Chapter 9 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, April 18, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Momentum and Internal Forces Learning Goal: To understand the concept of total momentum for a system of objects and the effect of the internal forces on the total momentum. We begin by introducing the following terms: System: Any collection of objects, either pointlike or extended. In many momentum-related problems, you have a certain freedom in choosing the objects to be considered as your system. Making a wise choice is often a crucial step in solving the problem. Internal force: Any force interaction between two objects belonging to the chosen system. Let us stress that both interacting objects must belong to the system. External force: Any force interaction between objects at least one of which does not belong to the chosen system; in other words, at least one of the objects is external to the system. Closed system: a system that is not subject to any external forces. Total momentum: The vector sum of the individual momenta of all objects constituting the system. In this problem, you will analyze a system composed of two blocks, 1 and 2, of respective masses and . To simplify the analysis, we will make several assumptions: The blocks can move in only one dimension, namely, 1. along the x axis. 2. The masses of the blocks remain constant. 3. The system is closed. At time , the x components of the velocity and the acceleration of block 1 are denoted by and . Similarly, the x components of the velocity and acceleration of block 2 are denoted by and . In this problem, you will show that the total momentum of the system is not changed by the presence of internal forces. m1 m2 t v1(t) a1 (t) v2 (t) a2 (t)

## Chapter 9 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, April 18, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Momentum and Internal Forces Learning Goal: To understand the concept of total momentum for a system of objects and the effect of the internal forces on the total momentum. We begin by introducing the following terms: System: Any collection of objects, either pointlike or extended. In many momentum-related problems, you have a certain freedom in choosing the objects to be considered as your system. Making a wise choice is often a crucial step in solving the problem. Internal force: Any force interaction between two objects belonging to the chosen system. Let us stress that both interacting objects must belong to the system. External force: Any force interaction between objects at least one of which does not belong to the chosen system; in other words, at least one of the objects is external to the system. Closed system: a system that is not subject to any external forces. Total momentum: The vector sum of the individual momenta of all objects constituting the system. In this problem, you will analyze a system composed of two blocks, 1 and 2, of respective masses and . To simplify the analysis, we will make several assumptions: The blocks can move in only one dimension, namely, 1. along the x axis. 2. The masses of the blocks remain constant. 3. The system is closed. At time , the x components of the velocity and the acceleration of block 1 are denoted by and . Similarly, the x components of the velocity and acceleration of block 2 are denoted by and . In this problem, you will show that the total momentum of the system is not changed by the presence of internal forces. m1 m2 t v1(t) a1 (t) v2 (t) a2 (t)

The objectification of women has been a very controversial topic … Read More...
Explain the significant impact this career development experience has had and will continue to have on your life.

## Explain the significant impact this career development experience has had and will continue to have on your life.

Most corporate individuals instinctively comprehend the connection between well-designed creativities … Read More...
6. What is meant by the threshold service level of a least-cost system?

## 6. What is meant by the threshold service level of a least-cost system?

What is meant by the threshold service level of a … Read More...
MAE 214 – Fall 2015 Homework 3 Due: October 1, 2015 – Thursday by 1:00 p.m. Total Problems: 4 (including Extra Credit), Total Points: 105 1. Make a solid works part model from the given figure below. All dimensions are in millimeters. All sketches must be fully defined. Also create a drawing sheet and dimension it as shown. You can use a hole call out option under annotation to dimension a counter bore hole. (30 points) Save your part files as follows: My Documents/Homework 3 Folder/Prob1_LastName.SLDPRT My Documents/ Homework 3 Folder/Prob1_LastName.SLDDRW 2. Make a solid works part of the given figure below and also make a drawing sheet – front, top and right side views using 3rd angle projection method. Dimension the views with appropriate dimension technique. All dimensions are in mm. (30 points) Save your part file and drawing sheet as follows: Documents/Homework 3 folder/Problem 2_Last Name.SLDPRT Documents/Homework 3 folder/Problem 2_Last Name.SLDDRW 3. Make a solid works part file for the given figure below. All sketches must be fully defined. Your design tree menu must have advanced features i.e. plane, mirror, and fillet. The spot facing (SF) must be defined in a problem. The inclined cut must be created with an offset sketch and extrude cut or a suitable sketch that uses “up to surface” option. (40 points) Your part model must stick to the isometric view as it is shown here. Save your part file into: My documents/Homework 3 Folder/Problem3_Last Name.SLDPRT Given: A = 76 B = 127 Unit: MMGS ALL ROUNDS (FILLET) EQUAL 6 MM 4. (Extra Credit) Make a solid works part from the given figure below. All sketches must be fully defined. Save your part file to Documents/Homework3 Folder/Prob#4_Last Name.SLDPRT All dimensions are in millimeters. (5 points)

## MAE 214 – Fall 2015 Homework 3 Due: October 1, 2015 – Thursday by 1:00 p.m. Total Problems: 4 (including Extra Credit), Total Points: 105 1. Make a solid works part model from the given figure below. All dimensions are in millimeters. All sketches must be fully defined. Also create a drawing sheet and dimension it as shown. You can use a hole call out option under annotation to dimension a counter bore hole. (30 points) Save your part files as follows: My Documents/Homework 3 Folder/Prob1_LastName.SLDPRT My Documents/ Homework 3 Folder/Prob1_LastName.SLDDRW 2. Make a solid works part of the given figure below and also make a drawing sheet – front, top and right side views using 3rd angle projection method. Dimension the views with appropriate dimension technique. All dimensions are in mm. (30 points) Save your part file and drawing sheet as follows: Documents/Homework 3 folder/Problem 2_Last Name.SLDPRT Documents/Homework 3 folder/Problem 2_Last Name.SLDDRW 3. Make a solid works part file for the given figure below. All sketches must be fully defined. Your design tree menu must have advanced features i.e. plane, mirror, and fillet. The spot facing (SF) must be defined in a problem. The inclined cut must be created with an offset sketch and extrude cut or a suitable sketch that uses “up to surface” option. (40 points) Your part model must stick to the isometric view as it is shown here. Save your part file into: My documents/Homework 3 Folder/Problem3_Last Name.SLDPRT Given: A = 76 B = 127 Unit: MMGS ALL ROUNDS (FILLET) EQUAL 6 MM 4. (Extra Credit) Make a solid works part from the given figure below. All sketches must be fully defined. Save your part file to Documents/Homework3 Folder/Prob#4_Last Name.SLDPRT All dimensions are in millimeters. (5 points)

What is the prime purpose of selecting a composite material over material from the other family groups? MODULE 3 – STRUCTURE OF SOLID MATERIALS The ability of a material to exist in different space lattices is called a. Allotropic b. Crystalline c. Solvent d. Amorphous Amorphous metals develop their microstructure as a result of ___________. a. Dendrites b. Directional solidification c. Slip d. Extremely rapid cooling In an alloy, the material that dissolves the alloying element is the ___________. a. Solute b. Solvent c. Matrix d. Allotrope What is the coordination number (CN) for the fcc structure formed by ions of sodium and chlorine that is in the chemical compound NaCl (salt) ? a. 6 b. 8 c. 14 d. 16 What pressure is normally used in constructing a phase diagram? a. 100 psi b. Depends on material c. Ambient d. Normal atmospheric pressure What line on a binary diagram indicates the upper limit of the solid solution phase? a. Liquidus b. Eutectic c. Eutectoid d. Solidus What holds the atoms (ions) together in a compound such as NaCl are electrostatic forces between ___________. a. Atom and ion b. Covalent bonds c. Electrons and nuclei d. Neutrons Diffusion of atoms through a solid takes place by two main mechanisms. One is diffusion through vacancies in the atomic structure. Another method of diffusion is ___________. a. Cold b. APF c. Substitutional d. Interstitial Give a brief explanation of the Lever rule (P117) Grain boundaries ___________ movement of dislocations through a solid. a. Improve b. Inhibit c. Do not affect Iron can be alloyed with carbon because it is ___________. a. Crystalline b. Amorphous c. A mixture d. Allotropic Metals can be cooled only to crystalline solids. a. T (true) b. F (false) Sketch an fcc unit cell. Metals are classified as crystalline materials. Name one metal that is an amorphous solid and name at least one recent application in which its use is saving energy or providing greater strength and/or corrosion resistance. MODULE 4 – MECHANICAL PROPERTIES Give two examples of a mechanical property. a. Thermal resistance b. Wear resistance c. Hardness d. Strength Scissors used in the home cut material by concentrating forces that ultimately produce a certain type of stress within the material. Identify this stress. a. Bearing stress b. Shearing stress c. Compressive stress An aluminum rod 1 in. in diameter (E =10.4 x 106psi) experiences an elastic tensile strain of 0.0048 in./in. Calculate the stress in the rod. a. 49,920 ksi b. 49,920 psi c. 49,920 msi A 1-in.-diameter steel circular rod is subject to a tensile load that reduces its cross-sectional area to 0.64 in2. Express the rod’s ductility using a standard unit of measure. a. 18.5% b. 1.85% c. 18.5 d. (a) and (c) What term is used to describe the low-temperature creep of polymerics? a. Springback b. Creep rupture c. Cold flow d. Creep forming MODULE 7 – TESTING, FAILURE ANALYSIS, STANDARDS, & INSPECTION Factors of safety are defined either in terms of the ultimate strength of a material or its yield strength. In other words, by the use of a suitable factor, the ultimate or yield strength is reduced in size to what is known as the design stress or safe working stress. Which factor of safety would be more appropriate for a material that will be subjected to repetitious, suddenly applied loads? Product liability court cases have risen sharply in recent years because of poor procedures in selecting materials for particular applications. Assuming that a knowledge of a material’s properties is a valid step in the selection process, cite two examples where such lack of knowledge could or did lead to failure or unsatisfactory performance. Make a sketch and fully dimension an Izod impact test specimen. Which agency publishes the Annual Book of standard test methods used worldwide for evaluation of materials? a. NASA b. NIST c. ASTM d. SPE

## What is the prime purpose of selecting a composite material over material from the other family groups? MODULE 3 – STRUCTURE OF SOLID MATERIALS The ability of a material to exist in different space lattices is called a. Allotropic b. Crystalline c. Solvent d. Amorphous Amorphous metals develop their microstructure as a result of ___________. a. Dendrites b. Directional solidification c. Slip d. Extremely rapid cooling In an alloy, the material that dissolves the alloying element is the ___________. a. Solute b. Solvent c. Matrix d. Allotrope What is the coordination number (CN) for the fcc structure formed by ions of sodium and chlorine that is in the chemical compound NaCl (salt) ? a. 6 b. 8 c. 14 d. 16 What pressure is normally used in constructing a phase diagram? a. 100 psi b. Depends on material c. Ambient d. Normal atmospheric pressure What line on a binary diagram indicates the upper limit of the solid solution phase? a. Liquidus b. Eutectic c. Eutectoid d. Solidus What holds the atoms (ions) together in a compound such as NaCl are electrostatic forces between ___________. a. Atom and ion b. Covalent bonds c. Electrons and nuclei d. Neutrons Diffusion of atoms through a solid takes place by two main mechanisms. One is diffusion through vacancies in the atomic structure. Another method of diffusion is ___________. a. Cold b. APF c. Substitutional d. Interstitial Give a brief explanation of the Lever rule (P117) Grain boundaries ___________ movement of dislocations through a solid. a. Improve b. Inhibit c. Do not affect Iron can be alloyed with carbon because it is ___________. a. Crystalline b. Amorphous c. A mixture d. Allotropic Metals can be cooled only to crystalline solids. a. T (true) b. F (false) Sketch an fcc unit cell. Metals are classified as crystalline materials. Name one metal that is an amorphous solid and name at least one recent application in which its use is saving energy or providing greater strength and/or corrosion resistance. MODULE 4 – MECHANICAL PROPERTIES Give two examples of a mechanical property. a. Thermal resistance b. Wear resistance c. Hardness d. Strength Scissors used in the home cut material by concentrating forces that ultimately produce a certain type of stress within the material. Identify this stress. a. Bearing stress b. Shearing stress c. Compressive stress An aluminum rod 1 in. in diameter (E =10.4 x 106psi) experiences an elastic tensile strain of 0.0048 in./in. Calculate the stress in the rod. a. 49,920 ksi b. 49,920 psi c. 49,920 msi A 1-in.-diameter steel circular rod is subject to a tensile load that reduces its cross-sectional area to 0.64 in2. Express the rod’s ductility using a standard unit of measure. a. 18.5% b. 1.85% c. 18.5 d. (a) and (c) What term is used to describe the low-temperature creep of polymerics? a. Springback b. Creep rupture c. Cold flow d. Creep forming MODULE 7 – TESTING, FAILURE ANALYSIS, STANDARDS, & INSPECTION Factors of safety are defined either in terms of the ultimate strength of a material or its yield strength. In other words, by the use of a suitable factor, the ultimate or yield strength is reduced in size to what is known as the design stress or safe working stress. Which factor of safety would be more appropriate for a material that will be subjected to repetitious, suddenly applied loads? Product liability court cases have risen sharply in recent years because of poor procedures in selecting materials for particular applications. Assuming that a knowledge of a material’s properties is a valid step in the selection process, cite two examples where such lack of knowledge could or did lead to failure or unsatisfactory performance. Make a sketch and fully dimension an Izod impact test specimen. Which agency publishes the Annual Book of standard test methods used worldwide for evaluation of materials? a. NASA b. NIST c. ASTM d. SPE

info@checkyourstudy.com