MA 3351 – Fall 2015 Homework #3 Due Friday 18 September 1. Find eigenvalues and eigenvectors of the following matrices  1 2 2 4   3 1 1 2   3 0 0 4   1 2 1 3   0 −1 1 0   −2 1 0 1 −2 0 0 0 1   0 1 0 −1 0 0 0 0 1  . Do calculations by hand, though you can use Mathematica to check your results. 2. Find eigenvectors and eigenvalues of A =  2 0 1 1 2 −1 0 0 3  . Show that one of the eigenvalues is defective. Do calculations by hand, though you can use Mathematica to check your results. 3. Solve the initial value problem y′ = Ay, y (0) = y0 for the following cases (a) A =  −4 1 1 −4  y0 =  1 2  (b) A =  −1 1 0 −2  y0 =  −1 3  (c) A =  1 0 0 0 −2 1 0 1 −2  y0 =  1 0 2  Do all calculations by hand. 4. Repeat problem 3 using Mathematica to do all calculations. MORE PROBLEMS ON BACK OF PAGE 1 5. Use Mathematica’s Eigensystem function to find eigenvalues and eigenvectors of A =  −2 1 0 0 0 1 −2 1 0 0 0 1 −2 1 0 0 0 1 −2 1 0 0 0 1 −2  . Suppose you are interested in solutions to y′ = Ay. Without constructing the full solution, answer the following questions: (a) Does the solution grow or decay in time (or a mix of both)? (b) What is the smallest (in magnitude) rate constant? (c) What is the largest (in magnitude) rate constant? (d) As t → ¥, the solution will be dominated by one eigenvector times an exponen- tial. Which eigenvector, and what is the rate constant of the exponential? 6. Use diagonalization to compute (Is − A)−1, where A =  −2 1 0 1 −2 1 0 1 −2  . You may use Mathematica. I suggest running FullSimplify on your result. 2

## MA 3351 – Fall 2015 Homework #3 Due Friday 18 September 1. Find eigenvalues and eigenvectors of the following matrices  1 2 2 4   3 1 1 2   3 0 0 4   1 2 1 3   0 −1 1 0   −2 1 0 1 −2 0 0 0 1   0 1 0 −1 0 0 0 0 1  . Do calculations by hand, though you can use Mathematica to check your results. 2. Find eigenvectors and eigenvalues of A =  2 0 1 1 2 −1 0 0 3  . Show that one of the eigenvalues is defective. Do calculations by hand, though you can use Mathematica to check your results. 3. Solve the initial value problem y′ = Ay, y (0) = y0 for the following cases (a) A =  −4 1 1 −4  y0 =  1 2  (b) A =  −1 1 0 −2  y0 =  −1 3  (c) A =  1 0 0 0 −2 1 0 1 −2  y0 =  1 0 2  Do all calculations by hand. 4. Repeat problem 3 using Mathematica to do all calculations. MORE PROBLEMS ON BACK OF PAGE 1 5. Use Mathematica’s Eigensystem function to find eigenvalues and eigenvectors of A =  −2 1 0 0 0 1 −2 1 0 0 0 1 −2 1 0 0 0 1 −2 1 0 0 0 1 −2  . Suppose you are interested in solutions to y′ = Ay. Without constructing the full solution, answer the following questions: (a) Does the solution grow or decay in time (or a mix of both)? (b) What is the smallest (in magnitude) rate constant? (c) What is the largest (in magnitude) rate constant? (d) As t → ¥, the solution will be dominated by one eigenvector times an exponen- tial. Which eigenvector, and what is the rate constant of the exponential? 6. Use diagonalization to compute (Is − A)−1, where A =  −2 1 0 1 −2 1 0 1 −2  . You may use Mathematica. I suggest running FullSimplify on your result. 2

info@checkyourstudy.com
A box contains 10 items, of which 3 are defective and 7 are non-defective. Two items are randomly selected, one at a time, with replacement, and x is the number of defectives in the sample of two. Explain why x is a binomial random variable.

## A box contains 10 items, of which 3 are defective and 7 are non-defective. Two items are randomly selected, one at a time, with replacement, and x is the number of defectives in the sample of two. Explain why x is a binomial random variable.

The process consists of two self-determining trials with binary outcomes, … Read More...
Mary works in a factory that produces 1,000 telephones each day. When 30 telephones were sampled, it was found that 9 were defective. Estimate how many telephones are defective each day.

## Mary works in a factory that produces 1,000 telephones each day. When 30 telephones were sampled, it was found that 9 were defective. Estimate how many telephones are defective each day.

No expert has answered this question yet. You can browse … Read More...
1-Two notions serve as the basis for all torts: wrongs and compensation. True False 2-The goal of tort law is to put a defendant in the position that he or she would have been in had the tort occurred to the defendant. True False 3-Hayley is injured in an accident precipitated by Isolde. Hayley files a tort action against Isolde, seeking to recover for the damage suffered. Damages that are intended to compensate or reimburse a plaintiff for actual losses are: compensatory damages. reimbursement damages. actual damages. punitive damages. 4-Ladd throws a rock intending to hit Minh but misses and hits Nasir instead. On the basis of the tort of battery, Nasir can sue: Ladd. Minh. the rightful owner of the rock. no one. 4-Luella trespasses on Merchandise Mart’s property. Through the use of reasonable force, Merchandise Mart’s security guard detains Luella until the police arrive. Merchandise Mart is liable for: assault. battery. false imprisonment. none of the choice 6-The extreme risk of an activity is a defense against imposing strict liability. True False 7-Misrepresentation in an ad is enough to show an intent to induce the reliance of anyone who may use the product. True False 8-Luke is playing a video game on a defective disk that melts in his game player, starting a fire that injures his hands. Luke files a suit against Mystic Maze, Inc., the game’s maker under the doctrine of strict liability. A significant application of this doctrine is in the area of: cyber torts. intentional torts. product liability. unintentional torts 9-More than two hundred years ago, the Declaration of Independence recognized the importance of protecting creative works. True False 10-n 2014, Cloud Computing Corporation registers its trademark as provided by federal law. After the first renewal, this registration: is renewable every ten years. is renewable every twenty years. runs for life of the corporation plus seventy years. runs forever. 11-Wendy works as a weather announcer for a TV station under the character name Weather Wendy. Wendy can register her character’s name as: a certification mark. a trade name. a service mark. none of the choices 12-Much of the material on the Internet, including software and database information, is not copyrighted. True False 13-In a criminal case, the state must prove its case by a preponderance of the evidence. True False 14-Under the Fourth Amendmentt, general searches through a person’s belongings are permissible. True False 15-Maura enters a gas station and points a gun at the clerk Nate. She then forces Nate to open the cash register and give her all the money. Maura can be charged with: burglary. robbery. larceny. receiving stolen property. 16-Reno, driving while intoxicated, causes a car accident that results in the death of Santo. Reno is arrested and charged with a felony. A felony is a crime punishable by death or imprisonment for: any period of time. more than one year. more than six months. more than ten days. 17-Corporate officers and directors may be held criminally liable for the actions of employees under their supervision. True False 18-Sal assures Tom that she will deliver a truckload of hay to his cattle ranch. A person’s declaration to do a certain act is part of the definition of: an expectation. a moral obligation. a prediction. a promise. 19-Lark promises to buy Mac’s used textbook for \$60. Lark is: an offeror. an offeree a promisee. a promisor. 20-Casey offers to sell a certain used forklift to DIY Lumber Outlet, but Casey dies before DIY accepts. Most likely, Casey’s death: did not affect the offer. shortened the time of the offer but did not terminated it. extended the time of the offer. terminated the offer.

## 1-Two notions serve as the basis for all torts: wrongs and compensation. True False 2-The goal of tort law is to put a defendant in the position that he or she would have been in had the tort occurred to the defendant. True False 3-Hayley is injured in an accident precipitated by Isolde. Hayley files a tort action against Isolde, seeking to recover for the damage suffered. Damages that are intended to compensate or reimburse a plaintiff for actual losses are: compensatory damages. reimbursement damages. actual damages. punitive damages. 4-Ladd throws a rock intending to hit Minh but misses and hits Nasir instead. On the basis of the tort of battery, Nasir can sue: Ladd. Minh. the rightful owner of the rock. no one. 4-Luella trespasses on Merchandise Mart’s property. Through the use of reasonable force, Merchandise Mart’s security guard detains Luella until the police arrive. Merchandise Mart is liable for: assault. battery. false imprisonment. none of the choice 6-The extreme risk of an activity is a defense against imposing strict liability. True False 7-Misrepresentation in an ad is enough to show an intent to induce the reliance of anyone who may use the product. True False 8-Luke is playing a video game on a defective disk that melts in his game player, starting a fire that injures his hands. Luke files a suit against Mystic Maze, Inc., the game’s maker under the doctrine of strict liability. A significant application of this doctrine is in the area of: cyber torts. intentional torts. product liability. unintentional torts 9-More than two hundred years ago, the Declaration of Independence recognized the importance of protecting creative works. True False 10-n 2014, Cloud Computing Corporation registers its trademark as provided by federal law. After the first renewal, this registration: is renewable every ten years. is renewable every twenty years. runs for life of the corporation plus seventy years. runs forever. 11-Wendy works as a weather announcer for a TV station under the character name Weather Wendy. Wendy can register her character’s name as: a certification mark. a trade name. a service mark. none of the choices 12-Much of the material on the Internet, including software and database information, is not copyrighted. True False 13-In a criminal case, the state must prove its case by a preponderance of the evidence. True False 14-Under the Fourth Amendmentt, general searches through a person’s belongings are permissible. True False 15-Maura enters a gas station and points a gun at the clerk Nate. She then forces Nate to open the cash register and give her all the money. Maura can be charged with: burglary. robbery. larceny. receiving stolen property. 16-Reno, driving while intoxicated, causes a car accident that results in the death of Santo. Reno is arrested and charged with a felony. A felony is a crime punishable by death or imprisonment for: any period of time. more than one year. more than six months. more than ten days. 17-Corporate officers and directors may be held criminally liable for the actions of employees under their supervision. True False 18-Sal assures Tom that she will deliver a truckload of hay to his cattle ranch. A person’s declaration to do a certain act is part of the definition of: an expectation. a moral obligation. a prediction. a promise. 19-Lark promises to buy Mac’s used textbook for \$60. Lark is: an offeror. an offeree a promisee. a promisor. 20-Casey offers to sell a certain used forklift to DIY Lumber Outlet, but Casey dies before DIY accepts. Most likely, Casey’s death: did not affect the offer. shortened the time of the offer but did not terminated it. extended the time of the offer. terminated the offer.

1-Two notions serve as the basis for all torts: wrongs … Read More...
A shipment of 6 refrigerators to a restaurant contains 2 defective ones. The restaurant manager begins to randomly test the 6 refrigerators one at a time. a)Find the probability that the last defective refrigerator is found on the fourth test b)Find the probability that no more than four refrigerators need to be tested to find both of the defective refrigerators.

## A shipment of 6 refrigerators to a restaurant contains 2 defective ones. The restaurant manager begins to randomly test the 6 refrigerators one at a time. a)Find the probability that the last defective refrigerator is found on the fourth test b)Find the probability that no more than four refrigerators need to be tested to find both of the defective refrigerators.

info@checkyourstudy.com
Q1: A small town has two banks A and B. It is estimated that 45% of the potential customers do business only with bank A, 30% only with bank B, and 15% with both banks A and B. The remaining 10% of the customers do business with none of the banks. If E1(E2) denotes the event of a randomly selected customer doing business with bank A(B), find the following probabilities: P(E1), P(E2), P(E1∩E2),P(Ē1Ē2) and P(Ē1UE2) Q2: The inspection of a batch of laminated composite beams produced in a company for defects yielded the following data: No. of defects Proportion of Beams with defects inside Proportion of Beams with defects on surface Total 0 0.4 0.15 0.55 1 0.1 0.05 0.15 2 0.07 0.03 0.1 3 0.06 0.02 0.08 4 0.02 0.03 0.05 5 or more 0.03 0.04 0.07 Total 0.68 0.32 1.0 Determine the probability that the beam has a defect on the surface or it has 4 or more defects. Q3. A batch of 1000 piston rings manufactured in an engine manufacturing facility contains 40% defective. Two piston rings are randomly selected from the batch, one at a time, without replacement. If Ei denotes the event that the i th piston ring selected is defective (i=1, 2), determine the values, P(E1) and P(E2). Q4. An automobile transmission can fail due to three types of problems i.e. gear failure, bearing failure, or shaft failure, wit probabilities 0.3, 0.5 an 0.2 respectively. The probability of transmission failure given a gear failure is 0.5, given a bearing failure is 0.5 and given a shaft failure is 0.6. If a transmission fails, what is the most likely cause? Q5. In the manufacture of a fiber-reinforced laminated composite material, the following probabilities can be associated with the failure of the components made out of this material: Prob. Of failure of components Level of defect in material 0.2 High 0.05 Medium 0.01 Low In a batch of composite material manufactured, 10% of material is found to have High defects, 30% to Medium level defects and 60% to Low level of defects. For a component using this batch of material, indicate the various events associated with the failure of component as a Tree diagram. Also, determine the probability that the component fails.

## Q1: A small town has two banks A and B. It is estimated that 45% of the potential customers do business only with bank A, 30% only with bank B, and 15% with both banks A and B. The remaining 10% of the customers do business with none of the banks. If E1(E2) denotes the event of a randomly selected customer doing business with bank A(B), find the following probabilities: P(E1), P(E2), P(E1∩E2),P(Ē1Ē2) and P(Ē1UE2) Q2: The inspection of a batch of laminated composite beams produced in a company for defects yielded the following data: No. of defects Proportion of Beams with defects inside Proportion of Beams with defects on surface Total 0 0.4 0.15 0.55 1 0.1 0.05 0.15 2 0.07 0.03 0.1 3 0.06 0.02 0.08 4 0.02 0.03 0.05 5 or more 0.03 0.04 0.07 Total 0.68 0.32 1.0 Determine the probability that the beam has a defect on the surface or it has 4 or more defects. Q3. A batch of 1000 piston rings manufactured in an engine manufacturing facility contains 40% defective. Two piston rings are randomly selected from the batch, one at a time, without replacement. If Ei denotes the event that the i th piston ring selected is defective (i=1, 2), determine the values, P(E1) and P(E2). Q4. An automobile transmission can fail due to three types of problems i.e. gear failure, bearing failure, or shaft failure, wit probabilities 0.3, 0.5 an 0.2 respectively. The probability of transmission failure given a gear failure is 0.5, given a bearing failure is 0.5 and given a shaft failure is 0.6. If a transmission fails, what is the most likely cause? Q5. In the manufacture of a fiber-reinforced laminated composite material, the following probabilities can be associated with the failure of the components made out of this material: Prob. Of failure of components Level of defect in material 0.2 High 0.05 Medium 0.01 Low In a batch of composite material manufactured, 10% of material is found to have High defects, 30% to Medium level defects and 60% to Low level of defects. For a component using this batch of material, indicate the various events associated with the failure of component as a Tree diagram. Also, determine the probability that the component fails.

info@checkyourstudy.com
MA 3351 – Fall 2015 Homework #4 Due Friday, 25 September 1. Use the method of variation of parameters to solve y′ = Ay + f (t) y (0) = y0 where (a) A =  −2 1 1 −2  f (t) =  t 1  y0 =  0 0  (b) A =  4 1 1 4  f (t) =  e−t t2  y0 =  1 −1  (c) A =  −4 2 1 −5  f (t) =  e−t t2  y0 =  1 0  Do all calculations by hand. Use diagonalization to compute any matrix exponentials. Be sure to take advantage of the properties of symmetric matrices when applicable. 2. Repeat problem 1 using Mathematica. Be sure to use MatrixExp instead of Exp when computing matrix exponentials. 3. Use the method of Laplace transforms to solve problem 1, using Mathematica to do the calculations. 4. Let A be the matrix A =  2 1 −1 4 . (a) A has a single eigenvalue l of multiplicity 2. Find it. (b) Find the eigenspace for l. Is A defective? (c) Let J be the Jordan block  l 1 0 l . By hand, find a matrix V such that AV = VJ. ADDITIONAL PROBLEMS ON BACK PAGE 1 5. Let J be the Jordan block J =  5 1 0 5 . The solution to y′ = Jy, y (0) = y0 is y (t) = eJty0; however, because J is defective we can’t use diagonalization to compute eJt. Instead, we can compute it using Laplace transforms. (a) By hand, find (Is − J)−1. (b) Find the inverse Laplace transform of (Is − J)−1. You may use Mathematica for this step. (c) Compare your result to eJt as computed by Mathematica’s MatrixExp function. 6. Consider the system y′ = Ay + f (t) with initial conditions y (0) =  0 0 1 0 0  where f (t) =  sin (pt) 0 0 0 0  and A =  −2 1 0 0 0 1 −2 1 0 0 0 1 −2 1 0 0 0 1 −2 1 0 0 0 1 −2  . (a) Use either Laplace transforms or variation of parameters (whichever you prefer) to solve the problem. You should use Mathematica to do your calculations; run FullSimplify on the results. (b) Plot y1 (t) , y2 (t), …, y5 (t) versus t over the interval t ∈ [0, 10]. Show all five functions on the same figure. (To see how to plot multiple functions on the same figure, see theMathematica examples I provided for you as well as theMathematica documentation.) 2

## MA 3351 – Fall 2015 Homework #4 Due Friday, 25 September 1. Use the method of variation of parameters to solve y′ = Ay + f (t) y (0) = y0 where (a) A =  −2 1 1 −2  f (t) =  t 1  y0 =  0 0  (b) A =  4 1 1 4  f (t) =  e−t t2  y0 =  1 −1  (c) A =  −4 2 1 −5  f (t) =  e−t t2  y0 =  1 0  Do all calculations by hand. Use diagonalization to compute any matrix exponentials. Be sure to take advantage of the properties of symmetric matrices when applicable. 2. Repeat problem 1 using Mathematica. Be sure to use MatrixExp instead of Exp when computing matrix exponentials. 3. Use the method of Laplace transforms to solve problem 1, using Mathematica to do the calculations. 4. Let A be the matrix A =  2 1 −1 4 . (a) A has a single eigenvalue l of multiplicity 2. Find it. (b) Find the eigenspace for l. Is A defective? (c) Let J be the Jordan block  l 1 0 l . By hand, find a matrix V such that AV = VJ. ADDITIONAL PROBLEMS ON BACK PAGE 1 5. Let J be the Jordan block J =  5 1 0 5 . The solution to y′ = Jy, y (0) = y0 is y (t) = eJty0; however, because J is defective we can’t use diagonalization to compute eJt. Instead, we can compute it using Laplace transforms. (a) By hand, find (Is − J)−1. (b) Find the inverse Laplace transform of (Is − J)−1. You may use Mathematica for this step. (c) Compare your result to eJt as computed by Mathematica’s MatrixExp function. 6. Consider the system y′ = Ay + f (t) with initial conditions y (0) =  0 0 1 0 0  where f (t) =  sin (pt) 0 0 0 0  and A =  −2 1 0 0 0 1 −2 1 0 0 0 1 −2 1 0 0 0 1 −2 1 0 0 0 1 −2  . (a) Use either Laplace transforms or variation of parameters (whichever you prefer) to solve the problem. You should use Mathematica to do your calculations; run FullSimplify on the results. (b) Plot y1 (t) , y2 (t), …, y5 (t) versus t over the interval t ∈ [0, 10]. Show all five functions on the same figure. (To see how to plot multiple functions on the same figure, see theMathematica examples I provided for you as well as theMathematica documentation.) 2

info@checkyourstudy.com