downward sloping. c. upward sloping. d. vertical. 32. A trade-off involves weighing costs and benefits. a. true b. false 33. A perfectly elastic demand curve is: a. horizontal. b. downward sloping. c. upward sloping. d. vertical. 34. The second most important thing I’ve learned in class this term is: a. despair is not an option b. Donald J. Trump’s hair is real c. the use of cheese for skyscraper construction d. none of the above 35. T or F: Virtually any news item has important economic dimensions and consequences. 36. T or F: When studying economics, always think in terms of historical context. 37. This popular Asian country is populated by 1.3 billion people, has the world’s second largest economy, and uses a language that’s been in continuous use for nearly 5,000 years: a. Kentucky b. California c. Spain d. China 38. T or F: The top priority in my life right now should be my education and an internship experience. Without these, the job market is going to kick my butt! 39. Which of the following is a key side effect generated by the use of price ceilings? a. black markets b. products with too high of quality c. an excess supply of a good d. too many resources artificially channeled into the production of a good 40. Which of the following is NOT one of the four basic principles for understanding individual choice? a. Resources are scarce. b. The real cost of something is the money that you must pay to get it. c. “How much?” is a decision at the margin. d. People usually take advantage of opportunities to make themselves better off. 41. A hot mixture of pan drippings, flour, and water is commonly known as: a. interest rates and expected future real GDP. b. interest rates and current real GDP. c. inflation and expected future real GDP. d. gravy. 42. The example we used in class when discussing the inefficiency of quantity quotas was: a. Uber b. General Electric c. AT&T d. the KSU marching band 43. The term we learned in class signifying a key method of non-price competition is: a. excess supply chain management b. arbitrage c. swashbuckling d. product differentiation 44. When discussing market failure and the role of regulation in class, which company/product did we use as an example? a. Pabst Blue Ribbon b. JetBlue c. Blue Bell d. Blue Apron 45. Governments may place relatively high sales taxes on goods such as alcohol and tobacco because: a. such taxes are a significant source of revenue b. such goods exhibit inelastic demand c. such taxes may discourage use of these products d. all of the above 46. When discussing the cost of higher education in class, which country did we cite as an example of one that offers free college for qualifying students? a. USSR b. Rhodesia c. Czechoslovakia d. Germany 47. Which of the following is not an example of market failure we discussed in class? a. externalities b. public goods c. fungible goods d. common pool resources e. equity 48. T or F: As we discussed in class, the real reason why the US has lost jobs to China is the “most favored nation” (MFN) trading status granted to China by the US back in the 1980s. 49. The dude we talked about in class who coined the expression “invisible hand” and promoted self-interest and competition in his famous book “The Wealth of Nations” is: a. Abu Bakr al-Baghdadi b. Ali Khamenei c. Donald J. Trump d. Adam Smith 50. When studying for your final exams and attempting to allocate your limited time among several subjects in order to maximize your course grades (recall, we talked about this example during the first week of class), you’re almost unconsciously engaging in a form of: a. fraud b. miscellaneous serendipity b. mitosis d. marginal analysis

ECON 101 FALL 2015 EXAM 1 NAME:______________________________ 1. Suppose the price elasticity of demand for cheeseburgers equals 1.37. This means the overall demand for cheeseburgers is: A) price elastic. B) price inelastic. C) price unit-elastic. D) perfectly price inelastic. 2. The price elasticity of demand for skiing lessons in New Hampshire is less than 1.00. This means that the demand is ______ in New Hampshire. A) price elastic B) price inelastic C) price unit-elastic D) perfectly price elastic 3. If the demand for textbooks is price inelastic, which of the following would explain this? A) Many alternative textbooks can be used as substitutes. B) Students have a lot of time to adjust to price changes. C) Textbook purchases consume a large portion of most students’ income. D) The good is a necessity. 4. A major state university in the South recently raised tuition by 12%. An economics professor at this university asked his students, “Due to the increase in tuition, how many of you will transfer to another university?” One student out of about 300 said that he or she would transfer. Based on this information, the price elasticity of demand for education at this university is: (Hint: one out of 300 is how much of a percentage change? Which percentage change is greater – tuition or transfer? Apply the basic formula for elasticity that I put on the board a few times.) A) one. B) highly elastic. C) highly inelastic. D) zero. 5. Suppose the price elasticity of demand for fishing lures equals 1 in South Carolina and 0.63 in Alabama. To increase revenue, fishing lure manufacturers should: (Hint: If the demand for a product is inelastic, the price can go up and you’ll still buy it, since there are no or few substitutes. If the demand for a product is elastic, the price can go up and you’ll probably walk away from it, since substitutes are available. How might this info impact the pricing strategies of firms?) A) lower prices in each state. B) raise prices in each state. C) lower prices in South Carolina and raise prices in Alabama. D) leave prices unchanged in South Carolina and raise prices in Alabama. Read your syllabus and answer questions 6 through 10: 6. T or F: Disruptive classroom behavior includes the following: chatting with fellow students, use of electronic devices such as laptops, tablets, notebooks, and cell phones, reading or studying during class, sleeping, arriving late, departing early, studying for another class, or in any other way disturbing the class. 7. T or F: It’s OK to use my computer in class or play with my phone. There is no penalty attached to these activities and Keiser doesn’t really mind. 8. T or F: It’s OK to show up late for class and disrupt one of Keiser’s swashbuckling lectures. 9. T or F: Attendance is highly optional since it doesn’t impact my final course grade. 10. T or F: I should blow off the career plan/business plan assignment in this course because it’s unimportant to my future and not worth many points. 11. Jacquelyn is a student at a major state university. Which of the following is not an example of an explicit, or direct, cost of her attending college? A) Tuition B) Textbooks C) the salary that she could have earned working full time D) computer lab fees 12. The two principles of tax fairness are: A) the minimize distortions principle and the maximize revenue principle. B) the benefits principle and the ability-to-pay principle. C) the proportional tax principle and the ability-to-pay principle. D) the equity principle and the efficiency principle. 13. The benefits principles says: A) the amount of tax paid depends on the measure of value. B) those who benefit from public spending should bear the burden of the tax that pays for that spending. C) those with greater ability to pay should pay more tax. D) those who benefit from the tax should pay the same percentage of the tax base as those who do not benefit. 14. A tax that rises less than in proportion to income is described as: (Hint: This would have more of a negative impact on lower income earners vs. higher income earners.) A) progressive. B) proportional. C) regressive. D) structural. 15. The U.S. income tax is _______, while the payroll tax is _______. (Hint: Think income tax vs. Social Security tax.) A) progressive; progressive C) regressive; progressive B) progressive; regressive D) regressive; regressive 16. Who is currently leading in the polls to receive the Republican nomination as that party’s presidential candidate? A) Qasem Soleimani B) Abu Bakr al-Baghdadi C) Osama bin Laden D) Donald J. Trump 17. The single most important thing I’ve learned in class this term is: A) stay in frickin’ school B) stay in school and make a plan for life and my career C) the use of cheese for skyscraper construction D) both A and B above 18. Market equilibrium occurs when: A) there is no incentive for prices to change in the market. B) quantity demanded equals quantity supplied. C) the market clears. D) all of the above occur. 19. Excess supply occurs when: (Hint: Draw a supply and demand graph! Think about price ceilings and floors and the graphs of these we discussed in class.) A) the price is above the equilibrium price. B) the quantity demanded exceeds the quantity supplied. C) the price is below the equilibrium price. D) both b and c occur. 20. The single most important thing I’ve learned in class this term is: a. stay in school and look into either a study abroad or internship experience b. stay in school and make a plan for life and my career c. the untimely demise of Cecil the lion in Zimbabwe d. both a. and b. above 21. According to the textbook definition, mainstream microeconomics generally focuses on a. how individual decision-making units, like households and firms, make economic decisions. b. the performance of the national economy and policies to improve this performance. c. the relationship between economic and political institutions. d. the general level of prices in the national economy. 22. Which of the following is the best summary of the three basic economic questions? a. Who? Why? and When? b. What? How? and Who? c. When? Where? and Why? d. What? Where? and Who? 23. Which of the following is not one of the basic economic resources? a. land b. labor c. capital d. cheese e. entrepreneurship 24. The largest country in the Arabian Peninsula and home to the cities of Riyadh, Jeddah, Mecca, and Medina is: a. The Kingdom of Saudi Arabia b. California c. Spain d. Kentucky 25. T or F: The law of demand explains the upward slope of the supply curve. 26. In economics, a “marginal” value refers to: a. the value associated with an important or marginal activity. b. a value entered as an explanatory item in the margin of a balance sheet or other accounts. c. the value associated with one more unit of an activity. d. a value that is most appropriately identified in a footnote. 27. A government mandated price that is below the market equilibrium price is sometimes called. . . (Hint: Draw a graph again and think about what the government is trying to accomplish.) a. a price ceiling. b. a price floor. c. a market clearing price. d. a reservation price. 28. T or F: Entering the US job market without any education or training is crazy and should be avoided. Stay in frickin’ school, baby! 29. The law of demand states that, other things equal: a. as the price increases, the quantity demanded will increase. b. as the price decreases, the demand curve will shift to the right. c. as the price increases, the quantity demanded will decrease. d. none of the above. 30. The law of supply says: a. other things equal, the quantity supplied of a good is inversely related to the price of the good. b. other things equal, the supply of a good creates its own demand. c. other things equal, the quantity supplied of a good is positively related to the price of the good. d. none of the above. 31. A perfectly inelastic demand curve is: a. horizontal. b. downward sloping. c. upward sloping. d. vertical. 32. A trade-off involves weighing costs and benefits. a. true b. false 33. A perfectly elastic demand curve is: a. horizontal. b. downward sloping. c. upward sloping. d. vertical. 34. The second most important thing I’ve learned in class this term is: a. despair is not an option b. Donald J. Trump’s hair is real c. the use of cheese for skyscraper construction d. none of the above 35. T or F: Virtually any news item has important economic dimensions and consequences. 36. T or F: When studying economics, always think in terms of historical context. 37. This popular Asian country is populated by 1.3 billion people, has the world’s second largest economy, and uses a language that’s been in continuous use for nearly 5,000 years: a. Kentucky b. California c. Spain d. China 38. T or F: The top priority in my life right now should be my education and an internship experience. Without these, the job market is going to kick my butt! 39. Which of the following is a key side effect generated by the use of price ceilings? a. black markets b. products with too high of quality c. an excess supply of a good d. too many resources artificially channeled into the production of a good 40. Which of the following is NOT one of the four basic principles for understanding individual choice? a. Resources are scarce. b. The real cost of something is the money that you must pay to get it. c. “How much?” is a decision at the margin. d. People usually take advantage of opportunities to make themselves better off. 41. A hot mixture of pan drippings, flour, and water is commonly known as: a. interest rates and expected future real GDP. b. interest rates and current real GDP. c. inflation and expected future real GDP. d. gravy. 42. The example we used in class when discussing the inefficiency of quantity quotas was: a. Uber b. General Electric c. AT&T d. the KSU marching band 43. The term we learned in class signifying a key method of non-price competition is: a. excess supply chain management b. arbitrage c. swashbuckling d. product differentiation 44. When discussing market failure and the role of regulation in class, which company/product did we use as an example? a. Pabst Blue Ribbon b. JetBlue c. Blue Bell d. Blue Apron 45. Governments may place relatively high sales taxes on goods such as alcohol and tobacco because: a. such taxes are a significant source of revenue b. such goods exhibit inelastic demand c. such taxes may discourage use of these products d. all of the above 46. When discussing the cost of higher education in class, which country did we cite as an example of one that offers free college for qualifying students? a. USSR b. Rhodesia c. Czechoslovakia d. Germany 47. Which of the following is not an example of market failure we discussed in class? a. externalities b. public goods c. fungible goods d. common pool resources e. equity 48. T or F: As we discussed in class, the real reason why the US has lost jobs to China is the “most favored nation” (MFN) trading status granted to China by the US back in the 1980s. 49. The dude we talked about in class who coined the expression “invisible hand” and promoted self-interest and competition in his famous book “The Wealth of Nations” is: a. Abu Bakr al-Baghdadi b. Ali Khamenei c. Donald J. Trump d. Adam Smith 50. When studying for your final exams and attempting to allocate your limited time among several subjects in order to maximize your course grades (recall, we talked about this example during the first week of class), you’re almost unconsciously engaging in a form of: a. fraud b. miscellaneous serendipity b. mitosis d. marginal analysis

info@checkyourstudy.com
The Agawam High School band is playing some lively marches while the coaches are giving pep talks to their respective football squads. Although it is September, it is unseasonably hot (88°F/31°C) and the band uniforms are wool. Suddenly, Harry the tuba player becomes light-headed and faints. Explain his fainting in terms of vascular events

The Agawam High School band is playing some lively marches while the coaches are giving pep talks to their respective football squads. Although it is September, it is unseasonably hot (88°F/31°C) and the band uniforms are wool. Suddenly, Harry the tuba player becomes light-headed and faints. Explain his fainting in terms of vascular events

Harry’s condition suggests that this is a case of transient … Read More...
Assignment 8 Due: 11:59pm on Friday, April 4, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 10.3 Part A If a particle’s speed increases by a factor of 5, by what factor does its kinetic energy change? ANSWER: Correct Conceptual Question 10.11 A spring is compressed 1.5 . Part A How far must you compress a spring with twice the spring constant to store the same amount of energy? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct = 25 K2 K1 cm x = 1.1 cm Problem 10.2 The lowest point in Death Valley is below sea level. The summit of nearby Mt. Whitney has an elevation of 4420 . Part A What is the change in potential energy of an energetic 80 hiker who makes it from the floor of Death Valley to the top of Mt.Whitney? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 10.3 Part A At what speed does a 1800 compact car have the same kinetic energy as a 1.80×104 truck going 21.0 ? Express your answer with the appropriate units. ANSWER: Correct Problem 10.5 A boy reaches out of a window and tosses a ball straight up with a speed of 13 . The ball is 21 above the ground as he releases it. 85m m kg U = 3.5×106 J kg kg km/hr vc = 66.4 km hr m/s m Part A Use energy to find the ball’s maximum height above the ground. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B Use energy to find the ball’s speed as it passes the window on its way down. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C Use energy to find the speed of impact on the ground. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Hmax = 30 m v = 13 ms v = 24 ms Problem 10.8 A 59.0 skateboarder wants to just make it to the upper edge of a “quarter pipe,” a track that is one-quarter of a circle with a radius of 2.30 . Part A What speed does he need at the bottom? Express your answer with the appropriate units. ANSWER: Correct Problem 10.12 A 1500 car traveling at 12 suddenly runs out of gas while approaching the valley shown in the figure. The alert driver immediately puts the car in neutral so that it will roll. Part A kg m 6.71 ms kg m/s What will be the car’s speed as it coasts into the gas station on the other side of the valley? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Ups and Downs Learning Goal: To apply the law of conservation of energy to an object launched upward in the gravitational field of the earth. In the absence of nonconservative forces such as friction and air resistance, the total mechanical energy in a closed system is conserved. This is one particular case of the law of conservation of energy. In this problem, you will apply the law of conservation of energy to different objects launched from the earth. The energy transformations that take place involve the object’s kinetic energy and its gravitational potential energy . The law of conservation of energy for such cases implies that the sum of the object’s kinetic energy and potential energy does not change with time. This idea can be expressed by the equation , where “i” denotes the “initial” moment and “f” denotes the “final” moment. Since any two moments will work, the choice of the moments to consider is, technically, up to you. That choice, though, is usually suggested by the question posed in the problem. First, let us consider an object launched vertically upward with an initial speed . Neglect air resistance. Part A As the projectile goes upward, what energy changes take place? ANSWER: v = 6.8 ms K = (1/2)mv2 U = mgh Ki + Ui = Kf + Uf v Correct Part B At the top point of the flight, what can be said about the projectile’s kinetic and potential energy? ANSWER: Correct Strictly speaking, it is not the ball that possesses potential energy; rather, it is the system “Earth-ball.” Although we will often talk about “the gravitational potential energy of an elevated object,” it is useful to keep in mind that the energy, in fact, is associated with the interactions between the earth and the elevated object. Part C The potential energy of the object at the moment of launch __________. ANSWER: Both kinetic and potential energy decrease. Both kinetic and potential energy increase. Kinetic energy decreases; potential energy increases. Kinetic energy increases; potential energy decreases. Both kinetic and potential energy are at their maximum values. Both kinetic and potential energy are at their minimum values. Kinetic energy is at a maximum; potential energy is at a minimum. Kinetic energy is at a minimum; potential energy is at a maximum. Correct Usually, the zero level is chosen so as to make the relevant calculations simpler. In this case, it makes good sense to assume that at the ground level–but this is not, by any means, the only choice! Part D Using conservation of energy, find the maximum height to which the object will rise. Express your answer in terms of and the magnitude of the acceleration of gravity . ANSWER: Correct You may remember this result from kinematics. It is comforting to know that our new approach yields the same answer. Part E At what height above the ground does the projectile have a speed of ? Express your answer in terms of and the magnitude of the acceleration of gravity . ANSWER: is negative is positive is zero depends on the choice of the “zero level” of potential energy U = 0 hmax v g hmax = v2 2g h 0.5v v g h = 3 v2 8g Correct Part F What is the speed of the object at the height of ? Express your answer in terms of and . Use three significant figures in the numeric coefficient. Hint 1. How to approach the problem You are being asked for the speed at half of the maximum height. You know that at the initial height ( ), the speed is . All of the energy is kinetic energy, and so, the total energy is . At the maximum height, all of the energy is potential energy. Since the gravitational potential energy is proportional to , half of the initial kinetic energy must have been converted to potential energy when the projectile is at . Thus, the kinetic energy must be half of its original value (i.e., when ). You need to determine the speed, as a multiple of , that corresponds to such a kinetic energy. ANSWER: Correct Let us now consider objects launched at an angle. For such situations, using conservation of energy leads to a quicker solution than can be produced by kinematics. Part G A ball is launched as a projectile with initial speed at an angle above the horizontal. Using conservation of energy, find the maximum height of the ball’s flight. Express your answer in terms of , , and . Hint 1. Find the final kinetic energy Find the final kinetic energy of the ball. Here, the best choice of “final” moment is the point at which the ball reaches its maximum height, since this is the point we are interested in. u (1/2)hmax v g h = 0 v (1/2)mv2 h (1/2)hmax (1/4)mv2 h = (1/2)hmax v u = 0.707v v hmax v g Kf Express your answer in terms of , , and . Hint 1. Find the speed at the maximum height The speed of the ball at the maximum height is __________. ANSWER: ANSWER: ANSWER: Correct Part H A ball is launched with initial speed from ground level up a frictionless slope. The slope makes an angle with the horizontal. Using conservation of energy, find the maximum vertical height to which the ball will climb. Express your answer in terms of , , and . You may or may not use all of these quantities. v m 0 v v cos v sin v tan Kf = 0.5m(vcos( ))2 hmax = (vsin( ))2 2g v hmax v g ANSWER: Correct Interestingly, the answer does not depend on . The difference between this situation and the projectile case is that the ball moving up a slope has no kinetic energy at the top of its trajectory whereas the projectile launched at an angle does. Part I A ball is launched with initial speed from the ground level up a frictionless hill. The hill becomes steeper as the ball slides up; however, the ball remains in contact with the hill at all times. Using conservation of energy, find the maximum vertical height to which the ball will climb. Express your answer in terms of and . ANSWER: Correct The profile of the hill does not matter; the equation would have the same terms regardless of the steepness of the hill. Problem 10.14 A 12- -long spring is attached to the ceiling. When a 2.2 mass is hung from it, the spring stretches to a length of 17 . Part A What is the spring constant ? Express your answer to two significant figures and include the appropriate units. hmax = v2 2g v hmax v g hmax = v2 2g Ki + Ui = Kf + Uf cm kg cm k ANSWER: Correct Part B How long is the spring when a 3.0 mass is suspended from it? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 10.17 A 6.2 mass hanging from a spring scale is slowly lowered onto a vertical spring, as shown in . You may want to review ( pages 255 – 257) . For help with math skills, you may want to review: Solving Algebraic Equations = 430 k Nm kg y = 19 cm kg Part A What does the spring scale read just before the mass touches the lower spring? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture showing the forces acting on the mass before it touches the scale. What is the net force on the mass? What is the force on the mass due to gravity? What is the force on the mass due to the scale? ANSWER: Correct Part B The scale reads 22 when the lower spring has been compressed by 2.7 . What is the value of the spring constant for the lower spring? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture showing the forces acting on the mass. What is the net force on the mass? What is the force on the mass due to gravity? What is the force on the mass due to the scale? Use these to determine the force on the mass by the spring, taking note of the directions from your picture. How is the spring constant related to the force by the spring and the compression of the spring? Check your units. ANSWER: F = 61 N N cm k = 1400 k Nm Correct Part C At what compression length will the scale read zero? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture showing the forces on the mass. When the scale reads zero, what is the force on the mass due to the scale? What is the gravitational force on the mass? What is the force on the mass by the spring? How is the compression length related to the force by the spring and the spring constant? Check your units. ANSWER: Correct Problem 10.18 Part A How far must you stretch a spring with = 800 to store 180 of energy? Express your answer to two significant figures and include the appropriate units. ANSWER: y = 4.2 cm k N/m J Correct Problem 10.22 A 15 runaway grocery cart runs into a spring with spring constant 230 and compresses it by 57 . Part A What was the speed of the cart just before it hit the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Spring Gun A spring-loaded toy gun is used to shoot a ball straight up in the air. The ball reaches a maximum height , measured from the equilibrium position of the spring. s = 0.67 m kg N/m cm v = 2.2 ms H Part A The same ball is shot straight up a second time from the same gun, but this time the spring is compressed only half as far before firing. How far up does the ball go this time? Neglect friction. Assume that the spring is ideal and that the distance by which the spring is compressed is negligible compared to . Hint 1. Potential energy of the spring The potential energy of a spring is proportional to the square of the distance the spring is compressed. The spring was compressed half the distance, so the mass, when launched, has one quarter of the energy as in the first trial. Hint 2. Potential energy of the ball At the highest point in the ball’s trajectory, all of the spring’s potential energy has been converted into gravitational potential energy of the ball. ANSWER: Correct A Bullet Is Fired into a Wooden Block A bullet of mass is fired horizontally with speed at a wooden block of mass resting on a frictionless table. The bullet hits the block and becomes completely embedded within it. After the bullet has come to rest within the block, the block, with the bullet in it, is traveling at speed . H height = H 4 mb vi mw vf Part A Which of the following best describes this collision? Hint 1. Types of collisions An inelastic collision is a collision in which kinetic energy is not conserved. In a partially inelastic collision, kinetic energy is lost, but the objects colliding do not stick together. From this information, you can infer what completely inelastic and elastic collisions are. ANSWER: Correct Part B Which of the following quantities, if any, are conserved during this collision? Hint 1. When is kinetic energy conserved? Kinetic energy is conserved only in perfectly elastic collisions. ANSWER: perfectly elastic partially inelastic perfectly inelastic Correct Part C What is the speed of the block/bullet system after the collision? Express your answer in terms of , , and . Hint 1. Find the momentum after the collision What is the total momentum of the block/bullet system after the collision? Express your answer in terms of and other given quantities. ANSWER: Hint 2. Use conservation of momentum The momentum of the block/bullet system is conserved. Therefore, the momentum before the collision is the same as the momentum after the collision. Find a second expression for , this time expressed as the total momentum of the system before the collision. Express your answer in terms of and other given quantities. ANSWER: kinetic energy only momentum only kinetic energy and momentum neither momentum nor kinetic energy vi mw mb ptotal vf ptotal = (mw + mb)vf ptotal vi ptotal = mbvi ANSWER: Correct Problem 10.31 Ball 1, with a mass of 150 and traveling at 15.0 , collides head on with ball 2, which has a mass of 340 and is initially at rest. Part A What are the final velocities of each ball if the collision is perfectly elastic? Express your answer with the appropriate units. ANSWER: Correct Part B Express your answer with the appropriate units. ANSWER: Correct Part C vf = mb vi mb+mw g m/s g (vfx) = -5.82 1 ms (vfx) = 9.18 2 ms What are the final velocities of each ball if the collision is perfectly inelastic? Express your answer with the appropriate units. ANSWER: Correct Part D Express your answer with the appropriate units. ANSWER: Correct Enhanced EOC: Problem 10.43 A package of mass is released from rest at a warehouse loading dock and slides down the = 2.2 – high, frictionless chute to a waiting truck. Unfortunately, the truck driver went on a break without having removed the previous package, of mass , from the bottom of the chute. You may want to review ( pages 265 – 269) . For help with math skills, you may want to review: Solving Algebraic Equations (vfx) = 4.59 1 ms (vfx) = 4.59 2 ms m h m 2m Part A Suppose the packages stick together. What is their common speed after the collision? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem There are two parts to this problem: the block sliding down the frictionless incline and the collision. What conservation laws are valid in each part? In terms of , what are the kinetic and potential energies of the block at the top of the incline? What is the potential energy of the same block at the bottom just before the collision? What are the kinetic energy and velocity of block just before the collision? What is conserved during the collision? What is the total momentum of the two blocks before the collision? What is the momentum of the two blocks stuck together after the collision? What is the velocity of the two blocks after the collision? ANSWER: Correct Part B Suppose the collision between the packages is perfectly elastic. To what height does the package of mass rebound? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem There are three parts to this problem: the block sliding down the incline, the collision, and mass going back up the incline. What conservation laws are valid in each part? m m v = 2.2 ms m m What is an elastic collision? For an elastic collision, how are the initial and final velocities related when one of the masses is initially at rest? Using the velocity of just before the collision from Part A, what is the velocity of just after the collision in this case? What are the kinetic and potential energies of mass just after the collision? What is the kinetic energy of mass at its maximum rebound height? Using conservation of energy, what is the potential energy of mass at its maximum height? What is the maximum height? ANSWER: Correct Problem 10.35 A cannon tilted up at a 35.0 angle fires a cannon ball at 79.0 from atop a 21.0 -high fortress wall. Part A What is the ball’s impact speed on the ground below? Express your answer with the appropriate units. ANSWER: Correct Problem 10.45 A 1000 safe is 2.5 above a heavy-duty spring when the rope holding the safe breaks. The safe hits the spring and compresses it 48 . m m m m m h = 24 cm $ m/s m vf = 81.6 ms kg m cm Part A What is the spring constant of the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 10.49 A 100 block on a frictionless table is firmly attached to one end of a spring with = 21 . The other end of the spring is anchored to the wall. A 30 ball is thrown horizontally toward the block with a speed of 6.0 . Part A If the collision is perfectly elastic, what is the ball’s speed immediately after the collision? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the maximum compression of the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: = 2.5×105 k Nm g k N/m g m/s v = 3.2 ms Correct Part C Repeat part A for the case of a perfectly inelastic collision. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part D Repeat part B for the case of a perfectly inelastic collision. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 99.4%. You received 120.28 out of a possible total of 121 points. x = 0.19 m v = 1.4 ms x = 0.11 m

Assignment 8 Due: 11:59pm on Friday, April 4, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 10.3 Part A If a particle’s speed increases by a factor of 5, by what factor does its kinetic energy change? ANSWER: Correct Conceptual Question 10.11 A spring is compressed 1.5 . Part A How far must you compress a spring with twice the spring constant to store the same amount of energy? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct = 25 K2 K1 cm x = 1.1 cm Problem 10.2 The lowest point in Death Valley is below sea level. The summit of nearby Mt. Whitney has an elevation of 4420 . Part A What is the change in potential energy of an energetic 80 hiker who makes it from the floor of Death Valley to the top of Mt.Whitney? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 10.3 Part A At what speed does a 1800 compact car have the same kinetic energy as a 1.80×104 truck going 21.0 ? Express your answer with the appropriate units. ANSWER: Correct Problem 10.5 A boy reaches out of a window and tosses a ball straight up with a speed of 13 . The ball is 21 above the ground as he releases it. 85m m kg U = 3.5×106 J kg kg km/hr vc = 66.4 km hr m/s m Part A Use energy to find the ball’s maximum height above the ground. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B Use energy to find the ball’s speed as it passes the window on its way down. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C Use energy to find the speed of impact on the ground. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Hmax = 30 m v = 13 ms v = 24 ms Problem 10.8 A 59.0 skateboarder wants to just make it to the upper edge of a “quarter pipe,” a track that is one-quarter of a circle with a radius of 2.30 . Part A What speed does he need at the bottom? Express your answer with the appropriate units. ANSWER: Correct Problem 10.12 A 1500 car traveling at 12 suddenly runs out of gas while approaching the valley shown in the figure. The alert driver immediately puts the car in neutral so that it will roll. Part A kg m 6.71 ms kg m/s What will be the car’s speed as it coasts into the gas station on the other side of the valley? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Ups and Downs Learning Goal: To apply the law of conservation of energy to an object launched upward in the gravitational field of the earth. In the absence of nonconservative forces such as friction and air resistance, the total mechanical energy in a closed system is conserved. This is one particular case of the law of conservation of energy. In this problem, you will apply the law of conservation of energy to different objects launched from the earth. The energy transformations that take place involve the object’s kinetic energy and its gravitational potential energy . The law of conservation of energy for such cases implies that the sum of the object’s kinetic energy and potential energy does not change with time. This idea can be expressed by the equation , where “i” denotes the “initial” moment and “f” denotes the “final” moment. Since any two moments will work, the choice of the moments to consider is, technically, up to you. That choice, though, is usually suggested by the question posed in the problem. First, let us consider an object launched vertically upward with an initial speed . Neglect air resistance. Part A As the projectile goes upward, what energy changes take place? ANSWER: v = 6.8 ms K = (1/2)mv2 U = mgh Ki + Ui = Kf + Uf v Correct Part B At the top point of the flight, what can be said about the projectile’s kinetic and potential energy? ANSWER: Correct Strictly speaking, it is not the ball that possesses potential energy; rather, it is the system “Earth-ball.” Although we will often talk about “the gravitational potential energy of an elevated object,” it is useful to keep in mind that the energy, in fact, is associated with the interactions between the earth and the elevated object. Part C The potential energy of the object at the moment of launch __________. ANSWER: Both kinetic and potential energy decrease. Both kinetic and potential energy increase. Kinetic energy decreases; potential energy increases. Kinetic energy increases; potential energy decreases. Both kinetic and potential energy are at their maximum values. Both kinetic and potential energy are at their minimum values. Kinetic energy is at a maximum; potential energy is at a minimum. Kinetic energy is at a minimum; potential energy is at a maximum. Correct Usually, the zero level is chosen so as to make the relevant calculations simpler. In this case, it makes good sense to assume that at the ground level–but this is not, by any means, the only choice! Part D Using conservation of energy, find the maximum height to which the object will rise. Express your answer in terms of and the magnitude of the acceleration of gravity . ANSWER: Correct You may remember this result from kinematics. It is comforting to know that our new approach yields the same answer. Part E At what height above the ground does the projectile have a speed of ? Express your answer in terms of and the magnitude of the acceleration of gravity . ANSWER: is negative is positive is zero depends on the choice of the “zero level” of potential energy U = 0 hmax v g hmax = v2 2g h 0.5v v g h = 3 v2 8g Correct Part F What is the speed of the object at the height of ? Express your answer in terms of and . Use three significant figures in the numeric coefficient. Hint 1. How to approach the problem You are being asked for the speed at half of the maximum height. You know that at the initial height ( ), the speed is . All of the energy is kinetic energy, and so, the total energy is . At the maximum height, all of the energy is potential energy. Since the gravitational potential energy is proportional to , half of the initial kinetic energy must have been converted to potential energy when the projectile is at . Thus, the kinetic energy must be half of its original value (i.e., when ). You need to determine the speed, as a multiple of , that corresponds to such a kinetic energy. ANSWER: Correct Let us now consider objects launched at an angle. For such situations, using conservation of energy leads to a quicker solution than can be produced by kinematics. Part G A ball is launched as a projectile with initial speed at an angle above the horizontal. Using conservation of energy, find the maximum height of the ball’s flight. Express your answer in terms of , , and . Hint 1. Find the final kinetic energy Find the final kinetic energy of the ball. Here, the best choice of “final” moment is the point at which the ball reaches its maximum height, since this is the point we are interested in. u (1/2)hmax v g h = 0 v (1/2)mv2 h (1/2)hmax (1/4)mv2 h = (1/2)hmax v u = 0.707v v hmax v g Kf Express your answer in terms of , , and . Hint 1. Find the speed at the maximum height The speed of the ball at the maximum height is __________. ANSWER: ANSWER: ANSWER: Correct Part H A ball is launched with initial speed from ground level up a frictionless slope. The slope makes an angle with the horizontal. Using conservation of energy, find the maximum vertical height to which the ball will climb. Express your answer in terms of , , and . You may or may not use all of these quantities. v m 0 v v cos v sin v tan Kf = 0.5m(vcos( ))2 hmax = (vsin( ))2 2g v hmax v g ANSWER: Correct Interestingly, the answer does not depend on . The difference between this situation and the projectile case is that the ball moving up a slope has no kinetic energy at the top of its trajectory whereas the projectile launched at an angle does. Part I A ball is launched with initial speed from the ground level up a frictionless hill. The hill becomes steeper as the ball slides up; however, the ball remains in contact with the hill at all times. Using conservation of energy, find the maximum vertical height to which the ball will climb. Express your answer in terms of and . ANSWER: Correct The profile of the hill does not matter; the equation would have the same terms regardless of the steepness of the hill. Problem 10.14 A 12- -long spring is attached to the ceiling. When a 2.2 mass is hung from it, the spring stretches to a length of 17 . Part A What is the spring constant ? Express your answer to two significant figures and include the appropriate units. hmax = v2 2g v hmax v g hmax = v2 2g Ki + Ui = Kf + Uf cm kg cm k ANSWER: Correct Part B How long is the spring when a 3.0 mass is suspended from it? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 10.17 A 6.2 mass hanging from a spring scale is slowly lowered onto a vertical spring, as shown in . You may want to review ( pages 255 – 257) . For help with math skills, you may want to review: Solving Algebraic Equations = 430 k Nm kg y = 19 cm kg Part A What does the spring scale read just before the mass touches the lower spring? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture showing the forces acting on the mass before it touches the scale. What is the net force on the mass? What is the force on the mass due to gravity? What is the force on the mass due to the scale? ANSWER: Correct Part B The scale reads 22 when the lower spring has been compressed by 2.7 . What is the value of the spring constant for the lower spring? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture showing the forces acting on the mass. What is the net force on the mass? What is the force on the mass due to gravity? What is the force on the mass due to the scale? Use these to determine the force on the mass by the spring, taking note of the directions from your picture. How is the spring constant related to the force by the spring and the compression of the spring? Check your units. ANSWER: F = 61 N N cm k = 1400 k Nm Correct Part C At what compression length will the scale read zero? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture showing the forces on the mass. When the scale reads zero, what is the force on the mass due to the scale? What is the gravitational force on the mass? What is the force on the mass by the spring? How is the compression length related to the force by the spring and the spring constant? Check your units. ANSWER: Correct Problem 10.18 Part A How far must you stretch a spring with = 800 to store 180 of energy? Express your answer to two significant figures and include the appropriate units. ANSWER: y = 4.2 cm k N/m J Correct Problem 10.22 A 15 runaway grocery cart runs into a spring with spring constant 230 and compresses it by 57 . Part A What was the speed of the cart just before it hit the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Spring Gun A spring-loaded toy gun is used to shoot a ball straight up in the air. The ball reaches a maximum height , measured from the equilibrium position of the spring. s = 0.67 m kg N/m cm v = 2.2 ms H Part A The same ball is shot straight up a second time from the same gun, but this time the spring is compressed only half as far before firing. How far up does the ball go this time? Neglect friction. Assume that the spring is ideal and that the distance by which the spring is compressed is negligible compared to . Hint 1. Potential energy of the spring The potential energy of a spring is proportional to the square of the distance the spring is compressed. The spring was compressed half the distance, so the mass, when launched, has one quarter of the energy as in the first trial. Hint 2. Potential energy of the ball At the highest point in the ball’s trajectory, all of the spring’s potential energy has been converted into gravitational potential energy of the ball. ANSWER: Correct A Bullet Is Fired into a Wooden Block A bullet of mass is fired horizontally with speed at a wooden block of mass resting on a frictionless table. The bullet hits the block and becomes completely embedded within it. After the bullet has come to rest within the block, the block, with the bullet in it, is traveling at speed . H height = H 4 mb vi mw vf Part A Which of the following best describes this collision? Hint 1. Types of collisions An inelastic collision is a collision in which kinetic energy is not conserved. In a partially inelastic collision, kinetic energy is lost, but the objects colliding do not stick together. From this information, you can infer what completely inelastic and elastic collisions are. ANSWER: Correct Part B Which of the following quantities, if any, are conserved during this collision? Hint 1. When is kinetic energy conserved? Kinetic energy is conserved only in perfectly elastic collisions. ANSWER: perfectly elastic partially inelastic perfectly inelastic Correct Part C What is the speed of the block/bullet system after the collision? Express your answer in terms of , , and . Hint 1. Find the momentum after the collision What is the total momentum of the block/bullet system after the collision? Express your answer in terms of and other given quantities. ANSWER: Hint 2. Use conservation of momentum The momentum of the block/bullet system is conserved. Therefore, the momentum before the collision is the same as the momentum after the collision. Find a second expression for , this time expressed as the total momentum of the system before the collision. Express your answer in terms of and other given quantities. ANSWER: kinetic energy only momentum only kinetic energy and momentum neither momentum nor kinetic energy vi mw mb ptotal vf ptotal = (mw + mb)vf ptotal vi ptotal = mbvi ANSWER: Correct Problem 10.31 Ball 1, with a mass of 150 and traveling at 15.0 , collides head on with ball 2, which has a mass of 340 and is initially at rest. Part A What are the final velocities of each ball if the collision is perfectly elastic? Express your answer with the appropriate units. ANSWER: Correct Part B Express your answer with the appropriate units. ANSWER: Correct Part C vf = mb vi mb+mw g m/s g (vfx) = -5.82 1 ms (vfx) = 9.18 2 ms What are the final velocities of each ball if the collision is perfectly inelastic? Express your answer with the appropriate units. ANSWER: Correct Part D Express your answer with the appropriate units. ANSWER: Correct Enhanced EOC: Problem 10.43 A package of mass is released from rest at a warehouse loading dock and slides down the = 2.2 – high, frictionless chute to a waiting truck. Unfortunately, the truck driver went on a break without having removed the previous package, of mass , from the bottom of the chute. You may want to review ( pages 265 – 269) . For help with math skills, you may want to review: Solving Algebraic Equations (vfx) = 4.59 1 ms (vfx) = 4.59 2 ms m h m 2m Part A Suppose the packages stick together. What is their common speed after the collision? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem There are two parts to this problem: the block sliding down the frictionless incline and the collision. What conservation laws are valid in each part? In terms of , what are the kinetic and potential energies of the block at the top of the incline? What is the potential energy of the same block at the bottom just before the collision? What are the kinetic energy and velocity of block just before the collision? What is conserved during the collision? What is the total momentum of the two blocks before the collision? What is the momentum of the two blocks stuck together after the collision? What is the velocity of the two blocks after the collision? ANSWER: Correct Part B Suppose the collision between the packages is perfectly elastic. To what height does the package of mass rebound? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem There are three parts to this problem: the block sliding down the incline, the collision, and mass going back up the incline. What conservation laws are valid in each part? m m v = 2.2 ms m m What is an elastic collision? For an elastic collision, how are the initial and final velocities related when one of the masses is initially at rest? Using the velocity of just before the collision from Part A, what is the velocity of just after the collision in this case? What are the kinetic and potential energies of mass just after the collision? What is the kinetic energy of mass at its maximum rebound height? Using conservation of energy, what is the potential energy of mass at its maximum height? What is the maximum height? ANSWER: Correct Problem 10.35 A cannon tilted up at a 35.0 angle fires a cannon ball at 79.0 from atop a 21.0 -high fortress wall. Part A What is the ball’s impact speed on the ground below? Express your answer with the appropriate units. ANSWER: Correct Problem 10.45 A 1000 safe is 2.5 above a heavy-duty spring when the rope holding the safe breaks. The safe hits the spring and compresses it 48 . m m m m m h = 24 cm $ m/s m vf = 81.6 ms kg m cm Part A What is the spring constant of the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 10.49 A 100 block on a frictionless table is firmly attached to one end of a spring with = 21 . The other end of the spring is anchored to the wall. A 30 ball is thrown horizontally toward the block with a speed of 6.0 . Part A If the collision is perfectly elastic, what is the ball’s speed immediately after the collision? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the maximum compression of the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: = 2.5×105 k Nm g k N/m g m/s v = 3.2 ms Correct Part C Repeat part A for the case of a perfectly inelastic collision. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part D Repeat part B for the case of a perfectly inelastic collision. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 99.4%. You received 120.28 out of a possible total of 121 points. x = 0.19 m v = 1.4 ms x = 0.11 m

please email info@checkyourstudy.com
WEEKLY ASSIGNMENT #5 (WOW THAT TOOK A WHILE) NAME: 1. Find the linear approximation of the function f(x; y; z) = p x2 + y2 + z2 at some point to approximate a value of the number p (3:02)2 + (1:97)2 + (5:99)2. 1 2. Consider your favorite function, the Cobb-Douglas production function. P(L;K) = 1:5L:65K:35 modeling the production of the state of Idaho. Over time we discover that capitol is gradually increasing at an approximate rate of 0:02 units per year. If we decide as a group that we are perfectly happy with our production level and would rather have additional vacation time then how much can we decrease labor by each year and keep the same level of production. In how long(rounded up to the nearest year) will we have an additional week of vacation? 2 3. Use the chain rule to find dz dt or dw=dt (a) z = x?y x+2y x = et; y = e?t. (b) w = sin x cos x x = p t; y = 1=t. 4. Use the chain rule to find @z=@t or @z=@s (a) z = (x ? y)5 x = s2t; y = st2 (b) z = er cos  r = st;  = p x2 + y2. 3 5. The temperature at a point (x; y; z) is given by the function T(x; y; z) = 200e?x2?3y2?9z2 where T is measure in C and x; y; z in meters. (a) Find the rate of change of temperature at the point (2;?1; 2) in the direction toward the point (3;?3; 3). (b) In which direction does the temperature increase fastest, and what is that fastest rate? 4 6. Suppose (1; 1) is a critical point of a function f with continuous second derivatives. In each case, what can you say about f. (a) fxx(1; 1) = 4; fxy(1; 1) = 1; fyy(1; 1) = 2 (b) fxx(1; 1) = 4; fxy(1; 1) = 3; fyy(1; 1) = 2 (c) fxx(1; 1) = ?1; fxy(1; 1) = 6; fyy(1; 1) = 1 (d) fxx(1; 1) = ?1; fxy(1; 1) = 2; fyy(1; 1) = ?8 (e) fxx(1; 1) = 4; fxy(1; 1) = 6; fyy(1; 1) = 9 5 Bonus Show that f(x; y) = x2 + 4y2 ? 4xy + 2 has an infinite number of critical points, and for all of them D = 0 at each one. Then show that f has a local (and absolute) minimum at each critical point. 6

WEEKLY ASSIGNMENT #5 (WOW THAT TOOK A WHILE) NAME: 1. Find the linear approximation of the function f(x; y; z) = p x2 + y2 + z2 at some point to approximate a value of the number p (3:02)2 + (1:97)2 + (5:99)2. 1 2. Consider your favorite function, the Cobb-Douglas production function. P(L;K) = 1:5L:65K:35 modeling the production of the state of Idaho. Over time we discover that capitol is gradually increasing at an approximate rate of 0:02 units per year. If we decide as a group that we are perfectly happy with our production level and would rather have additional vacation time then how much can we decrease labor by each year and keep the same level of production. In how long(rounded up to the nearest year) will we have an additional week of vacation? 2 3. Use the chain rule to find dz dt or dw=dt (a) z = x?y x+2y x = et; y = e?t. (b) w = sin x cos x x = p t; y = 1=t. 4. Use the chain rule to find @z=@t or @z=@s (a) z = (x ? y)5 x = s2t; y = st2 (b) z = er cos  r = st;  = p x2 + y2. 3 5. The temperature at a point (x; y; z) is given by the function T(x; y; z) = 200e?x2?3y2?9z2 where T is measure in C and x; y; z in meters. (a) Find the rate of change of temperature at the point (2;?1; 2) in the direction toward the point (3;?3; 3). (b) In which direction does the temperature increase fastest, and what is that fastest rate? 4 6. Suppose (1; 1) is a critical point of a function f with continuous second derivatives. In each case, what can you say about f. (a) fxx(1; 1) = 4; fxy(1; 1) = 1; fyy(1; 1) = 2 (b) fxx(1; 1) = 4; fxy(1; 1) = 3; fyy(1; 1) = 2 (c) fxx(1; 1) = ?1; fxy(1; 1) = 6; fyy(1; 1) = 1 (d) fxx(1; 1) = ?1; fxy(1; 1) = 2; fyy(1; 1) = ?8 (e) fxx(1; 1) = 4; fxy(1; 1) = 6; fyy(1; 1) = 9 5 Bonus Show that f(x; y) = x2 + 4y2 ? 4xy + 2 has an infinite number of critical points, and for all of them D = 0 at each one. Then show that f has a local (and absolute) minimum at each critical point. 6

As cell size increases, the volume and surface area decrease. surface area increases faster than the volume. surface area and volume increase at the same rate. volume increases faster than the surface area.

As cell size increases, the volume and surface area decrease. surface area increases faster than the volume. surface area and volume increase at the same rate. volume increases faster than the surface area.

volume increases faster than the surface area
Chapter 3 Practice Problems (Practice – no credit) Due: 11:59pm on Wednesday, February 12, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Tactics Box 3.1 Determining the Components of a Vector Learning Goal: To practice Tactics Box 3.1 Determining the Components of a Vector. When a vector is decomposed into component vectors and parallel to the coordinate axes, we can describe each component vector with a single number (a scalar) called the component. This tactics box describes how to determine the x component and y component of vector , denoted and . TACTICS BOX 3.1 Determining the components of a vector The absolute value of the x component is the magnitude of the 1. component vector . 2. The sign of is positive if points in the positive x direction; it is negative if points in the negative x direction. 3. The y component is determined similarly. Part A What is the magnitude of the component vector shown in the figure? Express your answer in meters to one significant figure. A A x A y A Ax Ay |Ax| Ax A x Ax A x A x Ay A x ANSWER: Answer Requested Part B What is the sign of the y component of vector shown in the figure? ANSWER: Correct Part C Now, combine the information given in the tactics box above to find the x and y components, and , of vector shown in the figure. |Ax| = 5 m Ay A positive negative Bx By B Express your answers, separated by a comma, in meters to one significant figure. ANSWER: Correct Vector Components–Review Learning Goal: To introduce you to vectors and the use of sine and cosine for a triangle when resolving components. Vectors are an important part of the language of science, mathematics, and engineering. They are used to discuss multivariable calculus, electrical circuits with oscillating currents, stress and strain in structures and materials, and flows of atmospheres and fluids, and they have many other applications. Resolving a vector into components is a precursor to computing things with or about a vector quantity. Because position, velocity, acceleration, force, momentum, and angular momentum are all vector quantities, resolving vectors into components is the most important skill required in a mechanics course. The figure shows the components of , and , along the x and y axes of the coordinate system, respectively. The components of a vector depend on the coordinate system’s orientation, the key being the angle between the vector and the coordinate axes, often designated . Bx, By = -2,-5 m, m F  Fx Fy  Part A The figure shows the standard way of measuring the angle. is measured to the vector from the x axis, and counterclockwise is positive. Express and in terms of the length of the vector and the angle , with the components separated by a comma. ANSWER:  Fx Fy F  Fx, Fy = Fcos, Fsin Correct In principle, you can determine the components of any vector with these expressions. If lies in one of the other quadrants of the plane, will be an angle larger than 90 degrees (or in radians) and and will have the appropriate signs and values. Unfortunately this way of representing , though mathematically correct, leads to equations that must be simplified using trig identities such as and . These must be used to reduce all trig functions present in your equations to either or . Unless you perform this followup step flawlessly, you will fail to recoginze that , and your equations will not simplify so that you can progress further toward a solution. Therefore, it is best to express all components in terms of either or , with between 0 and 90 degrees (or 0 and in radians), and determine the signs of the trig functions by knowing in which quadrant the vector lies. Part B When you resolve a vector into components, the components must have the form or . The signs depend on which quadrant the vector lies in, and there will be one component with and the other with . In real problems the optimal coordinate system is often rotated so that the x axis is not horizontal. Furthermore, most vectors will not lie in the first quadrant. To assign the sine and cosine correctly for vectors at arbitrary angles, you must figure out which angle is and then properly reorient the definitional triangle. As an example, consider the vector shown in the diagram labeled “tilted axes,” where you know the angle between and the y axis. Which of the various ways of orienting the definitional triangle must be used to resolve into components in the tilted coordinate system shown? (In the figures, the hypotenuse is orange, the side adjacent to is red, and the side opposite is yellow.) F  /2 cos() sin() F  sin(180 + ) = −sin() cos(90 + ) = −sin() sin() cos() sin(180 + ) + cos(270 − ) = 0 sin() cos()  /2 F  |F| cos() |F| sin() sin() cos()  N  N N  Indicate the number of the figure with the correct orientation. Hint 1. Recommended procedure for resolving a vector into components First figure out the sines and cosines of , then figure out the signs from the quadrant the vector is in and write in the signs. Hint 2. Finding the trigonometric functions Sine and cosine are defined according to the following convention, with the key lengths shown in green: The hypotenuse has unit length, the side adjacent to has length , and the   cos() side opposite has length . The colors are chosen to remind you that the vector sum of the two orthogonal sides is the vector whose magnitude is the hypotenuse; red + yellow = orange. ANSWER: Correct Part C Choose the correct procedure for determining the components of a vector in a given coordinate system from this list: ANSWER: sin() 1 2 3 4 Correct Part D The space around a coordinate system is conventionally divided into four numbered quadrants depending on the signs of the x and y coordinates . Consider the following conditions: A. , B. , C. , D. , Which of these lettered conditions are true in which the numbered quadrants shown in ? Write the answer in the following way: If A were true in the third quadrant, B in the second, C in the first, and D in the fourth, enter “3, 2, 1, 4” as your response. ANSWER: Align the adjacent side of a right triangle with the vector and the hypotenuse along a coordinate direction with as the included angle. Align the hypotenuse of a right triangle with the vector and an adjacent side along a coordinate direction with as the included angle. Align the opposite side of a right triangle with the vector and the hypotenuse along a coordinate direction with as the included angle. Align the hypotenuse of a right triangle with the vector and the opposite side along a coordinate direction with as the included angle.     x > 0 y > 0 x > 0 y < 0 x < 0 y > 0 x < 0 y < 0 Correct Part E Now find the components and of in the tilted coordinate system of Part B. Express your answer in terms of the length of the vector and the angle , with the components separated by a comma. ANSWER: Answer Requested ± Resolving Vector Components with Trigonometry Often a vector is specified by a magnitude and a direction; for example, a rope with tension exerts a force of magnitude in a direction 35 north of east. This is a good way to think of vectors; however, to calculate results with vectors, it is best to select a coordinate system and manipulate the components of the vectors in that coordinate system. Nx Ny N N  Nx, Ny = −Nsin(),Ncos() T  T  Part A Find the components of the vector with length = 1.00 and angle =10.0 with respect to the x axis as shown. Enter the x component followed by the y component, separated by a comma. Hint 1. What is the x component? Look at the figure shown. points in the positive x direction, so is positive. Also, the magnitude is just the length . ANSWER: Correct Part B Find the components of the vector with length = 1.00 and angle =15.0 with respect to the x axis as shown. Enter the x component followed by the y component, separated by a comma. A a  A x Ax |Ax| OL = OMcos( ) A  = 0.985,0.174 B b   Hint 1. What is the x component? The x component is still of the same form, that is, . ANSWER: Correct The components of still have the same form, that is, , despite 's placement with respect to the y axis on the drawing. Part C Find the components of the vector with length = 1.00 and angle 35.0 as shown. Enter the x component followed by the y component, separated by a comma. Hint 1. Method 1: Find the angle that makes with the positive x axis Angle = 0.611 differs from the other two angles because it is the angle between the vector and the y axis, unlike the others, which are with respect to the x axis. What is the angle that makes with the positive x axis? Express your answer numerically in degrees. ANSWER: Hint 2. Method 2: Use vector addition Look at the figure shown. Lcos() B = 0.966,0.259 B (Lcos(), Lsin()) B C c  =  C  C 125 1. . 2. . 3. , the x component of is negative, since points in the negative x direction. Use this information to find . Similarly, find . ANSWER: Answer Requested ± Vector Addition and Subtraction In general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors , , and . Calculate the following, and express your answers as ordered triplets of values separated by commas. Part A ANSWER: Correct C = C + x C y |C | = length(QR) = c sin() x Cx C C x Cx Cy C  = -0.574,0.819 A = (1, 0,−3) B = (−2, 5, 1) C = (3, 1, 1) A − B  = 3,-5,-4 Part B ANSWER: Correct Part C ANSWER: Correct Part D ANSWER: Correct B − C  = -5,4,0 −A + B − C  = -6,4,3 3A − 2C  = -3,-2,-11 Part E ANSWER: Correct Part F ANSWER: Correct Video Tutor: Balls Take High and Low Tracks First, launch the video below. You will be asked to use your knowledge of physics to predict the outcome of an experiment. Then, close the video window and answer the questions at right. You can watch the video again at any point. Part A −2A + 3B − C  = -11,14,8 2A − 3(B − C) = 17,-12,-6 Consider the video demonstration that you just watched. Which of the following changes could potentially allow the ball on the straight inclined (yellow) track to win? Ignore air resistance. Select all that apply. Hint 1. How to approach the problem Answers A and B involve changing the steepness of part or all of the track. Answers C and D involve changing the mass of the balls. So, first you should decide which of those factors, if either, can change how fast the ball gets to the end of the track. ANSWER: Correct If the yellow track were tilted steeply enough, its ball could win. How might you go about calculating the necessary change in tilt? Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. A. Increase the tilt of the yellow track. B. Make the downhill and uphill inclines on the red track less steep, while keeping the total distance traveled by the ball the same. C. Increase the mass of the ball on the yellow track. D. Decrease the mass of the ball on the red track.

Chapter 3 Practice Problems (Practice – no credit) Due: 11:59pm on Wednesday, February 12, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Tactics Box 3.1 Determining the Components of a Vector Learning Goal: To practice Tactics Box 3.1 Determining the Components of a Vector. When a vector is decomposed into component vectors and parallel to the coordinate axes, we can describe each component vector with a single number (a scalar) called the component. This tactics box describes how to determine the x component and y component of vector , denoted and . TACTICS BOX 3.1 Determining the components of a vector The absolute value of the x component is the magnitude of the 1. component vector . 2. The sign of is positive if points in the positive x direction; it is negative if points in the negative x direction. 3. The y component is determined similarly. Part A What is the magnitude of the component vector shown in the figure? Express your answer in meters to one significant figure. A A x A y A Ax Ay |Ax| Ax A x Ax A x A x Ay A x ANSWER: Answer Requested Part B What is the sign of the y component of vector shown in the figure? ANSWER: Correct Part C Now, combine the information given in the tactics box above to find the x and y components, and , of vector shown in the figure. |Ax| = 5 m Ay A positive negative Bx By B Express your answers, separated by a comma, in meters to one significant figure. ANSWER: Correct Vector Components–Review Learning Goal: To introduce you to vectors and the use of sine and cosine for a triangle when resolving components. Vectors are an important part of the language of science, mathematics, and engineering. They are used to discuss multivariable calculus, electrical circuits with oscillating currents, stress and strain in structures and materials, and flows of atmospheres and fluids, and they have many other applications. Resolving a vector into components is a precursor to computing things with or about a vector quantity. Because position, velocity, acceleration, force, momentum, and angular momentum are all vector quantities, resolving vectors into components is the most important skill required in a mechanics course. The figure shows the components of , and , along the x and y axes of the coordinate system, respectively. The components of a vector depend on the coordinate system’s orientation, the key being the angle between the vector and the coordinate axes, often designated . Bx, By = -2,-5 m, m F  Fx Fy  Part A The figure shows the standard way of measuring the angle. is measured to the vector from the x axis, and counterclockwise is positive. Express and in terms of the length of the vector and the angle , with the components separated by a comma. ANSWER:  Fx Fy F  Fx, Fy = Fcos, Fsin Correct In principle, you can determine the components of any vector with these expressions. If lies in one of the other quadrants of the plane, will be an angle larger than 90 degrees (or in radians) and and will have the appropriate signs and values. Unfortunately this way of representing , though mathematically correct, leads to equations that must be simplified using trig identities such as and . These must be used to reduce all trig functions present in your equations to either or . Unless you perform this followup step flawlessly, you will fail to recoginze that , and your equations will not simplify so that you can progress further toward a solution. Therefore, it is best to express all components in terms of either or , with between 0 and 90 degrees (or 0 and in radians), and determine the signs of the trig functions by knowing in which quadrant the vector lies. Part B When you resolve a vector into components, the components must have the form or . The signs depend on which quadrant the vector lies in, and there will be one component with and the other with . In real problems the optimal coordinate system is often rotated so that the x axis is not horizontal. Furthermore, most vectors will not lie in the first quadrant. To assign the sine and cosine correctly for vectors at arbitrary angles, you must figure out which angle is and then properly reorient the definitional triangle. As an example, consider the vector shown in the diagram labeled “tilted axes,” where you know the angle between and the y axis. Which of the various ways of orienting the definitional triangle must be used to resolve into components in the tilted coordinate system shown? (In the figures, the hypotenuse is orange, the side adjacent to is red, and the side opposite is yellow.) F  /2 cos() sin() F  sin(180 + ) = −sin() cos(90 + ) = −sin() sin() cos() sin(180 + ) + cos(270 − ) = 0 sin() cos()  /2 F  |F| cos() |F| sin() sin() cos()  N  N N  Indicate the number of the figure with the correct orientation. Hint 1. Recommended procedure for resolving a vector into components First figure out the sines and cosines of , then figure out the signs from the quadrant the vector is in and write in the signs. Hint 2. Finding the trigonometric functions Sine and cosine are defined according to the following convention, with the key lengths shown in green: The hypotenuse has unit length, the side adjacent to has length , and the   cos() side opposite has length . The colors are chosen to remind you that the vector sum of the two orthogonal sides is the vector whose magnitude is the hypotenuse; red + yellow = orange. ANSWER: Correct Part C Choose the correct procedure for determining the components of a vector in a given coordinate system from this list: ANSWER: sin() 1 2 3 4 Correct Part D The space around a coordinate system is conventionally divided into four numbered quadrants depending on the signs of the x and y coordinates . Consider the following conditions: A. , B. , C. , D. , Which of these lettered conditions are true in which the numbered quadrants shown in ? Write the answer in the following way: If A were true in the third quadrant, B in the second, C in the first, and D in the fourth, enter “3, 2, 1, 4” as your response. ANSWER: Align the adjacent side of a right triangle with the vector and the hypotenuse along a coordinate direction with as the included angle. Align the hypotenuse of a right triangle with the vector and an adjacent side along a coordinate direction with as the included angle. Align the opposite side of a right triangle with the vector and the hypotenuse along a coordinate direction with as the included angle. Align the hypotenuse of a right triangle with the vector and the opposite side along a coordinate direction with as the included angle.     x > 0 y > 0 x > 0 y < 0 x < 0 y > 0 x < 0 y < 0 Correct Part E Now find the components and of in the tilted coordinate system of Part B. Express your answer in terms of the length of the vector and the angle , with the components separated by a comma. ANSWER: Answer Requested ± Resolving Vector Components with Trigonometry Often a vector is specified by a magnitude and a direction; for example, a rope with tension exerts a force of magnitude in a direction 35 north of east. This is a good way to think of vectors; however, to calculate results with vectors, it is best to select a coordinate system and manipulate the components of the vectors in that coordinate system. Nx Ny N N  Nx, Ny = −Nsin(),Ncos() T  T  Part A Find the components of the vector with length = 1.00 and angle =10.0 with respect to the x axis as shown. Enter the x component followed by the y component, separated by a comma. Hint 1. What is the x component? Look at the figure shown. points in the positive x direction, so is positive. Also, the magnitude is just the length . ANSWER: Correct Part B Find the components of the vector with length = 1.00 and angle =15.0 with respect to the x axis as shown. Enter the x component followed by the y component, separated by a comma. A a  A x Ax |Ax| OL = OMcos( ) A  = 0.985,0.174 B b   Hint 1. What is the x component? The x component is still of the same form, that is, . ANSWER: Correct The components of still have the same form, that is, , despite 's placement with respect to the y axis on the drawing. Part C Find the components of the vector with length = 1.00 and angle 35.0 as shown. Enter the x component followed by the y component, separated by a comma. Hint 1. Method 1: Find the angle that makes with the positive x axis Angle = 0.611 differs from the other two angles because it is the angle between the vector and the y axis, unlike the others, which are with respect to the x axis. What is the angle that makes with the positive x axis? Express your answer numerically in degrees. ANSWER: Hint 2. Method 2: Use vector addition Look at the figure shown. Lcos() B = 0.966,0.259 B (Lcos(), Lsin()) B C c  =  C  C 125 1. . 2. . 3. , the x component of is negative, since points in the negative x direction. Use this information to find . Similarly, find . ANSWER: Answer Requested ± Vector Addition and Subtraction In general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors , , and . Calculate the following, and express your answers as ordered triplets of values separated by commas. Part A ANSWER: Correct C = C + x C y |C | = length(QR) = c sin() x Cx C C x Cx Cy C  = -0.574,0.819 A = (1, 0,−3) B = (−2, 5, 1) C = (3, 1, 1) A − B  = 3,-5,-4 Part B ANSWER: Correct Part C ANSWER: Correct Part D ANSWER: Correct B − C  = -5,4,0 −A + B − C  = -6,4,3 3A − 2C  = -3,-2,-11 Part E ANSWER: Correct Part F ANSWER: Correct Video Tutor: Balls Take High and Low Tracks First, launch the video below. You will be asked to use your knowledge of physics to predict the outcome of an experiment. Then, close the video window and answer the questions at right. You can watch the video again at any point. Part A −2A + 3B − C  = -11,14,8 2A − 3(B − C) = 17,-12,-6 Consider the video demonstration that you just watched. Which of the following changes could potentially allow the ball on the straight inclined (yellow) track to win? Ignore air resistance. Select all that apply. Hint 1. How to approach the problem Answers A and B involve changing the steepness of part or all of the track. Answers C and D involve changing the mass of the balls. So, first you should decide which of those factors, if either, can change how fast the ball gets to the end of the track. ANSWER: Correct If the yellow track were tilted steeply enough, its ball could win. How might you go about calculating the necessary change in tilt? Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. A. Increase the tilt of the yellow track. B. Make the downhill and uphill inclines on the red track less steep, while keeping the total distance traveled by the ball the same. C. Increase the mass of the ball on the yellow track. D. Decrease the mass of the ball on the red track.

please email info@checkyourstudy.com
For Day 24 Homework Cover Sheet Name:_________________________________________________ 1. Read Pages from 364-371, or watch the videos listed below  Percentage, Ratio and Proportions Problems (11 min) http://www.youtube.com/watch?v=oLoRCRXTYv4  Direct and Inverse Variation (5 min) http://www.youtube.com/watch?v=8x0rZklxLLE 2. Attempt problems from page 111 to 113 3. Write a summary and answer questions below from your reading or watching of the videos. a) What is a proportion? b) What is a direct variation? c) What is an inverse variation? List any parts of the video lecture (if there are any) that were unclear or you had trouble understanding. Please be specific and do not just say “All of it”. Questions you had difficulty with or felt stuck on- List the number for the ALEKS topics you were stuck on from the list at the end of the video logs- ALEKS Topics Mastered Solving a linear equation with several occurrences of the variable: Fractional forms with binomial numerators Translating a sentence into a compound inequality U.S. Customary area unit conversion with whole number values U.S. Customary unit conversion with whole number values U.S. Customary unit conversion with whole number values: Two-step conversion Using two steps to solve an equation with whole numbers Word problem involving multiple rates Word problem on combined variation Word problem on direct variation Word problem on inverse proportions Word problem on inverse variation Word problem on mixed number proportions Word problem on proportions: Problem type 1 Word problem on proportions: Problem type 2 Word problem with linear inequalities: Problem type 1 Word problem with linear inequalities: Problem type 2 Writing a direct variation equation Writing an equation that models variation Areas of rectangles with the same perimeter Circumference ratios Conversions involving measurements in feet and inches Finding an angle measure for a triangle with an extended side Finding an angle measure of a triangle given two angles Finding angle measures of a right or isosceles triangle given angles with variables Finding simple interest without a calculator Finding the missing length in a figure Finding the original price given the sale price and percent discount Finding the percentage increase or decrease: Advanced Finding the perimeter or area of a rectangle given one of these values Finding the radius or the diameter of a circle given its circumference Finding the sale price without a calculator given the original price and percent discount Finding the value for a new score that will yield a given mean Identifying and naming congruent triangles Identifying direct variation equations Identifying direct variation from ordered pairs and writing equations Identifying properties used to solve a linear equation Identifying similar or congruent shapes on a grid Identifying solutions to a linear equation in one variable: Two-step equations Identifying solutions to a linear inequality in one variable Perimeter of a piecewise rectangular figure Sides of polygons having the same perimeter Similar polygons Similar right triangles

For Day 24 Homework Cover Sheet Name:_________________________________________________ 1. Read Pages from 364-371, or watch the videos listed below  Percentage, Ratio and Proportions Problems (11 min) http://www.youtube.com/watch?v=oLoRCRXTYv4  Direct and Inverse Variation (5 min) http://www.youtube.com/watch?v=8x0rZklxLLE 2. Attempt problems from page 111 to 113 3. Write a summary and answer questions below from your reading or watching of the videos. a) What is a proportion? b) What is a direct variation? c) What is an inverse variation? List any parts of the video lecture (if there are any) that were unclear or you had trouble understanding. Please be specific and do not just say “All of it”. Questions you had difficulty with or felt stuck on- List the number for the ALEKS topics you were stuck on from the list at the end of the video logs- ALEKS Topics Mastered Solving a linear equation with several occurrences of the variable: Fractional forms with binomial numerators Translating a sentence into a compound inequality U.S. Customary area unit conversion with whole number values U.S. Customary unit conversion with whole number values U.S. Customary unit conversion with whole number values: Two-step conversion Using two steps to solve an equation with whole numbers Word problem involving multiple rates Word problem on combined variation Word problem on direct variation Word problem on inverse proportions Word problem on inverse variation Word problem on mixed number proportions Word problem on proportions: Problem type 1 Word problem on proportions: Problem type 2 Word problem with linear inequalities: Problem type 1 Word problem with linear inequalities: Problem type 2 Writing a direct variation equation Writing an equation that models variation Areas of rectangles with the same perimeter Circumference ratios Conversions involving measurements in feet and inches Finding an angle measure for a triangle with an extended side Finding an angle measure of a triangle given two angles Finding angle measures of a right or isosceles triangle given angles with variables Finding simple interest without a calculator Finding the missing length in a figure Finding the original price given the sale price and percent discount Finding the percentage increase or decrease: Advanced Finding the perimeter or area of a rectangle given one of these values Finding the radius or the diameter of a circle given its circumference Finding the sale price without a calculator given the original price and percent discount Finding the value for a new score that will yield a given mean Identifying and naming congruent triangles Identifying direct variation equations Identifying direct variation from ordered pairs and writing equations Identifying properties used to solve a linear equation Identifying similar or congruent shapes on a grid Identifying solutions to a linear equation in one variable: Two-step equations Identifying solutions to a linear inequality in one variable Perimeter of a piecewise rectangular figure Sides of polygons having the same perimeter Similar polygons Similar right triangles

No expert has answered this question yet. You can browse … Read More...
Que 1: in women who suffer from migraine …………………. are classified menstrual migraines, which tend to be more severe and longer lasting . a) 5% – 10% b) 45% – 55% c) 20% – 50% d) 65%-75% Que 2: why are the women on average, slightly shorter than men a) They have fat then man which contributes to stature b) Their long bones are sealed and stop growing earlier than men c) Their brains are somewhat smaller than man’s brain d) Their brains are somewhat larger than man, brain que 3: menopause frequently occurs between ………………..age of year a) 25-30 b) 45-55 c) 35-40 d) 65-75 que 4: this hormone causes enlargement of the larynx and an increase in the length and thickness of the vocal cords. A) estrogen 2) cholesterol 3) progesterone 4) testosterone Que 5: the reproductive cycle includes which of the following interconnected sets of events a) Ovarian cycle b) Urinary cycle c) Placental cycle d) Female prostate cycle Que 6: high level of circulating progesterone have been associated with : a) Excessive milk production b) Ovarian cancer c) Inability to breast feed a new born child d) Pregnancy Que 7: although variations exist, ovulation typically occurs on the …………day before mensuaration a) 1st b) 14th c) 7th d) 28th Que 8: LH stimulates interstitial cells a) To decrease GnRH b) To produce FSH c) To produce testosterones d) To produce sperm Que 9:what region of the uterus is shed during menstration? a) Stratum basalis of the myometrium b) Stratum basalis of the endometrium c) Stratum functionalis of the endometrium d) Perimetrium Que 10: the phenomenon is which women living in close proximity tend to menstruate at approximately the time is called. a) Precocious puberty b) Menstrual synchrony’ c) Delayed puberty d) Ovarian synchrony Que 11.studies have shown that healthy menstruating women a) Should not participate in sports b) Often feel ill or weak when exercising c) Are able to safety engage in athletic activities d) Can contaminate others and should not engage in contacts sports. Que 12: which term below describes a chemical that resembles steroid hormones and posses threat to maintain homeostasis. a) Androgens b) Prostaglandins c) Endocrine disruptors d) All of the above Que 13: one of the primary function of ……….is preparing and sustaining the uterus of pregnancy a) Testosterone b) Progesterone c) Estradiol d) inhibin Que 14: typically ovulation occurs a) at the end of the uterine phase b) at the start of follicular phase c) during an increase of LH in the ovarian cycle d) at the middle of the luteal phase

Que 1: in women who suffer from migraine …………………. are classified menstrual migraines, which tend to be more severe and longer lasting . a) 5% – 10% b) 45% – 55% c) 20% – 50% d) 65%-75% Que 2: why are the women on average, slightly shorter than men a) They have fat then man which contributes to stature b) Their long bones are sealed and stop growing earlier than men c) Their brains are somewhat smaller than man’s brain d) Their brains are somewhat larger than man, brain que 3: menopause frequently occurs between ………………..age of year a) 25-30 b) 45-55 c) 35-40 d) 65-75 que 4: this hormone causes enlargement of the larynx and an increase in the length and thickness of the vocal cords. A) estrogen 2) cholesterol 3) progesterone 4) testosterone Que 5: the reproductive cycle includes which of the following interconnected sets of events a) Ovarian cycle b) Urinary cycle c) Placental cycle d) Female prostate cycle Que 6: high level of circulating progesterone have been associated with : a) Excessive milk production b) Ovarian cancer c) Inability to breast feed a new born child d) Pregnancy Que 7: although variations exist, ovulation typically occurs on the …………day before mensuaration a) 1st b) 14th c) 7th d) 28th Que 8: LH stimulates interstitial cells a) To decrease GnRH b) To produce FSH c) To produce testosterones d) To produce sperm Que 9:what region of the uterus is shed during menstration? a) Stratum basalis of the myometrium b) Stratum basalis of the endometrium c) Stratum functionalis of the endometrium d) Perimetrium Que 10: the phenomenon is which women living in close proximity tend to menstruate at approximately the time is called. a) Precocious puberty b) Menstrual synchrony’ c) Delayed puberty d) Ovarian synchrony Que 11.studies have shown that healthy menstruating women a) Should not participate in sports b) Often feel ill or weak when exercising c) Are able to safety engage in athletic activities d) Can contaminate others and should not engage in contacts sports. Que 12: which term below describes a chemical that resembles steroid hormones and posses threat to maintain homeostasis. a) Androgens b) Prostaglandins c) Endocrine disruptors d) All of the above Que 13: one of the primary function of ……….is preparing and sustaining the uterus of pregnancy a) Testosterone b) Progesterone c) Estradiol d) inhibin Que 14: typically ovulation occurs a) at the end of the uterine phase b) at the start of follicular phase c) during an increase of LH in the ovarian cycle d) at the middle of the luteal phase