6. What is meant by the threshold service level of a least-cost system?

6. What is meant by the threshold service level of a least-cost system?

What is meant by the threshold service level of a … Read More...
MAE 214 – Fall 2015 Homework 3 Due: October 1, 2015 – Thursday by 1:00 p.m. Total Problems: 4 (including Extra Credit), Total Points: 105 1. Make a solid works part model from the given figure below. All dimensions are in millimeters. All sketches must be fully defined. Also create a drawing sheet and dimension it as shown. You can use a hole call out option under annotation to dimension a counter bore hole. (30 points) Save your part files as follows: My Documents/Homework 3 Folder/Prob1_LastName.SLDPRT My Documents/ Homework 3 Folder/Prob1_LastName.SLDDRW 2. Make a solid works part of the given figure below and also make a drawing sheet – front, top and right side views using 3rd angle projection method. Dimension the views with appropriate dimension technique. All dimensions are in mm. (30 points) Save your part file and drawing sheet as follows: Documents/Homework 3 folder/Problem 2_Last Name.SLDPRT Documents/Homework 3 folder/Problem 2_Last Name.SLDDRW 3. Make a solid works part file for the given figure below. All sketches must be fully defined. Your design tree menu must have advanced features i.e. plane, mirror, and fillet. The spot facing (SF) must be defined in a problem. The inclined cut must be created with an offset sketch and extrude cut or a suitable sketch that uses “up to surface” option. (40 points) Your part model must stick to the isometric view as it is shown here. Save your part file into: My documents/Homework 3 Folder/Problem3_Last Name.SLDPRT Given: A = 76 B = 127 Unit: MMGS ALL ROUNDS (FILLET) EQUAL 6 MM 4. (Extra Credit) Make a solid works part from the given figure below. All sketches must be fully defined. Save your part file to Documents/Homework3 Folder/Prob#4_Last Name.SLDPRT All dimensions are in millimeters. (5 points)

MAE 214 – Fall 2015 Homework 3 Due: October 1, 2015 – Thursday by 1:00 p.m. Total Problems: 4 (including Extra Credit), Total Points: 105 1. Make a solid works part model from the given figure below. All dimensions are in millimeters. All sketches must be fully defined. Also create a drawing sheet and dimension it as shown. You can use a hole call out option under annotation to dimension a counter bore hole. (30 points) Save your part files as follows: My Documents/Homework 3 Folder/Prob1_LastName.SLDPRT My Documents/ Homework 3 Folder/Prob1_LastName.SLDDRW 2. Make a solid works part of the given figure below and also make a drawing sheet – front, top and right side views using 3rd angle projection method. Dimension the views with appropriate dimension technique. All dimensions are in mm. (30 points) Save your part file and drawing sheet as follows: Documents/Homework 3 folder/Problem 2_Last Name.SLDPRT Documents/Homework 3 folder/Problem 2_Last Name.SLDDRW 3. Make a solid works part file for the given figure below. All sketches must be fully defined. Your design tree menu must have advanced features i.e. plane, mirror, and fillet. The spot facing (SF) must be defined in a problem. The inclined cut must be created with an offset sketch and extrude cut or a suitable sketch that uses “up to surface” option. (40 points) Your part model must stick to the isometric view as it is shown here. Save your part file into: My documents/Homework 3 Folder/Problem3_Last Name.SLDPRT Given: A = 76 B = 127 Unit: MMGS ALL ROUNDS (FILLET) EQUAL 6 MM 4. (Extra Credit) Make a solid works part from the given figure below. All sketches must be fully defined. Save your part file to Documents/Homework3 Folder/Prob#4_Last Name.SLDPRT All dimensions are in millimeters. (5 points)

What is the prime purpose of selecting a composite material over material from the other family groups? MODULE 3 – STRUCTURE OF SOLID MATERIALS The ability of a material to exist in different space lattices is called a. Allotropic b. Crystalline c. Solvent d. Amorphous Amorphous metals develop their microstructure as a result of ___________. a. Dendrites b. Directional solidification c. Slip d. Extremely rapid cooling In an alloy, the material that dissolves the alloying element is the ___________. a. Solute b. Solvent c. Matrix d. Allotrope What is the coordination number (CN) for the fcc structure formed by ions of sodium and chlorine that is in the chemical compound NaCl (salt) ? a. 6 b. 8 c. 14 d. 16 What pressure is normally used in constructing a phase diagram? a. 100 psi b. Depends on material c. Ambient d. Normal atmospheric pressure What line on a binary diagram indicates the upper limit of the solid solution phase? a. Liquidus b. Eutectic c. Eutectoid d. Solidus What holds the atoms (ions) together in a compound such as NaCl are electrostatic forces between ___________. a. Atom and ion b. Covalent bonds c. Electrons and nuclei d. Neutrons Diffusion of atoms through a solid takes place by two main mechanisms. One is diffusion through vacancies in the atomic structure. Another method of diffusion is ___________. a. Cold b. APF c. Substitutional d. Interstitial Give a brief explanation of the Lever rule (P117) Grain boundaries ___________ movement of dislocations through a solid. a. Improve b. Inhibit c. Do not affect Iron can be alloyed with carbon because it is ___________. a. Crystalline b. Amorphous c. A mixture d. Allotropic Metals can be cooled only to crystalline solids. a. T (true) b. F (false) Sketch an fcc unit cell. Metals are classified as crystalline materials. Name one metal that is an amorphous solid and name at least one recent application in which its use is saving energy or providing greater strength and/or corrosion resistance. MODULE 4 – MECHANICAL PROPERTIES Give two examples of a mechanical property. a. Thermal resistance b. Wear resistance c. Hardness d. Strength Scissors used in the home cut material by concentrating forces that ultimately produce a certain type of stress within the material. Identify this stress. a. Bearing stress b. Shearing stress c. Compressive stress An aluminum rod 1 in. in diameter (E =10.4 x 106psi) experiences an elastic tensile strain of 0.0048 in./in. Calculate the stress in the rod. a. 49,920 ksi b. 49,920 psi c. 49,920 msi A 1-in.-diameter steel circular rod is subject to a tensile load that reduces its cross-sectional area to 0.64 in2. Express the rod’s ductility using a standard unit of measure. a. 18.5% b. 1.85% c. 18.5 d. (a) and (c) What term is used to describe the low-temperature creep of polymerics? a. Springback b. Creep rupture c. Cold flow d. Creep forming MODULE 7 – TESTING, FAILURE ANALYSIS, STANDARDS, & INSPECTION Factors of safety are defined either in terms of the ultimate strength of a material or its yield strength. In other words, by the use of a suitable factor, the ultimate or yield strength is reduced in size to what is known as the design stress or safe working stress. Which factor of safety would be more appropriate for a material that will be subjected to repetitious, suddenly applied loads? Product liability court cases have risen sharply in recent years because of poor procedures in selecting materials for particular applications. Assuming that a knowledge of a material’s properties is a valid step in the selection process, cite two examples where such lack of knowledge could or did lead to failure or unsatisfactory performance. Make a sketch and fully dimension an Izod impact test specimen. Which agency publishes the Annual Book of standard test methods used worldwide for evaluation of materials? a. NASA b. NIST c. ASTM d. SPE

What is the prime purpose of selecting a composite material over material from the other family groups? MODULE 3 – STRUCTURE OF SOLID MATERIALS The ability of a material to exist in different space lattices is called a. Allotropic b. Crystalline c. Solvent d. Amorphous Amorphous metals develop their microstructure as a result of ___________. a. Dendrites b. Directional solidification c. Slip d. Extremely rapid cooling In an alloy, the material that dissolves the alloying element is the ___________. a. Solute b. Solvent c. Matrix d. Allotrope What is the coordination number (CN) for the fcc structure formed by ions of sodium and chlorine that is in the chemical compound NaCl (salt) ? a. 6 b. 8 c. 14 d. 16 What pressure is normally used in constructing a phase diagram? a. 100 psi b. Depends on material c. Ambient d. Normal atmospheric pressure What line on a binary diagram indicates the upper limit of the solid solution phase? a. Liquidus b. Eutectic c. Eutectoid d. Solidus What holds the atoms (ions) together in a compound such as NaCl are electrostatic forces between ___________. a. Atom and ion b. Covalent bonds c. Electrons and nuclei d. Neutrons Diffusion of atoms through a solid takes place by two main mechanisms. One is diffusion through vacancies in the atomic structure. Another method of diffusion is ___________. a. Cold b. APF c. Substitutional d. Interstitial Give a brief explanation of the Lever rule (P117) Grain boundaries ___________ movement of dislocations through a solid. a. Improve b. Inhibit c. Do not affect Iron can be alloyed with carbon because it is ___________. a. Crystalline b. Amorphous c. A mixture d. Allotropic Metals can be cooled only to crystalline solids. a. T (true) b. F (false) Sketch an fcc unit cell. Metals are classified as crystalline materials. Name one metal that is an amorphous solid and name at least one recent application in which its use is saving energy or providing greater strength and/or corrosion resistance. MODULE 4 – MECHANICAL PROPERTIES Give two examples of a mechanical property. a. Thermal resistance b. Wear resistance c. Hardness d. Strength Scissors used in the home cut material by concentrating forces that ultimately produce a certain type of stress within the material. Identify this stress. a. Bearing stress b. Shearing stress c. Compressive stress An aluminum rod 1 in. in diameter (E =10.4 x 106psi) experiences an elastic tensile strain of 0.0048 in./in. Calculate the stress in the rod. a. 49,920 ksi b. 49,920 psi c. 49,920 msi A 1-in.-diameter steel circular rod is subject to a tensile load that reduces its cross-sectional area to 0.64 in2. Express the rod’s ductility using a standard unit of measure. a. 18.5% b. 1.85% c. 18.5 d. (a) and (c) What term is used to describe the low-temperature creep of polymerics? a. Springback b. Creep rupture c. Cold flow d. Creep forming MODULE 7 – TESTING, FAILURE ANALYSIS, STANDARDS, & INSPECTION Factors of safety are defined either in terms of the ultimate strength of a material or its yield strength. In other words, by the use of a suitable factor, the ultimate or yield strength is reduced in size to what is known as the design stress or safe working stress. Which factor of safety would be more appropriate for a material that will be subjected to repetitious, suddenly applied loads? Product liability court cases have risen sharply in recent years because of poor procedures in selecting materials for particular applications. Assuming that a knowledge of a material’s properties is a valid step in the selection process, cite two examples where such lack of knowledge could or did lead to failure or unsatisfactory performance. Make a sketch and fully dimension an Izod impact test specimen. Which agency publishes the Annual Book of standard test methods used worldwide for evaluation of materials? a. NASA b. NIST c. ASTM d. SPE

info@checkyourstudy.com
MECET 423: Mechanics of Materials Chap. 7 HW Chap. 7 Homework Set 1. Consider the beam shown in the image below. Let F1 = 2 kN and F2 = 3 kN. Assume that points A, B and C represent pin connections and a wire rope connects points B and C. Consider the dimensions L1, L2, L3 and L4 to be 2 m, 4 m, 6 m, and 10 m, respectively. The beam is made from HSS 152 X 51 X 6.4 (Appendix A-9) and the longer side of the rectangle is vertical. What is the maximum normal stress (units: MPa) experienced by the beam? 2. Consider the beam and loading shown below. The beam has a total length of 12 ft. and a uniformly distributed load, w, of 125 lb./ft. The cross section of the beam is comprised of a standard steel channel (C6 X 13) which has a ½ in. plate of steel attached to its bottom. Determine the maximum normal stress in tension and compression that is experienced by this beam due to the described loading. MECET 423: Mechanics of Materials Chap. 7 HW 3. Consider the cantilever beam shown in the image below. The beam is experiencing a linearly varying distributed load with w1 = 50 lb./ft. and w2 = 10 lb./ft. The beam is to be made from ASTM A36 structural steel and is to be 8 ft. in length. Select the smallest standard schedule 40 steel pipe size (Appendix A-12) which will ensure a factor of safety of at least 3. 4. The beam shown below has been fabricated by combining two wooden boards into a T-section. The dimensions for these sizes can be found in Appendix A-4. The beam is 9 ft. in length overall and dimension L1 = 3 ft. Assume the beam is made from a wood which has an allowable bending stress of 1500 psi (in both tension and compression). What is the largest value of the force which can be applied? MECET 423: Mechanics of Materials Chap. 7 HW 5. The image below shows a hydraulic cylinder which is being utilized in a simple press-fit operation. As can be seen the cylinder is being suspended over the work piece using a cantilever beam. Note from the right view that there is a beam on either side of the cylinder. You may assume that each will be equally loaded by the cylinder. The beams are to be cut from AISI 1040 HR steel plate which has a thickness of 0.750 in. The proposed design includes the following dimensions (units: inch): H = 2.00, h = 1.00, r = 0.08, L1 = 8, and L2 = 18. Evaluate the design by calculating the resulting factor of safety with respect to the yield strength of the material at the location of the step if the total force generated by the cylinder is 1,000 lb. Also state whether or not yielding is predicted to occur. You may assume that bending in the thickness direction of the beams is negligible. 6. Consider the cantilever beam shown below. The beam has a length of 4 ft. and is made from a material whose design stress, σd, is equal to 10,000 psi. It is to carry a load of 200 lb. applied at its free end. The beam is to be designed as a beam of constant strength where the maximum normal stress experienced at each cross section is equal to the design normal stress. To achieve this the height will be held constant at 1.5 in. while the base will vary as a function of the position along the length of the beam. Determine the equation which describes the required length of the base as a function of the position along the length of the beam. For consistency, let the origin be located at point A and the positive x axis be directed toward the right. MECET 423: Mechanics of Materials Chap. 7 HW 7. Consider the overhanging beam shown in the image below. Assume that L = 5 ft. and L1 = 3 ft. The beam’s cross section is shown below. The centerline marks the horizontal centroidal axis. The moment of inertia about this axis is approx. 0.208 in4. Due to the geometry of the cross section and the material, the beam has different maximum allowable normal stresses in tension and compression. The design normal stress in tension is 24,000 psi while the design normal stress in compression is 18,000 psi. Using this data determine the maximum force, F, which can be applied to the beam.

MECET 423: Mechanics of Materials Chap. 7 HW Chap. 7 Homework Set 1. Consider the beam shown in the image below. Let F1 = 2 kN and F2 = 3 kN. Assume that points A, B and C represent pin connections and a wire rope connects points B and C. Consider the dimensions L1, L2, L3 and L4 to be 2 m, 4 m, 6 m, and 10 m, respectively. The beam is made from HSS 152 X 51 X 6.4 (Appendix A-9) and the longer side of the rectangle is vertical. What is the maximum normal stress (units: MPa) experienced by the beam? 2. Consider the beam and loading shown below. The beam has a total length of 12 ft. and a uniformly distributed load, w, of 125 lb./ft. The cross section of the beam is comprised of a standard steel channel (C6 X 13) which has a ½ in. plate of steel attached to its bottom. Determine the maximum normal stress in tension and compression that is experienced by this beam due to the described loading. MECET 423: Mechanics of Materials Chap. 7 HW 3. Consider the cantilever beam shown in the image below. The beam is experiencing a linearly varying distributed load with w1 = 50 lb./ft. and w2 = 10 lb./ft. The beam is to be made from ASTM A36 structural steel and is to be 8 ft. in length. Select the smallest standard schedule 40 steel pipe size (Appendix A-12) which will ensure a factor of safety of at least 3. 4. The beam shown below has been fabricated by combining two wooden boards into a T-section. The dimensions for these sizes can be found in Appendix A-4. The beam is 9 ft. in length overall and dimension L1 = 3 ft. Assume the beam is made from a wood which has an allowable bending stress of 1500 psi (in both tension and compression). What is the largest value of the force which can be applied? MECET 423: Mechanics of Materials Chap. 7 HW 5. The image below shows a hydraulic cylinder which is being utilized in a simple press-fit operation. As can be seen the cylinder is being suspended over the work piece using a cantilever beam. Note from the right view that there is a beam on either side of the cylinder. You may assume that each will be equally loaded by the cylinder. The beams are to be cut from AISI 1040 HR steel plate which has a thickness of 0.750 in. The proposed design includes the following dimensions (units: inch): H = 2.00, h = 1.00, r = 0.08, L1 = 8, and L2 = 18. Evaluate the design by calculating the resulting factor of safety with respect to the yield strength of the material at the location of the step if the total force generated by the cylinder is 1,000 lb. Also state whether or not yielding is predicted to occur. You may assume that bending in the thickness direction of the beams is negligible. 6. Consider the cantilever beam shown below. The beam has a length of 4 ft. and is made from a material whose design stress, σd, is equal to 10,000 psi. It is to carry a load of 200 lb. applied at its free end. The beam is to be designed as a beam of constant strength where the maximum normal stress experienced at each cross section is equal to the design normal stress. To achieve this the height will be held constant at 1.5 in. while the base will vary as a function of the position along the length of the beam. Determine the equation which describes the required length of the base as a function of the position along the length of the beam. For consistency, let the origin be located at point A and the positive x axis be directed toward the right. MECET 423: Mechanics of Materials Chap. 7 HW 7. Consider the overhanging beam shown in the image below. Assume that L = 5 ft. and L1 = 3 ft. The beam’s cross section is shown below. The centerline marks the horizontal centroidal axis. The moment of inertia about this axis is approx. 0.208 in4. Due to the geometry of the cross section and the material, the beam has different maximum allowable normal stresses in tension and compression. The design normal stress in tension is 24,000 psi while the design normal stress in compression is 18,000 psi. Using this data determine the maximum force, F, which can be applied to the beam.

info@checkyourstudy.com Whatsapp +919911743277
EGT 300 – Statics and Strength of Materials 1. Two structural mebers B and C are bolted to the brackedt A. Knowing that the tension in member B is 2000 N and the tension in C is 1500 N, determine the magnitude (in N.) of the resultant force acting on the bracket. 2. A hoist trolley is subjected to the three forces shown. Knowing that P = 250 lb, determine the magnitude of the resultant (in lb.). 3. The collar A may slide freely on the horizontal smooth rod. Determine the magnitude of the force P (in kN.) required to maintain equilibrium when the dimension c is 8 m. 4. Determine the volume (in mm3) of the solid obtained by rotating the area of the figure show, about the x axis. 5. In the previous problem (6), determine the volume (in dm3) of the solid, by rotating the area about the y axis. 6. Using the method of joints, determine the force (in kN) in the member CA of the truss shown. 7. The coefficient of friction between the block and the rail are µs =0.30 and µk = 0.25. Find the magnitude of the smallest force P (in N) required to start the block up to the rail. 8. Determine the momentum at the beam support B (in lb.in) for the given loading.

EGT 300 – Statics and Strength of Materials 1. Two structural mebers B and C are bolted to the brackedt A. Knowing that the tension in member B is 2000 N and the tension in C is 1500 N, determine the magnitude (in N.) of the resultant force acting on the bracket. 2. A hoist trolley is subjected to the three forces shown. Knowing that P = 250 lb, determine the magnitude of the resultant (in lb.). 3. The collar A may slide freely on the horizontal smooth rod. Determine the magnitude of the force P (in kN.) required to maintain equilibrium when the dimension c is 8 m. 4. Determine the volume (in mm3) of the solid obtained by rotating the area of the figure show, about the x axis. 5. In the previous problem (6), determine the volume (in dm3) of the solid, by rotating the area about the y axis. 6. Using the method of joints, determine the force (in kN) in the member CA of the truss shown. 7. The coefficient of friction between the block and the rail are µs =0.30 and µk = 0.25. Find the magnitude of the smallest force P (in N) required to start the block up to the rail. 8. Determine the momentum at the beam support B (in lb.in) for the given loading.

info@checkyourstudy.com Whatsapp +919911743277
Homework #8  Consider the veracity or falsehood of each of the following statements. For bonus, argue for those that you believe are true while providing a counterexample for those that you believe are false.  If the first and third rows of A are equal, then det A 0.  If P is a projection, then uCP if and only if Pu  u.  If P is a projection, and detP  0, then P  I .  If A has determinant 10, then 1 A has determinant 1 10 .  If B is invertible, 1 1 det(A B ) det A (detB) .  If P is a projection, and R  2P I , then 2 R  I .  If P is a projection, and P  I , then detP  0 .  Short Computations. All of the following do not involve long computations:  Suppose 1 2 1 5 1 8 A                  and 1 9 2 4 3 1 A                   . Compute 7 13 19 A         .  Compute               0 8 7 1 0 2 3 4 5 3 0 9 2 0 0 0 3 0 0 0 1 9 3 2 0 det .  Use Cramer’s Rule to find 5 x (hint: you do not need your calculator). 1 2 3 4 5 5x 2x 8x x 3x 13 1 3 3x 5x 0 1 3 5 3x 3x 3x 9 1 2 3 5 3x 2x x 2x 7 1 3 x 4x 0 Let A 1 2 3 4 1 3 4 6 2 5 13 15 4 10 15 31 . Given is that det A  61. Do the following:  1 1 2 4 2 3 5 10 3 4 13 15 4 6 15 31 det  det2A  1 3 4 6 2 4 6 8 2 5 13 15 4 10 15 31 det  1 3 4 6 2 5 13 15 4 10 15 31 1 2 3 4 det  Consider the matrix A  0 1 0 0 0 0 1 0 0 0 0 1 1 2 2 1           . Use row (or column) expansion to compute det(xI A) .  The matrix 4 1 1 2 1 1 1 4 1 1 2 1 1 1 4 1 1 2 2 1 1 4 1 1 1 2 1 1 4 1 1 1 2 1 1 4 1 6 P is the projection matrix for the column space of matrix A. This matrix A is also known to be of full rank. Answer the following, giving reasons for your answers.  Find a transparent basis and the dimension for the column space of P.  Find a basis and the dimension for the column space of A .  What size is the matrix A ?  Find a transparent basis and the dimension for the null space of P.  Find a transparent basis and the dimension for the row space of P.  Find a basis and the dimension for the null space of A.  For which of the following b can you find a solution to the system Ax b ? This does not mean you should find a solution, only whether one could or not. 10 17 19 14 10 17 19 14 13 10 17 19 14 13 23 1 1 1 1 1 1 .  It is known that certain vector u is a solution to the system Ax c . Give all solutions to Ax c .  It is also known that 1 2 3 4 5 6 Ax does not have a solution. How would you change the constant vector so that there would be a solution? Extra Problems.  Fill in the blank with the best possible expression to complete the sentence truthfully. Only that one will be counted correct. 1. matrix with two equal columns will have zero determinant. 1 2 3 Some Every No 2. If A is invertible, then A commute with its inverse. 1 2 3 must always can will not 3. If A is 6  9 , then the columns of A be linearly independent. While in AT , the columns be linearly independent. 1 2 3 can have to cannot 4. Let A be square, and suppose Ax  0 has a nontrivial solution. Then detA equal 0. 1 2 3 may cannot must 5. Let A and B be 3 3. Then det (AB) equal det(A)det(B) . 1 2 3 could must couldn’t 6. Let A be square and suppose detA  0. Then have an inverse 1 2 3 will not may must always 7. Let A and B be 2  2 . Then det (A B) equal det(A)  det(B) . 1 2 3 could must could not 8. exist a 6  6 matrix all of whose entries are whole numbers and its determinant is 2 5 . 1 2 3 There does There does not There might Bonus: Consider the matrix 0 0 1 0 2 0 n 0 . Give its determinant as a function of n.

Homework #8  Consider the veracity or falsehood of each of the following statements. For bonus, argue for those that you believe are true while providing a counterexample for those that you believe are false.  If the first and third rows of A are equal, then det A 0.  If P is a projection, then uCP if and only if Pu  u.  If P is a projection, and detP  0, then P  I .  If A has determinant 10, then 1 A has determinant 1 10 .  If B is invertible, 1 1 det(A B ) det A (detB) .  If P is a projection, and R  2P I , then 2 R  I .  If P is a projection, and P  I , then detP  0 .  Short Computations. All of the following do not involve long computations:  Suppose 1 2 1 5 1 8 A                  and 1 9 2 4 3 1 A                   . Compute 7 13 19 A         .  Compute               0 8 7 1 0 2 3 4 5 3 0 9 2 0 0 0 3 0 0 0 1 9 3 2 0 det .  Use Cramer’s Rule to find 5 x (hint: you do not need your calculator). 1 2 3 4 5 5x 2x 8x x 3x 13 1 3 3x 5x 0 1 3 5 3x 3x 3x 9 1 2 3 5 3x 2x x 2x 7 1 3 x 4x 0 Let A 1 2 3 4 1 3 4 6 2 5 13 15 4 10 15 31 . Given is that det A  61. Do the following:  1 1 2 4 2 3 5 10 3 4 13 15 4 6 15 31 det  det2A  1 3 4 6 2 4 6 8 2 5 13 15 4 10 15 31 det  1 3 4 6 2 5 13 15 4 10 15 31 1 2 3 4 det  Consider the matrix A  0 1 0 0 0 0 1 0 0 0 0 1 1 2 2 1           . Use row (or column) expansion to compute det(xI A) .  The matrix 4 1 1 2 1 1 1 4 1 1 2 1 1 1 4 1 1 2 2 1 1 4 1 1 1 2 1 1 4 1 1 1 2 1 1 4 1 6 P is the projection matrix for the column space of matrix A. This matrix A is also known to be of full rank. Answer the following, giving reasons for your answers.  Find a transparent basis and the dimension for the column space of P.  Find a basis and the dimension for the column space of A .  What size is the matrix A ?  Find a transparent basis and the dimension for the null space of P.  Find a transparent basis and the dimension for the row space of P.  Find a basis and the dimension for the null space of A.  For which of the following b can you find a solution to the system Ax b ? This does not mean you should find a solution, only whether one could or not. 10 17 19 14 10 17 19 14 13 10 17 19 14 13 23 1 1 1 1 1 1 .  It is known that certain vector u is a solution to the system Ax c . Give all solutions to Ax c .  It is also known that 1 2 3 4 5 6 Ax does not have a solution. How would you change the constant vector so that there would be a solution? Extra Problems.  Fill in the blank with the best possible expression to complete the sentence truthfully. Only that one will be counted correct. 1. matrix with two equal columns will have zero determinant. 1 2 3 Some Every No 2. If A is invertible, then A commute with its inverse. 1 2 3 must always can will not 3. If A is 6  9 , then the columns of A be linearly independent. While in AT , the columns be linearly independent. 1 2 3 can have to cannot 4. Let A be square, and suppose Ax  0 has a nontrivial solution. Then detA equal 0. 1 2 3 may cannot must 5. Let A and B be 3 3. Then det (AB) equal det(A)det(B) . 1 2 3 could must couldn’t 6. Let A be square and suppose detA  0. Then have an inverse 1 2 3 will not may must always 7. Let A and B be 2  2 . Then det (A B) equal det(A)  det(B) . 1 2 3 could must could not 8. exist a 6  6 matrix all of whose entries are whole numbers and its determinant is 2 5 . 1 2 3 There does There does not There might Bonus: Consider the matrix 0 0 1 0 2 0 n 0 . Give its determinant as a function of n.

info@checkyourstudy.com Whatsapp +919911743277
An individual who experiences powerful feelings of both joy and sadness would score high on what personality dimension? neuroticism affect variability affect intensity affect instability

An individual who experiences powerful feelings of both joy and sadness would score high on what personality dimension? neuroticism affect variability affect intensity affect instability

An individual who experiences powerful feelings of both joy and … Read More...
1. (20 pts) The linear momentum operator in one dimension is given by: ˆpx = ! i d dx . In class we said that the average momentum for a particle in a box (pib) is 0. Use the formula for the expectation value to verify mathematically that this is true. The pib-wavefunction: 2 ℓ sin nπ ℓ x ! ” # $ % & 2. (20 pts) Evaluate the following commutators: a. (10 pts) b. (10 pts) 3. (20 pts) A certain one-dimensional quantum mechanical system is described by the Hamiltonian: , q is a constant, and 0 ≤ x ≤ ∞. One of the eigenfunctions is known to be: a. (15 pts) Find the value of N to normalize the function. b. (5 pts) By letting , find the energy eigenvalue. 4. (20 pts) The Schrödinger equation for the particle on a sphere (a.k.a. the Rigid Rotor) is: − !2 2μR2 1 sinθ ∂ ∂θ sinθ ∂ ∂θ # $ % & ‘ ( + 1 sin2θ ∂2 ∂φ 2 # $ % & ‘ ( ψ(θ,φ ) = Eψ(θ,φ ) A purported eigenfunction for it is: ψ(θ,φ ) = N sin3θ cos(3φ ) a. (15 pts) Use this wave function to find the energy eigenvalue for the function. (You do NOT have to normalize the function!). b. (5 pts) The eigenvalues for the particle on a sphere are of the form: Eℓ = “2 2μR2 ℓ(ℓ +1) What is the value of ℓ for the wave function used in part a? 5. (20 pts) Using the ortho-normailty of the hydrogenic orbitals and the spin functions, normalize the excited Helium atom represented by the following wave function: ψ = N 1s({ 1)2p(2)+ 2p(1)1s(2)}{α(1)β (2)−β (1)α(2)} ˆ x, ( ˆpx [ + xˆ)] = ˆpx, ( ˆ x)3 !” #$ = ˆH = − 2 2m d2 dx2 − q2 x ψ(x) = Nxe−α x α = mq2 / 2

1. (20 pts) The linear momentum operator in one dimension is given by: ˆpx = ! i d dx . In class we said that the average momentum for a particle in a box (pib) is 0. Use the formula for the expectation value to verify mathematically that this is true. The pib-wavefunction: 2 ℓ sin nπ ℓ x ! ” # $ % & 2. (20 pts) Evaluate the following commutators: a. (10 pts) b. (10 pts) 3. (20 pts) A certain one-dimensional quantum mechanical system is described by the Hamiltonian: , q is a constant, and 0 ≤ x ≤ ∞. One of the eigenfunctions is known to be: a. (15 pts) Find the value of N to normalize the function. b. (5 pts) By letting , find the energy eigenvalue. 4. (20 pts) The Schrödinger equation for the particle on a sphere (a.k.a. the Rigid Rotor) is: − !2 2μR2 1 sinθ ∂ ∂θ sinθ ∂ ∂θ # $ % & ‘ ( + 1 sin2θ ∂2 ∂φ 2 # $ % & ‘ ( ψ(θ,φ ) = Eψ(θ,φ ) A purported eigenfunction for it is: ψ(θ,φ ) = N sin3θ cos(3φ ) a. (15 pts) Use this wave function to find the energy eigenvalue for the function. (You do NOT have to normalize the function!). b. (5 pts) The eigenvalues for the particle on a sphere are of the form: Eℓ = “2 2μR2 ℓ(ℓ +1) What is the value of ℓ for the wave function used in part a? 5. (20 pts) Using the ortho-normailty of the hydrogenic orbitals and the spin functions, normalize the excited Helium atom represented by the following wave function: ψ = N 1s({ 1)2p(2)+ 2p(1)1s(2)}{α(1)β (2)−β (1)α(2)} ˆ x, ( ˆpx [ + xˆ)] = ˆpx, ( ˆ x)3 !” #$ = ˆH = − 2 2m d2 dx2 − q2 x ψ(x) = Nxe−α x α = mq2 / 2

info@checkyourstudy.com Whatsapp +919911743277
Chapter 9 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, April 18, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Momentum and Internal Forces Learning Goal: To understand the concept of total momentum for a system of objects and the effect of the internal forces on the total momentum. We begin by introducing the following terms: System: Any collection of objects, either pointlike or extended. In many momentum-related problems, you have a certain freedom in choosing the objects to be considered as your system. Making a wise choice is often a crucial step in solving the problem. Internal force: Any force interaction between two objects belonging to the chosen system. Let us stress that both interacting objects must belong to the system. External force: Any force interaction between objects at least one of which does not belong to the chosen system; in other words, at least one of the objects is external to the system. Closed system: a system that is not subject to any external forces. Total momentum: The vector sum of the individual momenta of all objects constituting the system. In this problem, you will analyze a system composed of two blocks, 1 and 2, of respective masses and . To simplify the analysis, we will make several assumptions: The blocks can move in only one dimension, namely, 1. along the x axis. 2. The masses of the blocks remain constant. 3. The system is closed. At time , the x components of the velocity and the acceleration of block 1 are denoted by and . Similarly, the x components of the velocity and acceleration of block 2 are denoted by and . In this problem, you will show that the total momentum of the system is not changed by the presence of internal forces. m1 m2 t v1(t) a1 (t) v2 (t) a2 (t) Part A Find , the x component of the total momentum of the system at time . Express your answer in terms of , , , and . ANSWER: Part B Find the time derivative of the x component of the system’s total momentum. Express your answer in terms of , , , and . You did not open hints for this part. ANSWER: Why did we bother with all this math? The expression for the derivative of momentum that we just obtained will be useful in reaching our desired conclusion, if only for this very special case. Part C The quantity (mass times acceleration) is dimensionally equivalent to which of the following? ANSWER: p(t) t m1 m2 v1 (t) v2 (t) p(t) = dp(t)/dt a1 (t) a2 (t) m1 m2 dp(t)/dt = ma Part D Acceleration is due to which of the following physical quantities? ANSWER: Part E Since we have assumed that the system composed of blocks 1 and 2 is closed, what could be the reason for the acceleration of block 1? You did not open hints for this part. ANSWER: momentum energy force acceleration inertia velocity speed energy momentum force Part F This question will be shown after you complete previous question(s). Part G Let us denote the x component of the force exerted by block 1 on block 2 by , and the x component of the force exerted by block 2 on block 1 by . Which of the following pairs equalities is a direct consequence of Newton’s second law? ANSWER: Part H Let us recall that we have denoted the force exerted by block 1 on block 2 by , and the force exerted by block 2 on block 1 by . If we suppose that is greater than , which of the following statements about forces is true? You did not open hints for this part. the large mass of block 1 air resistance Earth’s gravitational attraction a force exerted by block 2 on block 1 a force exerted by block 1 on block 2 F12 F21 and and and and F12 = m2a2 F21 = m1a1 F12 = m1a1 F21 = m2a2 F12 = m1a2 F21 = m2a1 F12 = m2a1 F21 = m1a2 F12 F21 m1 m2 ANSWER: Part I Now recall the expression for the time derivative of the x component of the system’s total momentum: . Considering the information that you now have, choose the best alternative for an equivalent expression to . You did not open hints for this part. ANSWER: Impulse and Momentum Ranking Task Six automobiles are initially traveling at the indicated velocities. The automobiles have different masses and velocities. The drivers step on the brakes and all automobiles are brought to rest. Part A Rank these automobiles based on the magnitude of their momentum before the brakes are applied, from largest to smallest. Rank from largest to smallest. To rank items as equivalent, overlap them. If the ranking cannot be determined, check the box below. ANSWER: Both forces have equal magnitudes. |F12 | > |F21| |F21 | > |F12| dpx(t)/dt = Fx dpx(t)/dt 0 nonzero constant kt kt2 Part B Rank these automobiles based on the magnitude of the impulse needed to stop them, from largest to smallest. Rank from largest to smallest. To rank items as equivalent, overlap them. If the ranking cannot be determined, check the box below. You did not open hints for this part. ANSWER: Part C Rank the automobiles based on the magnitude of the force needed to stop them, from largest to smallest. Rank from largest to smallest. To rank items as equivalent, overlap them. If the ranking cannot be determined, check the box below. You did not open hints for this part. ANSWER: A Game of Frictionless Catch Chuck and Jackie stand on separate carts, both of which can slide without friction. The combined mass of Chuck and his cart, , is identical to the combined mass of Jackie and her cart. Initially, Chuck and Jackie and their carts are at rest. Chuck then picks up a ball of mass and throws it to Jackie, who catches it. Assume that the ball travels in a straight line parallel to the ground (ignore the effect of gravity). After Chuck throws the ball, his speed relative to the ground is . The speed of the thrown ball relative to the ground is . Jackie catches the ball when it reaches her, and she and her cart begin to move. Jackie’s speed relative to the ground after she catches the ball is . When answering the questions in this problem, keep the following in mind: The original mass of Chuck and his cart does not include the 1. mass of the ball. 2. The speed of an object is the magnitude of its velocity. An object’s speed will always be a nonnegative quantity. mcart mball vc vb vj mcart Part A Find the relative speed between Chuck and the ball after Chuck has thrown the ball. Express the speed in terms of and . You did not open hints for this part. ANSWER: Part B What is the speed of the ball (relative to the ground) while it is in the air? Express your answer in terms of , , and . You did not open hints for this part. ANSWER: Part C What is Chuck’s speed (relative to the ground) after he throws the ball? Express your answer in terms of , , and . u vc vb u = vb mball mcart u vb = vc mball mcart u You did not open hints for this part. ANSWER: Part D Find Jackie’s speed (relative to the ground) after she catches the ball, in terms of . Express in terms of , , and . You did not open hints for this part. ANSWER: Part E Find Jackie’s speed (relative to the ground) after she catches the ball, in terms of . Express in terms of , , and . You did not open hints for this part. ANSWER: vc = vj vb vj mball mcart vb vj = vj u vj mball mcart u Momentum in an Explosion A giant “egg” explodes as part of a fireworks display. The egg is at rest before the explosion, and after the explosion, it breaks into two pieces, with the masses indicated in the diagram, traveling in opposite directions. Part A What is the momentum of piece A before the explosion? Express your answer numerically in kilogram meters per second. You did not open hints for this part. ANSWER: vj = pA,i Part B During the explosion, is the force of piece A on piece B greater than, less than, or equal to the force of piece B on piece A? You did not open hints for this part. ANSWER: Part C The momentum of piece B is measured to be 500 after the explosion. Find the momentum of piece A after the explosion. Enter your answer numerically in kilogram meters per second. You did not open hints for this part. ANSWER: pA,i = kg  m/s greater than less than equal to cannot be determined kg  m/s pA,f pA,f = kg  m/s ± PSS 9.1 Conservation of Momentum Learning Goal: To practice Problem-Solving Strategy 9.1 for conservation of momentum problems. An 80- quarterback jumps straight up in the air right before throwing a 0.43- football horizontally at 15 . How fast will he be moving backward just after releasing the ball? PROBLEM-SOLVING STRATEGY 9.1 Conservation of momentum MODEL: Clearly define the system. If possible, choose a system that is isolated ( ) or within which the interactions are sufficiently short and intense that you can ignore external forces for the duration of the interaction (the impulse approximation). Momentum is conserved. If it is not possible to choose an isolated system, try to divide the problem into parts such that momentum is conserved during one segment of the motion. Other segments of the motion can be analyzed using Newton’s laws or, as you will learn later, conservation of energy. VISUALIZE: Draw a before-and-after pictorial representation. Define symbols that will be used in the problem, list known values, and identify what you are trying to find. SOLVE: The mathematical representation is based on the law of conservation of momentum: . In component form, this is ASSESS: Check that your result has the correct units, is reasonable, and answers the question. Model The interaction at study in this problem is the action of throwing the ball, performed by the quarterback while being off the ground. To apply conservation of momentum to this interaction, you will need to clearly define a system that is isolated or within which the impulse approximation can be applied. Part A Sort the following objects as part of the system or not. Drag the appropriate objects to their respective bins. ANSWER: kg kg m/s F = net 0 P = f P  i (pfx + ( + ( += ( + ( + ( + )1 pfx)2 pfx)3 pix)1 pix)2 pix)3 (pfy + ( + ( += ( + ( + ( + )1 pfy)2 pfy)3 piy)1 piy)2 piy)3 Part B This question will be shown after you complete previous question(s). Visualize Solve Part C This question will be shown after you complete previous question(s). Assess Part D This question will be shown after you complete previous question(s). Conservation of Momentum in Inelastic Collisions Learning Goal: To understand the vector nature of momentum in the case in which two objects collide and stick together. In this problem we will consider a collision of two moving objects such that after the collision, the objects stick together and travel off as a single unit. The collision is therefore completely inelastic. You have probably learned that “momentum is conserved” in an inelastic collision. But how does this fact help you to solve collision problems? The following questions should help you to clarify the meaning and implications of the statement “momentum is conserved.” Part A What physical quantities are conserved in this collision? ANSWER: Part B Two cars of equal mass collide inelastically and stick together after the collision. Before the collision, their speeds are and . What is the speed of the two-car system after the collision? the magnitude of the momentum only the net momentum (considered as a vector) only the momentum of each object considered individually v1 v2 You did not open hints for this part. ANSWER: Part C Two cars collide inelastically and stick together after the collision. Before the collision, the magnitudes of their momenta are and . After the collision, what is the magnitude of their combined momentum? You did not open hints for this part. ANSWER: The answer depends on the directions in which the cars were moving before the collision. v1 + v2 v1 − v2 v2 − v1 v1v2 −−−− ” v1+v2 2 v1 + 2 v2 2 −−−−−−−  p1 p2 Part D Two cars collide inelastically and stick together after the collision. Before the collision, their momenta are and . After the collision, their combined momentum is . Of what can one be certain? You did not open hints for this part. ANSWER: Part E Two cars collide inelastically and stick together after the collision. Before the collision, the magnitudes of their momenta are and . After the collision, the magnitude of their combined momentum is . Of what can one be certain? The answer depends on the directions in which the cars were moving before the collision. p1 + p2 p1 − p2 p2 − p1 p1p2 −−−− ” p1+p2 2 p1 + 2 p2 2 −−−−−−−  p 1 p 2 p p = p1 + # p2 # p = p1 − # p2 # p = p2 − # p1 # p1 p2 p You did not open hints for this part. ANSWER: Colliding Cars In this problem we will consider the collision of two cars initially moving at right angles. We assume that after the collision the cars stick together and travel off as a single unit. The collision is therefore completely inelastic. Two cars of masses and collide at an intersection. Before the collision, car 1 was traveling eastward at a speed of , and car 2 was traveling northward at a speed of . After the collision, the two cars stick together and travel off in the direction shown. Part A p1 + p2 $ p $ p1p2 −−−− ” p1 +p2 $ p $ p1+p2 2 p1 + p2 $ p $ |p1 − p2 | p1 + p2 $ p $ p1 + 2 p2 2 −−−−−−−  m1 m2 v1 v2 First, find the magnitude of , that is, the speed of the two-car unit after the collision. Express in terms of , , and the cars’ initial speeds and . You did not open hints for this part. ANSWER: Part B Find the tangent of the angle . Express your answer in terms of the momenta of the two cars, and . ANSWER: Part C Suppose that after the collision, ; in other words, is . This means that before the collision: ANSWER: v v v m1 m2 v1 v2 v = p1 p2 tan( ) = tan = 1 45′ The magnitudes of the momenta of the cars were equal. The masses of the cars were equal. The velocities of the cars were equal. ± Catching a Ball on Ice Olaf is standing on a sheet of ice that covers the football stadium parking lot in Buffalo, New York; there is negligible friction between his feet and the ice. A friend throws Olaf a ball of mass 0.400 that is traveling horizontally at 11.2 . Olaf’s mass is 67.1 . Part A If Olaf catches the ball, with what speed do Olaf and the ball move afterward? Express your answer numerically in meters per second. You did not open hints for this part. ANSWER: Part B kg m/s kg vf vf = m/s If the ball hits Olaf and bounces off his chest horizontally at 8.00 in the opposite direction, what is his speed after the collision? Express your answer numerically in meters per second. You did not open hints for this part. ANSWER: A One-Dimensional Inelastic Collision Block 1, of mass = 2.90 , moves along a frictionless air track with speed = 25.0 . It collides with block 2, of mass = 17.0 , which was initially at rest. The blocks stick together after the collision. Part A Find the magnitude of the total initial momentum of the two-block system. Express your answer numerically. m/s vf vf = m/s m1 kg v1 m/s m2 kg pi You did not open hints for this part. ANSWER: Part B Find , the magnitude of the final velocity of the two-block system. Express your answer numerically. You did not open hints for this part. ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. pi = kg  m/s vf vf = m/s

Chapter 9 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, April 18, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Momentum and Internal Forces Learning Goal: To understand the concept of total momentum for a system of objects and the effect of the internal forces on the total momentum. We begin by introducing the following terms: System: Any collection of objects, either pointlike or extended. In many momentum-related problems, you have a certain freedom in choosing the objects to be considered as your system. Making a wise choice is often a crucial step in solving the problem. Internal force: Any force interaction between two objects belonging to the chosen system. Let us stress that both interacting objects must belong to the system. External force: Any force interaction between objects at least one of which does not belong to the chosen system; in other words, at least one of the objects is external to the system. Closed system: a system that is not subject to any external forces. Total momentum: The vector sum of the individual momenta of all objects constituting the system. In this problem, you will analyze a system composed of two blocks, 1 and 2, of respective masses and . To simplify the analysis, we will make several assumptions: The blocks can move in only one dimension, namely, 1. along the x axis. 2. The masses of the blocks remain constant. 3. The system is closed. At time , the x components of the velocity and the acceleration of block 1 are denoted by and . Similarly, the x components of the velocity and acceleration of block 2 are denoted by and . In this problem, you will show that the total momentum of the system is not changed by the presence of internal forces. m1 m2 t v1(t) a1 (t) v2 (t) a2 (t) Part A Find , the x component of the total momentum of the system at time . Express your answer in terms of , , , and . ANSWER: Part B Find the time derivative of the x component of the system’s total momentum. Express your answer in terms of , , , and . You did not open hints for this part. ANSWER: Why did we bother with all this math? The expression for the derivative of momentum that we just obtained will be useful in reaching our desired conclusion, if only for this very special case. Part C The quantity (mass times acceleration) is dimensionally equivalent to which of the following? ANSWER: p(t) t m1 m2 v1 (t) v2 (t) p(t) = dp(t)/dt a1 (t) a2 (t) m1 m2 dp(t)/dt = ma Part D Acceleration is due to which of the following physical quantities? ANSWER: Part E Since we have assumed that the system composed of blocks 1 and 2 is closed, what could be the reason for the acceleration of block 1? You did not open hints for this part. ANSWER: momentum energy force acceleration inertia velocity speed energy momentum force Part F This question will be shown after you complete previous question(s). Part G Let us denote the x component of the force exerted by block 1 on block 2 by , and the x component of the force exerted by block 2 on block 1 by . Which of the following pairs equalities is a direct consequence of Newton’s second law? ANSWER: Part H Let us recall that we have denoted the force exerted by block 1 on block 2 by , and the force exerted by block 2 on block 1 by . If we suppose that is greater than , which of the following statements about forces is true? You did not open hints for this part. the large mass of block 1 air resistance Earth’s gravitational attraction a force exerted by block 2 on block 1 a force exerted by block 1 on block 2 F12 F21 and and and and F12 = m2a2 F21 = m1a1 F12 = m1a1 F21 = m2a2 F12 = m1a2 F21 = m2a1 F12 = m2a1 F21 = m1a2 F12 F21 m1 m2 ANSWER: Part I Now recall the expression for the time derivative of the x component of the system’s total momentum: . Considering the information that you now have, choose the best alternative for an equivalent expression to . You did not open hints for this part. ANSWER: Impulse and Momentum Ranking Task Six automobiles are initially traveling at the indicated velocities. The automobiles have different masses and velocities. The drivers step on the brakes and all automobiles are brought to rest. Part A Rank these automobiles based on the magnitude of their momentum before the brakes are applied, from largest to smallest. Rank from largest to smallest. To rank items as equivalent, overlap them. If the ranking cannot be determined, check the box below. ANSWER: Both forces have equal magnitudes. |F12 | > |F21| |F21 | > |F12| dpx(t)/dt = Fx dpx(t)/dt 0 nonzero constant kt kt2 Part B Rank these automobiles based on the magnitude of the impulse needed to stop them, from largest to smallest. Rank from largest to smallest. To rank items as equivalent, overlap them. If the ranking cannot be determined, check the box below. You did not open hints for this part. ANSWER: Part C Rank the automobiles based on the magnitude of the force needed to stop them, from largest to smallest. Rank from largest to smallest. To rank items as equivalent, overlap them. If the ranking cannot be determined, check the box below. You did not open hints for this part. ANSWER: A Game of Frictionless Catch Chuck and Jackie stand on separate carts, both of which can slide without friction. The combined mass of Chuck and his cart, , is identical to the combined mass of Jackie and her cart. Initially, Chuck and Jackie and their carts are at rest. Chuck then picks up a ball of mass and throws it to Jackie, who catches it. Assume that the ball travels in a straight line parallel to the ground (ignore the effect of gravity). After Chuck throws the ball, his speed relative to the ground is . The speed of the thrown ball relative to the ground is . Jackie catches the ball when it reaches her, and she and her cart begin to move. Jackie’s speed relative to the ground after she catches the ball is . When answering the questions in this problem, keep the following in mind: The original mass of Chuck and his cart does not include the 1. mass of the ball. 2. The speed of an object is the magnitude of its velocity. An object’s speed will always be a nonnegative quantity. mcart mball vc vb vj mcart Part A Find the relative speed between Chuck and the ball after Chuck has thrown the ball. Express the speed in terms of and . You did not open hints for this part. ANSWER: Part B What is the speed of the ball (relative to the ground) while it is in the air? Express your answer in terms of , , and . You did not open hints for this part. ANSWER: Part C What is Chuck’s speed (relative to the ground) after he throws the ball? Express your answer in terms of , , and . u vc vb u = vb mball mcart u vb = vc mball mcart u You did not open hints for this part. ANSWER: Part D Find Jackie’s speed (relative to the ground) after she catches the ball, in terms of . Express in terms of , , and . You did not open hints for this part. ANSWER: Part E Find Jackie’s speed (relative to the ground) after she catches the ball, in terms of . Express in terms of , , and . You did not open hints for this part. ANSWER: vc = vj vb vj mball mcart vb vj = vj u vj mball mcart u Momentum in an Explosion A giant “egg” explodes as part of a fireworks display. The egg is at rest before the explosion, and after the explosion, it breaks into two pieces, with the masses indicated in the diagram, traveling in opposite directions. Part A What is the momentum of piece A before the explosion? Express your answer numerically in kilogram meters per second. You did not open hints for this part. ANSWER: vj = pA,i Part B During the explosion, is the force of piece A on piece B greater than, less than, or equal to the force of piece B on piece A? You did not open hints for this part. ANSWER: Part C The momentum of piece B is measured to be 500 after the explosion. Find the momentum of piece A after the explosion. Enter your answer numerically in kilogram meters per second. You did not open hints for this part. ANSWER: pA,i = kg  m/s greater than less than equal to cannot be determined kg  m/s pA,f pA,f = kg  m/s ± PSS 9.1 Conservation of Momentum Learning Goal: To practice Problem-Solving Strategy 9.1 for conservation of momentum problems. An 80- quarterback jumps straight up in the air right before throwing a 0.43- football horizontally at 15 . How fast will he be moving backward just after releasing the ball? PROBLEM-SOLVING STRATEGY 9.1 Conservation of momentum MODEL: Clearly define the system. If possible, choose a system that is isolated ( ) or within which the interactions are sufficiently short and intense that you can ignore external forces for the duration of the interaction (the impulse approximation). Momentum is conserved. If it is not possible to choose an isolated system, try to divide the problem into parts such that momentum is conserved during one segment of the motion. Other segments of the motion can be analyzed using Newton’s laws or, as you will learn later, conservation of energy. VISUALIZE: Draw a before-and-after pictorial representation. Define symbols that will be used in the problem, list known values, and identify what you are trying to find. SOLVE: The mathematical representation is based on the law of conservation of momentum: . In component form, this is ASSESS: Check that your result has the correct units, is reasonable, and answers the question. Model The interaction at study in this problem is the action of throwing the ball, performed by the quarterback while being off the ground. To apply conservation of momentum to this interaction, you will need to clearly define a system that is isolated or within which the impulse approximation can be applied. Part A Sort the following objects as part of the system or not. Drag the appropriate objects to their respective bins. ANSWER: kg kg m/s F = net 0 P = f P  i (pfx + ( + ( += ( + ( + ( + )1 pfx)2 pfx)3 pix)1 pix)2 pix)3 (pfy + ( + ( += ( + ( + ( + )1 pfy)2 pfy)3 piy)1 piy)2 piy)3 Part B This question will be shown after you complete previous question(s). Visualize Solve Part C This question will be shown after you complete previous question(s). Assess Part D This question will be shown after you complete previous question(s). Conservation of Momentum in Inelastic Collisions Learning Goal: To understand the vector nature of momentum in the case in which two objects collide and stick together. In this problem we will consider a collision of two moving objects such that after the collision, the objects stick together and travel off as a single unit. The collision is therefore completely inelastic. You have probably learned that “momentum is conserved” in an inelastic collision. But how does this fact help you to solve collision problems? The following questions should help you to clarify the meaning and implications of the statement “momentum is conserved.” Part A What physical quantities are conserved in this collision? ANSWER: Part B Two cars of equal mass collide inelastically and stick together after the collision. Before the collision, their speeds are and . What is the speed of the two-car system after the collision? the magnitude of the momentum only the net momentum (considered as a vector) only the momentum of each object considered individually v1 v2 You did not open hints for this part. ANSWER: Part C Two cars collide inelastically and stick together after the collision. Before the collision, the magnitudes of their momenta are and . After the collision, what is the magnitude of their combined momentum? You did not open hints for this part. ANSWER: The answer depends on the directions in which the cars were moving before the collision. v1 + v2 v1 − v2 v2 − v1 v1v2 −−−− ” v1+v2 2 v1 + 2 v2 2 −−−−−−−  p1 p2 Part D Two cars collide inelastically and stick together after the collision. Before the collision, their momenta are and . After the collision, their combined momentum is . Of what can one be certain? You did not open hints for this part. ANSWER: Part E Two cars collide inelastically and stick together after the collision. Before the collision, the magnitudes of their momenta are and . After the collision, the magnitude of their combined momentum is . Of what can one be certain? The answer depends on the directions in which the cars were moving before the collision. p1 + p2 p1 − p2 p2 − p1 p1p2 −−−− ” p1+p2 2 p1 + 2 p2 2 −−−−−−−  p 1 p 2 p p = p1 + # p2 # p = p1 − # p2 # p = p2 − # p1 # p1 p2 p You did not open hints for this part. ANSWER: Colliding Cars In this problem we will consider the collision of two cars initially moving at right angles. We assume that after the collision the cars stick together and travel off as a single unit. The collision is therefore completely inelastic. Two cars of masses and collide at an intersection. Before the collision, car 1 was traveling eastward at a speed of , and car 2 was traveling northward at a speed of . After the collision, the two cars stick together and travel off in the direction shown. Part A p1 + p2 $ p $ p1p2 −−−− ” p1 +p2 $ p $ p1+p2 2 p1 + p2 $ p $ |p1 − p2 | p1 + p2 $ p $ p1 + 2 p2 2 −−−−−−−  m1 m2 v1 v2 First, find the magnitude of , that is, the speed of the two-car unit after the collision. Express in terms of , , and the cars’ initial speeds and . You did not open hints for this part. ANSWER: Part B Find the tangent of the angle . Express your answer in terms of the momenta of the two cars, and . ANSWER: Part C Suppose that after the collision, ; in other words, is . This means that before the collision: ANSWER: v v v m1 m2 v1 v2 v = p1 p2 tan( ) = tan = 1 45′ The magnitudes of the momenta of the cars were equal. The masses of the cars were equal. The velocities of the cars were equal. ± Catching a Ball on Ice Olaf is standing on a sheet of ice that covers the football stadium parking lot in Buffalo, New York; there is negligible friction between his feet and the ice. A friend throws Olaf a ball of mass 0.400 that is traveling horizontally at 11.2 . Olaf’s mass is 67.1 . Part A If Olaf catches the ball, with what speed do Olaf and the ball move afterward? Express your answer numerically in meters per second. You did not open hints for this part. ANSWER: Part B kg m/s kg vf vf = m/s If the ball hits Olaf and bounces off his chest horizontally at 8.00 in the opposite direction, what is his speed after the collision? Express your answer numerically in meters per second. You did not open hints for this part. ANSWER: A One-Dimensional Inelastic Collision Block 1, of mass = 2.90 , moves along a frictionless air track with speed = 25.0 . It collides with block 2, of mass = 17.0 , which was initially at rest. The blocks stick together after the collision. Part A Find the magnitude of the total initial momentum of the two-block system. Express your answer numerically. m/s vf vf = m/s m1 kg v1 m/s m2 kg pi You did not open hints for this part. ANSWER: Part B Find , the magnitude of the final velocity of the two-block system. Express your answer numerically. You did not open hints for this part. ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. pi = kg  m/s vf vf = m/s

please email info@checkyourstudy.com