ENG 100 – Critique Assignment Sheet Rough Draft Due for Peer Response: Tuesday, September 29 First Draft Due (submit for feedback): Thursday, October 1 Final Draft with Outline Due: Thursday, October 8 Highlighting, Labeling, and Reflection: Thursday, October 8 Submit hard copies in class and upload to turnitin.com (Password: English, Class ID: 10423941) What is a Critique? A critique is a “formal evaluation [that offers your] judgment of a text—whether the reading was effective, ineffective, valuable, or trivial.” In a critique, “your goal is to convince readers to accept your judgments concerning the quality of the reading” based on specific criteria you have established (Wilhoit 87). Additionally, a critique is comprised of many integrated parts: introduction to the text, introduction to and brief background on the general topic, brief summary properly placed in the essay, a discussion of the criteria chosen for evaluation, a discussion of the criteria using specific examples/information from the text (this discussion should be the largest section of your essay by far!!), instances of personal response, and a conclusion. All of these items should relate to your overall evaluation/thesis of the text. The Assignment: Instead of a written essay, your “text” will be either a movie or a documentary. You will follow the same standards that you would use for a critique based off of an essay but you will adapt the integrated parts to fit a film critique. In order to effectively address this assignment, complete the following steps: STEP I: Choose either a movie or documentary • Base your choice on the strength of your feelings, whether hate, love, respect, etc., because you do not have to like the film in order to write a solid and coherent critique. You might have more to say about a film you dislike. Also choose a genre of film that you understand (i.e. romantic comedy, drama, indie-film, comedy, documentary). • Think about the important components for this specific genre. STEP II: Watch and Annotate the film • Note the major points within the film, how you felt while watching it, and what made you feel that way. • Keep in mind the film’s genre and whether or not your chosen film fits any of those criteria. STEP III: Analyze (break the film into parts) • Break the film down into your genre-driven criteria. • Choose 4-5 criteria and then determine what sections/components of the film either represent effectiveness or ineffectiveness. STEP IV: Evaluate the film (using the criteria and your personal standards) • Evaluate the film according to the criteria list we will generate in class. • To help create your thesis claim, determine whether the film, based on your criteria and standards, is an excellent, mediocre, terrible, etc. representation of your chosen genre. • For example: While the costume and design are fantastic and interesting, the film 300 is a mediocre example of historical drama because the history of Greece and Asia is inaccurate and the female characters are weak. STEP V: Find outside sources—one should agree with you and one should disagree • Check out a review website, such as imdb.com, and locate a few reviews of your film. In your critique, you will be expected to reference other film reviewers to develop and support your own arguments. Please note that those reviews must be cited properly, both in-text citations and the Works Cited page entries. The basic structure of the critique is as follows: • An introduction that o Introduces the film and provides an adequate amount of background information, including the intended audience, to give the reader context (i.e. a cartoon might not be meant for college-age viewers) o Includes a thesis statement that presents the film as either an excellent, mediocre, or terrible representation of your chosen genre o Explains at least three-four different criteria as the basis for your thesis/argument • A summary that is o Brief, neutral and comprehensive o No more than one paragraph in length • Body Paragraphs including o Support of your thesis using specific examples from the film o More than one example to support your argument o Either direct quotes or paraphrased information from the source text, reviews, outside information (websites, blogs, credible sources) or a combination of all three to support your argument • A counter-claim o Based on an outside review/blog/article disagreeing with your opinion or one criteria o Includes either a refutation or concession of the reviewer’s opinion • A conclusion including o A restatement of your main points and thesis o A final recommendation • A Work Cited page that o Includes all referenced materials including the source text The bulk of your critique should consist of your qualified opinion of the film – unlike the summary, your opinion matters here. In the body of your paper, you will need about three to five main points to support your thesis statement. You will develop each of these points in a section of your essay, each section consisting of about three paragraphs. You will make claims in your topic sentences, provide examples from the text, and then explain your reasons, using source support where possible. Evaluation A successful critique will contain all of the following: • Creative and clearly stated criteria • A debatable thesis statement • A brief background and summary of the film • 80% of the essay is located within the body paragraphs • Topic sentences that transition from one criteria to the next • Body paragraphs clearly and accurately reflecting your criteria and opinion • Body paragraphs that include more than one example as support • Conclusion including a summation and thoughtful recommendation • Correct MLA documentation including signal phrases and in-text citations • A Work Cited page including all sources referenced • Correct grammar and mechanics • Effective and meaningful transitions • Meaningful and descriptive word choices • Literary present tense and grammatical 3rd person • Length of 3-5 pages • Follows the basic structure for a critique Possible Points (25 % of final grade): • Outline 5 % • Peer Response Workshop with Rough Draft 5 % • Highlighted Revisions, & Reflection 10 % • Final Draft: 80 % Upload to Turnitin.com, using Password: English and Class ID: 10423941. Your grade will not be finalized until you have done this.

ENG 100 – Critique Assignment Sheet Rough Draft Due for Peer Response: Tuesday, September 29 First Draft Due (submit for feedback): Thursday, October 1 Final Draft with Outline Due: Thursday, October 8 Highlighting, Labeling, and Reflection: Thursday, October 8 Submit hard copies in class and upload to turnitin.com (Password: English, Class ID: 10423941) What is a Critique? A critique is a “formal evaluation [that offers your] judgment of a text—whether the reading was effective, ineffective, valuable, or trivial.” In a critique, “your goal is to convince readers to accept your judgments concerning the quality of the reading” based on specific criteria you have established (Wilhoit 87). Additionally, a critique is comprised of many integrated parts: introduction to the text, introduction to and brief background on the general topic, brief summary properly placed in the essay, a discussion of the criteria chosen for evaluation, a discussion of the criteria using specific examples/information from the text (this discussion should be the largest section of your essay by far!!), instances of personal response, and a conclusion. All of these items should relate to your overall evaluation/thesis of the text. The Assignment: Instead of a written essay, your “text” will be either a movie or a documentary. You will follow the same standards that you would use for a critique based off of an essay but you will adapt the integrated parts to fit a film critique. In order to effectively address this assignment, complete the following steps: STEP I: Choose either a movie or documentary • Base your choice on the strength of your feelings, whether hate, love, respect, etc., because you do not have to like the film in order to write a solid and coherent critique. You might have more to say about a film you dislike. Also choose a genre of film that you understand (i.e. romantic comedy, drama, indie-film, comedy, documentary). • Think about the important components for this specific genre. STEP II: Watch and Annotate the film • Note the major points within the film, how you felt while watching it, and what made you feel that way. • Keep in mind the film’s genre and whether or not your chosen film fits any of those criteria. STEP III: Analyze (break the film into parts) • Break the film down into your genre-driven criteria. • Choose 4-5 criteria and then determine what sections/components of the film either represent effectiveness or ineffectiveness. STEP IV: Evaluate the film (using the criteria and your personal standards) • Evaluate the film according to the criteria list we will generate in class. • To help create your thesis claim, determine whether the film, based on your criteria and standards, is an excellent, mediocre, terrible, etc. representation of your chosen genre. • For example: While the costume and design are fantastic and interesting, the film 300 is a mediocre example of historical drama because the history of Greece and Asia is inaccurate and the female characters are weak. STEP V: Find outside sources—one should agree with you and one should disagree • Check out a review website, such as imdb.com, and locate a few reviews of your film. In your critique, you will be expected to reference other film reviewers to develop and support your own arguments. Please note that those reviews must be cited properly, both in-text citations and the Works Cited page entries. The basic structure of the critique is as follows: • An introduction that o Introduces the film and provides an adequate amount of background information, including the intended audience, to give the reader context (i.e. a cartoon might not be meant for college-age viewers) o Includes a thesis statement that presents the film as either an excellent, mediocre, or terrible representation of your chosen genre o Explains at least three-four different criteria as the basis for your thesis/argument • A summary that is o Brief, neutral and comprehensive o No more than one paragraph in length • Body Paragraphs including o Support of your thesis using specific examples from the film o More than one example to support your argument o Either direct quotes or paraphrased information from the source text, reviews, outside information (websites, blogs, credible sources) or a combination of all three to support your argument • A counter-claim o Based on an outside review/blog/article disagreeing with your opinion or one criteria o Includes either a refutation or concession of the reviewer’s opinion • A conclusion including o A restatement of your main points and thesis o A final recommendation • A Work Cited page that o Includes all referenced materials including the source text The bulk of your critique should consist of your qualified opinion of the film – unlike the summary, your opinion matters here. In the body of your paper, you will need about three to five main points to support your thesis statement. You will develop each of these points in a section of your essay, each section consisting of about three paragraphs. You will make claims in your topic sentences, provide examples from the text, and then explain your reasons, using source support where possible. Evaluation A successful critique will contain all of the following: • Creative and clearly stated criteria • A debatable thesis statement • A brief background and summary of the film • 80% of the essay is located within the body paragraphs • Topic sentences that transition from one criteria to the next • Body paragraphs clearly and accurately reflecting your criteria and opinion • Body paragraphs that include more than one example as support • Conclusion including a summation and thoughtful recommendation • Correct MLA documentation including signal phrases and in-text citations • A Work Cited page including all sources referenced • Correct grammar and mechanics • Effective and meaningful transitions • Meaningful and descriptive word choices • Literary present tense and grammatical 3rd person • Length of 3-5 pages • Follows the basic structure for a critique Possible Points (25 % of final grade): • Outline 5 % • Peer Response Workshop with Rough Draft 5 % • Highlighted Revisions, & Reflection 10 % • Final Draft: 80 % Upload to Turnitin.com, using Password: English and Class ID: 10423941. Your grade will not be finalized until you have done this.

info@checkyourstudy.com
BI 102 Lab 1 Writing Assignment How did the different concentrations of sucrose impact osmotic rate? This assignment requires you to evaluate a hypothesis and communicate the results of your experiment on the rate of osmosis into sucrose solutions of varying concentrations. The questions below are meant to guide you to reporting the key findings of your experiment and help you think through how to explain the findings and draw conclusions from them in a scientific manner. ASSIGNMENT: Please respond to the following questions to complete your laboratory write up. For this assignment you will only focus on the osmosis of water into sucrose concentrations of varying concentration. Make sure that your write up is accurate, and clearly written so that it is easily readable. A grading rubric is provided on the second page of this assignment. To earn full points on your write up, you must provide answers that align to the “meets” column of your grading rubric as well as meeting all “Quality of Writing and Mechanics” elements described in the rubric. There are also some tips on pages 3-4 of this assignment to help you succeed. FORMAT: • Type your responses, using 1.5 or double spacing. • Include the section headings (Hypothesis, Results, Analysis) and question number (example: 1, 2, 3, etc) in your answers but do not rewrite the question. • Graphs may be made with a computer program (example: Microsoft excel, Mac numbers, etc) or may be neatly produced with a ruler on graphing paper. • Print out the cover sheet on page 2 of this assignment, read and sign the academic honesty statement, and submit it with your write up. Your instructor WILL NOT accept a write up without the signed cover sheet. DUE DATE: Your write up is due at the beginning of class next week. Late assignments will have 1 point deducted per day up to 5 days, at which point the assignment will be assigned 0 points. Hypothesis and Prediction – Part 1 of Rubric 1. What did you think was going to happen in this experiment and why? You may find it helpful to state your answers to these questions as an “if-then” hypothesis-prediction. Be sure you have included a biological rationale that explains WHY you made this hypothesis/prediction. (You worked on this in question 2 on page 10 of this lab activity) Results – Part 2 of Rubric 2. How did the different concentrations of sucrose impact osmotic rate? Answer this question by creating a line graph that shows the results of your experiment. If you need assistance building a graph, there is a Guide to Graphing resource available on your Moodle lab course site. Analysis- Part 3 of Rubric 3. Explain why you think that the results shown in your graph support or refute your hypothesis (remember we never “prove” anything in science). Consider all your data and the overall data pattern as you answer this question. Don’t ignore unusual data that may not seem to fit into a specific patterns (“outliers”). Explain what you think might be behind these unusual data points. 4. What is the biological significance of your results? What biological concepts explain completely why these events happened in the experiment? How do these results help you understand the biology of the cell and how materials move back and forth across the cell membrane? (A hint: refer back to questions 1A-1F on page 10 of this lab activity). Think about giving a specific example. References- Mechanics Checklist 5. Provide at least one full citation (make sure you include an in-text citation that pinpoints where you used this resource) for a resource you made use of in performing the experiment, understanding the concepts and writing this assignment. (Perhaps your lab manual? Your textbook? A website?) If you used more than one resource, you need to cite each one! If you need help with citations, a Guide to Citing References is available on your Moodle lab course site. Please print out and submit this cover sheet with your lab writeup! Lab Writeup Assignment (1) Assessment Rubric-­‐ 10 points total Name: ________________________________________ Element Misses (1 point) Approaches (2 points) Meets (3 points) Hypothesis Clarity/Specificity Testability Rationale ___Hypothesis is unclear and hardto- understand ___Hypothesis is not testable ___No biological rationale for hypothesis or rationale is fully inaccurate ___Hypothesis included is clearly stated, but not specific or lacks specific details __Hypothesis is testable, but not in a feasible way in this lab ___Some foundation for hypothesis, but based in part on biological inaccuracy ___Hypothesis included is clearly stated and very specific ___Hypothesis is testable and could be tested within lab parameters ___Rationale for hypothesis is grounded in accurate biological information Graph Title Axes Variables Key Graph clarity Data accuracy ___Graph lacks a title ___Axes are not labeled ___Variables not addressed in graph ___No key or way to tell data points apart ___Graph is hard to read and comparisons cannot be made: Inappropriate graph type or use of scale ___Data graphed is inaccurate or does not relate to experiment ___Graph has a title that is not very descriptive ___Axes are either unlabeled, or units are unclear or wrong ___Variables addressed in graph, but not on correct axes ___Key included, but is hard to understand ___Graph is somewhat readable, comparisons can be made with difficulty: Appropriate graph type, but not scaled well ___Data graphed is partially accurate; some data is missing ___Graph has a concise, descriptive title ___Axes are labeled, including clarification of units used ___Variables on correct axes ___A clear, easy-to-use key to data points is included ___Graph is clearly readable and comparisons between treatments are easy to make: Graph type and scale are appropriate to data ___Data graphed is accurate and includes all relevant data, including controls (if needed) Analysis Hypothesis Scientific language Data addressed Explanation ___Hypothesis is not addressed ___Hypothesis is described using language like proven, true, or right ___No explanations for data patterns observed in graph or data does not support conclusions. ___No biological explanation for data trends or explanations are completely inaccurate ___Hypothesis is mentioned, but not linked well to data ___Hypothesis is not consistently described as supported or refuted ___Some data considered in conclusions but other data is ignored. Any unusual “outliers” are ignored ___Explanations include minimal or some inaccurate biological concepts ___Hypothesis is evaluated based upon data ___Hypothesis is consistently described as supported or refuted ___All data collected is considered and addressed by conclusions, including presence of outliers, ___Explanations include relevant and accurate biological concepts Quality of Writing and Mechanics: Worth 1 point. Writeup should meet all of the following criteria! Yes No ☐ ☐ Write up includes your name, the date, and your lab section ☐ ☐ Write up is free from spelling and grammatical errors (make sure you proofread!!) ☐ ☐ Write up is clear and easy-to-understand ☐ ☐ Write up includes full citation for at least one reference with corresponding in-text citation ☐ ☐ All portions of write up are clearly labeled, and question numbers are included Plagiarism refers to the use of original work, ideas, or text that are not your own. This includes cut-and-paste from websites, copying directly from texts, and copying the work of others, including fellow students. Telling someone your answers to the questions (including telling someone how to make their graph, question #2), or asking for the answers to any question, is cheating. (Asking someone how to make the graph for this assignment is NOT the same as asking for help learning excel or some other software). All forms of cheating, including plagiarism and copying of work will result in an immediate zero for the exam, quiz, or assignment. In the case of copying, all parties involved in the unethical behavior will earn zeros. Cheating students will be referred to the Student Conduct Committee for further action. You also have the right to appeal to the Student Conduct Committee. I have read and understand the plagiarism statement. ____________________________________________________ Signature Guidelines for Good Quality Scientific Reports Hypothesis and Prediction: The hypothesis is a tentative explanation for the phenomenon. Remember that: • A good hypothesis and prediction is testable (and should be testable under the conditions of our lab environment; For example, if your hypothesis requires shooting a rocket into space, then its not really testable under our laboratory conditions). • Your explanation can be ruled out through testing, or falsified. • A good hypothesis and prediction is detailed and specific in what it is testing. • A good hypothesis provides a rationale or explanation for why you think your prediction is reasonable and this rationale is based on what we know about biology. • A good prediction is specific and can be tested with a specific experiment. Examples*: I think that diet soda will float and regular soda will sink. {This hypothesis misses the goal. It is not specific as we don’t know where the sodas are floating and sinking, and it does not provide any explanation to explain why the hypothesis makes sense} Because diet soda does not contain sugar and regular soda does, the diet soda will float in a bucket of water, while regular soda will sink. {This hypothesis approaches the goal. It is more specific about the conditions, and it provides a partial explanation about why the hypothesis makes sense, but the connection between sugar and sinking is unclear} If diet soda does not contain sugar, then its density (mass/volume) is lower than that of regular soda which does contain sugar, and so diet soda will float in a bucket of water while regular soda sinks. {This hypothesis meets the goal. It is specific and the rationale- sugar affects density and density is what determines floating or sinking in water- is clearly articulated} *Note that these examples are for different experiments and investigations and NOT about your osmosis lab. They are provided only to help you think about what you need to include in your write up. Graph: The graph is a visual representation of the data you gathered while testing your hypothesis. Remember that: • A graph needs a concise title that clearly describes the data that it is showing. • Data must be put on the correct axes of the graph. In general, the data you collected (representing what you are trying to find out about) goes on the vertical (Y) axis. The supporting data that that describes how, when or under what conditions you collected your data goes on the horizontal (X) axis. (For this reason time nearly always goes on the X-axis). • Axes must be labeled, including the units in which data were recorded • Data points should be clearly marked and identified; a key is helpful if more than one group of data is included in the graph. • The scale of a graph is important. It should be consistent (there should be no change in the units or increments on a single axis) and appropriate to the data you collected Examples: {This graph misses the goal. There is no title, nor is there a key to help distinguish what the data points mean. The scale is too large- from 0 to 100 with an increment of 50, when the maximum number in the graph is 25- and makes it hard to interpret this graph. The x-axis is labeled, but without units (the months) and the y-axis has units, but the label is incomplete- number of what?} {This graph meets the goal. There is a descriptive title, and all of the axes are clearly labeled with units. There is a key so that we can distinguish what each set of data points represent. The dependent variable (number of individuals) is correctly placed on the y-axis with the independent variable of time placed on the x-axis. The scale of 0-30 is appropriate to the data, with each line on the x-axis representing an increment of 5.} 0 50 100 Number Month 0 5 10 15 20 25 30 March April May June July Number of individuals Month (2011) Population size of three different madtom catiCish in the Marais de Cygnes River in Spring/Summer 2011 Brindled madtom Neosho madtom Slender madtom Analysis: You need to evaluate your hypothesis based on the data patterns shown by your graph. Remember that: • You use data to determine support or refute your hypothesis. It is only possible to support a hypothesis, not to “prove” one (that would require testing every possible permutation and combination of factors). Your evaluation of your hypothesis should not be contradicted by the pattern shown by your data. • Refer back to the prediction you made as part of your hypothesis and use your data to justify your decision to support or refute your hypothesis. • In the “if” part of your hypothesis you should have provided a rationale, or explanation for the prediction you made in your hypothesis (“then” part of hypothesis”). Use this to help you explain why you think you observed the specific pattern of data revealed in your graph. • You should consider all of the data you collected in examining the support (or lack of support for your hypothesis). If there are unusual data points or “outliers” that don’t seem to fit the general pattern in your graph, explain what you think those mean. Examples: I was right. Diet Pepsi floated and so did Apricot Nectar. Regular Pepsi sank. Obviously the regular Pepsi was heavier. This helps us understand the concept of density, which is a really important one. {This analysis misses the goal. The hypothesis isn’t actually mentioned and the data is only briefly described. There is no explanation of the importance of the Apricot Nectar results. Finally, there is no connection to how these results help understand density or why it is biologically important} I hypothesized that diet soda would float, and all three cans of diet Pepsi did float while the regular Pepsi sank. This supports my hypothesis. Both types of Pepsi were 8.5 fluid ounces in volume, but the regular Pepsi also contained 16 grams of sugar. This means that the regular Pepsi had 16 more grams of mass provided by the sugar in the same amount of volume. This would lead to an increase in density, which explains why the regular soda cans sank. When we put in a can of Apricot Nectar, which had 19 grams of sugar, it floated. This was unexpected, but I think it is explained by the fact that an Apricot Nectar can had a volume of 7 fluid ounces, but the dimensions of the can are the same as that of a Pepsi can. A same-sized can with less liquid probably has an air space that helped it float. The results of this experiment help us understand how the air bladder of a fish, which creates an air space inside the fish, helps it float in the water and also how seaweeds and other living things with air spaces or other factors that decrease their density keep from sinking to the bottom of the water. {This analysis meets the goal. It clearly ties the hypothesis to the results and outlines what they mean. It describes how the results support the hypothesis, but also explains a possible reason behind the unusual results of the Apricot Nectar. Finally, there is a link to how this experiment helps us understand biology}

BI 102 Lab 1 Writing Assignment How did the different concentrations of sucrose impact osmotic rate? This assignment requires you to evaluate a hypothesis and communicate the results of your experiment on the rate of osmosis into sucrose solutions of varying concentrations. The questions below are meant to guide you to reporting the key findings of your experiment and help you think through how to explain the findings and draw conclusions from them in a scientific manner. ASSIGNMENT: Please respond to the following questions to complete your laboratory write up. For this assignment you will only focus on the osmosis of water into sucrose concentrations of varying concentration. Make sure that your write up is accurate, and clearly written so that it is easily readable. A grading rubric is provided on the second page of this assignment. To earn full points on your write up, you must provide answers that align to the “meets” column of your grading rubric as well as meeting all “Quality of Writing and Mechanics” elements described in the rubric. There are also some tips on pages 3-4 of this assignment to help you succeed. FORMAT: • Type your responses, using 1.5 or double spacing. • Include the section headings (Hypothesis, Results, Analysis) and question number (example: 1, 2, 3, etc) in your answers but do not rewrite the question. • Graphs may be made with a computer program (example: Microsoft excel, Mac numbers, etc) or may be neatly produced with a ruler on graphing paper. • Print out the cover sheet on page 2 of this assignment, read and sign the academic honesty statement, and submit it with your write up. Your instructor WILL NOT accept a write up without the signed cover sheet. DUE DATE: Your write up is due at the beginning of class next week. Late assignments will have 1 point deducted per day up to 5 days, at which point the assignment will be assigned 0 points. Hypothesis and Prediction – Part 1 of Rubric 1. What did you think was going to happen in this experiment and why? You may find it helpful to state your answers to these questions as an “if-then” hypothesis-prediction. Be sure you have included a biological rationale that explains WHY you made this hypothesis/prediction. (You worked on this in question 2 on page 10 of this lab activity) Results – Part 2 of Rubric 2. How did the different concentrations of sucrose impact osmotic rate? Answer this question by creating a line graph that shows the results of your experiment. If you need assistance building a graph, there is a Guide to Graphing resource available on your Moodle lab course site. Analysis- Part 3 of Rubric 3. Explain why you think that the results shown in your graph support or refute your hypothesis (remember we never “prove” anything in science). Consider all your data and the overall data pattern as you answer this question. Don’t ignore unusual data that may not seem to fit into a specific patterns (“outliers”). Explain what you think might be behind these unusual data points. 4. What is the biological significance of your results? What biological concepts explain completely why these events happened in the experiment? How do these results help you understand the biology of the cell and how materials move back and forth across the cell membrane? (A hint: refer back to questions 1A-1F on page 10 of this lab activity). Think about giving a specific example. References- Mechanics Checklist 5. Provide at least one full citation (make sure you include an in-text citation that pinpoints where you used this resource) for a resource you made use of in performing the experiment, understanding the concepts and writing this assignment. (Perhaps your lab manual? Your textbook? A website?) If you used more than one resource, you need to cite each one! If you need help with citations, a Guide to Citing References is available on your Moodle lab course site. Please print out and submit this cover sheet with your lab writeup! Lab Writeup Assignment (1) Assessment Rubric-­‐ 10 points total Name: ________________________________________ Element Misses (1 point) Approaches (2 points) Meets (3 points) Hypothesis Clarity/Specificity Testability Rationale ___Hypothesis is unclear and hardto- understand ___Hypothesis is not testable ___No biological rationale for hypothesis or rationale is fully inaccurate ___Hypothesis included is clearly stated, but not specific or lacks specific details __Hypothesis is testable, but not in a feasible way in this lab ___Some foundation for hypothesis, but based in part on biological inaccuracy ___Hypothesis included is clearly stated and very specific ___Hypothesis is testable and could be tested within lab parameters ___Rationale for hypothesis is grounded in accurate biological information Graph Title Axes Variables Key Graph clarity Data accuracy ___Graph lacks a title ___Axes are not labeled ___Variables not addressed in graph ___No key or way to tell data points apart ___Graph is hard to read and comparisons cannot be made: Inappropriate graph type or use of scale ___Data graphed is inaccurate or does not relate to experiment ___Graph has a title that is not very descriptive ___Axes are either unlabeled, or units are unclear or wrong ___Variables addressed in graph, but not on correct axes ___Key included, but is hard to understand ___Graph is somewhat readable, comparisons can be made with difficulty: Appropriate graph type, but not scaled well ___Data graphed is partially accurate; some data is missing ___Graph has a concise, descriptive title ___Axes are labeled, including clarification of units used ___Variables on correct axes ___A clear, easy-to-use key to data points is included ___Graph is clearly readable and comparisons between treatments are easy to make: Graph type and scale are appropriate to data ___Data graphed is accurate and includes all relevant data, including controls (if needed) Analysis Hypothesis Scientific language Data addressed Explanation ___Hypothesis is not addressed ___Hypothesis is described using language like proven, true, or right ___No explanations for data patterns observed in graph or data does not support conclusions. ___No biological explanation for data trends or explanations are completely inaccurate ___Hypothesis is mentioned, but not linked well to data ___Hypothesis is not consistently described as supported or refuted ___Some data considered in conclusions but other data is ignored. Any unusual “outliers” are ignored ___Explanations include minimal or some inaccurate biological concepts ___Hypothesis is evaluated based upon data ___Hypothesis is consistently described as supported or refuted ___All data collected is considered and addressed by conclusions, including presence of outliers, ___Explanations include relevant and accurate biological concepts Quality of Writing and Mechanics: Worth 1 point. Writeup should meet all of the following criteria! Yes No ☐ ☐ Write up includes your name, the date, and your lab section ☐ ☐ Write up is free from spelling and grammatical errors (make sure you proofread!!) ☐ ☐ Write up is clear and easy-to-understand ☐ ☐ Write up includes full citation for at least one reference with corresponding in-text citation ☐ ☐ All portions of write up are clearly labeled, and question numbers are included Plagiarism refers to the use of original work, ideas, or text that are not your own. This includes cut-and-paste from websites, copying directly from texts, and copying the work of others, including fellow students. Telling someone your answers to the questions (including telling someone how to make their graph, question #2), or asking for the answers to any question, is cheating. (Asking someone how to make the graph for this assignment is NOT the same as asking for help learning excel or some other software). All forms of cheating, including plagiarism and copying of work will result in an immediate zero for the exam, quiz, or assignment. In the case of copying, all parties involved in the unethical behavior will earn zeros. Cheating students will be referred to the Student Conduct Committee for further action. You also have the right to appeal to the Student Conduct Committee. I have read and understand the plagiarism statement. ____________________________________________________ Signature Guidelines for Good Quality Scientific Reports Hypothesis and Prediction: The hypothesis is a tentative explanation for the phenomenon. Remember that: • A good hypothesis and prediction is testable (and should be testable under the conditions of our lab environment; For example, if your hypothesis requires shooting a rocket into space, then its not really testable under our laboratory conditions). • Your explanation can be ruled out through testing, or falsified. • A good hypothesis and prediction is detailed and specific in what it is testing. • A good hypothesis provides a rationale or explanation for why you think your prediction is reasonable and this rationale is based on what we know about biology. • A good prediction is specific and can be tested with a specific experiment. Examples*: I think that diet soda will float and regular soda will sink. {This hypothesis misses the goal. It is not specific as we don’t know where the sodas are floating and sinking, and it does not provide any explanation to explain why the hypothesis makes sense} Because diet soda does not contain sugar and regular soda does, the diet soda will float in a bucket of water, while regular soda will sink. {This hypothesis approaches the goal. It is more specific about the conditions, and it provides a partial explanation about why the hypothesis makes sense, but the connection between sugar and sinking is unclear} If diet soda does not contain sugar, then its density (mass/volume) is lower than that of regular soda which does contain sugar, and so diet soda will float in a bucket of water while regular soda sinks. {This hypothesis meets the goal. It is specific and the rationale- sugar affects density and density is what determines floating or sinking in water- is clearly articulated} *Note that these examples are for different experiments and investigations and NOT about your osmosis lab. They are provided only to help you think about what you need to include in your write up. Graph: The graph is a visual representation of the data you gathered while testing your hypothesis. Remember that: • A graph needs a concise title that clearly describes the data that it is showing. • Data must be put on the correct axes of the graph. In general, the data you collected (representing what you are trying to find out about) goes on the vertical (Y) axis. The supporting data that that describes how, when or under what conditions you collected your data goes on the horizontal (X) axis. (For this reason time nearly always goes on the X-axis). • Axes must be labeled, including the units in which data were recorded • Data points should be clearly marked and identified; a key is helpful if more than one group of data is included in the graph. • The scale of a graph is important. It should be consistent (there should be no change in the units or increments on a single axis) and appropriate to the data you collected Examples: {This graph misses the goal. There is no title, nor is there a key to help distinguish what the data points mean. The scale is too large- from 0 to 100 with an increment of 50, when the maximum number in the graph is 25- and makes it hard to interpret this graph. The x-axis is labeled, but without units (the months) and the y-axis has units, but the label is incomplete- number of what?} {This graph meets the goal. There is a descriptive title, and all of the axes are clearly labeled with units. There is a key so that we can distinguish what each set of data points represent. The dependent variable (number of individuals) is correctly placed on the y-axis with the independent variable of time placed on the x-axis. The scale of 0-30 is appropriate to the data, with each line on the x-axis representing an increment of 5.} 0 50 100 Number Month 0 5 10 15 20 25 30 March April May June July Number of individuals Month (2011) Population size of three different madtom catiCish in the Marais de Cygnes River in Spring/Summer 2011 Brindled madtom Neosho madtom Slender madtom Analysis: You need to evaluate your hypothesis based on the data patterns shown by your graph. Remember that: • You use data to determine support or refute your hypothesis. It is only possible to support a hypothesis, not to “prove” one (that would require testing every possible permutation and combination of factors). Your evaluation of your hypothesis should not be contradicted by the pattern shown by your data. • Refer back to the prediction you made as part of your hypothesis and use your data to justify your decision to support or refute your hypothesis. • In the “if” part of your hypothesis you should have provided a rationale, or explanation for the prediction you made in your hypothesis (“then” part of hypothesis”). Use this to help you explain why you think you observed the specific pattern of data revealed in your graph. • You should consider all of the data you collected in examining the support (or lack of support for your hypothesis). If there are unusual data points or “outliers” that don’t seem to fit the general pattern in your graph, explain what you think those mean. Examples: I was right. Diet Pepsi floated and so did Apricot Nectar. Regular Pepsi sank. Obviously the regular Pepsi was heavier. This helps us understand the concept of density, which is a really important one. {This analysis misses the goal. The hypothesis isn’t actually mentioned and the data is only briefly described. There is no explanation of the importance of the Apricot Nectar results. Finally, there is no connection to how these results help understand density or why it is biologically important} I hypothesized that diet soda would float, and all three cans of diet Pepsi did float while the regular Pepsi sank. This supports my hypothesis. Both types of Pepsi were 8.5 fluid ounces in volume, but the regular Pepsi also contained 16 grams of sugar. This means that the regular Pepsi had 16 more grams of mass provided by the sugar in the same amount of volume. This would lead to an increase in density, which explains why the regular soda cans sank. When we put in a can of Apricot Nectar, which had 19 grams of sugar, it floated. This was unexpected, but I think it is explained by the fact that an Apricot Nectar can had a volume of 7 fluid ounces, but the dimensions of the can are the same as that of a Pepsi can. A same-sized can with less liquid probably has an air space that helped it float. The results of this experiment help us understand how the air bladder of a fish, which creates an air space inside the fish, helps it float in the water and also how seaweeds and other living things with air spaces or other factors that decrease their density keep from sinking to the bottom of the water. {This analysis meets the goal. It clearly ties the hypothesis to the results and outlines what they mean. It describes how the results support the hypothesis, but also explains a possible reason behind the unusual results of the Apricot Nectar. Finally, there is a link to how this experiment helps us understand biology}

info@checkyourstudy.com Whatsapp +919911743277
HIST 303 Rebels and Renegades Comparative Paper – Conroy & Drakulic In a well-written analysis of about 3 pages, compare and contrast Conroy’s Belfast Diary or Drakulic’s How We Survived Communism and Even Laughed in response to the following question: It can be argued that in the midst of deprivation and hardship, people still exercise considerable agency—or the power to act within one’s particular socio-political context. In fact, living the ordinary can be considered an act of rebellion against an imposing power. That is, people use and experience their lives as resistance to oppression or war. This is sometimes referred to as the “politics of everyday life”. How does this concept of agency play out in these works? In your response, do not simply list examples, but analyze the examples by the authors in relation to the larger themes of the course. A successful assignment will (this is a checklist, so heed it well!!!): * have a solid introduction with an arguable thesis; * be well organized with coherent paragraphs relevant to the thesis; * have a concluding paragraph that concisely and accurately summarizes the paper; * adequately analyze the histories and their connections to each other; * use relevant evidence to substantiate claims; * be analytic, not descriptive; * properly cite and punctuate quotations and evidence; * be paginated; * have an interesting title relevant to the argument (e.g. “Comparative Paper” is unacceptable); * be well written, well edited and well documented. Author Specific Points that discuss everyday activities as resistance Relate to your other Reading (Williams, Hall, Hebdige, etc.) Conroy Drakulic Working Thesis: _____________________________________________________________________ ____________________________________________________________________________________ ****FORMATTING DIRECTIONS: This paper should be 3 – 4 pages (no more), typed, doublespaced, with one-inch margins and 12-point font. This assignment is worth 25% of your grade in this course. You must head your paper with your name and date and include your name and pages (x of x) in a header or footer of each page. At the end of your paper, you must skip four lines then sign with the following: “I attest that the work contained in this document is entirely my own and it numbers x pages.” *****

HIST 303 Rebels and Renegades Comparative Paper – Conroy & Drakulic In a well-written analysis of about 3 pages, compare and contrast Conroy’s Belfast Diary or Drakulic’s How We Survived Communism and Even Laughed in response to the following question: It can be argued that in the midst of deprivation and hardship, people still exercise considerable agency—or the power to act within one’s particular socio-political context. In fact, living the ordinary can be considered an act of rebellion against an imposing power. That is, people use and experience their lives as resistance to oppression or war. This is sometimes referred to as the “politics of everyday life”. How does this concept of agency play out in these works? In your response, do not simply list examples, but analyze the examples by the authors in relation to the larger themes of the course. A successful assignment will (this is a checklist, so heed it well!!!): * have a solid introduction with an arguable thesis; * be well organized with coherent paragraphs relevant to the thesis; * have a concluding paragraph that concisely and accurately summarizes the paper; * adequately analyze the histories and their connections to each other; * use relevant evidence to substantiate claims; * be analytic, not descriptive; * properly cite and punctuate quotations and evidence; * be paginated; * have an interesting title relevant to the argument (e.g. “Comparative Paper” is unacceptable); * be well written, well edited and well documented. Author Specific Points that discuss everyday activities as resistance Relate to your other Reading (Williams, Hall, Hebdige, etc.) Conroy Drakulic Working Thesis: _____________________________________________________________________ ____________________________________________________________________________________ ****FORMATTING DIRECTIONS: This paper should be 3 – 4 pages (no more), typed, doublespaced, with one-inch margins and 12-point font. This assignment is worth 25% of your grade in this course. You must head your paper with your name and date and include your name and pages (x of x) in a header or footer of each page. At the end of your paper, you must skip four lines then sign with the following: “I attest that the work contained in this document is entirely my own and it numbers x pages.” *****

Relative analysis of Conroy & Drakulic The Belfast Diary: War … Read More...
Statistical Methods (STAT 4303) Review for Final Comprehensive Exam Measures of Central Tendency, Dispersion Q.1. The data below represents the test scores obtained by students in college algebra class. 10,12,15,20,13,16,14 Calculate (a) Mean (b) Median (c) Mode (d) Variance, s2 (e) Coefficient of variation (CV) Q.2. The data below represents the test scores obtained by students in English class. 12,15,16,18,13,10,17,20 Calculate (a) Mean (b) Median (c) Mode (d) Variance, s2 (e) Coefficient of variation (CV) (f) Compare the results of Q.1 and Q.2, Which scores College Algebra or English do you think is more precise (less spread)? Q.3 Following data represents the score obtained by students in one of the exams 9, 13, 14, 15, 16, 16, 17, 19, 20, 21, 21, 22, 25, 25, 26 Create a frequency table to calculate the following descriptive statistics (a) mean (b) median (c) mode (d) first and third quartiles (e) Construct Box and Whisker plot. (f) Comment on the shape of the distribution. (g) Find inter quartile range (IQR). (h) Are there any outliers (based on IQR technique)? In the above problem, if the score 26 is replaced by 37 (i) What will happen to the mean? Will it increase, decrease or remains the same? (j) What will be the new median? (k) What can you say about the effect of outliers on mean and median? Q.4 Following data represents the score obtained by students in one of the exams 19, 14, 14, 15, 17, 16, 17, 20, 20, 21, 21, 22, 25, 25, 26, 27, 28 Create a frequency table to calculate the following descriptive statistics a) mean b) median c) mode d) first and third quartiles e) Construct Box and Whisker plot. f) Comment on the shape of the distribution. g) Find inter quartile range (IQR). h) Are there any outliers (based on IQR technique)? In the above problem, if the score 28 is replaced by 48 i) What will happen to the mean? Will it increase, decrease or remains the same? j) What will be the new median? k) What can you say about the effect of outliers on mean and median? Q.5 Consider the following data of height (in inch) and weight(in lbs). Height(x) Frequency 50 2 52 3 55 2 60 4 62 3  Find the mean height.  What is the variance of height? Also, find the standard deviation. (c) Find the coefficient of variation (CV). Q.6. The following table shows the number of miles run during one week for a sample of 20 runners: Miles Mid-value (x) Frequency (f) 5.5-10.5 1 10.5-15.5 2 15.5-20.5 3 20.5-25.5 5 25.5-30.5 4 (a) Find the average (mean) miles run. (Hint: Find mid-value of mile range first) (b) What is the variance of miles run? Also, find the standard deviation. (c) Find the coefficient of variation (CV). Q.7. (a) If the mean of 20 observations is 20.5, find the sum of all observations? (b) If the mean of 30 observations is 40, find the sum of all observations? Probability Q.8 Out of forty students, 14 are taking English Composition and 29 are taking Chemistry. a) How many students are in both classes? b) What is the probability that a randomly-chosen student from this group is taking only the Chemistry class? Q.9 A drawer contains 4 red balls, 5 green balls, and 5 blue balls. One ball is taken from the drawer and then replaced. Another ball is taken from the drawer. What is the probability that (Draw tree diagram to facilitate your calculation). (a) both balls are red (b) first ball is red (c) both balls are of same colors (d) both balls are of different colors (e) first ball is red and second ball is blue (f) first ball is red or blue Q.10 A drawer contains 3 red balls, 5 green balls, and 5 blue balls. One ball is taken from the drawer and not replaced. Another ball is then taken from the drawer. Draw tree diagram to facilitate your calculation. What is the probability that (a) both balls are red (b) first ball is red (c) both balls are of same colors (d) both balls are of different colors (e) first ball is red and second ball is blue (f) first ball is red or blue Q. 11 Missile A has 45% chance of hitting target. Missile B has 55% chance of hitting a target. What is the probability that (i) both miss the target. (ii) at least one will hit the target. (iii) exactly one will hit the target. Q. 12 A politician from D party speaks truth 65% of times; another politician from rival party speaks truth 75% of times. Both politicians were asked about their personal love affair with their own office secretary, what is the probability that (i) both lie the actual fact . (ii) at least one will speak truth. (iii) exactly one speaks the truth. (iv) both speak the truth. Q.13 The question, “Do you drink alcohol?” was asked to 220 people. Results are shown in the table. . Yes No Total Male 48 82 Female 24 66 Total (a) What is the probability of a randomly selected individual being a male also drinks? (b) What is the probability of a randomly selected individual being a female? (c) What is the probability that a randomly selected individual drinks? (d) A person is selected at random and if the person is female, what is the probability that she drinks? (e) What is the probability that a randomly selected alcoholic person is a male? Q.14 A professor, Dr. Drakula, taught courses that included statements from across the five colleges abbreviated as AH, AS, BA, ED and EN. He taught at Texas A&M University – Kingsville (TAMUK) during the span of five academic years AY09 to AY13. The following table shows the total number of graduates during AY09 to AY13. One day, he was running late to his class. He was so focused on the class that he did not stop for a red light. As soon as he crossed through the intersection, a police officer Asked him to stop. ( a ) It is turned out that the police officer was TAMUK graduate during the past five years. What is the probability that the Police Officer was from ED College? ( b ) What is the probability that the Police Officer graduated in the academic year of 2011? ( c ) If the traffic officer graduated from TAMUK in the academic year of 2011(AY11). What is the conditional probability that he graduated from the ED college? ( d ) Are the events the academic year “AY 11” and the college of Education “ED” independent? Yes or no , why? Discrete Distribution Q.15 Find k and probability for X=2 and X=4. X 1 2 3 4 5 P(X=x) 0.1 3k 0.2 2k 0.2 (Hint: First find k, and then plug in) Also, calculate the expected value of X, E(X) and variance V(X). A game plan is derived based on above table, a player wins $5 if he can blindly choose 3 and loses $1 if he chooses other numbers.What is his expected win or loss per game? If he plays this game for 20 times, what is total win or lose? Q.16 Find k. X 3 4 5 6 7 P(X=x) k 2k 2k k 2k (Hint: First find k, and then plug in) Also, calculate the expected value of X, E(X) and variance V(X). A game plan is derived based on above table, a player wins $5 if he can blindly choose 3 and loses $1 if he chooses other numbers. What is his expected win or loss per game? If he plays this game for 20 times, what is total win or lose? Binomial Distribution: Q.17 (a) Hospital records show that of patients suffering from a certain disease, 75% die of it. What is the probability that of 6 randomly selected patients, 4 will recover? (b) A (blindfolded) marksman finds that on the average he hits the target 4 times out of 5. If he fires 4 shots, what is the probability of (i) more than 2 hits? (ii) at least 3 misses? (c) which of the following are binomial experiments? Explain the reason. i. Telephone surveying a group of 200 people to ask if they voted for George Bush. ii. Counting the average number of dogs seen at a veterinarian’s office daily. iii. You take a survey of 50 traffic lights in a certain city, at 3 p.m., recording whether the light was red, green, or yellow at that time. iv. You are at a fair, playing “pop the balloon” with 6 darts. There are 20 balloons. 10 of the balloons have a ticket inside that say “win,” and 10 have a ticket that says “lose.” Normal Distribution Q.18 Use standard normal distribution table to find the following probabilities: (a) P(Z<2.5) (b) P(Z< -1.3) (c) P(Z>0.12) (d) P(Z> -2.15) (e) P(0.11<Z<0.22) (f) P(-0.11<Z<0.5) Q.19. Use normal distribution table to find the missing values (?). (a) P(Z< ?)=0.40 (b) P(Z< ?)=0.76 (c) P(Z> ?)=0.87 (d) P(Z> ?)=0.34 Q.20. The length of life of certain type of light bulb is normally distributed with mean=220hrs and standard deviation=20hrs. (a) Define a random variable, X A light bulb is randomly selected, what is the probability that (b) it will last will last more than 207 hrs. ? (c) it will last less than 214 hrs. (d) it will last in between 199 to 207 hrs. Q.21. The length of life of an instrument produced by a machine has a normal distribution with a mean of 22 months and standard deviation of 4 months. Find the probability that an instrument produced by this machine will last (a) less than 10 months. (b) more than 28 months (c) between 10 and 28 months. Distribution of sample mean and Central Limit Theorem (CLT) Q.22 It is assumed that weight of teenage student is normally distributed with mean=140 lbs. and standard deviation =15 lbs. A simple random sample of 40 teenage students is taken and sample mean is calculated. If several such samples of same size are taken (i) what could be the mean of all sample means. (ii) what could be the standard deviation of all sample means. (iii) will the distribution of sample means be normal ? (iv) What is CLT? Write down the distribution of sample mean in the form of ~ ( , ) 2 n X N   . Q.23 The time it takes students in a cooking school to learn to prepare seafood gumbo is a random variable with a normal distribution where the average is 3.2 hours and a standard deviation of 1.8 hours. A sample of 40 students was investigated. What is the distribution of sample mean (express in numbers)? Hypothesis Testing Q.24 The NCHS reported that the mean total cholesterol level in 2002 for all adults was 203 with standard deviation of 37. Total cholesterol levels in participants who attended the seventh examination of the Offspring in the Framingham Heart Study are summarized as follows: n=3,00, =200.3. Is there statistical evidence of a difference in mean cholesterol levels in the Framingham Offspring (means does the result form current examination differs from 2002 report)?? (Follow the steps below to reach the conclusion) (i) Define null and alternate hypothesis (Also write what is  , and x in words at the beginning) (ii) Identify the significance level ,  and check whether it is one sided or two sided test. (iii) Calculate test statistics, Z. (iv) Use standard normal table to find the p-value and state whether you reject or accept (fail to reject) the null hypothesis. (v) what is the critical value, do you reject or accept the H0. (vi) Write down the conclusion based on part (iv). Q.25 A sample of 145 boxes of Kellogg’s Raisin Bran contain in average 1.95 scoops of raisins. It is known from past experiments that the standard deviation for the number of scoops of raisins is 0.25. The manufacturer of Kellogg’s Raisin Bran claimed that in average their product contains more than 2 scoops of raisins, do you reject or accept the manufacturers claim (follow all five steps)? Q.26 It is assumed that the mean systolic blood pressure is μ = 120 mm Hg. In the Honolulu Heart Study, a sample of n = 100 people had an average systolic blood pressure of 130.1 mm Hg. The standard deviation from the population is 21.21 mm Hg. Is the group significantly different (with respect to systolic blood pressure!) from the regular population? Use 10% level of significance. Q.27 A CEO claims that at least 80 percent of the company’s 1,000,000 customers are very satisfied. Again, 100 customers are surveyed using simple random sampling. The result: 73 percent are very satisfied. Based on these results, should we accept or reject the CEO’s hypothesis? Assume a significance level of 0.05. Q.28 True/False questions (These questions are collected from previous HW, review and exam problems, see the previous solutions for answers) (a) Total sum of probability can exceed 1. (b) If you throw a die, getting 2 or any even number are independent events. (c) If you roll a die for 20 times, the probability of getting 5 in 15th roll is 20 15 . (d) A student is taking a 5 question True-False quiz but he has not been doing any work in the course and does not know the material so he randomly guesses at all the answers. Probability that he gets the first question right is 2 1 . (e) Typing in laptop and writing emails using the same laptop are independent events. (f) Normal distribution is right skewed. (g) Mean is more robust to outliers. So mean is used for data with extreme values. (h) It is possible to have no mode in the data. (i) Standard normal variable, Z has some unit. (j) Only two parameters are required to describe the entire normal distribution. (k) Mean of standard normal variable, Z is 1. (l) If p-value of more than level of significance (alpha), we reject the H0. (m) Very small p-value indicates rejection of H0. (n) H0 always contains equality sign. (o) CLT indicates that distribution of sample mean can be anything, not just normal. (p) Sample mean is always equal to population mean. (q) Variance of sample mean is less than population mean. (r) Variance of sample mean does not depend on sample size. (s) Mr. A has cancer but a medical doctor diagnosed him as “no cancer”. It is a type I error. (t) Level of significance is probability of making type II error. (u) Type II error can be controlled. (v) Type I error is more serious than type II error. (w) Type I and Type II errors are based on null hypothesis. Q.29 Type I and Type II Errors : Make statements about Type I (False Positive) and Type II errors (False Negative). (a) The Alpha-Fetoprotein (AFP) Test has both Type I and Type II error possibilities. This test screens the mother’s blood during pregnancy for AFP and determines risk. Abnormally high or low levels may indicate Down syndrome. (Hint: Take actual status as down syndrome or not) Ho: patient is healthy Ha: patient is unhealthy (b) The mechanic inspects the brake pads for the minimum allowable thickness. Ho: Vehicles breaks meet the standard for the minimum allowable thickness. Ha: Vehicles brakes do not meet the standard for the minimum allowable thickness. (c) Celiac disease is one of the diseases which can be misdiagnosed or have less diagnosis. Following table shows the actual celiac patients and their diagnosis status by medical doctors: Actual Status Yes No Diagnosed as celiac Yes 85 5 No 25 105 I. Calculate the probability of making type I and type II error rates. II. Calculate the power of the test. (Power of the test= 1- P(type II error) Answers: USEFUL FORMULAE: Descriptive Statistics Possible Outliers, any value beyond the range of Q 1.5( ) and Q 1.5( ) Range = Maximum value -Minimum value 100 where 1 ( ) (Preferred) 1 and , n fx x For data with repeats, 1 ( ) (Preferred ) OR 1 and n x x For data without repeats, 1 3 1 3 3 1 2 2 2 2 2 2 2 2 2 2 Q Q Q Q x s CV n f n f x x OR s n fx nx s n x x s n x nx s                             Discrete Distribution         ( ) ( ) ( ) ( ) { ( )} ( ) ( ) 2 2 2 2 E X x P X x V X E X E X E X xP X x Binomial Distribution Probability mass function, P(X=x)= x n x n x C p q  for x=0,1,2,…,n. E(X)=np, Var(X)=npq Hypothesis Testing based on Normal Distribution      X std X mean Z Standard Normal Variable, Probability Bayes Rule, ( ) ( and ) ( ) ( ) ( | ) P B P A B P B P A B P A B    Central Limit Theorem For large n (n>30), ~ ( , ) 2 n X N   and ˆ ~ ( , ) n pq p N p For hypothesis testing of μ, σ known           n x Z   For hypothesis testing of p n pq p p Z   ˆ ANSWERS: Q.1 (a) 14.286 (b) 14 (c) none (d) 10.24 (e) 22.40 Q.2 (a) 15.125 (b) 15.5 (c) No (d) 10.98 (e) 21.9 (f) English Q.3 (a) 18.6 (b)19 (c) 16, 21, and 25 (d) 15, 22 (f) slightly left (g) 7 (h) no outliers (i) increase (j) same Q.4 (a) 0.41 (b) 20 (c)14, 17, 20, 21,25 (d) 16.5, 25 (f) slightly right (g) 8.5 (h) no (i) increase (j) same Q.5 (a)56.57 (b) 22.26 (c) 8.34 Q.6 (a) 21 (b) 38.57 (c) 29.57 Q.7 (a) 410 (b) 1200 Q.8 (a)3 (b) 0.65 Q.9 (a) 0.082 (b) 0.29 (c)0.34 (d) 0.66 (e)0.10 (f) 0.64 Q.10 (a) 0.038 (b)0.23 (c) 0.71 (d) 0.29 (e)0.096 (f) 0.62 Q.11 (i)0.248 (ii)0.752 (iii)0.505 Q.12 (i)0.0875 (ii)0.913 (iii)0.425 (iii)0.488 Q.13 (a)0.22 (b)0.41 (c)0.33 (d)0.27 (e) 0.67 Q.14 (a) 0.13 (b) 0.18 (c)0.12 Q.15 E(X)=3.1 , V(X)=1.69, $0.2 per game, $ 4 win. Q.16 E(X)=5.125, V(X)=1.86, $0.25 loss per game, $5 loss. Q.17 (a)0.201 (b) 0.819, 0.027 Q.18 (a)0.9938 (b)0.0968 (c)0.452 (d)0.984 (e) 0.0433 (f)0.2353 Q.19 (a) -0.25 (b)0.71 (c) -1.13 (d)0.41 Q.20 (b) 0.7422 (c) 0.3821 (d) 0.1109 Q.21 (a)0.0014 (b) 0.0668 (c) 0.9318 Q.22 (a) 140 (b)2.37 Q.24 Z=-1.26, Accept null. Q.25 Z=-2.41, accept null Q.26 Z=4.76, reject H0 Q.27 Z=-1.75, reject H0 Q.28 F, F, F, T , F, F, F, T, F, T, F, F, T, T, F, F, T, F, T, F, F, T, T Q.29 (c)0.113 , 0.022 , 0.977 (or 98%)

Statistical Methods (STAT 4303) Review for Final Comprehensive Exam Measures of Central Tendency, Dispersion Q.1. The data below represents the test scores obtained by students in college algebra class. 10,12,15,20,13,16,14 Calculate (a) Mean (b) Median (c) Mode (d) Variance, s2 (e) Coefficient of variation (CV) Q.2. The data below represents the test scores obtained by students in English class. 12,15,16,18,13,10,17,20 Calculate (a) Mean (b) Median (c) Mode (d) Variance, s2 (e) Coefficient of variation (CV) (f) Compare the results of Q.1 and Q.2, Which scores College Algebra or English do you think is more precise (less spread)? Q.3 Following data represents the score obtained by students in one of the exams 9, 13, 14, 15, 16, 16, 17, 19, 20, 21, 21, 22, 25, 25, 26 Create a frequency table to calculate the following descriptive statistics (a) mean (b) median (c) mode (d) first and third quartiles (e) Construct Box and Whisker plot. (f) Comment on the shape of the distribution. (g) Find inter quartile range (IQR). (h) Are there any outliers (based on IQR technique)? In the above problem, if the score 26 is replaced by 37 (i) What will happen to the mean? Will it increase, decrease or remains the same? (j) What will be the new median? (k) What can you say about the effect of outliers on mean and median? Q.4 Following data represents the score obtained by students in one of the exams 19, 14, 14, 15, 17, 16, 17, 20, 20, 21, 21, 22, 25, 25, 26, 27, 28 Create a frequency table to calculate the following descriptive statistics a) mean b) median c) mode d) first and third quartiles e) Construct Box and Whisker plot. f) Comment on the shape of the distribution. g) Find inter quartile range (IQR). h) Are there any outliers (based on IQR technique)? In the above problem, if the score 28 is replaced by 48 i) What will happen to the mean? Will it increase, decrease or remains the same? j) What will be the new median? k) What can you say about the effect of outliers on mean and median? Q.5 Consider the following data of height (in inch) and weight(in lbs). Height(x) Frequency 50 2 52 3 55 2 60 4 62 3  Find the mean height.  What is the variance of height? Also, find the standard deviation. (c) Find the coefficient of variation (CV). Q.6. The following table shows the number of miles run during one week for a sample of 20 runners: Miles Mid-value (x) Frequency (f) 5.5-10.5 1 10.5-15.5 2 15.5-20.5 3 20.5-25.5 5 25.5-30.5 4 (a) Find the average (mean) miles run. (Hint: Find mid-value of mile range first) (b) What is the variance of miles run? Also, find the standard deviation. (c) Find the coefficient of variation (CV). Q.7. (a) If the mean of 20 observations is 20.5, find the sum of all observations? (b) If the mean of 30 observations is 40, find the sum of all observations? Probability Q.8 Out of forty students, 14 are taking English Composition and 29 are taking Chemistry. a) How many students are in both classes? b) What is the probability that a randomly-chosen student from this group is taking only the Chemistry class? Q.9 A drawer contains 4 red balls, 5 green balls, and 5 blue balls. One ball is taken from the drawer and then replaced. Another ball is taken from the drawer. What is the probability that (Draw tree diagram to facilitate your calculation). (a) both balls are red (b) first ball is red (c) both balls are of same colors (d) both balls are of different colors (e) first ball is red and second ball is blue (f) first ball is red or blue Q.10 A drawer contains 3 red balls, 5 green balls, and 5 blue balls. One ball is taken from the drawer and not replaced. Another ball is then taken from the drawer. Draw tree diagram to facilitate your calculation. What is the probability that (a) both balls are red (b) first ball is red (c) both balls are of same colors (d) both balls are of different colors (e) first ball is red and second ball is blue (f) first ball is red or blue Q. 11 Missile A has 45% chance of hitting target. Missile B has 55% chance of hitting a target. What is the probability that (i) both miss the target. (ii) at least one will hit the target. (iii) exactly one will hit the target. Q. 12 A politician from D party speaks truth 65% of times; another politician from rival party speaks truth 75% of times. Both politicians were asked about their personal love affair with their own office secretary, what is the probability that (i) both lie the actual fact . (ii) at least one will speak truth. (iii) exactly one speaks the truth. (iv) both speak the truth. Q.13 The question, “Do you drink alcohol?” was asked to 220 people. Results are shown in the table. . Yes No Total Male 48 82 Female 24 66 Total (a) What is the probability of a randomly selected individual being a male also drinks? (b) What is the probability of a randomly selected individual being a female? (c) What is the probability that a randomly selected individual drinks? (d) A person is selected at random and if the person is female, what is the probability that she drinks? (e) What is the probability that a randomly selected alcoholic person is a male? Q.14 A professor, Dr. Drakula, taught courses that included statements from across the five colleges abbreviated as AH, AS, BA, ED and EN. He taught at Texas A&M University – Kingsville (TAMUK) during the span of five academic years AY09 to AY13. The following table shows the total number of graduates during AY09 to AY13. One day, he was running late to his class. He was so focused on the class that he did not stop for a red light. As soon as he crossed through the intersection, a police officer Asked him to stop. ( a ) It is turned out that the police officer was TAMUK graduate during the past five years. What is the probability that the Police Officer was from ED College? ( b ) What is the probability that the Police Officer graduated in the academic year of 2011? ( c ) If the traffic officer graduated from TAMUK in the academic year of 2011(AY11). What is the conditional probability that he graduated from the ED college? ( d ) Are the events the academic year “AY 11” and the college of Education “ED” independent? Yes or no , why? Discrete Distribution Q.15 Find k and probability for X=2 and X=4. X 1 2 3 4 5 P(X=x) 0.1 3k 0.2 2k 0.2 (Hint: First find k, and then plug in) Also, calculate the expected value of X, E(X) and variance V(X). A game plan is derived based on above table, a player wins $5 if he can blindly choose 3 and loses $1 if he chooses other numbers.What is his expected win or loss per game? If he plays this game for 20 times, what is total win or lose? Q.16 Find k. X 3 4 5 6 7 P(X=x) k 2k 2k k 2k (Hint: First find k, and then plug in) Also, calculate the expected value of X, E(X) and variance V(X). A game plan is derived based on above table, a player wins $5 if he can blindly choose 3 and loses $1 if he chooses other numbers. What is his expected win or loss per game? If he plays this game for 20 times, what is total win or lose? Binomial Distribution: Q.17 (a) Hospital records show that of patients suffering from a certain disease, 75% die of it. What is the probability that of 6 randomly selected patients, 4 will recover? (b) A (blindfolded) marksman finds that on the average he hits the target 4 times out of 5. If he fires 4 shots, what is the probability of (i) more than 2 hits? (ii) at least 3 misses? (c) which of the following are binomial experiments? Explain the reason. i. Telephone surveying a group of 200 people to ask if they voted for George Bush. ii. Counting the average number of dogs seen at a veterinarian’s office daily. iii. You take a survey of 50 traffic lights in a certain city, at 3 p.m., recording whether the light was red, green, or yellow at that time. iv. You are at a fair, playing “pop the balloon” with 6 darts. There are 20 balloons. 10 of the balloons have a ticket inside that say “win,” and 10 have a ticket that says “lose.” Normal Distribution Q.18 Use standard normal distribution table to find the following probabilities: (a) P(Z<2.5) (b) P(Z< -1.3) (c) P(Z>0.12) (d) P(Z> -2.15) (e) P(0.11 ?)=0.87 (d) P(Z> ?)=0.34 Q.20. The length of life of certain type of light bulb is normally distributed with mean=220hrs and standard deviation=20hrs. (a) Define a random variable, X A light bulb is randomly selected, what is the probability that (b) it will last will last more than 207 hrs. ? (c) it will last less than 214 hrs. (d) it will last in between 199 to 207 hrs. Q.21. The length of life of an instrument produced by a machine has a normal distribution with a mean of 22 months and standard deviation of 4 months. Find the probability that an instrument produced by this machine will last (a) less than 10 months. (b) more than 28 months (c) between 10 and 28 months. Distribution of sample mean and Central Limit Theorem (CLT) Q.22 It is assumed that weight of teenage student is normally distributed with mean=140 lbs. and standard deviation =15 lbs. A simple random sample of 40 teenage students is taken and sample mean is calculated. If several such samples of same size are taken (i) what could be the mean of all sample means. (ii) what could be the standard deviation of all sample means. (iii) will the distribution of sample means be normal ? (iv) What is CLT? Write down the distribution of sample mean in the form of ~ ( , ) 2 n X N   . Q.23 The time it takes students in a cooking school to learn to prepare seafood gumbo is a random variable with a normal distribution where the average is 3.2 hours and a standard deviation of 1.8 hours. A sample of 40 students was investigated. What is the distribution of sample mean (express in numbers)? Hypothesis Testing Q.24 The NCHS reported that the mean total cholesterol level in 2002 for all adults was 203 with standard deviation of 37. Total cholesterol levels in participants who attended the seventh examination of the Offspring in the Framingham Heart Study are summarized as follows: n=3,00, =200.3. Is there statistical evidence of a difference in mean cholesterol levels in the Framingham Offspring (means does the result form current examination differs from 2002 report)?? (Follow the steps below to reach the conclusion) (i) Define null and alternate hypothesis (Also write what is  , and x in words at the beginning) (ii) Identify the significance level ,  and check whether it is one sided or two sided test. (iii) Calculate test statistics, Z. (iv) Use standard normal table to find the p-value and state whether you reject or accept (fail to reject) the null hypothesis. (v) what is the critical value, do you reject or accept the H0. (vi) Write down the conclusion based on part (iv). Q.25 A sample of 145 boxes of Kellogg’s Raisin Bran contain in average 1.95 scoops of raisins. It is known from past experiments that the standard deviation for the number of scoops of raisins is 0.25. The manufacturer of Kellogg’s Raisin Bran claimed that in average their product contains more than 2 scoops of raisins, do you reject or accept the manufacturers claim (follow all five steps)? Q.26 It is assumed that the mean systolic blood pressure is μ = 120 mm Hg. In the Honolulu Heart Study, a sample of n = 100 people had an average systolic blood pressure of 130.1 mm Hg. The standard deviation from the population is 21.21 mm Hg. Is the group significantly different (with respect to systolic blood pressure!) from the regular population? Use 10% level of significance. Q.27 A CEO claims that at least 80 percent of the company’s 1,000,000 customers are very satisfied. Again, 100 customers are surveyed using simple random sampling. The result: 73 percent are very satisfied. Based on these results, should we accept or reject the CEO’s hypothesis? Assume a significance level of 0.05. Q.28 True/False questions (These questions are collected from previous HW, review and exam problems, see the previous solutions for answers) (a) Total sum of probability can exceed 1. (b) If you throw a die, getting 2 or any even number are independent events. (c) If you roll a die for 20 times, the probability of getting 5 in 15th roll is 20 15 . (d) A student is taking a 5 question True-False quiz but he has not been doing any work in the course and does not know the material so he randomly guesses at all the answers. Probability that he gets the first question right is 2 1 . (e) Typing in laptop and writing emails using the same laptop are independent events. (f) Normal distribution is right skewed. (g) Mean is more robust to outliers. So mean is used for data with extreme values. (h) It is possible to have no mode in the data. (i) Standard normal variable, Z has some unit. (j) Only two parameters are required to describe the entire normal distribution. (k) Mean of standard normal variable, Z is 1. (l) If p-value of more than level of significance (alpha), we reject the H0. (m) Very small p-value indicates rejection of H0. (n) H0 always contains equality sign. (o) CLT indicates that distribution of sample mean can be anything, not just normal. (p) Sample mean is always equal to population mean. (q) Variance of sample mean is less than population mean. (r) Variance of sample mean does not depend on sample size. (s) Mr. A has cancer but a medical doctor diagnosed him as “no cancer”. It is a type I error. (t) Level of significance is probability of making type II error. (u) Type II error can be controlled. (v) Type I error is more serious than type II error. (w) Type I and Type II errors are based on null hypothesis. Q.29 Type I and Type II Errors : Make statements about Type I (False Positive) and Type II errors (False Negative). (a) The Alpha-Fetoprotein (AFP) Test has both Type I and Type II error possibilities. This test screens the mother’s blood during pregnancy for AFP and determines risk. Abnormally high or low levels may indicate Down syndrome. (Hint: Take actual status as down syndrome or not) Ho: patient is healthy Ha: patient is unhealthy (b) The mechanic inspects the brake pads for the minimum allowable thickness. Ho: Vehicles breaks meet the standard for the minimum allowable thickness. Ha: Vehicles brakes do not meet the standard for the minimum allowable thickness. (c) Celiac disease is one of the diseases which can be misdiagnosed or have less diagnosis. Following table shows the actual celiac patients and their diagnosis status by medical doctors: Actual Status Yes No Diagnosed as celiac Yes 85 5 No 25 105 I. Calculate the probability of making type I and type II error rates. II. Calculate the power of the test. (Power of the test= 1- P(type II error) Answers: USEFUL FORMULAE: Descriptive Statistics Possible Outliers, any value beyond the range of Q 1.5( ) and Q 1.5( ) Range = Maximum value -Minimum value 100 where 1 ( ) (Preferred) 1 and , n fx x For data with repeats, 1 ( ) (Preferred ) OR 1 and n x x For data without repeats, 1 3 1 3 3 1 2 2 2 2 2 2 2 2 2 2 Q Q Q Q x s CV n f n f x x OR s n fx nx s n x x s n x nx s                             Discrete Distribution         ( ) ( ) ( ) ( ) { ( )} ( ) ( ) 2 2 2 2 E X x P X x V X E X E X E X xP X x Binomial Distribution Probability mass function, P(X=x)= x n x n x C p q  for x=0,1,2,…,n. E(X)=np, Var(X)=npq Hypothesis Testing based on Normal Distribution      X std X mean Z Standard Normal Variable, Probability Bayes Rule, ( ) ( and ) ( ) ( ) ( | ) P B P A B P B P A B P A B    Central Limit Theorem For large n (n>30), ~ ( , ) 2 n X N   and ˆ ~ ( , ) n pq p N p For hypothesis testing of μ, σ known           n x Z   For hypothesis testing of p n pq p p Z   ˆ ANSWERS: Q.1 (a) 14.286 (b) 14 (c) none (d) 10.24 (e) 22.40 Q.2 (a) 15.125 (b) 15.5 (c) No (d) 10.98 (e) 21.9 (f) English Q.3 (a) 18.6 (b)19 (c) 16, 21, and 25 (d) 15, 22 (f) slightly left (g) 7 (h) no outliers (i) increase (j) same Q.4 (a) 0.41 (b) 20 (c)14, 17, 20, 21,25 (d) 16.5, 25 (f) slightly right (g) 8.5 (h) no (i) increase (j) same Q.5 (a)56.57 (b) 22.26 (c) 8.34 Q.6 (a) 21 (b) 38.57 (c) 29.57 Q.7 (a) 410 (b) 1200 Q.8 (a)3 (b) 0.65 Q.9 (a) 0.082 (b) 0.29 (c)0.34 (d) 0.66 (e)0.10 (f) 0.64 Q.10 (a) 0.038 (b)0.23 (c) 0.71 (d) 0.29 (e)0.096 (f) 0.62 Q.11 (i)0.248 (ii)0.752 (iii)0.505 Q.12 (i)0.0875 (ii)0.913 (iii)0.425 (iii)0.488 Q.13 (a)0.22 (b)0.41 (c)0.33 (d)0.27 (e) 0.67 Q.14 (a) 0.13 (b) 0.18 (c)0.12 Q.15 E(X)=3.1 , V(X)=1.69, $0.2 per game, $ 4 win. Q.16 E(X)=5.125, V(X)=1.86, $0.25 loss per game, $5 loss. Q.17 (a)0.201 (b) 0.819, 0.027 Q.18 (a)0.9938 (b)0.0968 (c)0.452 (d)0.984 (e) 0.0433 (f)0.2353 Q.19 (a) -0.25 (b)0.71 (c) -1.13 (d)0.41 Q.20 (b) 0.7422 (c) 0.3821 (d) 0.1109 Q.21 (a)0.0014 (b) 0.0668 (c) 0.9318 Q.22 (a) 140 (b)2.37 Q.24 Z=-1.26, Accept null. Q.25 Z=-2.41, accept null Q.26 Z=4.76, reject H0 Q.27 Z=-1.75, reject H0 Q.28 F, F, F, T , F, F, F, T, F, T, F, F, T, T, F, F, T, F, T, F, F, T, T Q.29 (c)0.113 , 0.022 , 0.977 (or 98%)

No expert has answered this question yet. You can browse … Read More...
1. Develop a thought experiment that attempts to uncover hidden assumptions about human freedom. 2. Find a paragraph from a book, magazine, ect. First, tell whether there are claims in the paragraph. If there are, identify the types of claims (descriptive, normative, a priori, a posteriori) in the paragraph

1. Develop a thought experiment that attempts to uncover hidden assumptions about human freedom. 2. Find a paragraph from a book, magazine, ect. First, tell whether there are claims in the paragraph. If there are, identify the types of claims (descriptive, normative, a priori, a posteriori) in the paragraph

Let us think of a thought experiment that wants to … Read More...
Watch this video and answer the multi choices: https://www.youtube.com/watch?v=D4lB4SowAQA PART 1 _______1. Sociologists obtained their knowledge of human behavior through _______, which is this process of systematically collecting information for the purpose of testing an existing theory or generating a new one. a. Common sense ideas b. Research c. Myths d. scientific laws _______2. With ____Research, the goal is scientific objectivity, and the focus is on data that can be measured numerically a. qualitative b. observational c. c. quantitative d. d. explanatory _______3. With _______research, interpretative description (words) rather than statistics (numbers) are used to analyze underlying meaning and patterns of social relationships. a. qualitative b. observational c. quantitative d. explanatory _______4. Researchers in one study systematically analyzed the contents of the notes of suicide victims to determine recurring themes, such as feeling of despair or failure. They hoped to determine if any patterns could be found that would help in understating why people might kill themselves. This is an example of __________. a. Qualitative research b. Explanatory research c. Quantitative research d. Descriptive research ______5. the first step in the research process is to: a. select and define the research problem b. review previous research. c. develop a research design d. formulate the hypothesis ______6. A_____sample is a selection from a larger population and has the essential characteristics of the total population. a. selective b. random c. representative d. longitudinal _______7. _________is the extent to which a study or research instrument accurately measures what it is supposed to measure;_________is the extent to which a study or research instrument yields consistent results. a. Validity; replication b. Replication; validity c. Validity; reliability d. Reliability; validity _______8. Researchers who use existing material and analyze data that originally was collected by others are engaged in: a. unethical conduct b. primary analysis. c. secondary analysis d. survey analysis _______9. In an experiment, the subjects in the control group a. are exposed to the independent variable. b. are not exposed to the independent variable. c. are exposed to the dependent variable. d. are not exposed to the dependent variable. _______10. A tentative statement that predicts the relationship between variable is called a. a hypothesis b. a research model. c. a probability sample. d. a generalization. ______11. John wants to test this idea: “people who attend church regularly are less likely to express prejudice toward other races than people who do not attend church regularly.’ This idea is John’s a. hypothesis. b. research model. c. conclusion. d. operational definition _______12. In a research project, which of the following steps would come after the other three? a. choosing a research design b. reviewing the literature c. formulating a hypothesis d. collecting the data ________13. The variable hypothesized to cause or influence another is called the a. dependent variable. b. hypothetical variable c. correlation variable d. independent variable ________14. An explanation of an abstract concept that is specific enough to allow a research to measure the concept is a a. Hypothesis b. correlation. c. operatonal definition. d. variable _____15. Observation, ethnography, and case studies are examples of: a. survey research b. experiments. c. Secondary analysis of existing data. d. Field research. ______16. Theory and research are interrelated because a. theory always precedes research. b. research always precedes theory c. both put limits on each other. d. they are parts of a constant cycle. ______17. A dependent variable is one that a. always occurs first. b. is influenced by another variable. c. Causes another variable to change. d. is the most important ______18. In a study designed to test the relationship between gender and voting behavior, the independent variable would be a. the age of the candidates b. voting behavior. c. The political party of the candidates. d. Gender ______19. Differences in age, sex, race, and social class are treated as ____________in sociological research. a. variables b. references c. causes d. controls ______20. Researchers in agriculture decided to test the effects of a new fertilizer on crop growth. In this study, crop growth is the a. independent variable b. dependent variable c. control variable d. correlation e. _____21. The ______is appropriate for studying the relationships among variables under carefully controlled conditions. a. experiment b. survey c. observational study d. in-depth study _____22. In every experiment, some subjects are exposed to an independent variable, and are then watched closely for their reactions. These subjects are known as the a. reference group b. experimental group c. control group d. survey group. ______23. A usual research method for learning the attitudes of a population would be a. an experiment. b. A survey. c. An observational study. d. Content analysis ______24. In survey research, the total group of people the researcher is interested in is called a. the population b. the sample, c. the control group d. the random sample ______25. In the experiment method, the subjects who are exposed to all the experimental conditions except the independent variable are referred to as the_________________group. a. peer b. alternate c. control d. experimental ______26. A__________Sample is one in which every member of the population in The population has an equal chance of being selected. a. defined b. random c. purposive d. convenience ______27. A sociologist is following the research model outlined in the text. After reviewing the literature, the next step will be to a. find a suitable subject b. formulate a hypothesis c. collect the data. d. Choose a research design. ______28. Sociologists use two approaches when answering important questions. a. Explanatory and descriptive Approaches b. Direct and systematic Approaches c. Normative and systematic Approaches d. Normative and Empirical Approaches ______29. Sociologists use types of empirical studies a. Research and Theoretical Studies b. Descriptive and Explanatory Studies c. Hypothesis and Correlations Studies d. Longitudinal and Cross-sectional Studies ______30. The deductive approach begin with the a. Collecting data b. Theory and uses research to test the theory. c. Hypothesis d. Observation ______31. The inductive approach begin with a a. Theory b. Data Collection c. Reviewing the Literature d. The Problem State ______32. Quantitative Research deals with a. Words b. Numbers c. Interpretive descriptive d. Use number to analyze underlying meanings and patterns of social relationships. ______33. ________is the study of social life in its natural setting: observing and interviewing people where they live, work, and play. a. The survey b. Secondary analysis c. Field research d. The experiment ______34. ________refers to the process of collecting data while being part of the activities of the group that the researcher is studying a. The experiment b. Survey research c. Participant observation d. Secondary analysis _______35. A/an________is a detailed study of the life and activities of a group of people by researchers who may live with that group over a period of years. a. Correlational study b. ethnography c. experiment d. content analysis _______36. A/an _________is a carefully designed situation in which the researcher studies the impact of certain variables on subjects’ attitudes or behavior. a. case study b. correlational study c. experiment d. Participant observation _______37. In an experiment, the_______contains the subjects who are exposed to an independent variable to study its effect on them. a. Experiment group b. Dependent group c. Control group d. Independent group _______38. In an experiment, the_________contains the subjects who are not exposed to the independent variable. a. Experimental group b. Independent group c. Dependent group d. Control group _______39. ________is the extent to which a study or research instrument accurately measures what it is supposed to measure a. Validity b. Reliability c. Predictability d. Variability ______40. ________is the extent to which a study or research instrument yields consistent results when applied to different individual at one time or to same individuals over time. a. Validity b. Reliability c. Predictability d. Variability TRUE/FALSE ______41. In social science research, individuals are the most typical units of analysis. ______42. With qualitative research, statistics are used to analyze patterns of social relationship. ______43. Reliability is when a study gives consistent results to different research over time.

Watch this video and answer the multi choices: https://www.youtube.com/watch?v=D4lB4SowAQA PART 1 _______1. Sociologists obtained their knowledge of human behavior through _______, which is this process of systematically collecting information for the purpose of testing an existing theory or generating a new one. a. Common sense ideas b. Research c. Myths d. scientific laws _______2. With ____Research, the goal is scientific objectivity, and the focus is on data that can be measured numerically a. qualitative b. observational c. c. quantitative d. d. explanatory _______3. With _______research, interpretative description (words) rather than statistics (numbers) are used to analyze underlying meaning and patterns of social relationships. a. qualitative b. observational c. quantitative d. explanatory _______4. Researchers in one study systematically analyzed the contents of the notes of suicide victims to determine recurring themes, such as feeling of despair or failure. They hoped to determine if any patterns could be found that would help in understating why people might kill themselves. This is an example of __________. a. Qualitative research b. Explanatory research c. Quantitative research d. Descriptive research ______5. the first step in the research process is to: a. select and define the research problem b. review previous research. c. develop a research design d. formulate the hypothesis ______6. A_____sample is a selection from a larger population and has the essential characteristics of the total population. a. selective b. random c. representative d. longitudinal _______7. _________is the extent to which a study or research instrument accurately measures what it is supposed to measure;_________is the extent to which a study or research instrument yields consistent results. a. Validity; replication b. Replication; validity c. Validity; reliability d. Reliability; validity _______8. Researchers who use existing material and analyze data that originally was collected by others are engaged in: a. unethical conduct b. primary analysis. c. secondary analysis d. survey analysis _______9. In an experiment, the subjects in the control group a. are exposed to the independent variable. b. are not exposed to the independent variable. c. are exposed to the dependent variable. d. are not exposed to the dependent variable. _______10. A tentative statement that predicts the relationship between variable is called a. a hypothesis b. a research model. c. a probability sample. d. a generalization. ______11. John wants to test this idea: “people who attend church regularly are less likely to express prejudice toward other races than people who do not attend church regularly.’ This idea is John’s a. hypothesis. b. research model. c. conclusion. d. operational definition _______12. In a research project, which of the following steps would come after the other three? a. choosing a research design b. reviewing the literature c. formulating a hypothesis d. collecting the data ________13. The variable hypothesized to cause or influence another is called the a. dependent variable. b. hypothetical variable c. correlation variable d. independent variable ________14. An explanation of an abstract concept that is specific enough to allow a research to measure the concept is a a. Hypothesis b. correlation. c. operatonal definition. d. variable _____15. Observation, ethnography, and case studies are examples of: a. survey research b. experiments. c. Secondary analysis of existing data. d. Field research. ______16. Theory and research are interrelated because a. theory always precedes research. b. research always precedes theory c. both put limits on each other. d. they are parts of a constant cycle. ______17. A dependent variable is one that a. always occurs first. b. is influenced by another variable. c. Causes another variable to change. d. is the most important ______18. In a study designed to test the relationship between gender and voting behavior, the independent variable would be a. the age of the candidates b. voting behavior. c. The political party of the candidates. d. Gender ______19. Differences in age, sex, race, and social class are treated as ____________in sociological research. a. variables b. references c. causes d. controls ______20. Researchers in agriculture decided to test the effects of a new fertilizer on crop growth. In this study, crop growth is the a. independent variable b. dependent variable c. control variable d. correlation e. _____21. The ______is appropriate for studying the relationships among variables under carefully controlled conditions. a. experiment b. survey c. observational study d. in-depth study _____22. In every experiment, some subjects are exposed to an independent variable, and are then watched closely for their reactions. These subjects are known as the a. reference group b. experimental group c. control group d. survey group. ______23. A usual research method for learning the attitudes of a population would be a. an experiment. b. A survey. c. An observational study. d. Content analysis ______24. In survey research, the total group of people the researcher is interested in is called a. the population b. the sample, c. the control group d. the random sample ______25. In the experiment method, the subjects who are exposed to all the experimental conditions except the independent variable are referred to as the_________________group. a. peer b. alternate c. control d. experimental ______26. A__________Sample is one in which every member of the population in The population has an equal chance of being selected. a. defined b. random c. purposive d. convenience ______27. A sociologist is following the research model outlined in the text. After reviewing the literature, the next step will be to a. find a suitable subject b. formulate a hypothesis c. collect the data. d. Choose a research design. ______28. Sociologists use two approaches when answering important questions. a. Explanatory and descriptive Approaches b. Direct and systematic Approaches c. Normative and systematic Approaches d. Normative and Empirical Approaches ______29. Sociologists use types of empirical studies a. Research and Theoretical Studies b. Descriptive and Explanatory Studies c. Hypothesis and Correlations Studies d. Longitudinal and Cross-sectional Studies ______30. The deductive approach begin with the a. Collecting data b. Theory and uses research to test the theory. c. Hypothesis d. Observation ______31. The inductive approach begin with a a. Theory b. Data Collection c. Reviewing the Literature d. The Problem State ______32. Quantitative Research deals with a. Words b. Numbers c. Interpretive descriptive d. Use number to analyze underlying meanings and patterns of social relationships. ______33. ________is the study of social life in its natural setting: observing and interviewing people where they live, work, and play. a. The survey b. Secondary analysis c. Field research d. The experiment ______34. ________refers to the process of collecting data while being part of the activities of the group that the researcher is studying a. The experiment b. Survey research c. Participant observation d. Secondary analysis _______35. A/an________is a detailed study of the life and activities of a group of people by researchers who may live with that group over a period of years. a. Correlational study b. ethnography c. experiment d. content analysis _______36. A/an _________is a carefully designed situation in which the researcher studies the impact of certain variables on subjects’ attitudes or behavior. a. case study b. correlational study c. experiment d. Participant observation _______37. In an experiment, the_______contains the subjects who are exposed to an independent variable to study its effect on them. a. Experiment group b. Dependent group c. Control group d. Independent group _______38. In an experiment, the_________contains the subjects who are not exposed to the independent variable. a. Experimental group b. Independent group c. Dependent group d. Control group _______39. ________is the extent to which a study or research instrument accurately measures what it is supposed to measure a. Validity b. Reliability c. Predictability d. Variability ______40. ________is the extent to which a study or research instrument yields consistent results when applied to different individual at one time or to same individuals over time. a. Validity b. Reliability c. Predictability d. Variability TRUE/FALSE ______41. In social science research, individuals are the most typical units of analysis. ______42. With qualitative research, statistics are used to analyze patterns of social relationship. ______43. Reliability is when a study gives consistent results to different research over time.

info@checkyourstudy.com Watch this video and answer the multi choices:  https://www.youtube.com/watch?v=D4lB4SowAQA   … Read More...
Paper 1. Narrative Essay Overview: This first paper will be a narrative; in other words, it will be a story. As such it will have these essential items: characters, dialogue, plot, tension, and setting. You will write a story that can be fictional or autobiographical. Format: The first draft will be three typed pages, and you will bring to class 2 copies. It should have your name on every page. Ideally, it will be in MLA (Modern Language Association) format, though this is not important at that stage. See the format of the paper in the example below. Details: For your narrative, you must present a scenario wherein your character, or characters, must deal with and overcome adversity. Consider the essay “Have a Caltastic Day” as an example. In that essay, Streeter tells a success story—of a young man who springs from humble beginnings, overcomes difficult obstacles, and advances his place in the world. In your story, you too will write a story of a person who has faced difficulty. It can be any number of issues that your protagonist faces: a coming of age story involving school, friends, sports, family hardship, etc. You must have a well-developed character. You must have a plot, a clear setting, and use at least some dialogue. Again, it can be based on true events or entirely a work of the imagination. Assessment: In this story, I am looking for well-formed, clear sentences, unified and coherent paragraphs, as well as use of standard grammar, diction, and mechanics of American English. Superior essays will have a clear plot, descriptive language and have material arranged with good supporting details. Sample Paper Format Last Name 1 Your Full Name Dr. Riley-Brown ENG 110: Composition Narrative #1–Draft #1 Date Title of Paper Centered This is where the first line of your paper will go. Double space beneath your title and indent the first line of each paragraph five (5) spaces. The essay should have margins that are one each on each side. You should use Times New Roman font in 12 point font size.

Paper 1. Narrative Essay Overview: This first paper will be a narrative; in other words, it will be a story. As such it will have these essential items: characters, dialogue, plot, tension, and setting. You will write a story that can be fictional or autobiographical. Format: The first draft will be three typed pages, and you will bring to class 2 copies. It should have your name on every page. Ideally, it will be in MLA (Modern Language Association) format, though this is not important at that stage. See the format of the paper in the example below. Details: For your narrative, you must present a scenario wherein your character, or characters, must deal with and overcome adversity. Consider the essay “Have a Caltastic Day” as an example. In that essay, Streeter tells a success story—of a young man who springs from humble beginnings, overcomes difficult obstacles, and advances his place in the world. In your story, you too will write a story of a person who has faced difficulty. It can be any number of issues that your protagonist faces: a coming of age story involving school, friends, sports, family hardship, etc. You must have a well-developed character. You must have a plot, a clear setting, and use at least some dialogue. Again, it can be based on true events or entirely a work of the imagination. Assessment: In this story, I am looking for well-formed, clear sentences, unified and coherent paragraphs, as well as use of standard grammar, diction, and mechanics of American English. Superior essays will have a clear plot, descriptive language and have material arranged with good supporting details. Sample Paper Format Last Name 1 Your Full Name Dr. Riley-Brown ENG 110: Composition Narrative #1–Draft #1 Date Title of Paper Centered This is where the first line of your paper will go. Double space beneath your title and indent the first line of each paragraph five (5) spaces. The essay should have margins that are one each on each side. You should use Times New Roman font in 12 point font size.

info@checkyourstudy.com Whatsapp +919711743277
Lab #03 Studying Beam Flexion Summary: Beams are fundamental structural elements used in a variety of engineering applications and have been studied for centuries. Beams can be assembled to create large structures that carry heavy loads, such as motor vehicle traffic. Beams are also used in micro- or nano-scale accelerometers to delicately measure and detect motions that trigger the deployment of an airbag. From a technical standpoint, a beam is a structure that supports transverse load. Transverse load is load that is perpendicular to the long axis of the beam. As a result, of transverse load, beams undergo bending, in which the beam develops a curvature. As the beam bends, material fibers along the beam’s long axis are forced to stretch or contract, which in turn causes a resistance to the bending. The fibers that are the farthest away from the center of the beam are forced to stretch or contract the most and thus, material at these extremities is the most important to resist bending and deflection. This topic is studied quantitatively in Strength of Materials (CE-303). Purpose: The purpose of this assignment is to accomplish the following goals: • Develop a simple experiment to achieve a goal. • Statistically and observationally analyze your data and interpret the results. • Summarize and present your data, results and interpretations. Procedure: 1. Working as a team, develop a procedure to carefully document the amount of bending a beam under-goes as loads are placed on it (this is your experimental protocol). You must select at least two different beam styles. 2. Collect the data points your experimental protocol calls for. You should conduct at least three trials and the order of data collection within those trials should be randomized. 3. Using the provided Excel deflection calculator, calculate the “predicted” deflection for each of the trials in your protocol. 4. Please observe the following MAXIMUM test torques to avoid damaging the beams. • Width Effect Beams: Small beam: 48 in-lbs, Medium beam: 80 in-lbs, Large beam: 120 in-lbs • Depth Effect Beams: Small beam: 8 in-lbs, Medium beam: 48 in-lbs, Large beam: 160 in-lbs Report and Presentation Requirements: 1. Title Page: Should include the title of the lab experiment, groups individual names (in alphabetical order by last name), data collection date, report due date, and course name and section. 2. Introduction: Briefly explain what you are trying to accomplish with this experiment. 3. Hypothesis Development: Should clearly state the three hypotheses, with respect to distance, beam size, and calculated versus actual deflection. Be sure to include logic to support your educated guess. 4. Method: Explain each activity performed during the data collection and analysis process. Provide a list of the equipment used and its purpose. 5. Analysis and Results: (1) Using the raw data, provide a table of descriptive statistics (mean, variance, and range) for each beam at each distance. (2) Provide a data table (average across 3 trials) showing the deflection for each beam at each distance. (3) Create one or more charts demonstrating the difference, if any, between the calculated and observed deflection for each beam. (4) Use the t-Test: Paired Two Sample for Means in Excel to determine if there is a statistically significant difference between predicted (calculated) deflection and actual (observed) deflection, assuming α = 0.05. Show the results for each beam. Note: To add in the Data Analysis package (under the data tab), go to Office Button -> Excel Options -> Add-Ins -> Manage Excel Add-Ins -> GO… -> check Analysis TookPak and click OK. For each table or chart, provide a description and explanation of what is being displayed. 6. Conclusions: Restate the hypotheses and explain whether or not the educated guess was correct. Include limitations of the experiment (in other words, describe other factors that would make the experiment better or possible errors associated with the experiment). Provide suggestions for future research. 7. Last Page: Include, at the end of the document, a summary of all the tasks required to complete the assignment, and which member or members of the group were principally responsible for completing those tasks. This should be in the form of a simple list. 8. Presentation: Summarize the report, excluding the last page. Due Date: This assignment is to be completed and turned in at the beginning of your laboratory meeting during the week of 11th March. Microsoft office package: Excel: Data tab functions, round, drag-drop, $-sign functions, Beginning of analysis toolpak-t-tests

Lab #03 Studying Beam Flexion Summary: Beams are fundamental structural elements used in a variety of engineering applications and have been studied for centuries. Beams can be assembled to create large structures that carry heavy loads, such as motor vehicle traffic. Beams are also used in micro- or nano-scale accelerometers to delicately measure and detect motions that trigger the deployment of an airbag. From a technical standpoint, a beam is a structure that supports transverse load. Transverse load is load that is perpendicular to the long axis of the beam. As a result, of transverse load, beams undergo bending, in which the beam develops a curvature. As the beam bends, material fibers along the beam’s long axis are forced to stretch or contract, which in turn causes a resistance to the bending. The fibers that are the farthest away from the center of the beam are forced to stretch or contract the most and thus, material at these extremities is the most important to resist bending and deflection. This topic is studied quantitatively in Strength of Materials (CE-303). Purpose: The purpose of this assignment is to accomplish the following goals: • Develop a simple experiment to achieve a goal. • Statistically and observationally analyze your data and interpret the results. • Summarize and present your data, results and interpretations. Procedure: 1. Working as a team, develop a procedure to carefully document the amount of bending a beam under-goes as loads are placed on it (this is your experimental protocol). You must select at least two different beam styles. 2. Collect the data points your experimental protocol calls for. You should conduct at least three trials and the order of data collection within those trials should be randomized. 3. Using the provided Excel deflection calculator, calculate the “predicted” deflection for each of the trials in your protocol. 4. Please observe the following MAXIMUM test torques to avoid damaging the beams. • Width Effect Beams: Small beam: 48 in-lbs, Medium beam: 80 in-lbs, Large beam: 120 in-lbs • Depth Effect Beams: Small beam: 8 in-lbs, Medium beam: 48 in-lbs, Large beam: 160 in-lbs Report and Presentation Requirements: 1. Title Page: Should include the title of the lab experiment, groups individual names (in alphabetical order by last name), data collection date, report due date, and course name and section. 2. Introduction: Briefly explain what you are trying to accomplish with this experiment. 3. Hypothesis Development: Should clearly state the three hypotheses, with respect to distance, beam size, and calculated versus actual deflection. Be sure to include logic to support your educated guess. 4. Method: Explain each activity performed during the data collection and analysis process. Provide a list of the equipment used and its purpose. 5. Analysis and Results: (1) Using the raw data, provide a table of descriptive statistics (mean, variance, and range) for each beam at each distance. (2) Provide a data table (average across 3 trials) showing the deflection for each beam at each distance. (3) Create one or more charts demonstrating the difference, if any, between the calculated and observed deflection for each beam. (4) Use the t-Test: Paired Two Sample for Means in Excel to determine if there is a statistically significant difference between predicted (calculated) deflection and actual (observed) deflection, assuming α = 0.05. Show the results for each beam. Note: To add in the Data Analysis package (under the data tab), go to Office Button -> Excel Options -> Add-Ins -> Manage Excel Add-Ins -> GO… -> check Analysis TookPak and click OK. For each table or chart, provide a description and explanation of what is being displayed. 6. Conclusions: Restate the hypotheses and explain whether or not the educated guess was correct. Include limitations of the experiment (in other words, describe other factors that would make the experiment better or possible errors associated with the experiment). Provide suggestions for future research. 7. Last Page: Include, at the end of the document, a summary of all the tasks required to complete the assignment, and which member or members of the group were principally responsible for completing those tasks. This should be in the form of a simple list. 8. Presentation: Summarize the report, excluding the last page. Due Date: This assignment is to be completed and turned in at the beginning of your laboratory meeting during the week of 11th March. Microsoft office package: Excel: Data tab functions, round, drag-drop, $-sign functions, Beginning of analysis toolpak-t-tests

info@checkyourstudy.com
As a student of ECON1005, suppose you were asked to assist a co-worker in investigating whether there is an association between gender and annual salary of researchers in your country. Data was gathered from researchers in your country in your country. MINITAB was used to generate stem-and-leaf diagrams for the salaries of both the female and male researchers. See Exhibit 1 below. Exhibit 1 Stem-and-Leaf Display: Salary Female, Salary Male Stem-and-leaf of Salary Female N = 15 Leaf Unit = 1000.0 1 5 8 5 6 1345 (3) 7 148 7 8 389 4 9 2245 (a) Calculate the mean salary for both the female and the male researchers. All relevant working must be clearly shown. (b) Calculate the standard deviation of the salaries for both the female and the male researchers. All relevant working must be clearly shown. (c) Comment on your answers for parts (c) and (d), in relation to the purpose of your study, that is, the association between gender and annual salary of researchers in your country. MINITAB was used to generate box-and-whisker diagrams for the salaries of both the female and male researchers. See Exhibit 2 below. Exhibit 2 (d) With reference to the box-and-whisker diagrams, compare the salaries of the researchers selected in your sample, by gender. Ensure that you comment on the skewness, the median, the interquartile range, the minimum and the maximum values of both diagrams. MINITAB was used to generate the descriptive statistics for all the 35 researchers selected in the sample. See Exhibit 3 below. Exhibit 3 Descriptive Statistics: ResearcherSalary Variable N N* Mean SE Mean TrMean StDev Minimum Q1 Median Q3 Salary 35 0 82951 2266 83200 13404 58100 74800 83800 94300 Variable Maximum Salary 104500 (e) What does TrMean represent? Comment on the value of the TrMean and show how this value was calculated. (f) For further analysis, a table is drawn showing the number of females and the number of males whose salaries were below the median salary and equal to or above the median salary. Complete the table below: Salary < $83800 Salary ? $83800 Total Female Male Total 35 (g) Using your table in part (h), determine the probability that a randomly selected researcher from your sample, is a female OR has a salary < $83800. (h) Using your table in part (h), determine the probability that a randomly selected researcher from your sample, is a female AND has a salary < $83800. (i) Given that a randomly selected researcher from your sample is a female, what is the probability that her annual salary is < $83800? (j) Are the events “female researcher” and “salary < $83800” mutually independent events? Support your answer with relevant calculations or explanations.

As a student of ECON1005, suppose you were asked to assist a co-worker in investigating whether there is an association between gender and annual salary of researchers in your country. Data was gathered from researchers in your country in your country. MINITAB was used to generate stem-and-leaf diagrams for the salaries of both the female and male researchers. See Exhibit 1 below. Exhibit 1 Stem-and-Leaf Display: Salary Female, Salary Male Stem-and-leaf of Salary Female N = 15 Leaf Unit = 1000.0 1 5 8 5 6 1345 (3) 7 148 7 8 389 4 9 2245 (a) Calculate the mean salary for both the female and the male researchers. All relevant working must be clearly shown. (b) Calculate the standard deviation of the salaries for both the female and the male researchers. All relevant working must be clearly shown. (c) Comment on your answers for parts (c) and (d), in relation to the purpose of your study, that is, the association between gender and annual salary of researchers in your country. MINITAB was used to generate box-and-whisker diagrams for the salaries of both the female and male researchers. See Exhibit 2 below. Exhibit 2 (d) With reference to the box-and-whisker diagrams, compare the salaries of the researchers selected in your sample, by gender. Ensure that you comment on the skewness, the median, the interquartile range, the minimum and the maximum values of both diagrams. MINITAB was used to generate the descriptive statistics for all the 35 researchers selected in the sample. See Exhibit 3 below. Exhibit 3 Descriptive Statistics: ResearcherSalary Variable N N* Mean SE Mean TrMean StDev Minimum Q1 Median Q3 Salary 35 0 82951 2266 83200 13404 58100 74800 83800 94300 Variable Maximum Salary 104500 (e) What does TrMean represent? Comment on the value of the TrMean and show how this value was calculated. (f) For further analysis, a table is drawn showing the number of females and the number of males whose salaries were below the median salary and equal to or above the median salary. Complete the table below: Salary < $83800 Salary ? $83800 Total Female Male Total 35 (g) Using your table in part (h), determine the probability that a randomly selected researcher from your sample, is a female OR has a salary < $83800. (h) Using your table in part (h), determine the probability that a randomly selected researcher from your sample, is a female AND has a salary < $83800. (i) Given that a randomly selected researcher from your sample is a female, what is the probability that her annual salary is < $83800? (j) Are the events “female researcher” and “salary < $83800” mutually independent events? Support your answer with relevant calculations or explanations.

info@checkyourstudy.com