An individual who experiences powerful feelings of both joy and sadness would score high on what personality dimension? neuroticism affect variability affect intensity affect instability

An individual who experiences powerful feelings of both joy and sadness would score high on what personality dimension? neuroticism affect variability affect intensity affect instability

An individual who experiences powerful feelings of both joy and … Read More...
1. (20 pts) The linear momentum operator in one dimension is given by: ˆpx = ! i d dx . In class we said that the average momentum for a particle in a box (pib) is 0. Use the formula for the expectation value to verify mathematically that this is true. The pib-wavefunction: 2 ℓ sin nπ ℓ x ! ” # $ % & 2. (20 pts) Evaluate the following commutators: a. (10 pts) b. (10 pts) 3. (20 pts) A certain one-dimensional quantum mechanical system is described by the Hamiltonian: , q is a constant, and 0 ≤ x ≤ ∞. One of the eigenfunctions is known to be: a. (15 pts) Find the value of N to normalize the function. b. (5 pts) By letting , find the energy eigenvalue. 4. (20 pts) The Schrödinger equation for the particle on a sphere (a.k.a. the Rigid Rotor) is: − !2 2μR2 1 sinθ ∂ ∂θ sinθ ∂ ∂θ # $ % & ‘ ( + 1 sin2θ ∂2 ∂φ 2 # $ % & ‘ ( ψ(θ,φ ) = Eψ(θ,φ ) A purported eigenfunction for it is: ψ(θ,φ ) = N sin3θ cos(3φ ) a. (15 pts) Use this wave function to find the energy eigenvalue for the function. (You do NOT have to normalize the function!). b. (5 pts) The eigenvalues for the particle on a sphere are of the form: Eℓ = “2 2μR2 ℓ(ℓ +1) What is the value of ℓ for the wave function used in part a? 5. (20 pts) Using the ortho-normailty of the hydrogenic orbitals and the spin functions, normalize the excited Helium atom represented by the following wave function: ψ = N 1s({ 1)2p(2)+ 2p(1)1s(2)}{α(1)β (2)−β (1)α(2)} ˆ x, ( ˆpx [ + xˆ)] = ˆpx, ( ˆ x)3 !” #$ = ˆH = − 2 2m d2 dx2 − q2 x ψ(x) = Nxe−α x α = mq2 / 2

1. (20 pts) The linear momentum operator in one dimension is given by: ˆpx = ! i d dx . In class we said that the average momentum for a particle in a box (pib) is 0. Use the formula for the expectation value to verify mathematically that this is true. The pib-wavefunction: 2 ℓ sin nπ ℓ x ! ” # $ % & 2. (20 pts) Evaluate the following commutators: a. (10 pts) b. (10 pts) 3. (20 pts) A certain one-dimensional quantum mechanical system is described by the Hamiltonian: , q is a constant, and 0 ≤ x ≤ ∞. One of the eigenfunctions is known to be: a. (15 pts) Find the value of N to normalize the function. b. (5 pts) By letting , find the energy eigenvalue. 4. (20 pts) The Schrödinger equation for the particle on a sphere (a.k.a. the Rigid Rotor) is: − !2 2μR2 1 sinθ ∂ ∂θ sinθ ∂ ∂θ # $ % & ‘ ( + 1 sin2θ ∂2 ∂φ 2 # $ % & ‘ ( ψ(θ,φ ) = Eψ(θ,φ ) A purported eigenfunction for it is: ψ(θ,φ ) = N sin3θ cos(3φ ) a. (15 pts) Use this wave function to find the energy eigenvalue for the function. (You do NOT have to normalize the function!). b. (5 pts) The eigenvalues for the particle on a sphere are of the form: Eℓ = “2 2μR2 ℓ(ℓ +1) What is the value of ℓ for the wave function used in part a? 5. (20 pts) Using the ortho-normailty of the hydrogenic orbitals and the spin functions, normalize the excited Helium atom represented by the following wave function: ψ = N 1s({ 1)2p(2)+ 2p(1)1s(2)}{α(1)β (2)−β (1)α(2)} ˆ x, ( ˆpx [ + xˆ)] = ˆpx, ( ˆ x)3 !” #$ = ˆH = − 2 2m d2 dx2 − q2 x ψ(x) = Nxe−α x α = mq2 / 2

info@checkyourstudy.com Whatsapp +919911743277
Chapter 9 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, April 18, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Momentum and Internal Forces Learning Goal: To understand the concept of total momentum for a system of objects and the effect of the internal forces on the total momentum. We begin by introducing the following terms: System: Any collection of objects, either pointlike or extended. In many momentum-related problems, you have a certain freedom in choosing the objects to be considered as your system. Making a wise choice is often a crucial step in solving the problem. Internal force: Any force interaction between two objects belonging to the chosen system. Let us stress that both interacting objects must belong to the system. External force: Any force interaction between objects at least one of which does not belong to the chosen system; in other words, at least one of the objects is external to the system. Closed system: a system that is not subject to any external forces. Total momentum: The vector sum of the individual momenta of all objects constituting the system. In this problem, you will analyze a system composed of two blocks, 1 and 2, of respective masses and . To simplify the analysis, we will make several assumptions: The blocks can move in only one dimension, namely, 1. along the x axis. 2. The masses of the blocks remain constant. 3. The system is closed. At time , the x components of the velocity and the acceleration of block 1 are denoted by and . Similarly, the x components of the velocity and acceleration of block 2 are denoted by and . In this problem, you will show that the total momentum of the system is not changed by the presence of internal forces. m1 m2 t v1(t) a1 (t) v2 (t) a2 (t) Part A Find , the x component of the total momentum of the system at time . Express your answer in terms of , , , and . ANSWER: Part B Find the time derivative of the x component of the system’s total momentum. Express your answer in terms of , , , and . You did not open hints for this part. ANSWER: Why did we bother with all this math? The expression for the derivative of momentum that we just obtained will be useful in reaching our desired conclusion, if only for this very special case. Part C The quantity (mass times acceleration) is dimensionally equivalent to which of the following? ANSWER: p(t) t m1 m2 v1 (t) v2 (t) p(t) = dp(t)/dt a1 (t) a2 (t) m1 m2 dp(t)/dt = ma Part D Acceleration is due to which of the following physical quantities? ANSWER: Part E Since we have assumed that the system composed of blocks 1 and 2 is closed, what could be the reason for the acceleration of block 1? You did not open hints for this part. ANSWER: momentum energy force acceleration inertia velocity speed energy momentum force Part F This question will be shown after you complete previous question(s). Part G Let us denote the x component of the force exerted by block 1 on block 2 by , and the x component of the force exerted by block 2 on block 1 by . Which of the following pairs equalities is a direct consequence of Newton’s second law? ANSWER: Part H Let us recall that we have denoted the force exerted by block 1 on block 2 by , and the force exerted by block 2 on block 1 by . If we suppose that is greater than , which of the following statements about forces is true? You did not open hints for this part. the large mass of block 1 air resistance Earth’s gravitational attraction a force exerted by block 2 on block 1 a force exerted by block 1 on block 2 F12 F21 and and and and F12 = m2a2 F21 = m1a1 F12 = m1a1 F21 = m2a2 F12 = m1a2 F21 = m2a1 F12 = m2a1 F21 = m1a2 F12 F21 m1 m2 ANSWER: Part I Now recall the expression for the time derivative of the x component of the system’s total momentum: . Considering the information that you now have, choose the best alternative for an equivalent expression to . You did not open hints for this part. ANSWER: Impulse and Momentum Ranking Task Six automobiles are initially traveling at the indicated velocities. The automobiles have different masses and velocities. The drivers step on the brakes and all automobiles are brought to rest. Part A Rank these automobiles based on the magnitude of their momentum before the brakes are applied, from largest to smallest. Rank from largest to smallest. To rank items as equivalent, overlap them. If the ranking cannot be determined, check the box below. ANSWER: Both forces have equal magnitudes. |F12 | > |F21| |F21 | > |F12| dpx(t)/dt = Fx dpx(t)/dt 0 nonzero constant kt kt2 Part B Rank these automobiles based on the magnitude of the impulse needed to stop them, from largest to smallest. Rank from largest to smallest. To rank items as equivalent, overlap them. If the ranking cannot be determined, check the box below. You did not open hints for this part. ANSWER: Part C Rank the automobiles based on the magnitude of the force needed to stop them, from largest to smallest. Rank from largest to smallest. To rank items as equivalent, overlap them. If the ranking cannot be determined, check the box below. You did not open hints for this part. ANSWER: A Game of Frictionless Catch Chuck and Jackie stand on separate carts, both of which can slide without friction. The combined mass of Chuck and his cart, , is identical to the combined mass of Jackie and her cart. Initially, Chuck and Jackie and their carts are at rest. Chuck then picks up a ball of mass and throws it to Jackie, who catches it. Assume that the ball travels in a straight line parallel to the ground (ignore the effect of gravity). After Chuck throws the ball, his speed relative to the ground is . The speed of the thrown ball relative to the ground is . Jackie catches the ball when it reaches her, and she and her cart begin to move. Jackie’s speed relative to the ground after she catches the ball is . When answering the questions in this problem, keep the following in mind: The original mass of Chuck and his cart does not include the 1. mass of the ball. 2. The speed of an object is the magnitude of its velocity. An object’s speed will always be a nonnegative quantity. mcart mball vc vb vj mcart Part A Find the relative speed between Chuck and the ball after Chuck has thrown the ball. Express the speed in terms of and . You did not open hints for this part. ANSWER: Part B What is the speed of the ball (relative to the ground) while it is in the air? Express your answer in terms of , , and . You did not open hints for this part. ANSWER: Part C What is Chuck’s speed (relative to the ground) after he throws the ball? Express your answer in terms of , , and . u vc vb u = vb mball mcart u vb = vc mball mcart u You did not open hints for this part. ANSWER: Part D Find Jackie’s speed (relative to the ground) after she catches the ball, in terms of . Express in terms of , , and . You did not open hints for this part. ANSWER: Part E Find Jackie’s speed (relative to the ground) after she catches the ball, in terms of . Express in terms of , , and . You did not open hints for this part. ANSWER: vc = vj vb vj mball mcart vb vj = vj u vj mball mcart u Momentum in an Explosion A giant “egg” explodes as part of a fireworks display. The egg is at rest before the explosion, and after the explosion, it breaks into two pieces, with the masses indicated in the diagram, traveling in opposite directions. Part A What is the momentum of piece A before the explosion? Express your answer numerically in kilogram meters per second. You did not open hints for this part. ANSWER: vj = pA,i Part B During the explosion, is the force of piece A on piece B greater than, less than, or equal to the force of piece B on piece A? You did not open hints for this part. ANSWER: Part C The momentum of piece B is measured to be 500 after the explosion. Find the momentum of piece A after the explosion. Enter your answer numerically in kilogram meters per second. You did not open hints for this part. ANSWER: pA,i = kg  m/s greater than less than equal to cannot be determined kg  m/s pA,f pA,f = kg  m/s ± PSS 9.1 Conservation of Momentum Learning Goal: To practice Problem-Solving Strategy 9.1 for conservation of momentum problems. An 80- quarterback jumps straight up in the air right before throwing a 0.43- football horizontally at 15 . How fast will he be moving backward just after releasing the ball? PROBLEM-SOLVING STRATEGY 9.1 Conservation of momentum MODEL: Clearly define the system. If possible, choose a system that is isolated ( ) or within which the interactions are sufficiently short and intense that you can ignore external forces for the duration of the interaction (the impulse approximation). Momentum is conserved. If it is not possible to choose an isolated system, try to divide the problem into parts such that momentum is conserved during one segment of the motion. Other segments of the motion can be analyzed using Newton’s laws or, as you will learn later, conservation of energy. VISUALIZE: Draw a before-and-after pictorial representation. Define symbols that will be used in the problem, list known values, and identify what you are trying to find. SOLVE: The mathematical representation is based on the law of conservation of momentum: . In component form, this is ASSESS: Check that your result has the correct units, is reasonable, and answers the question. Model The interaction at study in this problem is the action of throwing the ball, performed by the quarterback while being off the ground. To apply conservation of momentum to this interaction, you will need to clearly define a system that is isolated or within which the impulse approximation can be applied. Part A Sort the following objects as part of the system or not. Drag the appropriate objects to their respective bins. ANSWER: kg kg m/s F = net 0 P = f P  i (pfx + ( + ( += ( + ( + ( + )1 pfx)2 pfx)3 pix)1 pix)2 pix)3 (pfy + ( + ( += ( + ( + ( + )1 pfy)2 pfy)3 piy)1 piy)2 piy)3 Part B This question will be shown after you complete previous question(s). Visualize Solve Part C This question will be shown after you complete previous question(s). Assess Part D This question will be shown after you complete previous question(s). Conservation of Momentum in Inelastic Collisions Learning Goal: To understand the vector nature of momentum in the case in which two objects collide and stick together. In this problem we will consider a collision of two moving objects such that after the collision, the objects stick together and travel off as a single unit. The collision is therefore completely inelastic. You have probably learned that “momentum is conserved” in an inelastic collision. But how does this fact help you to solve collision problems? The following questions should help you to clarify the meaning and implications of the statement “momentum is conserved.” Part A What physical quantities are conserved in this collision? ANSWER: Part B Two cars of equal mass collide inelastically and stick together after the collision. Before the collision, their speeds are and . What is the speed of the two-car system after the collision? the magnitude of the momentum only the net momentum (considered as a vector) only the momentum of each object considered individually v1 v2 You did not open hints for this part. ANSWER: Part C Two cars collide inelastically and stick together after the collision. Before the collision, the magnitudes of their momenta are and . After the collision, what is the magnitude of their combined momentum? You did not open hints for this part. ANSWER: The answer depends on the directions in which the cars were moving before the collision. v1 + v2 v1 − v2 v2 − v1 v1v2 −−−− ” v1+v2 2 v1 + 2 v2 2 −−−−−−−  p1 p2 Part D Two cars collide inelastically and stick together after the collision. Before the collision, their momenta are and . After the collision, their combined momentum is . Of what can one be certain? You did not open hints for this part. ANSWER: Part E Two cars collide inelastically and stick together after the collision. Before the collision, the magnitudes of their momenta are and . After the collision, the magnitude of their combined momentum is . Of what can one be certain? The answer depends on the directions in which the cars were moving before the collision. p1 + p2 p1 − p2 p2 − p1 p1p2 −−−− ” p1+p2 2 p1 + 2 p2 2 −−−−−−−  p 1 p 2 p p = p1 + # p2 # p = p1 − # p2 # p = p2 − # p1 # p1 p2 p You did not open hints for this part. ANSWER: Colliding Cars In this problem we will consider the collision of two cars initially moving at right angles. We assume that after the collision the cars stick together and travel off as a single unit. The collision is therefore completely inelastic. Two cars of masses and collide at an intersection. Before the collision, car 1 was traveling eastward at a speed of , and car 2 was traveling northward at a speed of . After the collision, the two cars stick together and travel off in the direction shown. Part A p1 + p2 $ p $ p1p2 −−−− ” p1 +p2 $ p $ p1+p2 2 p1 + p2 $ p $ |p1 − p2 | p1 + p2 $ p $ p1 + 2 p2 2 −−−−−−−  m1 m2 v1 v2 First, find the magnitude of , that is, the speed of the two-car unit after the collision. Express in terms of , , and the cars’ initial speeds and . You did not open hints for this part. ANSWER: Part B Find the tangent of the angle . Express your answer in terms of the momenta of the two cars, and . ANSWER: Part C Suppose that after the collision, ; in other words, is . This means that before the collision: ANSWER: v v v m1 m2 v1 v2 v = p1 p2 tan( ) = tan = 1 45′ The magnitudes of the momenta of the cars were equal. The masses of the cars were equal. The velocities of the cars were equal. ± Catching a Ball on Ice Olaf is standing on a sheet of ice that covers the football stadium parking lot in Buffalo, New York; there is negligible friction between his feet and the ice. A friend throws Olaf a ball of mass 0.400 that is traveling horizontally at 11.2 . Olaf’s mass is 67.1 . Part A If Olaf catches the ball, with what speed do Olaf and the ball move afterward? Express your answer numerically in meters per second. You did not open hints for this part. ANSWER: Part B kg m/s kg vf vf = m/s If the ball hits Olaf and bounces off his chest horizontally at 8.00 in the opposite direction, what is his speed after the collision? Express your answer numerically in meters per second. You did not open hints for this part. ANSWER: A One-Dimensional Inelastic Collision Block 1, of mass = 2.90 , moves along a frictionless air track with speed = 25.0 . It collides with block 2, of mass = 17.0 , which was initially at rest. The blocks stick together after the collision. Part A Find the magnitude of the total initial momentum of the two-block system. Express your answer numerically. m/s vf vf = m/s m1 kg v1 m/s m2 kg pi You did not open hints for this part. ANSWER: Part B Find , the magnitude of the final velocity of the two-block system. Express your answer numerically. You did not open hints for this part. ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. pi = kg  m/s vf vf = m/s

Chapter 9 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, April 18, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Momentum and Internal Forces Learning Goal: To understand the concept of total momentum for a system of objects and the effect of the internal forces on the total momentum. We begin by introducing the following terms: System: Any collection of objects, either pointlike or extended. In many momentum-related problems, you have a certain freedom in choosing the objects to be considered as your system. Making a wise choice is often a crucial step in solving the problem. Internal force: Any force interaction between two objects belonging to the chosen system. Let us stress that both interacting objects must belong to the system. External force: Any force interaction between objects at least one of which does not belong to the chosen system; in other words, at least one of the objects is external to the system. Closed system: a system that is not subject to any external forces. Total momentum: The vector sum of the individual momenta of all objects constituting the system. In this problem, you will analyze a system composed of two blocks, 1 and 2, of respective masses and . To simplify the analysis, we will make several assumptions: The blocks can move in only one dimension, namely, 1. along the x axis. 2. The masses of the blocks remain constant. 3. The system is closed. At time , the x components of the velocity and the acceleration of block 1 are denoted by and . Similarly, the x components of the velocity and acceleration of block 2 are denoted by and . In this problem, you will show that the total momentum of the system is not changed by the presence of internal forces. m1 m2 t v1(t) a1 (t) v2 (t) a2 (t) Part A Find , the x component of the total momentum of the system at time . Express your answer in terms of , , , and . ANSWER: Part B Find the time derivative of the x component of the system’s total momentum. Express your answer in terms of , , , and . You did not open hints for this part. ANSWER: Why did we bother with all this math? The expression for the derivative of momentum that we just obtained will be useful in reaching our desired conclusion, if only for this very special case. Part C The quantity (mass times acceleration) is dimensionally equivalent to which of the following? ANSWER: p(t) t m1 m2 v1 (t) v2 (t) p(t) = dp(t)/dt a1 (t) a2 (t) m1 m2 dp(t)/dt = ma Part D Acceleration is due to which of the following physical quantities? ANSWER: Part E Since we have assumed that the system composed of blocks 1 and 2 is closed, what could be the reason for the acceleration of block 1? You did not open hints for this part. ANSWER: momentum energy force acceleration inertia velocity speed energy momentum force Part F This question will be shown after you complete previous question(s). Part G Let us denote the x component of the force exerted by block 1 on block 2 by , and the x component of the force exerted by block 2 on block 1 by . Which of the following pairs equalities is a direct consequence of Newton’s second law? ANSWER: Part H Let us recall that we have denoted the force exerted by block 1 on block 2 by , and the force exerted by block 2 on block 1 by . If we suppose that is greater than , which of the following statements about forces is true? You did not open hints for this part. the large mass of block 1 air resistance Earth’s gravitational attraction a force exerted by block 2 on block 1 a force exerted by block 1 on block 2 F12 F21 and and and and F12 = m2a2 F21 = m1a1 F12 = m1a1 F21 = m2a2 F12 = m1a2 F21 = m2a1 F12 = m2a1 F21 = m1a2 F12 F21 m1 m2 ANSWER: Part I Now recall the expression for the time derivative of the x component of the system’s total momentum: . Considering the information that you now have, choose the best alternative for an equivalent expression to . You did not open hints for this part. ANSWER: Impulse and Momentum Ranking Task Six automobiles are initially traveling at the indicated velocities. The automobiles have different masses and velocities. The drivers step on the brakes and all automobiles are brought to rest. Part A Rank these automobiles based on the magnitude of their momentum before the brakes are applied, from largest to smallest. Rank from largest to smallest. To rank items as equivalent, overlap them. If the ranking cannot be determined, check the box below. ANSWER: Both forces have equal magnitudes. |F12 | > |F21| |F21 | > |F12| dpx(t)/dt = Fx dpx(t)/dt 0 nonzero constant kt kt2 Part B Rank these automobiles based on the magnitude of the impulse needed to stop them, from largest to smallest. Rank from largest to smallest. To rank items as equivalent, overlap them. If the ranking cannot be determined, check the box below. You did not open hints for this part. ANSWER: Part C Rank the automobiles based on the magnitude of the force needed to stop them, from largest to smallest. Rank from largest to smallest. To rank items as equivalent, overlap them. If the ranking cannot be determined, check the box below. You did not open hints for this part. ANSWER: A Game of Frictionless Catch Chuck and Jackie stand on separate carts, both of which can slide without friction. The combined mass of Chuck and his cart, , is identical to the combined mass of Jackie and her cart. Initially, Chuck and Jackie and their carts are at rest. Chuck then picks up a ball of mass and throws it to Jackie, who catches it. Assume that the ball travels in a straight line parallel to the ground (ignore the effect of gravity). After Chuck throws the ball, his speed relative to the ground is . The speed of the thrown ball relative to the ground is . Jackie catches the ball when it reaches her, and she and her cart begin to move. Jackie’s speed relative to the ground after she catches the ball is . When answering the questions in this problem, keep the following in mind: The original mass of Chuck and his cart does not include the 1. mass of the ball. 2. The speed of an object is the magnitude of its velocity. An object’s speed will always be a nonnegative quantity. mcart mball vc vb vj mcart Part A Find the relative speed between Chuck and the ball after Chuck has thrown the ball. Express the speed in terms of and . You did not open hints for this part. ANSWER: Part B What is the speed of the ball (relative to the ground) while it is in the air? Express your answer in terms of , , and . You did not open hints for this part. ANSWER: Part C What is Chuck’s speed (relative to the ground) after he throws the ball? Express your answer in terms of , , and . u vc vb u = vb mball mcart u vb = vc mball mcart u You did not open hints for this part. ANSWER: Part D Find Jackie’s speed (relative to the ground) after she catches the ball, in terms of . Express in terms of , , and . You did not open hints for this part. ANSWER: Part E Find Jackie’s speed (relative to the ground) after she catches the ball, in terms of . Express in terms of , , and . You did not open hints for this part. ANSWER: vc = vj vb vj mball mcart vb vj = vj u vj mball mcart u Momentum in an Explosion A giant “egg” explodes as part of a fireworks display. The egg is at rest before the explosion, and after the explosion, it breaks into two pieces, with the masses indicated in the diagram, traveling in opposite directions. Part A What is the momentum of piece A before the explosion? Express your answer numerically in kilogram meters per second. You did not open hints for this part. ANSWER: vj = pA,i Part B During the explosion, is the force of piece A on piece B greater than, less than, or equal to the force of piece B on piece A? You did not open hints for this part. ANSWER: Part C The momentum of piece B is measured to be 500 after the explosion. Find the momentum of piece A after the explosion. Enter your answer numerically in kilogram meters per second. You did not open hints for this part. ANSWER: pA,i = kg  m/s greater than less than equal to cannot be determined kg  m/s pA,f pA,f = kg  m/s ± PSS 9.1 Conservation of Momentum Learning Goal: To practice Problem-Solving Strategy 9.1 for conservation of momentum problems. An 80- quarterback jumps straight up in the air right before throwing a 0.43- football horizontally at 15 . How fast will he be moving backward just after releasing the ball? PROBLEM-SOLVING STRATEGY 9.1 Conservation of momentum MODEL: Clearly define the system. If possible, choose a system that is isolated ( ) or within which the interactions are sufficiently short and intense that you can ignore external forces for the duration of the interaction (the impulse approximation). Momentum is conserved. If it is not possible to choose an isolated system, try to divide the problem into parts such that momentum is conserved during one segment of the motion. Other segments of the motion can be analyzed using Newton’s laws or, as you will learn later, conservation of energy. VISUALIZE: Draw a before-and-after pictorial representation. Define symbols that will be used in the problem, list known values, and identify what you are trying to find. SOLVE: The mathematical representation is based on the law of conservation of momentum: . In component form, this is ASSESS: Check that your result has the correct units, is reasonable, and answers the question. Model The interaction at study in this problem is the action of throwing the ball, performed by the quarterback while being off the ground. To apply conservation of momentum to this interaction, you will need to clearly define a system that is isolated or within which the impulse approximation can be applied. Part A Sort the following objects as part of the system or not. Drag the appropriate objects to their respective bins. ANSWER: kg kg m/s F = net 0 P = f P  i (pfx + ( + ( += ( + ( + ( + )1 pfx)2 pfx)3 pix)1 pix)2 pix)3 (pfy + ( + ( += ( + ( + ( + )1 pfy)2 pfy)3 piy)1 piy)2 piy)3 Part B This question will be shown after you complete previous question(s). Visualize Solve Part C This question will be shown after you complete previous question(s). Assess Part D This question will be shown after you complete previous question(s). Conservation of Momentum in Inelastic Collisions Learning Goal: To understand the vector nature of momentum in the case in which two objects collide and stick together. In this problem we will consider a collision of two moving objects such that after the collision, the objects stick together and travel off as a single unit. The collision is therefore completely inelastic. You have probably learned that “momentum is conserved” in an inelastic collision. But how does this fact help you to solve collision problems? The following questions should help you to clarify the meaning and implications of the statement “momentum is conserved.” Part A What physical quantities are conserved in this collision? ANSWER: Part B Two cars of equal mass collide inelastically and stick together after the collision. Before the collision, their speeds are and . What is the speed of the two-car system after the collision? the magnitude of the momentum only the net momentum (considered as a vector) only the momentum of each object considered individually v1 v2 You did not open hints for this part. ANSWER: Part C Two cars collide inelastically and stick together after the collision. Before the collision, the magnitudes of their momenta are and . After the collision, what is the magnitude of their combined momentum? You did not open hints for this part. ANSWER: The answer depends on the directions in which the cars were moving before the collision. v1 + v2 v1 − v2 v2 − v1 v1v2 −−−− ” v1+v2 2 v1 + 2 v2 2 −−−−−−−  p1 p2 Part D Two cars collide inelastically and stick together after the collision. Before the collision, their momenta are and . After the collision, their combined momentum is . Of what can one be certain? You did not open hints for this part. ANSWER: Part E Two cars collide inelastically and stick together after the collision. Before the collision, the magnitudes of their momenta are and . After the collision, the magnitude of their combined momentum is . Of what can one be certain? The answer depends on the directions in which the cars were moving before the collision. p1 + p2 p1 − p2 p2 − p1 p1p2 −−−− ” p1+p2 2 p1 + 2 p2 2 −−−−−−−  p 1 p 2 p p = p1 + # p2 # p = p1 − # p2 # p = p2 − # p1 # p1 p2 p You did not open hints for this part. ANSWER: Colliding Cars In this problem we will consider the collision of two cars initially moving at right angles. We assume that after the collision the cars stick together and travel off as a single unit. The collision is therefore completely inelastic. Two cars of masses and collide at an intersection. Before the collision, car 1 was traveling eastward at a speed of , and car 2 was traveling northward at a speed of . After the collision, the two cars stick together and travel off in the direction shown. Part A p1 + p2 $ p $ p1p2 −−−− ” p1 +p2 $ p $ p1+p2 2 p1 + p2 $ p $ |p1 − p2 | p1 + p2 $ p $ p1 + 2 p2 2 −−−−−−−  m1 m2 v1 v2 First, find the magnitude of , that is, the speed of the two-car unit after the collision. Express in terms of , , and the cars’ initial speeds and . You did not open hints for this part. ANSWER: Part B Find the tangent of the angle . Express your answer in terms of the momenta of the two cars, and . ANSWER: Part C Suppose that after the collision, ; in other words, is . This means that before the collision: ANSWER: v v v m1 m2 v1 v2 v = p1 p2 tan( ) = tan = 1 45′ The magnitudes of the momenta of the cars were equal. The masses of the cars were equal. The velocities of the cars were equal. ± Catching a Ball on Ice Olaf is standing on a sheet of ice that covers the football stadium parking lot in Buffalo, New York; there is negligible friction between his feet and the ice. A friend throws Olaf a ball of mass 0.400 that is traveling horizontally at 11.2 . Olaf’s mass is 67.1 . Part A If Olaf catches the ball, with what speed do Olaf and the ball move afterward? Express your answer numerically in meters per second. You did not open hints for this part. ANSWER: Part B kg m/s kg vf vf = m/s If the ball hits Olaf and bounces off his chest horizontally at 8.00 in the opposite direction, what is his speed after the collision? Express your answer numerically in meters per second. You did not open hints for this part. ANSWER: A One-Dimensional Inelastic Collision Block 1, of mass = 2.90 , moves along a frictionless air track with speed = 25.0 . It collides with block 2, of mass = 17.0 , which was initially at rest. The blocks stick together after the collision. Part A Find the magnitude of the total initial momentum of the two-block system. Express your answer numerically. m/s vf vf = m/s m1 kg v1 m/s m2 kg pi You did not open hints for this part. ANSWER: Part B Find , the magnitude of the final velocity of the two-block system. Express your answer numerically. You did not open hints for this part. ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. pi = kg  m/s vf vf = m/s

please email info@checkyourstudy.com
Chapter 10 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, April 18, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy A One-Dimensional Inelastic Collision Block 1, of mass = 3.70 , moves along a frictionless air track with speed = 15.0 . It collides with block 2, of mass = 19.0 , which was initially at rest. The blocks stick together after the collision. Part A Find the magnitude of the total initial momentum of the two-block system. Express your answer numerically. You did not open hints for this part. ANSWER: m1 kg v1 m/s m2 kg pi Part B Find , the magnitude of the final velocity of the two-block system. Express your answer numerically. You did not open hints for this part. ANSWER: Part C What is the change in the two-block system’s kinetic energy due to the collision? Express your answer numerically in joules. You did not open hints for this part. ANSWER: pi = kg m/s vf vf = m/s K = Kfinal − Kinitial K = J Conservation of Energy Ranking Task Six pendulums of various masses are released from various heights above a tabletop, as shown in the figures below. All the pendulums have the same length and are mounted such that at the vertical position their lowest points are the height of the tabletop and just do not strike the tabletop when released. Assume that the size of each bob is negligible. Part A Rank each pendulum on the basis of its initial gravitational potential energy (before being released) relative to the tabletop. Rank from largest to smallest To rank items as equivalent, overlap them. You did not open hints for this part. ANSWER: m h Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Momentum and Kinetic Energy Consider two objects (Object 1 and Object 2) moving in the same direction on a frictionless surface. Object 1 moves with speed and has mass . Object 2 moves with speed and has mass . Part A Which object has the larger magnitude of its momentum? You did not open hints for this part. ANSWER: Part B Which object has the larger kinetic energy? You did not open hints for this part. ANSWER: v1 = v m1 = 2m v2 = 2v m2 = m Object 1 has the greater magnitude of its momentum. Object 2 has the greater magnitude of its momentum. Both objects have the same magnitude of their momenta. Object 1 has the greater kinetic energy. Object 2 has the greater kinetic energy. The objects have the same kinetic energy. Projectile Motion and Conservation of Energy Ranking Task Part A Six baseball throws are shown below. In each case the baseball is thrown at the same initial speed and from the same height above the ground. Assume that the effects of air resistance are negligible. Rank these throws according to the speed of the baseball the instant before it hits the ground. Rank from largest to smallest. To rank items as equivalent, overlap them. You did not open hints for this part. ANSWER: H PSS 10.1 Conservation of Mechanical Energy Learning Goal: To practice Problem-Solving Strategy 10.1 for conservation of mechanical energy problems. Tarzan, in one tree, sights Jane in another tree. He grabs the end of a vine with length 20 that makes an angle of 45 with the vertical, steps off his tree limb, and swings down and then up to Jane’s open arms. When he arrives, his vine makes an angle of 30 with the vertical. Determine whether he gives her a tender embrace or knocks her off her limb by calculating Tarzan’s speed just before he reaches Jane. You can ignore air resistance and the mass of the vine. PROBLEM-SOLVING STRATEGY 10.1 Conservation of mechanical energy MODEL: Choose a system without friction or other losses of mechanical energy. m   VISUALIZE: Draw a before-and-after pictorial representation. Define symbols that will be used in the problem, list known values, and identify what you’re trying to find. SOLVE: The mathematical representation is based on the law of conservation of mechanical energy: . ASSESS: Check that your result has the correct units, is reasonable, and answers the question. Model The problem does not involve friction, nor are there losses of mechanical energy, so conservation of mechanical energy applies. Model Tarzan and the vine as a pendulum. Visualize Part A Which of the following sketches can be used in drawing a before-and-after pictorial representation? ANSWER: Kf + Uf = Ki + Ui Solve Part B What is Tarzan’s speed just before he reaches Jane? Express your answer in meters per second to two significant figures. You did not open hints for this part. ANSWER: Assess Part C This question will be shown after you complete previous question(s). Bungee Jumping Diagram A Diagram B Diagram C Diagram D vf vf = m/s Kate, a bungee jumper, wants to jump off the edge of a bridge that spans a river below. Kate has a mass , and the surface of the bridge is a height above the water. The bungee cord, which has length when unstretched, will first straighten and then stretch as Kate falls. Assume the following: The bungee cord behaves as an ideal spring once it begins to stretch, with spring constant . Kate doesn’t actually jump but simply steps off the edge of the bridge and falls straight downward. Kate’s height is negligible compared to the length of the bungee cord. Hence, she can be treated as a point particle. Use for the magnitude of the acceleration due to gravity. Part A How far below the bridge will Kate eventually be hanging, once she stops oscillating and comes finally to rest? Assume that she doesn’t touch the water. Express the distance in terms of quantities given in the problem introduction. You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Spinning Mass on a Spring An object of mass is attached to a spring with spring constant whose unstretched length is , and whose far end is fixed to a shaft that is rotating with angular speed . Neglect gravity and assume that the mass rotates with angular speed as shown. When solving this problem use an inertial coordinate system, as drawn here. m h L k g d = M k L Part A Given the angular speed , find the radius at which the mass rotates without moving toward or away from the origin. Express the radius in terms of , , , and . You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C R( ) k L M R( ) = This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). ± Baby Bounce with a Hooke One of the pioneers of modern science, Sir Robert Hooke (1635-1703), studied the elastic properties of springs and formulated the law that bears his name. Hooke found the relationship among the force a spring exerts, , the distance from equilibrium the end of the spring is displaced, , and a number called the spring constant (or, sometimes, the force constant of the spring). According to Hooke, the force of the spring is directly proportional to its displacement from equilibrium, or . In its scalar form, this equation is simply . The negative sign indicates that the force that the spring exerts and its displacement have opposite directions. The value of depends on the geometry and the material of the spring; it can be easily determined experimentally using this scalar equation. Toy makers have always been interested in springs for the entertainment value of the motion they produce. One well-known application is a baby bouncer,which consists of a harness seat for a toddler, attached to a spring. The entire contraption hooks onto the top of a doorway. The idea is for the baby to hang in the seat with his or her feet just touching the ground so that a good push up will get the baby bouncing, providing potentially hours of entertainment. F  x k F = −kx F = −kx k Part A The following chart and accompanying graph depict an experiment to determine the spring constant for a baby bouncer. Displacement from equilibrium, ( ) Force exerted on the spring, ( ) 0 0 0.005 2.5 0.010 5.0 0.015 7.5 0.020 10 What is the spring constant of the spring being tested for the baby bouncer? Express your answer to two significant figures in newtons per meter. You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Shooting a ball into a box Two children are trying to shoot a marble of mass into a small box using a spring-loaded gun that is fixed on a table and shoots horizontally from the edge of the table. The edge of the table is a height above the top of the box (the height of which is negligibly small), and the center of the box is a distance from the edge of the table. x m F N k k = N/m m H d The spring has a spring constant . The first child compresses the spring a distance and finds that the marble falls short of its target by a horizontal distance . Part A By what distance, , should the second child compress the spring so that the marble lands in the middle of the box? (Assume that height of the box is negligible, so that there is no chance that the marble will hit the side of the box before it lands in the bottom.) Express the distance in terms of , , , , and . You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). k x1 d12 x2 m k g H d x2 = Elastic Collision in One Dimension Block 1, of mass , moves across a frictionless surface with speed . It collides elastically with block 2, of mass , which is at rest ( ). After the collision, block 1 moves with speed , while block 2 moves with speed . Assume that , so that after the collision, the two objects move off in the direction of the first object before the collision. Part A This collision is elastic. What quantities, if any, are conserved in this collision? You did not open hints for this part. ANSWER: Part B What is the final speed of block 1? m1 ui m2 vi = 0 uf vf m1 > m2 kinetic energy only momentum only kinetic energy and momentum uf Express in terms of , , and . You did not open hints for this part. ANSWER: Part C What is the final speed of block 2? Express in terms of , , and . You did not open hints for this part. ANSWER: Ballistic Pendulum In a ballistic pendulum an object of mass is fired with an initial speed at a pendulum bob. The bob has a mass , which is suspended by a rod of length and negligible mass. After the collision, the pendulum and object stick together and swing to a maximum angular displacement as shown . uf m1 m2 ui uf = vf vf m1 m2 ui vf = m v0 M L  Part A Find an expression for , the initial speed of the fired object. Express your answer in terms of some or all of the variables , , , and and the acceleration due to gravity, . You did not open hints for this part. ANSWER: Part B An experiment is done to compare the initial speed of bullets fired from different handguns: a 9.0 and a .44 caliber. The guns are fired into a 10- pendulum bob of length . Assume that the 9.0- bullet has a mass of 6.0 and the .44-caliber bullet has a mass of 12 . If the 9.0- bullet causes the pendulum to swing to a maximum angular displacement of 4.3 and the .44-caliber bullet causes a displacement of 10.1 , find the ratio of the initial speed of the 9.0- bullet to the speed of the .44-caliber bullet, . Express your answer numerically. You did not open hints for this part. ANSWER: v0 m M L  g v0 = mm kg L mm g g mm   mm (v /( 0 )9.0 v0)44 Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. (v0 )9.0/(v0 )44 =

Chapter 10 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, April 18, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy A One-Dimensional Inelastic Collision Block 1, of mass = 3.70 , moves along a frictionless air track with speed = 15.0 . It collides with block 2, of mass = 19.0 , which was initially at rest. The blocks stick together after the collision. Part A Find the magnitude of the total initial momentum of the two-block system. Express your answer numerically. You did not open hints for this part. ANSWER: m1 kg v1 m/s m2 kg pi Part B Find , the magnitude of the final velocity of the two-block system. Express your answer numerically. You did not open hints for this part. ANSWER: Part C What is the change in the two-block system’s kinetic energy due to the collision? Express your answer numerically in joules. You did not open hints for this part. ANSWER: pi = kg m/s vf vf = m/s K = Kfinal − Kinitial K = J Conservation of Energy Ranking Task Six pendulums of various masses are released from various heights above a tabletop, as shown in the figures below. All the pendulums have the same length and are mounted such that at the vertical position their lowest points are the height of the tabletop and just do not strike the tabletop when released. Assume that the size of each bob is negligible. Part A Rank each pendulum on the basis of its initial gravitational potential energy (before being released) relative to the tabletop. Rank from largest to smallest To rank items as equivalent, overlap them. You did not open hints for this part. ANSWER: m h Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Momentum and Kinetic Energy Consider two objects (Object 1 and Object 2) moving in the same direction on a frictionless surface. Object 1 moves with speed and has mass . Object 2 moves with speed and has mass . Part A Which object has the larger magnitude of its momentum? You did not open hints for this part. ANSWER: Part B Which object has the larger kinetic energy? You did not open hints for this part. ANSWER: v1 = v m1 = 2m v2 = 2v m2 = m Object 1 has the greater magnitude of its momentum. Object 2 has the greater magnitude of its momentum. Both objects have the same magnitude of their momenta. Object 1 has the greater kinetic energy. Object 2 has the greater kinetic energy. The objects have the same kinetic energy. Projectile Motion and Conservation of Energy Ranking Task Part A Six baseball throws are shown below. In each case the baseball is thrown at the same initial speed and from the same height above the ground. Assume that the effects of air resistance are negligible. Rank these throws according to the speed of the baseball the instant before it hits the ground. Rank from largest to smallest. To rank items as equivalent, overlap them. You did not open hints for this part. ANSWER: H PSS 10.1 Conservation of Mechanical Energy Learning Goal: To practice Problem-Solving Strategy 10.1 for conservation of mechanical energy problems. Tarzan, in one tree, sights Jane in another tree. He grabs the end of a vine with length 20 that makes an angle of 45 with the vertical, steps off his tree limb, and swings down and then up to Jane’s open arms. When he arrives, his vine makes an angle of 30 with the vertical. Determine whether he gives her a tender embrace or knocks her off her limb by calculating Tarzan’s speed just before he reaches Jane. You can ignore air resistance and the mass of the vine. PROBLEM-SOLVING STRATEGY 10.1 Conservation of mechanical energy MODEL: Choose a system without friction or other losses of mechanical energy. m   VISUALIZE: Draw a before-and-after pictorial representation. Define symbols that will be used in the problem, list known values, and identify what you’re trying to find. SOLVE: The mathematical representation is based on the law of conservation of mechanical energy: . ASSESS: Check that your result has the correct units, is reasonable, and answers the question. Model The problem does not involve friction, nor are there losses of mechanical energy, so conservation of mechanical energy applies. Model Tarzan and the vine as a pendulum. Visualize Part A Which of the following sketches can be used in drawing a before-and-after pictorial representation? ANSWER: Kf + Uf = Ki + Ui Solve Part B What is Tarzan’s speed just before he reaches Jane? Express your answer in meters per second to two significant figures. You did not open hints for this part. ANSWER: Assess Part C This question will be shown after you complete previous question(s). Bungee Jumping Diagram A Diagram B Diagram C Diagram D vf vf = m/s Kate, a bungee jumper, wants to jump off the edge of a bridge that spans a river below. Kate has a mass , and the surface of the bridge is a height above the water. The bungee cord, which has length when unstretched, will first straighten and then stretch as Kate falls. Assume the following: The bungee cord behaves as an ideal spring once it begins to stretch, with spring constant . Kate doesn’t actually jump but simply steps off the edge of the bridge and falls straight downward. Kate’s height is negligible compared to the length of the bungee cord. Hence, she can be treated as a point particle. Use for the magnitude of the acceleration due to gravity. Part A How far below the bridge will Kate eventually be hanging, once she stops oscillating and comes finally to rest? Assume that she doesn’t touch the water. Express the distance in terms of quantities given in the problem introduction. You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Spinning Mass on a Spring An object of mass is attached to a spring with spring constant whose unstretched length is , and whose far end is fixed to a shaft that is rotating with angular speed . Neglect gravity and assume that the mass rotates with angular speed as shown. When solving this problem use an inertial coordinate system, as drawn here. m h L k g d = M k L Part A Given the angular speed , find the radius at which the mass rotates without moving toward or away from the origin. Express the radius in terms of , , , and . You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C R( ) k L M R( ) = This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). ± Baby Bounce with a Hooke One of the pioneers of modern science, Sir Robert Hooke (1635-1703), studied the elastic properties of springs and formulated the law that bears his name. Hooke found the relationship among the force a spring exerts, , the distance from equilibrium the end of the spring is displaced, , and a number called the spring constant (or, sometimes, the force constant of the spring). According to Hooke, the force of the spring is directly proportional to its displacement from equilibrium, or . In its scalar form, this equation is simply . The negative sign indicates that the force that the spring exerts and its displacement have opposite directions. The value of depends on the geometry and the material of the spring; it can be easily determined experimentally using this scalar equation. Toy makers have always been interested in springs for the entertainment value of the motion they produce. One well-known application is a baby bouncer,which consists of a harness seat for a toddler, attached to a spring. The entire contraption hooks onto the top of a doorway. The idea is for the baby to hang in the seat with his or her feet just touching the ground so that a good push up will get the baby bouncing, providing potentially hours of entertainment. F  x k F = −kx F = −kx k Part A The following chart and accompanying graph depict an experiment to determine the spring constant for a baby bouncer. Displacement from equilibrium, ( ) Force exerted on the spring, ( ) 0 0 0.005 2.5 0.010 5.0 0.015 7.5 0.020 10 What is the spring constant of the spring being tested for the baby bouncer? Express your answer to two significant figures in newtons per meter. You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Shooting a ball into a box Two children are trying to shoot a marble of mass into a small box using a spring-loaded gun that is fixed on a table and shoots horizontally from the edge of the table. The edge of the table is a height above the top of the box (the height of which is negligibly small), and the center of the box is a distance from the edge of the table. x m F N k k = N/m m H d The spring has a spring constant . The first child compresses the spring a distance and finds that the marble falls short of its target by a horizontal distance . Part A By what distance, , should the second child compress the spring so that the marble lands in the middle of the box? (Assume that height of the box is negligible, so that there is no chance that the marble will hit the side of the box before it lands in the bottom.) Express the distance in terms of , , , , and . You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). k x1 d12 x2 m k g H d x2 = Elastic Collision in One Dimension Block 1, of mass , moves across a frictionless surface with speed . It collides elastically with block 2, of mass , which is at rest ( ). After the collision, block 1 moves with speed , while block 2 moves with speed . Assume that , so that after the collision, the two objects move off in the direction of the first object before the collision. Part A This collision is elastic. What quantities, if any, are conserved in this collision? You did not open hints for this part. ANSWER: Part B What is the final speed of block 1? m1 ui m2 vi = 0 uf vf m1 > m2 kinetic energy only momentum only kinetic energy and momentum uf Express in terms of , , and . You did not open hints for this part. ANSWER: Part C What is the final speed of block 2? Express in terms of , , and . You did not open hints for this part. ANSWER: Ballistic Pendulum In a ballistic pendulum an object of mass is fired with an initial speed at a pendulum bob. The bob has a mass , which is suspended by a rod of length and negligible mass. After the collision, the pendulum and object stick together and swing to a maximum angular displacement as shown . uf m1 m2 ui uf = vf vf m1 m2 ui vf = m v0 M L  Part A Find an expression for , the initial speed of the fired object. Express your answer in terms of some or all of the variables , , , and and the acceleration due to gravity, . You did not open hints for this part. ANSWER: Part B An experiment is done to compare the initial speed of bullets fired from different handguns: a 9.0 and a .44 caliber. The guns are fired into a 10- pendulum bob of length . Assume that the 9.0- bullet has a mass of 6.0 and the .44-caliber bullet has a mass of 12 . If the 9.0- bullet causes the pendulum to swing to a maximum angular displacement of 4.3 and the .44-caliber bullet causes a displacement of 10.1 , find the ratio of the initial speed of the 9.0- bullet to the speed of the .44-caliber bullet, . Express your answer numerically. You did not open hints for this part. ANSWER: v0 m M L  g v0 = mm kg L mm g g mm   mm (v /( 0 )9.0 v0)44 Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. (v0 )9.0/(v0 )44 =

please email info@checkyourstudy.com
Assignment 1 Due: 11:59pm on Wednesday, February 5, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 1.6 Part A Determine the sign (positive or negative) of the position for the particle in the figure. ANSWER: Correct Part B Determine the sign (positive or negative) of the velocity for the particle in the figure. ANSWER: Correct Positive Negative Negative Positive Part C Determine the sign (positive or negative) of the acceleration for the particle in the figure. ANSWER: Correct Conceptual Question 1.7 Part A Determine the sign (positive or negative) of the position for the particle in the figure. ANSWER: Positive Negative Correct Part B Determine the sign (positive or negative) of the velocity for the particle in the figure. ANSWER: Correct Part C Determine the sign (positive or negative) of the acceleration for the particle in the figure. ANSWER: Correct Enhanced EOC: Problem 1.18 The figure shows the motion diagram of a drag racer. The camera took one frame every 2 . Positive Negative Positive Negative Negative Positive s You may want to review ( pages 16 – 19) . For help with math skills, you may want to review: Plotting Points on a Graph Part A Make a position-versus-time graph for the drag racer. Hint 1. How to approach the problem Based on Table 1.1 in the book/e-text, what two observables are associated with each point? Which position or point of the drag racer occurs first? Which position occurs last? If you label the first point as happening at , at what time does the next point occur? At what time does the last position point occur? What is the position of a point halfway in between and ? Can you think of a way to estimate the positions of the points using a ruler? ANSWER: t = 0 s x = 0 m x = 200 m Correct Motion of Two Rockets Learning Goal: To learn to use images of an object in motion to determine velocity and acceleration. Two toy rockets are traveling in the same direction (taken to be the x axis). A diagram is shown of a time-exposure image where a stroboscope has illuminated the rockets at the uniform time intervals indicated. Part A At what time(s) do the rockets have the same velocity? Hint 1. How to determine the velocity The diagram shows position, not velocity. You can’t find instantaneous velocity from this diagram, but you can determine the average velocity between two times and : . Note that no position values are given in the diagram; you will need to estimate these based on the distance between successive positions of the rockets. ANSWER: Correct t1 t2 vavg[t1, t2] = x(t2)−x(t1) t2−t1 at time only at time only at times and at some instant in time between and at no time shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 Part B At what time(s) do the rockets have the same x position? ANSWER: Correct Part C At what time(s) do the two rockets have the same acceleration? Hint 1. How to determine the acceleration The velocity is related to the spacing between images in a stroboscopic diagram. Since acceleration is the rate at which velocity changes, the acceleration is related to the how much this spacing changes from one interval to the next. ANSWER: at time only at time only at times and at some instant in time between and at no time shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 at time only at time only at times and at some instant in time between and at no time shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 Correct Part D The motion of the rocket labeled A is an example of motion with uniform (i.e., constant) __________. ANSWER: Correct Part E The motion of the rocket labeled B is an example of motion with uniform (i.e., constant) __________. ANSWER: Correct Part F At what time(s) is rocket A ahead of rocket B? and nonzero acceleration velocity displacement time and nonzero acceleration velocity displacement time Hint 1. Use the diagram You can answer this question by looking at the diagram and identifying the time(s) when rocket A is to the right of rocket B. ANSWER: Correct Dimensions of Physical Quantities Learning Goal: To introduce the idea of physical dimensions and to learn how to find them. Physical quantities are generally not purely numerical: They have a particular dimension or combination of dimensions associated with them. Thus, your height is not 74, but rather 74 inches, often expressed as 6 feet 2 inches. Although feet and inches are different units they have the same dimension–length. Part A In classical mechanics there are three base dimensions. Length is one of them. What are the other two? Hint 1. MKS system The current system of units is called the International System (abbreviated SI from the French Système International). In the past this system was called the mks system for its base units: meter, kilogram, and second. What are the dimensions of these quantities? ANSWER: before only after only before and after between and at no time(s) shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 Correct There are three dimensions used in mechanics: length ( ), mass ( ), and time ( ). A combination of these three dimensions suffices to express any physical quantity, because when a new physical quantity is needed (e.g., velocity), it always obeys an equation that permits it to be expressed in terms of the units used for these three dimensions. One then derives a unit to measure the new physical quantity from that equation, and often its unit is given a special name. Such new dimensions are called derived dimensions and the units they are measured in are called derived units. For example, area has derived dimensions . (Note that “dimensions of variable ” is symbolized as .) You can find these dimensions by looking at the formula for the area of a square , where is the length of a side of the square. Clearly . Plugging this into the equation gives . Part B Find the dimensions of volume. Express your answer as powers of length ( ), mass ( ), and time ( ). Hint 1. Equation for volume You have likely learned many formulas for the volume of various shapes in geometry. Any of these equations will give you the dimensions for volume. You can find the dimensions most easily from the volume of a cube , where is the length of the edge of the cube. ANSWER: acceleration and mass acceleration and time acceleration and charge mass and time mass and charge time and charge l m t A [A] = l2 x [x] A = s2 s [s] = l [A] = [s] = 2 l2 [V ] l m t V = e3 e [V ] = l3 Correct Part C Find the dimensions of speed. Express your answer as powers of length ( ), mass ( ), and time ( ). Hint 1. Equation for speed Speed is defined in terms of distance and time as . Therefore, . Hint 2. Familiar units for speed You are probably accustomed to hearing speeds in miles per hour (or possibly kilometers per hour). Think about the dimensions for miles and hours. If you divide the dimensions for miles by the dimensions for hours, you will have the dimensions for speed. ANSWER: Correct The dimensions of a quantity are not changed by addition or subtraction of another quantity with the same dimensions. This means that , which comes from subtracting two speeds, has the same dimensions as speed. It does not make physical sense to add or subtract two quanitites that have different dimensions, like length plus time. You can add quantities that have different units, like miles per hour and kilometers per hour, as long as you convert both quantities to the same set of units before you actually compute the sum. You can use this rule to check your answers to any physics problem you work. If the answer involves the sum or difference of two quantities with different dimensions, then it must be incorrect. This rule also ensures that the dimensions of any physical quantity will never involve sums or differences of the base dimensions. (As in the preceeding example, is not a valid dimension for a [v] l m t v d t v = d t [v] = [d]/[t] [v] = lt−1 v l + t physical quantitiy.) A valid dimension will only involve the product or ratio of powers of the base dimensions (e.g. ). Part D Find the dimensions of acceleration. Express your answer as powers of length ( ), mass ( ), and time ( ). Hint 1. Equation for acceleration In physics, acceleration is defined as the change in velocity in a certain time. This is shown by the equation . The is a symbol that means “the change in.” ANSWER: Correct Consistency of Units In physics, every physical quantity is measured with respect to a unit. Time is measured in seconds, length is measured in meters, and mass is measured in kilograms. Knowing the units of physical quantities will help you solve problems in physics. Part A Gravity causes objects to be attracted to one another. This attraction keeps our feet firmly planted on the ground and causes the moon to orbit the earth. The force of gravitational attraction is represented by the equation , where is the magnitude of the gravitational attraction on either body, and are the masses of the bodies, is the distance between them, and is the gravitational constant. In SI units, the units of force are , the units of mass are , and the units of distance are . For this equation to have consistent units, the units of must be which of the following? Hint 1. How to approach the problem To solve this problem, we start with the equation m2/3 l2 t−2 [a] l m t a a = v/t  [a] = lt−2 F = Gm1m2 r2 F m1 m2 r G kg  m/s2 kg m G . For each symbol whose units we know, we replace the symbol with those units. For example, we replace with . We now solve this equation for . ANSWER: Correct Part B One consequence of Einstein’s theory of special relativity is that mass is a form of energy. This mass-energy relationship is perhaps the most famous of all physics equations: , where is mass, is the speed of the light, and is the energy. In SI units, the units of speed are . For the preceding equation to have consistent units (the same units on both sides of the equation), the units of must be which of the following? Hint 1. How to approach the problem To solve this problem, we start with the equation . For each symbol whose units we know, we replace the symbol with those units. For example, we replace with . We now solve this equation for . ANSWER: F = Gm1m2 r2 m1 kg G kg3 ms2 kgs2 m3 m3 kgs2 m kgs2 E = mc2 m c E m/s E E = mc2 m kg E Correct To solve the types of problems typified by these examples, we start with the given equation. For each symbol whose units we know, we replace the symbol with those units. For example, we replace with . We now solve this equation for the units of the unknown variable. Problem 1.24 Convert the following to SI units: Part A 5.0 Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B 54 Express your answer to two significant figures and include the appropriate units. kgm s kgm2 s2 kgs2 m2 kgm2 s m kg in 0.13 m ft/s ANSWER: Correct Part C 72 Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part D 17 Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 1.55 The figure shows a motion diagram of a car traveling down a street. The camera took one frame every 10 . A distance scale is provided. 16 ms mph 32 ms in2 1.1×10−2 m2 s Part A Make a position-versus-time graph for the car. ANSWER: Incorrect; Try Again ± Moving at the Speed of Light Part A How many nanoseconds does it take light to travel a distance of 4.40 in vacuum? Express your answer numerically in nanoseconds. Hint 1. How to approach the problem Light travels at a constant speed; therefore, you can use the formula for the distance traveled in a certain amount of time by an object moving at constant speed. Before performing any calculations, it is often recommended, although it is not strictly necessary, to convert all quantities to their fundamental units rather than to multiples of the fundamental unit. km Hint 2. Find how many seconds it takes light to travel the given distance Given that the speed of light in vacuum is , how many seconds does it take light to travel a distance of 4.40 ? Express your answer numerically in seconds. Hint 1. Find the time it takes light to travel a certain distance How long does it take light to travel a distance ? Let be the speed of light. Hint 1. The speed of an object The equation that relates the distance traveled by an object with constant speed in a time is . ANSWER: Correct Hint 2. Convert the given distance to meters Convert = 4.40 to meters. Express your answer numerically in meters. Hint 1. Conversion of kilometers to meters Recall that . 3.00 × 108 m/s km r c s v t s = vt r  c r c c r d km 1 km = 103 m ANSWER: Correct ANSWER: Correct Now convert the time into nanoseconds. Recall that . ANSWER: Correct Score Summary: Your score on this assignment is 84.7%. You received 50.84 out of a possible total of 60 points. 4.40km = 4400 m 1.47×10−5 s 1 ns = 10−9 s 1.47×104 ns

Assignment 1 Due: 11:59pm on Wednesday, February 5, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 1.6 Part A Determine the sign (positive or negative) of the position for the particle in the figure. ANSWER: Correct Part B Determine the sign (positive or negative) of the velocity for the particle in the figure. ANSWER: Correct Positive Negative Negative Positive Part C Determine the sign (positive or negative) of the acceleration for the particle in the figure. ANSWER: Correct Conceptual Question 1.7 Part A Determine the sign (positive or negative) of the position for the particle in the figure. ANSWER: Positive Negative Correct Part B Determine the sign (positive or negative) of the velocity for the particle in the figure. ANSWER: Correct Part C Determine the sign (positive or negative) of the acceleration for the particle in the figure. ANSWER: Correct Enhanced EOC: Problem 1.18 The figure shows the motion diagram of a drag racer. The camera took one frame every 2 . Positive Negative Positive Negative Negative Positive s You may want to review ( pages 16 – 19) . For help with math skills, you may want to review: Plotting Points on a Graph Part A Make a position-versus-time graph for the drag racer. Hint 1. How to approach the problem Based on Table 1.1 in the book/e-text, what two observables are associated with each point? Which position or point of the drag racer occurs first? Which position occurs last? If you label the first point as happening at , at what time does the next point occur? At what time does the last position point occur? What is the position of a point halfway in between and ? Can you think of a way to estimate the positions of the points using a ruler? ANSWER: t = 0 s x = 0 m x = 200 m Correct Motion of Two Rockets Learning Goal: To learn to use images of an object in motion to determine velocity and acceleration. Two toy rockets are traveling in the same direction (taken to be the x axis). A diagram is shown of a time-exposure image where a stroboscope has illuminated the rockets at the uniform time intervals indicated. Part A At what time(s) do the rockets have the same velocity? Hint 1. How to determine the velocity The diagram shows position, not velocity. You can’t find instantaneous velocity from this diagram, but you can determine the average velocity between two times and : . Note that no position values are given in the diagram; you will need to estimate these based on the distance between successive positions of the rockets. ANSWER: Correct t1 t2 vavg[t1, t2] = x(t2)−x(t1) t2−t1 at time only at time only at times and at some instant in time between and at no time shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 Part B At what time(s) do the rockets have the same x position? ANSWER: Correct Part C At what time(s) do the two rockets have the same acceleration? Hint 1. How to determine the acceleration The velocity is related to the spacing between images in a stroboscopic diagram. Since acceleration is the rate at which velocity changes, the acceleration is related to the how much this spacing changes from one interval to the next. ANSWER: at time only at time only at times and at some instant in time between and at no time shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 at time only at time only at times and at some instant in time between and at no time shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 Correct Part D The motion of the rocket labeled A is an example of motion with uniform (i.e., constant) __________. ANSWER: Correct Part E The motion of the rocket labeled B is an example of motion with uniform (i.e., constant) __________. ANSWER: Correct Part F At what time(s) is rocket A ahead of rocket B? and nonzero acceleration velocity displacement time and nonzero acceleration velocity displacement time Hint 1. Use the diagram You can answer this question by looking at the diagram and identifying the time(s) when rocket A is to the right of rocket B. ANSWER: Correct Dimensions of Physical Quantities Learning Goal: To introduce the idea of physical dimensions and to learn how to find them. Physical quantities are generally not purely numerical: They have a particular dimension or combination of dimensions associated with them. Thus, your height is not 74, but rather 74 inches, often expressed as 6 feet 2 inches. Although feet and inches are different units they have the same dimension–length. Part A In classical mechanics there are three base dimensions. Length is one of them. What are the other two? Hint 1. MKS system The current system of units is called the International System (abbreviated SI from the French Système International). In the past this system was called the mks system for its base units: meter, kilogram, and second. What are the dimensions of these quantities? ANSWER: before only after only before and after between and at no time(s) shown in the figure t = 1 t = 4 t = 1 t = 4 t = 1 t = 4 Correct There are three dimensions used in mechanics: length ( ), mass ( ), and time ( ). A combination of these three dimensions suffices to express any physical quantity, because when a new physical quantity is needed (e.g., velocity), it always obeys an equation that permits it to be expressed in terms of the units used for these three dimensions. One then derives a unit to measure the new physical quantity from that equation, and often its unit is given a special name. Such new dimensions are called derived dimensions and the units they are measured in are called derived units. For example, area has derived dimensions . (Note that “dimensions of variable ” is symbolized as .) You can find these dimensions by looking at the formula for the area of a square , where is the length of a side of the square. Clearly . Plugging this into the equation gives . Part B Find the dimensions of volume. Express your answer as powers of length ( ), mass ( ), and time ( ). Hint 1. Equation for volume You have likely learned many formulas for the volume of various shapes in geometry. Any of these equations will give you the dimensions for volume. You can find the dimensions most easily from the volume of a cube , where is the length of the edge of the cube. ANSWER: acceleration and mass acceleration and time acceleration and charge mass and time mass and charge time and charge l m t A [A] = l2 x [x] A = s2 s [s] = l [A] = [s] = 2 l2 [V ] l m t V = e3 e [V ] = l3 Correct Part C Find the dimensions of speed. Express your answer as powers of length ( ), mass ( ), and time ( ). Hint 1. Equation for speed Speed is defined in terms of distance and time as . Therefore, . Hint 2. Familiar units for speed You are probably accustomed to hearing speeds in miles per hour (or possibly kilometers per hour). Think about the dimensions for miles and hours. If you divide the dimensions for miles by the dimensions for hours, you will have the dimensions for speed. ANSWER: Correct The dimensions of a quantity are not changed by addition or subtraction of another quantity with the same dimensions. This means that , which comes from subtracting two speeds, has the same dimensions as speed. It does not make physical sense to add or subtract two quanitites that have different dimensions, like length plus time. You can add quantities that have different units, like miles per hour and kilometers per hour, as long as you convert both quantities to the same set of units before you actually compute the sum. You can use this rule to check your answers to any physics problem you work. If the answer involves the sum or difference of two quantities with different dimensions, then it must be incorrect. This rule also ensures that the dimensions of any physical quantity will never involve sums or differences of the base dimensions. (As in the preceeding example, is not a valid dimension for a [v] l m t v d t v = d t [v] = [d]/[t] [v] = lt−1 v l + t physical quantitiy.) A valid dimension will only involve the product or ratio of powers of the base dimensions (e.g. ). Part D Find the dimensions of acceleration. Express your answer as powers of length ( ), mass ( ), and time ( ). Hint 1. Equation for acceleration In physics, acceleration is defined as the change in velocity in a certain time. This is shown by the equation . The is a symbol that means “the change in.” ANSWER: Correct Consistency of Units In physics, every physical quantity is measured with respect to a unit. Time is measured in seconds, length is measured in meters, and mass is measured in kilograms. Knowing the units of physical quantities will help you solve problems in physics. Part A Gravity causes objects to be attracted to one another. This attraction keeps our feet firmly planted on the ground and causes the moon to orbit the earth. The force of gravitational attraction is represented by the equation , where is the magnitude of the gravitational attraction on either body, and are the masses of the bodies, is the distance between them, and is the gravitational constant. In SI units, the units of force are , the units of mass are , and the units of distance are . For this equation to have consistent units, the units of must be which of the following? Hint 1. How to approach the problem To solve this problem, we start with the equation m2/3 l2 t−2 [a] l m t a a = v/t  [a] = lt−2 F = Gm1m2 r2 F m1 m2 r G kg  m/s2 kg m G . For each symbol whose units we know, we replace the symbol with those units. For example, we replace with . We now solve this equation for . ANSWER: Correct Part B One consequence of Einstein’s theory of special relativity is that mass is a form of energy. This mass-energy relationship is perhaps the most famous of all physics equations: , where is mass, is the speed of the light, and is the energy. In SI units, the units of speed are . For the preceding equation to have consistent units (the same units on both sides of the equation), the units of must be which of the following? Hint 1. How to approach the problem To solve this problem, we start with the equation . For each symbol whose units we know, we replace the symbol with those units. For example, we replace with . We now solve this equation for . ANSWER: F = Gm1m2 r2 m1 kg G kg3 ms2 kgs2 m3 m3 kgs2 m kgs2 E = mc2 m c E m/s E E = mc2 m kg E Correct To solve the types of problems typified by these examples, we start with the given equation. For each symbol whose units we know, we replace the symbol with those units. For example, we replace with . We now solve this equation for the units of the unknown variable. Problem 1.24 Convert the following to SI units: Part A 5.0 Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B 54 Express your answer to two significant figures and include the appropriate units. kgm s kgm2 s2 kgs2 m2 kgm2 s m kg in 0.13 m ft/s ANSWER: Correct Part C 72 Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part D 17 Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 1.55 The figure shows a motion diagram of a car traveling down a street. The camera took one frame every 10 . A distance scale is provided. 16 ms mph 32 ms in2 1.1×10−2 m2 s Part A Make a position-versus-time graph for the car. ANSWER: Incorrect; Try Again ± Moving at the Speed of Light Part A How many nanoseconds does it take light to travel a distance of 4.40 in vacuum? Express your answer numerically in nanoseconds. Hint 1. How to approach the problem Light travels at a constant speed; therefore, you can use the formula for the distance traveled in a certain amount of time by an object moving at constant speed. Before performing any calculations, it is often recommended, although it is not strictly necessary, to convert all quantities to their fundamental units rather than to multiples of the fundamental unit. km Hint 2. Find how many seconds it takes light to travel the given distance Given that the speed of light in vacuum is , how many seconds does it take light to travel a distance of 4.40 ? Express your answer numerically in seconds. Hint 1. Find the time it takes light to travel a certain distance How long does it take light to travel a distance ? Let be the speed of light. Hint 1. The speed of an object The equation that relates the distance traveled by an object with constant speed in a time is . ANSWER: Correct Hint 2. Convert the given distance to meters Convert = 4.40 to meters. Express your answer numerically in meters. Hint 1. Conversion of kilometers to meters Recall that . 3.00 × 108 m/s km r c s v t s = vt r  c r c c r d km 1 km = 103 m ANSWER: Correct ANSWER: Correct Now convert the time into nanoseconds. Recall that . ANSWER: Correct Score Summary: Your score on this assignment is 84.7%. You received 50.84 out of a possible total of 60 points. 4.40km = 4400 m 1.47×10−5 s 1 ns = 10−9 s 1.47×104 ns

please email info@checkyourstudy.com
Chapter 9 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, April 18, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Momentum and Internal Forces Learning Goal: To understand the concept of total momentum for a system of objects and the effect of the internal forces on the total momentum. We begin by introducing the following terms: System: Any collection of objects, either pointlike or extended. In many momentum-related problems, you have a certain freedom in choosing the objects to be considered as your system. Making a wise choice is often a crucial step in solving the problem. Internal force: Any force interaction between two objects belonging to the chosen system. Let us stress that both interacting objects must belong to the system. External force: Any force interaction between objects at least one of which does not belong to the chosen system; in other words, at least one of the objects is external to the system. Closed system: a system that is not subject to any external forces. Total momentum: The vector sum of the individual momenta of all objects constituting the system. In this problem, you will analyze a system composed of two blocks, 1 and 2, of respective masses and . To simplify the analysis, we will make several assumptions: The blocks can move in only one dimension, namely, 1. along the x axis. 2. The masses of the blocks remain constant. 3. The system is closed. At time , the x components of the velocity and the acceleration of block 1 are denoted by and . Similarly, the x components of the velocity and acceleration of block 2 are denoted by and . In this problem, you will show that the total momentum of the system is not changed by the presence of internal forces. m1 m2 t v1(t) a1 (t) v2 (t) a2 (t)

Chapter 9 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, April 18, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Momentum and Internal Forces Learning Goal: To understand the concept of total momentum for a system of objects and the effect of the internal forces on the total momentum. We begin by introducing the following terms: System: Any collection of objects, either pointlike or extended. In many momentum-related problems, you have a certain freedom in choosing the objects to be considered as your system. Making a wise choice is often a crucial step in solving the problem. Internal force: Any force interaction between two objects belonging to the chosen system. Let us stress that both interacting objects must belong to the system. External force: Any force interaction between objects at least one of which does not belong to the chosen system; in other words, at least one of the objects is external to the system. Closed system: a system that is not subject to any external forces. Total momentum: The vector sum of the individual momenta of all objects constituting the system. In this problem, you will analyze a system composed of two blocks, 1 and 2, of respective masses and . To simplify the analysis, we will make several assumptions: The blocks can move in only one dimension, namely, 1. along the x axis. 2. The masses of the blocks remain constant. 3. The system is closed. At time , the x components of the velocity and the acceleration of block 1 are denoted by and . Similarly, the x components of the velocity and acceleration of block 2 are denoted by and . In this problem, you will show that the total momentum of the system is not changed by the presence of internal forces. m1 m2 t v1(t) a1 (t) v2 (t) a2 (t)

please email info@checkyourstudy.com
Sex, Gender, and Popular Culture Spring 2015 Look through popular magazines, and see if you can find advertisements that objectify women in order to sell a product. Alternately, you may use an advertisement on television (but make sure to provide a link to the ad so I can see it!). Study these images then write a paper about objectification that deals with all or some of the following: • What effect(s), if any, do you think the objectification of women’s bodies has on our culture? • Jean Kilbourne states “turning a human being into a thing is almost always the first step toward justifying violence against that person.” What do you think she means by this? Do you agree with her reasoning? Why or why not? • Some people would argue that depicting a woman’s body as an object is a form of art. What is your opinion of this point of view? Explain your reasoning. • Why do you think that women are objectified more often than men are? • How does sexualization and objectification play out differently across racial lines? • Kilbourne explains that the consequences of being objectified are different – and more serious – for women than for men. Do you agree? How is the world different for women than it is for men? How do objectified images of women interact with those in our culture differently from the way images of men do? Why is it important to look at images in the context of the culture? • What is the difference between sexual objectification and sexual subjectification? (Ros Gill ) • How do ads construct violent white masculinity and how does that vision of masculinity hurt both men and women? Throughout your written analysis, be sure to make clear and specific reference to the images you selected, and please submit these images with your paper. Make sure you engage with and reference to at least 4 of the following authors: Kilbourne, Bordo, Hunter & Soto, Rose, Durham, Gill, Katz, Schuchardt, Ono and Buescher. Guidelines:  Keep your content focused on structural, systemic, institutional factors rather than the individual: BE ANALYTICAL NOT ANECDOTAL.  Avoid using the first person or including personal stories/reactions. You must make sure to actively engage with your readings: these essays need to be informed and framed by the theoretical material you have been reading this semester.  Keep within the 4-6 page limit; use 12-point font, double spacing and 1-inch margins.  Use formal writing conventions (introduction/thesis statement, body, conclusion) and correct grammar. Resources may be cited within the text of your paper, i.e. (Walters, 2013).

Sex, Gender, and Popular Culture Spring 2015 Look through popular magazines, and see if you can find advertisements that objectify women in order to sell a product. Alternately, you may use an advertisement on television (but make sure to provide a link to the ad so I can see it!). Study these images then write a paper about objectification that deals with all or some of the following: • What effect(s), if any, do you think the objectification of women’s bodies has on our culture? • Jean Kilbourne states “turning a human being into a thing is almost always the first step toward justifying violence against that person.” What do you think she means by this? Do you agree with her reasoning? Why or why not? • Some people would argue that depicting a woman’s body as an object is a form of art. What is your opinion of this point of view? Explain your reasoning. • Why do you think that women are objectified more often than men are? • How does sexualization and objectification play out differently across racial lines? • Kilbourne explains that the consequences of being objectified are different – and more serious – for women than for men. Do you agree? How is the world different for women than it is for men? How do objectified images of women interact with those in our culture differently from the way images of men do? Why is it important to look at images in the context of the culture? • What is the difference between sexual objectification and sexual subjectification? (Ros Gill ) • How do ads construct violent white masculinity and how does that vision of masculinity hurt both men and women? Throughout your written analysis, be sure to make clear and specific reference to the images you selected, and please submit these images with your paper. Make sure you engage with and reference to at least 4 of the following authors: Kilbourne, Bordo, Hunter & Soto, Rose, Durham, Gill, Katz, Schuchardt, Ono and Buescher. Guidelines:  Keep your content focused on structural, systemic, institutional factors rather than the individual: BE ANALYTICAL NOT ANECDOTAL.  Avoid using the first person or including personal stories/reactions. You must make sure to actively engage with your readings: these essays need to be informed and framed by the theoretical material you have been reading this semester.  Keep within the 4-6 page limit; use 12-point font, double spacing and 1-inch margins.  Use formal writing conventions (introduction/thesis statement, body, conclusion) and correct grammar. Resources may be cited within the text of your paper, i.e. (Walters, 2013).

The objectification of women has been a very controversial topic … Read More...
Explain the significant impact this career development experience has had and will continue to have on your life.

Explain the significant impact this career development experience has had and will continue to have on your life.

Most corporate individuals instinctively comprehend the connection between well-designed creativities … Read More...
6. What is meant by the threshold service level of a least-cost system?

6. What is meant by the threshold service level of a least-cost system?

What is meant by the threshold service level of a … Read More...