2. Career development process is complex and rapidly evolving and new theories are continually developing presenting challenges to traditional understandings. Discuss why an understanding of career development processes is critical to management, employee and organizational success.

2. Career development process is complex and rapidly evolving and new theories are continually developing presenting challenges to traditional understandings. Discuss why an understanding of career development processes is critical to management, employee and organizational success.

Studies are at the present extrapolative huge employment income in … Read More...
CEE 260 / MIE 273 Probability & Statistics Name: Final Exam, version D — 100 points (120 minutes) PLEASE READ QUESTIONS CAREFULLY and SHOW YOUR WORK! CALCULATORS PERMITTED – ABSOLUTELY NO REFERENCES! 1. Suppose the waiting time (in minutes) for your 911 SC Targa to reach operating temperature in the morning is uniformly distributed on [0,10], while the waiting time in the evening is uniformly distributed on [0,5] independent of morning waiting time. a. (5%) If you drive your Targa each morning and evening for a week (5 morning and 5 evening rides), what is the variance of your total waiting time? b. (5%) What is the expected value of the difference between morning and evening waiting time on a given day? 2. (10%) Find the maximum likelihood estimator (MLE) of ϴ when Xi ~ Exponential(ϴ) and you have observed X1, X2, X3, …, Xn. 2 3. The waiting time for delivery of a new Porsche 911 Carrera at the local dealership is distributed exponentially with a population mean of 3.55 months and population standard deviation of 1.1 months. Recently, in an effort to reduce the waiting time, the dealership has experimented with an online ordering system. A sample of 100 customers during a recent sales promotion generated a mean waiting time of 3.18 months using the new system. Assume that the population standard deviation of the waiting time has not changed from 1.1 months. (hint: the source distribution is irrelevant, but its parameters are relevant) a. (15%) What is the probability that the average wait time is between 3.2 and 6.4 months? (hint: draw a sketch for full credit) b. (10%) At the 0.05 level of significance, using the critical values approach to hypothesis testing, is there evidence that the population mean waiting time to accept delivery is less than 3.55 months? c. (10%) At the 0.01 level of significance, using the p-value approach to hypothesis testing, is there evidence that the population mean waiting time to accept delivery is less than 3.55 months? 3 4. Porsche AG is a leading manufacturer of performance automobiles. The 911 Carrera model, Porsche’s premier sports car, reaches a top track speed of 180 miles per hour. Engineers claim the new advanced technology 911 GT2 automatically adjusts its top speed depending on the weather conditions. Suppose that in an effort to test this claim, Porsche selects a few 911 GT2 models to test drive on the company track in Stuttgart, Germany. The average top speed for the sample of 25 test drives is 182.36 mph, with a standard deviation of 7.24 mph. a. (5%) Without using complete sentences, what might be some problems with the sampling conducted above? Identify and explain at least 2. b. (15%) Using the critical values approach to hypothesis testing and a 0.10 level of significance, is there evidence that the mean top track speed is different for the 911 GT2? (hint: state the null and alternative hypotheses, draw a sketch, and show your work for full credit) c. (10%) Set up a 95% confidence interval estimate of the population mean top speed of the 911 GT2. d. (5%) Compare the results of (b) and (c). What conclusions do you reach about the top speed of the new 911 GT2? 4 5. (10%) Porsche USA believes that sales of the venerable 911 Carrera are a function of annual income (in thousands of dollars) and a risk tolerance index of the potential buyer. Determine the regression equation and provide a succinct analysis of Porsche’s conjecture using the following Excel results. SUMMARY OUTPUT Regression Stat istics Multiple R 0.805073 R Square 0.648142 Adjusted R Square 0.606747 Standard Error 7.76312 Observations 20 ANOVA df SS MS F Significance F Regression 2 1887.227445 943.6137225 15.65747206 0.000139355 Residual 17 1024.522555 60.26603265 Total 19 2911.75 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 23.50557 6.845545641 3.433702952 0.003167982 9.062731576 37.94840898 Income 0.613408 0.125421229 4.890786567 0.000137795 0.348792801 0.878024121 Risk Index -0.00126 0.004519817 -0.278357691 0.784095184 -0.010794106 0.008277854 BONUS (5 points) What is the probability that 2 or more students in our class of 22 have the same birthday?

CEE 260 / MIE 273 Probability & Statistics Name: Final Exam, version D — 100 points (120 minutes) PLEASE READ QUESTIONS CAREFULLY and SHOW YOUR WORK! CALCULATORS PERMITTED – ABSOLUTELY NO REFERENCES! 1. Suppose the waiting time (in minutes) for your 911 SC Targa to reach operating temperature in the morning is uniformly distributed on [0,10], while the waiting time in the evening is uniformly distributed on [0,5] independent of morning waiting time. a. (5%) If you drive your Targa each morning and evening for a week (5 morning and 5 evening rides), what is the variance of your total waiting time? b. (5%) What is the expected value of the difference between morning and evening waiting time on a given day? 2. (10%) Find the maximum likelihood estimator (MLE) of ϴ when Xi ~ Exponential(ϴ) and you have observed X1, X2, X3, …, Xn. 2 3. The waiting time for delivery of a new Porsche 911 Carrera at the local dealership is distributed exponentially with a population mean of 3.55 months and population standard deviation of 1.1 months. Recently, in an effort to reduce the waiting time, the dealership has experimented with an online ordering system. A sample of 100 customers during a recent sales promotion generated a mean waiting time of 3.18 months using the new system. Assume that the population standard deviation of the waiting time has not changed from 1.1 months. (hint: the source distribution is irrelevant, but its parameters are relevant) a. (15%) What is the probability that the average wait time is between 3.2 and 6.4 months? (hint: draw a sketch for full credit) b. (10%) At the 0.05 level of significance, using the critical values approach to hypothesis testing, is there evidence that the population mean waiting time to accept delivery is less than 3.55 months? c. (10%) At the 0.01 level of significance, using the p-value approach to hypothesis testing, is there evidence that the population mean waiting time to accept delivery is less than 3.55 months? 3 4. Porsche AG is a leading manufacturer of performance automobiles. The 911 Carrera model, Porsche’s premier sports car, reaches a top track speed of 180 miles per hour. Engineers claim the new advanced technology 911 GT2 automatically adjusts its top speed depending on the weather conditions. Suppose that in an effort to test this claim, Porsche selects a few 911 GT2 models to test drive on the company track in Stuttgart, Germany. The average top speed for the sample of 25 test drives is 182.36 mph, with a standard deviation of 7.24 mph. a. (5%) Without using complete sentences, what might be some problems with the sampling conducted above? Identify and explain at least 2. b. (15%) Using the critical values approach to hypothesis testing and a 0.10 level of significance, is there evidence that the mean top track speed is different for the 911 GT2? (hint: state the null and alternative hypotheses, draw a sketch, and show your work for full credit) c. (10%) Set up a 95% confidence interval estimate of the population mean top speed of the 911 GT2. d. (5%) Compare the results of (b) and (c). What conclusions do you reach about the top speed of the new 911 GT2? 4 5. (10%) Porsche USA believes that sales of the venerable 911 Carrera are a function of annual income (in thousands of dollars) and a risk tolerance index of the potential buyer. Determine the regression equation and provide a succinct analysis of Porsche’s conjecture using the following Excel results. SUMMARY OUTPUT Regression Stat istics Multiple R 0.805073 R Square 0.648142 Adjusted R Square 0.606747 Standard Error 7.76312 Observations 20 ANOVA df SS MS F Significance F Regression 2 1887.227445 943.6137225 15.65747206 0.000139355 Residual 17 1024.522555 60.26603265 Total 19 2911.75 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 23.50557 6.845545641 3.433702952 0.003167982 9.062731576 37.94840898 Income 0.613408 0.125421229 4.890786567 0.000137795 0.348792801 0.878024121 Risk Index -0.00126 0.004519817 -0.278357691 0.784095184 -0.010794106 0.008277854 BONUS (5 points) What is the probability that 2 or more students in our class of 22 have the same birthday?

info@checkyourstudy.com CEE 260 / MIE 273 Probability & Statistics Name: … Read More...
In case the body have to stay in lower temperature for extended time period (more than 1 hour), how does the body regulate its response?

In case the body have to stay in lower temperature for extended time period (more than 1 hour), how does the body regulate its response?

Arterioles transporting blood to external capillaries beneath the surface of … Read More...
4. Name a big idea (major concept) in your subject area and write a one paragraph rationale for why students should learn it.

4. Name a big idea (major concept) in your subject area and write a one paragraph rationale for why students should learn it.

Computer education improves students’ investigation skill by encouraging them to … Read More...
How will this affect its mechanical properties (strength, ductility)? Hint: think about how the motion of dislocations is blocked by grain boundaries.

How will this affect its mechanical properties (strength, ductility)? Hint: think about how the motion of dislocations is blocked by grain boundaries.

info@checkyourstudy.com Also, during recrystallization, the mechanical properties that were changed … Read More...
1 REQUIREMENTS You will need to complete the following tasks and deliver your finding in a written report by August 6th. Research the six scenarios given below in option 1 for added capacity to uncover any additional costs/benefits to society these options might pose. Write a two page summary describing each scenario. Discuss the pros and cons of each scenario, including such items as renewable sources of fuel, environmental factors, etc. Give examples of each type of project by name and location and indicate the sources of your information. Please use either IEEE or APA style. Do an economic analysis of the six scenarios. Use a 20-year period and assume an inflation rate of 4 percent. Include your calculations and any assumptions in the report. Also answer the following questions: Which scenario is the best from an economic basis? Are there any other considerations, such as environmental/health/social issues, which should be considered? Which scenario have you selected based on the answers to a and b? What is the estimated timeframe to implement the different options? (base your timelines on existing projects of similar size if possible, use MS Project/Project Libre to generate the timelines) Make a recommendation regarding the best option for the utility. 2 Situations A utility company in one of the western states is considering the addition of 50 megawatts of generating capacity to meet expected demands for electrical energy by the year 2025. The three options that the utility has are: Add generating capacity. Constructing one of the scenarios below would do this. Purchase power from Canada under terms of a 20-year contract. Do neither of the above. This assumes that brownouts will occur during high demand periods. The utility presently has 200 megawatts of installed capacity and generates an average of 1.2 billion kilowatt-hours annually. Maximum generation capability is 1.3 billion kW-hours. By the year 2025, this reserve of 100,000,000 kW-hours will be used. 2.1 OPTION 1 – ADD GENERATING CAPACITY For this option there are six possible scenarios: Hydroelectric dam. Initial cost is $ 50 million. Annual operating and maintenance cost is $ 1.7 million. Project life is 30 years before a major rebuild is required. Wind farm. Initial cost is $ 28 million. Annual operating and maintenance cost is $ 2.5 million. Project life is 12 years. At this time new equipment will be required. Solar power. Initial cost is $ 32 million. Annual operating and maintenance cost is $ 1.1 million. Project life is 10 years. Natural gas turbines. Initial cost is $ 14 million. Annual operating and maintenance cost is $2.0 million. Project life is 12 years. Nuclear plant. Initial cost is $ 70 million. Annual operating and maintenance cost is $ 2.0 million. Project life is 25 years. Coal-fired turbines. Initial cost is $ 35 million. Annual operating and maintenance cost is $ 2.7 million. Project life is 28 years. 2.2 OPTION 2 – BUY POWER FROM CANADA The annual additional energy requirement is 350,000,000 kilowatt-hours. The cost of energy from Canada is 1.48 cents per kilowatt-hour for the first year. The price will be escalated at 4 percent annually for the 20-year contract period. 2.3 OPTION 3 – DO NOTHING Local municipalities are very opposed to this option since companies may have to close down for short periods of time. Also, it would be very difficult to attract new businesses. If nothing is done, by the year 2025 it is anticipated that some companies will be without power for short periods of time during the summer months. These are known as brownouts. It is estimated, based on historical data that these outages will occur once a week during July and August for periods of 6 hours.

1 REQUIREMENTS You will need to complete the following tasks and deliver your finding in a written report by August 6th. Research the six scenarios given below in option 1 for added capacity to uncover any additional costs/benefits to society these options might pose. Write a two page summary describing each scenario. Discuss the pros and cons of each scenario, including such items as renewable sources of fuel, environmental factors, etc. Give examples of each type of project by name and location and indicate the sources of your information. Please use either IEEE or APA style. Do an economic analysis of the six scenarios. Use a 20-year period and assume an inflation rate of 4 percent. Include your calculations and any assumptions in the report. Also answer the following questions: Which scenario is the best from an economic basis? Are there any other considerations, such as environmental/health/social issues, which should be considered? Which scenario have you selected based on the answers to a and b? What is the estimated timeframe to implement the different options? (base your timelines on existing projects of similar size if possible, use MS Project/Project Libre to generate the timelines) Make a recommendation regarding the best option for the utility. 2 Situations A utility company in one of the western states is considering the addition of 50 megawatts of generating capacity to meet expected demands for electrical energy by the year 2025. The three options that the utility has are: Add generating capacity. Constructing one of the scenarios below would do this. Purchase power from Canada under terms of a 20-year contract. Do neither of the above. This assumes that brownouts will occur during high demand periods. The utility presently has 200 megawatts of installed capacity and generates an average of 1.2 billion kilowatt-hours annually. Maximum generation capability is 1.3 billion kW-hours. By the year 2025, this reserve of 100,000,000 kW-hours will be used. 2.1 OPTION 1 – ADD GENERATING CAPACITY For this option there are six possible scenarios: Hydroelectric dam. Initial cost is $ 50 million. Annual operating and maintenance cost is $ 1.7 million. Project life is 30 years before a major rebuild is required. Wind farm. Initial cost is $ 28 million. Annual operating and maintenance cost is $ 2.5 million. Project life is 12 years. At this time new equipment will be required. Solar power. Initial cost is $ 32 million. Annual operating and maintenance cost is $ 1.1 million. Project life is 10 years. Natural gas turbines. Initial cost is $ 14 million. Annual operating and maintenance cost is $2.0 million. Project life is 12 years. Nuclear plant. Initial cost is $ 70 million. Annual operating and maintenance cost is $ 2.0 million. Project life is 25 years. Coal-fired turbines. Initial cost is $ 35 million. Annual operating and maintenance cost is $ 2.7 million. Project life is 28 years. 2.2 OPTION 2 – BUY POWER FROM CANADA The annual additional energy requirement is 350,000,000 kilowatt-hours. The cost of energy from Canada is 1.48 cents per kilowatt-hour for the first year. The price will be escalated at 4 percent annually for the 20-year contract period. 2.3 OPTION 3 – DO NOTHING Local municipalities are very opposed to this option since companies may have to close down for short periods of time. Also, it would be very difficult to attract new businesses. If nothing is done, by the year 2025 it is anticipated that some companies will be without power for short periods of time during the summer months. These are known as brownouts. It is estimated, based on historical data that these outages will occur once a week during July and August for periods of 6 hours.

1 REQUIREMENTS You will need to complete the following tasks … Read More...
Write one question each for convergent, divergent, evaluation, and reflective questioning. Come up with your own examples; do NOT use the examples in the book.

Write one question each for convergent, divergent, evaluation, and reflective questioning. Come up with your own examples; do NOT use the examples in the book.

  Convergent “On reflecting over the entirety of the play … Read More...
What is meant by the term viscoelasticity

What is meant by the term viscoelasticity

In actuality all materials depart from Hooke’s law in numerous … Read More...