After reading the paragraph, answer the question(s) that follow. A woman has been trying to conceive for several years, unsuccessfully. At a fertility clinic, they discover that she has blocked fallopian tubes. Using modern technologies, some of her eggs are removed, fertilized with her husband’s sperm, and implanted into her uterus. The procedure is successful, but the couple discovers that their new son is color-blind and has blood type O. The woman claims that the child can’t be theirs since she has blood type A and her husband has type B. Also, neither parent is color-blind, although one grandparent (the woman’s father) is also color-blind In regard to the baby’s color blindness, a sex-linked recessive trait, you explain that

## After reading the paragraph, answer the question(s) that follow. A woman has been trying to conceive for several years, unsuccessfully. At a fertility clinic, they discover that she has blocked fallopian tubes. Using modern technologies, some of her eggs are removed, fertilized with her husband’s sperm, and implanted into her uterus. The procedure is successful, but the couple discovers that their new son is color-blind and has blood type O. The woman claims that the child can’t be theirs since she has blood type A and her husband has type B. Also, neither parent is color-blind, although one grandparent (the woman’s father) is also color-blind In regard to the baby’s color blindness, a sex-linked recessive trait, you explain that

since color blindness is sex-linked, a son can inherit color … Read More...

WEEKLY ASSIGNMENT #5 (WOW THAT TOOK A WHILE) NAME: 1. Find the linear approximation of the function f(x; y; z) = p x2 + y2 + z2 at some point to approximate a value of the number p (3:02)2 + (1:97)2 + (5:99)2. 1 2. Consider your favorite function, the Cobb-Douglas production function. P(L;K) = 1:5L:65K:35 modeling the production of the state of Idaho. Over time we discover that capitol is gradually increasing at an approximate rate of 0:02 units per year. If we decide as a group that we are perfectly happy with our production level and would rather have additional vacation time then how much can we decrease labor by each year and keep the same level of production. In how long(rounded up to the nearest year) will we have an additional week of vacation? 2 3. Use the chain rule to find dz dt or dw=dt (a) z = x?y x+2y x = et; y = e?t. (b) w = sin x cos x x = p t; y = 1=t. 4. Use the chain rule to find @z=@t or @z=@s (a) z = (x ? y)5 x = s2t; y = st2 (b) z = er cos  r = st;  = p x2 + y2. 3 5. The temperature at a point (x; y; z) is given by the function T(x; y; z) = 200e?x2?3y2?9z2 where T is measure in C and x; y; z in meters. (a) Find the rate of change of temperature at the point (2;?1; 2) in the direction toward the point (3;?3; 3). (b) In which direction does the temperature increase fastest, and what is that fastest rate? 4 6. Suppose (1; 1) is a critical point of a function f with continuous second derivatives. In each case, what can you say about f. (a) fxx(1; 1) = 4; fxy(1; 1) = 1; fyy(1; 1) = 2 (b) fxx(1; 1) = 4; fxy(1; 1) = 3; fyy(1; 1) = 2 (c) fxx(1; 1) = ?1; fxy(1; 1) = 6; fyy(1; 1) = 1 (d) fxx(1; 1) = ?1; fxy(1; 1) = 2; fyy(1; 1) = ?8 (e) fxx(1; 1) = 4; fxy(1; 1) = 6; fyy(1; 1) = 9 5 Bonus Show that f(x; y) = x2 + 4y2 ? 4xy + 2 has an infinite number of critical points, and for all of them D = 0 at each one. Then show that f has a local (and absolute) minimum at each critical point. 6

## WEEKLY ASSIGNMENT #5 (WOW THAT TOOK A WHILE) NAME: 1. Find the linear approximation of the function f(x; y; z) = p x2 + y2 + z2 at some point to approximate a value of the number p (3:02)2 + (1:97)2 + (5:99)2. 1 2. Consider your favorite function, the Cobb-Douglas production function. P(L;K) = 1:5L:65K:35 modeling the production of the state of Idaho. Over time we discover that capitol is gradually increasing at an approximate rate of 0:02 units per year. If we decide as a group that we are perfectly happy with our production level and would rather have additional vacation time then how much can we decrease labor by each year and keep the same level of production. In how long(rounded up to the nearest year) will we have an additional week of vacation? 2 3. Use the chain rule to find dz dt or dw=dt (a) z = x?y x+2y x = et; y = e?t. (b) w = sin x cos x x = p t; y = 1=t. 4. Use the chain rule to find @z=@t or @z=@s (a) z = (x ? y)5 x = s2t; y = st2 (b) z = er cos  r = st;  = p x2 + y2. 3 5. The temperature at a point (x; y; z) is given by the function T(x; y; z) = 200e?x2?3y2?9z2 where T is measure in C and x; y; z in meters. (a) Find the rate of change of temperature at the point (2;?1; 2) in the direction toward the point (3;?3; 3). (b) In which direction does the temperature increase fastest, and what is that fastest rate? 4 6. Suppose (1; 1) is a critical point of a function f with continuous second derivatives. In each case, what can you say about f. (a) fxx(1; 1) = 4; fxy(1; 1) = 1; fyy(1; 1) = 2 (b) fxx(1; 1) = 4; fxy(1; 1) = 3; fyy(1; 1) = 2 (c) fxx(1; 1) = ?1; fxy(1; 1) = 6; fyy(1; 1) = 1 (d) fxx(1; 1) = ?1; fxy(1; 1) = 2; fyy(1; 1) = ?8 (e) fxx(1; 1) = 4; fxy(1; 1) = 6; fyy(1; 1) = 9 5 Bonus Show that f(x; y) = x2 + 4y2 ? 4xy + 2 has an infinite number of critical points, and for all of them D = 0 at each one. Then show that f has a local (and absolute) minimum at each critical point. 6

Biomedical Signal and Image Processing (4800_420_001) Assigned on September 12th, 2017 Assignment 4 – Noise and Correlation 1. If a signal is measured as 2.5 V and the noise is 28 mV (28 × 10−3 V), what is the SNR in dB? 2. A single sinusoidal signal is found with some noise. If the RMS value of the noise is 0.5 V and the SNR is 10 dB, what is the RMS amplitude of the sinusoid? 3. The file signal_noise.mat contains a variable x that consists of a 1.0-V peak sinusoidal signal buried in noise. What is the SNR for this signal and noise? Assume that the noise RMS is much greater than the signal RMS. Note: “signal_noise.mat” and other files used in these assignments can be downloaded from the content area of Brightspace, within the “Data Files for Exercises” folder. These files can be opened in Matlab by copying into the active folder and double-clicking on the file or using the Matlab load command using the format: load(‘signal_noise.mat’). To discover the variables within the files use the Matlab who command. 4. An 8-bit ADC converter that has an input range of ±5 V is used to convert a signal that ranges between ±2 V. What is the SNR of the input if the input noise equals the quantization noise of the converter? Hint: Refer to Equation below to find the quantization noise: 5. The file filter1.mat contains the spectrum of a fourth-order lowpass filter as variable x in dB. The file also contains the corresponding frequencies of x in variable freq. Plot the spectrum of this filter both as dB versus log frequency and as linear amplitude versus linear frequency. The frequency axis should range between 10 and 400 Hz in both plots. Hint: Use Equation below to convert: Biomedical Signal and Image Processing (4800_420_001) Assigned on September 12th, 2017 6. Generate one cycle of the square wave similar to the one shown below in a 500-point MATLAB array. Determine the RMS value of this waveform. [Hint: When you take the square of the data array, be sure to use a period before the up arrow so that MATLAB does the squaring point-by-point (i.e., x.^2).]. 7. A resistor produces 10 μV noise (i.e., 10 × 10−6 V noise) when the room temperature is 310 K and the bandwidth is 1 kHz (i.e., 1000 Hz). What current noise would be produced by this resistor? 8. A 3-ma current flows through both a diode (i.e., a semiconductor) and a 20,000-Ω (i.e., 20-kΩ) resistor. What is the net current noise, in? Assume a bandwidth of 1 kHz (i.e., 1 × 103 Hz). Which of the two components is responsible for producing the most noise? 9. Determine if the two signals, x and y, in file correl1.mat are correlated by checking the angle between them. 10. Modify the approach used in Practice Problem 3 to find the angle between short signals: Do not attempt to plot these vectors as it would require a 6-dimensional plot!

## Biomedical Signal and Image Processing (4800_420_001) Assigned on September 12th, 2017 Assignment 4 – Noise and Correlation 1. If a signal is measured as 2.5 V and the noise is 28 mV (28 × 10−3 V), what is the SNR in dB? 2. A single sinusoidal signal is found with some noise. If the RMS value of the noise is 0.5 V and the SNR is 10 dB, what is the RMS amplitude of the sinusoid? 3. The file signal_noise.mat contains a variable x that consists of a 1.0-V peak sinusoidal signal buried in noise. What is the SNR for this signal and noise? Assume that the noise RMS is much greater than the signal RMS. Note: “signal_noise.mat” and other files used in these assignments can be downloaded from the content area of Brightspace, within the “Data Files for Exercises” folder. These files can be opened in Matlab by copying into the active folder and double-clicking on the file or using the Matlab load command using the format: load(‘signal_noise.mat’). To discover the variables within the files use the Matlab who command. 4. An 8-bit ADC converter that has an input range of ±5 V is used to convert a signal that ranges between ±2 V. What is the SNR of the input if the input noise equals the quantization noise of the converter? Hint: Refer to Equation below to find the quantization noise: 5. The file filter1.mat contains the spectrum of a fourth-order lowpass filter as variable x in dB. The file also contains the corresponding frequencies of x in variable freq. Plot the spectrum of this filter both as dB versus log frequency and as linear amplitude versus linear frequency. The frequency axis should range between 10 and 400 Hz in both plots. Hint: Use Equation below to convert: Biomedical Signal and Image Processing (4800_420_001) Assigned on September 12th, 2017 6. Generate one cycle of the square wave similar to the one shown below in a 500-point MATLAB array. Determine the RMS value of this waveform. [Hint: When you take the square of the data array, be sure to use a period before the up arrow so that MATLAB does the squaring point-by-point (i.e., x.^2).]. 7. A resistor produces 10 μV noise (i.e., 10 × 10−6 V noise) when the room temperature is 310 K and the bandwidth is 1 kHz (i.e., 1000 Hz). What current noise would be produced by this resistor? 8. A 3-ma current flows through both a diode (i.e., a semiconductor) and a 20,000-Ω (i.e., 20-kΩ) resistor. What is the net current noise, in? Assume a bandwidth of 1 kHz (i.e., 1 × 103 Hz). Which of the two components is responsible for producing the most noise? 9. Determine if the two signals, x and y, in file correl1.mat are correlated by checking the angle between them. 10. Modify the approach used in Practice Problem 3 to find the angle between short signals: Do not attempt to plot these vectors as it would require a 6-dimensional plot!

Whatsapp +919911743277
Go to Phonebust.com and answer those questions Question 1: you may go to the actual web site to find out what types of information/services they offer. Tell me the name of the site you chose, and then write a short description of what information you can obtain using this site.

## Go to Phonebust.com and answer those questions Question 1: you may go to the actual web site to find out what types of information/services they offer. Tell me the name of the site you chose, and then write a short description of what information you can obtain using this site.

Website address: http://www.phonebust.com/ Type of services/Information: 1st Source Investigations is … Read More...