____ types of asphalt paving are in common use. Two Four Three Five ___ is the act of remodeling the existing land form to provide a level area for a structure, create circulation paths, and create drainage and landscape features. Grading Excavating Sheeting Caissoning ____ foundations use long wood, concrete, or steel piles that are driven into the earth. Pile Mat Spread Caisson ____ hammers use a heavy weight lifted up vertical rails called leads. Diesel Vibratory Single-acting steam Drop ____ of soil refers to increasing its density by mechanically forcing the soil particles closer together. Blending Compaction Shaking Consolidation ____ are temporary watertight enclosures used either in water-bearing soil or directly in water. Cofferdams Caissons Slurries Sheet pilings The ____ was developed by the U.S. Army Corps of Engineers to classify soils for use in roads, embankments, and foundations. Unified Soil Classification System American Association of State Highway and Transportation Officials System Chicago Center for Green Technologies American Society of Testing and Materials ____ piles utilize heavy-gauge steel pipes that are driven with an open end. H Precast concrete Pipe Timber A ____ test ascertains the consistency of a soil sample near the plastic limit. dry strength toughness soil coarseness shaking ____ techniques involve lowering the level of subsurface water on a site to allow excavation to occur in a dry and stable environment. Underpinning Excavating Dewatering Sheeting Clays and silty clay soils can be stabilized through the addition of ____, which produces a chemical reaction. calcium carbon ore lime ____ foundations are reinforced concrete slabs several feet in thickness that cover the entire footprint of a building. Pile Mat Spread Caisson ____, in the form of sheet piling, lagging, and slurry walls, is used to hold up the face of an excavation. Excavating Grading Anchoring Sheeting Predominantly granular soils that have minute amounts of clay particles can be stabilized by blending them with ____. Portland cement asphalt rock salt lime A ____ foundation is a pier that is drilled into the earth, filled with the required reinforcing steel, and poured with concrete. caisson spread mat pile

____ types of asphalt paving are in common use. Two Four Three Five ___ is the act of remodeling the existing land form to provide a level area for a structure, create circulation paths, and create drainage and landscape features. Grading Excavating Sheeting Caissoning ____ foundations use long wood, concrete, or steel piles that are driven into the earth. Pile Mat Spread Caisson ____ hammers use a heavy weight lifted up vertical rails called leads. Diesel Vibratory Single-acting steam Drop ____ of soil refers to increasing its density by mechanically forcing the soil particles closer together. Blending Compaction Shaking Consolidation ____ are temporary watertight enclosures used either in water-bearing soil or directly in water. Cofferdams Caissons Slurries Sheet pilings The ____ was developed by the U.S. Army Corps of Engineers to classify soils for use in roads, embankments, and foundations. Unified Soil Classification System American Association of State Highway and Transportation Officials System Chicago Center for Green Technologies American Society of Testing and Materials ____ piles utilize heavy-gauge steel pipes that are driven with an open end. H Precast concrete Pipe Timber A ____ test ascertains the consistency of a soil sample near the plastic limit. dry strength toughness soil coarseness shaking ____ techniques involve lowering the level of subsurface water on a site to allow excavation to occur in a dry and stable environment. Underpinning Excavating Dewatering Sheeting Clays and silty clay soils can be stabilized through the addition of ____, which produces a chemical reaction. calcium carbon ore lime ____ foundations are reinforced concrete slabs several feet in thickness that cover the entire footprint of a building. Pile Mat Spread Caisson ____, in the form of sheet piling, lagging, and slurry walls, is used to hold up the face of an excavation. Excavating Grading Anchoring Sheeting Predominantly granular soils that have minute amounts of clay particles can be stabilized by blending them with ____. Portland cement asphalt rock salt lime A ____ foundation is a pier that is drilled into the earth, filled with the required reinforcing steel, and poured with concrete. caisson spread mat pile

____ types of asphalt paving are in common use. Two … Read More...
You will receive no credit for items you complete after the assignment is due. Grading Policy Exercise 2.5 Starting from the front door of your ranch house, you walk 60.0 due east to your windmill, and then you turn around and slowly walk 35.0 west to a bench where you sit and watch the sunrise. It takes you 27.0 to walk from your house to the windmill and then 49.0 to walk from the windmill to the bench. Part A For the entire trip from your front door to the bench, what is your average velocity? Express your answer with the appropriate units. ANSWER: Correct Part B For the entire trip from your front door to the bench, what is your average speed? Express your answer with the appropriate units. ANSWER: Correct Exercise 2.7 A car is stopped at a traffic light. It then travels along a straight road so that its distance from the light is given by , where = 2.40 and = 0.110 . = -0.329 average speed = 1.25 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 1 of 16 3/23/2015 11:12 AM Part A Calculate the average velocity of the car for the time interval = 0 to = 10.0 . ANSWER: Correct Part B Calculate the instantaneous velocity of the car at =0. ANSWER: Correct Part C Calculate the instantaneous velocity of the car at =5.00 . ANSWER: Correct Part D Calculate the instantaneous velocity of the car at =10.0 . ANSWER: Correct Part E How long after starting from rest is the car again at rest? ANSWER: = 13.0 = 0 = 15.8 = 15.0 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 2 of 16 3/23/2015 11:12 AM Correct Exercise 2.9 A ball moves in a straight line (the x-axis). The graph in the figure shows this ball’s velocity as a function of time. Part A What are the ball’s average velocity during the first 2.8 ? Express your answer using two significant figures. ANSWER: Answer Requested Part B What are the ball’s average speed during the first 2.8 ? Express your answer using two significant figures. ANSWER: Correct = 14.5 = 2.3 = 2.3 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 3 of 16 3/23/2015 11:12 AM Part C Suppose that the ball moved in such a way that the graph segment after 2.0 was -3.0 instead of +3.0 . Find the ball’s and average velocity during the first 2.8 in this case. Express your answer using two significant figures. ANSWER: All attempts used; correct answer displayed Part D Suppose that the ball moved in such a way that the graph segment after 2.0 was -3.0 instead of +3.0 . Find the ball’s average speed during the first 2.8 in this case. Express your answer using two significant figures. ANSWER: Correct Exercise 2.13 Part A The table shows test data for the Bugatti Veyron, the fastest car made. The car is moving in a straight line (the x-axis). Time 0 2.10 20.0 53.0 Speed 0 60.0 205 259 Calculate the car’s average acceleration (in ) between 0 and 2.1 . ANSWER: Correct Part B Calculate the car’s average acceleration (in ) between 2.1 and 20.0 . = 0.57 = 2.3 = 12.8 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 4 of 16 3/23/2015 11:12 AM ANSWER: Correct Part C Calculate the car’s average acceleration (in ) between 20.0 and 53 . ANSWER: Correct Exercise 2.19 An antelope moving with constant acceleration covers the distance 79.0 between two points in time 7.00 . Its speed as it passes the second point is 14.5 . Part A What is its speed at the first point? ANSWER: Correct Part B What is the acceleration? ANSWER: Correct Exercise 2.22 In the fastest measured tennis serve, the ball left the racquet at 73.14 . A served tennis ball is typically in contact with = 3.62 = 0.731 = 8.07 = 0.918 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 5 of 16 3/23/2015 11:12 AM the racquet for 27.0 and starts from rest. Assume constant acceleration. Part A What was the ball’s acceleration during this serve? ANSWER: Correct Part B How far did the ball travel during the serve? ANSWER: Correct Exercise 2.30 A cat walks in a straight line, which we shall call the x-axis with the positive direction to the right. As an observant physicist, you make measurements of this cat’s motion and construct a graph of the feline’s velocity as a function of time (the figure ). Part A Find the cat’s velocity at = 5.0 . Express your answer using two significant figures. ANSWER: = 2710 = 0.987 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 6 of 16 3/23/2015 11:12 AM Correct Part B Find the cat’s velocity at = 8.0 . Express your answer using two significant figures. ANSWER: Correct Part C What is the cat’s acceleration at ? Express your answer using two significant figures. ANSWER: Correct Part D What is the cat’s acceleration at ? Express your answer using two significant figures. ANSWER: Correct Part E What is the cat’s acceleration at ? Express your answer using two significant figures. ANSWER: = 1.3 = -2.7 = -1.3 = -1.3 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 7 of 16 3/23/2015 11:12 AM Correct Part F What distance does the cat move during the first 4.5 ? Express your answer using two significant figures. ANSWER: Correct Part G What distance does the cat move from to ? Express your answer using two significant figures. ANSWER: Correct Part H Sketch clear graph of the cat’s acceleration as function of time, assuming that the cat started at the origin. ANSWER: = -1.3 = 23 = 26 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 8 of 16 3/23/2015 11:12 AM Correct Part I Sketch clear graph of the cat’s position as function of time, assuming that the cat started at the origin. ANSWER: Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 9 of 16 3/23/2015 11:12 AM All attempts used; correct answer displayed Exercise 2.35 Part A If a flea can jump straight up to a height of 0.510 , what is its initial speed as it leaves the ground? ANSWER: Correct Part B How long is it in the air? ANSWER: Correct = 3.16 = 0.645 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 10 of 16 3/23/2015 11:12 AM Exercise 2.36 A small rock is thrown vertically upward with a speed of 18.0 from the edge of the roof of a 39.0 tall building. The rock doesn’t hit the building on its way back down and lands in the street below. Air resistance can be neglected. Part A What is the speed of the rock just before it hits the street? Express your answer with the appropriate units. ANSWER: Correct Part B How much time elapses from when the rock is thrown until it hits the street? Express your answer with the appropriate units. ANSWER: Correct Exercise 2.38 You throw a glob of putty straight up toward the ceiling, which is 3.00 above the point where the putty leaves your hand. The initial speed of the putty as it leaves your hand is 9.70 . Part A What is the speed of the putty just before it strikes the ceiling? Express your answer with the appropriate units. ANSWER: Correct Part B = 33.0 = 5.20 = 5.94 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 11 of 16 3/23/2015 11:12 AM How much time from when it leaves your hand does it take the putty to reach the ceiling? Express your answer with the appropriate units. ANSWER: Correct Exercise 3.1 A squirrel has x- and y-coordinates ( 1.2 , 3.3 ) at time and coordinates ( 5.3 , -0.80 ) at time = 2.6 . Part A For this time interval, find the x-component of the average velocity. Express your answer using two significant figures. ANSWER: Correct Part B For this time interval, find the y-component of the average velocity. Express your answer using two significant figures. ANSWER: Correct Part C Find the magnitude of the average velocity. Express your answer using two significant figures. ANSWER: = 0.384 = 1.6 = -1.6 = 2.2 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 12 of 16 3/23/2015 11:12 AM Correct Part D Find the direction of the average velocity. Express your answer using two significant figures. ANSWER: Correct Exercise 3.3 A web page designer creates an animation in which a dot on a computer screen has a position of 4.1 2.1 4.7 . Part A Find the average velocity of the dot between and . Give your answer as a pair of components separated by a comma. For example, if you think the x component is 3 and the y component is 4, then you should enter 3,4. Express your answer using two significant figures. ANSWER: Correct Part B Find the instantaneous velocity at . Give your answer as a pair of components separated by a comma. For example, if you think the x component is 3 and the y component is 4, then you should enter 3,4. Express your answer using two significant figures. ANSWER: Correct Part C = 45 below the x-axis = 4.2,4.7 = 0,4.7 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 13 of 16 3/23/2015 11:12 AM Find the instantaneous velocity at . Give your answer as a pair of components separated by a comma. For example, if you think the x component is 3 and the y component is 4, then you should enter 3,4. Express your answer using two significant figures. ANSWER: Correct Part D Find the instantaneous velocity at . Give your answer as a pair of components separated by a comma. For example, if you think the x component is 3 and the y component is 4, then you should enter 3,4. Express your answer using two significant figures. ANSWER: Correct Exercise 3.5 A jet plane is flying at a constant altitude. At time it has components of velocity 89 , 108 . At time 32.5 the components are 165 , 37 . Part A For this time interval calculate the average acceleration. Give your answer as a pair of components separated by a comma. For example, if you think the x component is 3 and the y component is 4, then you should enter 3,4. Express your answer using two significant figures. ANSWER: Correct Part B Find the magnitude of the average acceleration. Express your answer using two significant figures. ANSWER: = 4.2,4.7 = 8.4,4.7 = 2.3,-2.2 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 14 of 16 3/23/2015 11:12 AM Correct Part C Find the direction of the average acceleration (let the direction be the angle that the vector makes with the +x-axis, measured counterclockwise). ANSWER: Correct Exercise 3.4 The position of a squirrel running in a park is given by . Part A What is , the -component of the velocity of the squirrel, as function of time? ANSWER: Correct Part B What is , the y-component of the velocity of the squirrel, as function of time? ANSWER: = 3.2 = -43.1 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 15 of 16 3/23/2015 11:12 AM Correct Part C At 4.51 , how far is the squirrel from its initial position? Express your answer to three significant figures and include the appropriate units. ANSWER: All attempts used; correct answer displayed Part D At 4.51 , what is the magnitude of the squirrel’s velocity? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part E At 4.51 , what is the direction (in degrees counterclockwise from +x-axis) of the squirrel’s velocity? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 90.1%. You received 14.42 out of a possible total of 16 points. = 2.65 = 1.31 = 62.5 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 16 of 16 3/23/2015 11:12 AM

You will receive no credit for items you complete after the assignment is due. Grading Policy Exercise 2.5 Starting from the front door of your ranch house, you walk 60.0 due east to your windmill, and then you turn around and slowly walk 35.0 west to a bench where you sit and watch the sunrise. It takes you 27.0 to walk from your house to the windmill and then 49.0 to walk from the windmill to the bench. Part A For the entire trip from your front door to the bench, what is your average velocity? Express your answer with the appropriate units. ANSWER: Correct Part B For the entire trip from your front door to the bench, what is your average speed? Express your answer with the appropriate units. ANSWER: Correct Exercise 2.7 A car is stopped at a traffic light. It then travels along a straight road so that its distance from the light is given by , where = 2.40 and = 0.110 . = -0.329 average speed = 1.25 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 1 of 16 3/23/2015 11:12 AM Part A Calculate the average velocity of the car for the time interval = 0 to = 10.0 . ANSWER: Correct Part B Calculate the instantaneous velocity of the car at =0. ANSWER: Correct Part C Calculate the instantaneous velocity of the car at =5.00 . ANSWER: Correct Part D Calculate the instantaneous velocity of the car at =10.0 . ANSWER: Correct Part E How long after starting from rest is the car again at rest? ANSWER: = 13.0 = 0 = 15.8 = 15.0 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 2 of 16 3/23/2015 11:12 AM Correct Exercise 2.9 A ball moves in a straight line (the x-axis). The graph in the figure shows this ball’s velocity as a function of time. Part A What are the ball’s average velocity during the first 2.8 ? Express your answer using two significant figures. ANSWER: Answer Requested Part B What are the ball’s average speed during the first 2.8 ? Express your answer using two significant figures. ANSWER: Correct = 14.5 = 2.3 = 2.3 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 3 of 16 3/23/2015 11:12 AM Part C Suppose that the ball moved in such a way that the graph segment after 2.0 was -3.0 instead of +3.0 . Find the ball’s and average velocity during the first 2.8 in this case. Express your answer using two significant figures. ANSWER: All attempts used; correct answer displayed Part D Suppose that the ball moved in such a way that the graph segment after 2.0 was -3.0 instead of +3.0 . Find the ball’s average speed during the first 2.8 in this case. Express your answer using two significant figures. ANSWER: Correct Exercise 2.13 Part A The table shows test data for the Bugatti Veyron, the fastest car made. The car is moving in a straight line (the x-axis). Time 0 2.10 20.0 53.0 Speed 0 60.0 205 259 Calculate the car’s average acceleration (in ) between 0 and 2.1 . ANSWER: Correct Part B Calculate the car’s average acceleration (in ) between 2.1 and 20.0 . = 0.57 = 2.3 = 12.8 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 4 of 16 3/23/2015 11:12 AM ANSWER: Correct Part C Calculate the car’s average acceleration (in ) between 20.0 and 53 . ANSWER: Correct Exercise 2.19 An antelope moving with constant acceleration covers the distance 79.0 between two points in time 7.00 . Its speed as it passes the second point is 14.5 . Part A What is its speed at the first point? ANSWER: Correct Part B What is the acceleration? ANSWER: Correct Exercise 2.22 In the fastest measured tennis serve, the ball left the racquet at 73.14 . A served tennis ball is typically in contact with = 3.62 = 0.731 = 8.07 = 0.918 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 5 of 16 3/23/2015 11:12 AM the racquet for 27.0 and starts from rest. Assume constant acceleration. Part A What was the ball’s acceleration during this serve? ANSWER: Correct Part B How far did the ball travel during the serve? ANSWER: Correct Exercise 2.30 A cat walks in a straight line, which we shall call the x-axis with the positive direction to the right. As an observant physicist, you make measurements of this cat’s motion and construct a graph of the feline’s velocity as a function of time (the figure ). Part A Find the cat’s velocity at = 5.0 . Express your answer using two significant figures. ANSWER: = 2710 = 0.987 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 6 of 16 3/23/2015 11:12 AM Correct Part B Find the cat’s velocity at = 8.0 . Express your answer using two significant figures. ANSWER: Correct Part C What is the cat’s acceleration at ? Express your answer using two significant figures. ANSWER: Correct Part D What is the cat’s acceleration at ? Express your answer using two significant figures. ANSWER: Correct Part E What is the cat’s acceleration at ? Express your answer using two significant figures. ANSWER: = 1.3 = -2.7 = -1.3 = -1.3 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 7 of 16 3/23/2015 11:12 AM Correct Part F What distance does the cat move during the first 4.5 ? Express your answer using two significant figures. ANSWER: Correct Part G What distance does the cat move from to ? Express your answer using two significant figures. ANSWER: Correct Part H Sketch clear graph of the cat’s acceleration as function of time, assuming that the cat started at the origin. ANSWER: = -1.3 = 23 = 26 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 8 of 16 3/23/2015 11:12 AM Correct Part I Sketch clear graph of the cat’s position as function of time, assuming that the cat started at the origin. ANSWER: Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 9 of 16 3/23/2015 11:12 AM All attempts used; correct answer displayed Exercise 2.35 Part A If a flea can jump straight up to a height of 0.510 , what is its initial speed as it leaves the ground? ANSWER: Correct Part B How long is it in the air? ANSWER: Correct = 3.16 = 0.645 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 10 of 16 3/23/2015 11:12 AM Exercise 2.36 A small rock is thrown vertically upward with a speed of 18.0 from the edge of the roof of a 39.0 tall building. The rock doesn’t hit the building on its way back down and lands in the street below. Air resistance can be neglected. Part A What is the speed of the rock just before it hits the street? Express your answer with the appropriate units. ANSWER: Correct Part B How much time elapses from when the rock is thrown until it hits the street? Express your answer with the appropriate units. ANSWER: Correct Exercise 2.38 You throw a glob of putty straight up toward the ceiling, which is 3.00 above the point where the putty leaves your hand. The initial speed of the putty as it leaves your hand is 9.70 . Part A What is the speed of the putty just before it strikes the ceiling? Express your answer with the appropriate units. ANSWER: Correct Part B = 33.0 = 5.20 = 5.94 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 11 of 16 3/23/2015 11:12 AM How much time from when it leaves your hand does it take the putty to reach the ceiling? Express your answer with the appropriate units. ANSWER: Correct Exercise 3.1 A squirrel has x- and y-coordinates ( 1.2 , 3.3 ) at time and coordinates ( 5.3 , -0.80 ) at time = 2.6 . Part A For this time interval, find the x-component of the average velocity. Express your answer using two significant figures. ANSWER: Correct Part B For this time interval, find the y-component of the average velocity. Express your answer using two significant figures. ANSWER: Correct Part C Find the magnitude of the average velocity. Express your answer using two significant figures. ANSWER: = 0.384 = 1.6 = -1.6 = 2.2 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 12 of 16 3/23/2015 11:12 AM Correct Part D Find the direction of the average velocity. Express your answer using two significant figures. ANSWER: Correct Exercise 3.3 A web page designer creates an animation in which a dot on a computer screen has a position of 4.1 2.1 4.7 . Part A Find the average velocity of the dot between and . Give your answer as a pair of components separated by a comma. For example, if you think the x component is 3 and the y component is 4, then you should enter 3,4. Express your answer using two significant figures. ANSWER: Correct Part B Find the instantaneous velocity at . Give your answer as a pair of components separated by a comma. For example, if you think the x component is 3 and the y component is 4, then you should enter 3,4. Express your answer using two significant figures. ANSWER: Correct Part C = 45 below the x-axis = 4.2,4.7 = 0,4.7 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 13 of 16 3/23/2015 11:12 AM Find the instantaneous velocity at . Give your answer as a pair of components separated by a comma. For example, if you think the x component is 3 and the y component is 4, then you should enter 3,4. Express your answer using two significant figures. ANSWER: Correct Part D Find the instantaneous velocity at . Give your answer as a pair of components separated by a comma. For example, if you think the x component is 3 and the y component is 4, then you should enter 3,4. Express your answer using two significant figures. ANSWER: Correct Exercise 3.5 A jet plane is flying at a constant altitude. At time it has components of velocity 89 , 108 . At time 32.5 the components are 165 , 37 . Part A For this time interval calculate the average acceleration. Give your answer as a pair of components separated by a comma. For example, if you think the x component is 3 and the y component is 4, then you should enter 3,4. Express your answer using two significant figures. ANSWER: Correct Part B Find the magnitude of the average acceleration. Express your answer using two significant figures. ANSWER: = 4.2,4.7 = 8.4,4.7 = 2.3,-2.2 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 14 of 16 3/23/2015 11:12 AM Correct Part C Find the direction of the average acceleration (let the direction be the angle that the vector makes with the +x-axis, measured counterclockwise). ANSWER: Correct Exercise 3.4 The position of a squirrel running in a park is given by . Part A What is , the -component of the velocity of the squirrel, as function of time? ANSWER: Correct Part B What is , the y-component of the velocity of the squirrel, as function of time? ANSWER: = 3.2 = -43.1 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 15 of 16 3/23/2015 11:12 AM Correct Part C At 4.51 , how far is the squirrel from its initial position? Express your answer to three significant figures and include the appropriate units. ANSWER: All attempts used; correct answer displayed Part D At 4.51 , what is the magnitude of the squirrel’s velocity? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part E At 4.51 , what is the direction (in degrees counterclockwise from +x-axis) of the squirrel’s velocity? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 90.1%. You received 14.42 out of a possible total of 16 points. = 2.65 = 1.31 = 62.5 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 16 of 16 3/23/2015 11:12 AM

Evaluation Methodology , Fall 2015 EVALUATION PROPOSAL GUIDELINES The evaluation proposal is a major application of knowledge assignment for this course. The proposal should represent your cumulative knowledge of evaluation research methodology. You may be required to submit part of this assignment in sequential stages. If so, you will be provided, in writing, the due dates for the various aspects of the proposal. The date for the submission of the entire proposal is indicated in your course outline. The below components must be included in the proposal. I. Introduction (maximum 10 pages) A. Description of the Program and Organization (the Evaluand) (In this section, be sure to describe who, what, when, and how long the program has been in place; describe the program, types of people involved in the program, and the types of services offered; briefly discussed need for program as determined by program managers) I. Organizational Overview 1. Program Mission, Goals, SMART Objectives, Activities, Resources 2. Organizational Context of the Program II. Program Logic Model of Evaluand (insert program logic model from your previous assignment, attending to feedback from instructor and classmates) III. Significance of the Program and the Evaluation Discuss the Rationale of the Evaluation B. Evaluation Goals, Objectives, and Stakeholders Objectives of the Evaluation Study Description of Key Direct and Indirect Evaluation Stakeholders (e.g., clients, agents, beneficiaries, etc.) Potential Constraints and Barriers of the Evaluation Evaluation Proposal Guidelines (continued) C. Evaluation Approach, Questions and/or Hypotheses Evaluation Approach/Guiding Framework Evaluation Questions (at least three process and three outcome questions) Describe How Evaluation Questions Will Be Generated II. Methodology (maximum 10 pages) A. Participants Target Population/Sample Plan (describe the target population/sample from whom you intend to obtain collect data; justify sampling procedures by relating them to stakeholder characteristics, evaluation questions and criteria, and constraints of the evaluation) Handling Respondents’ Confidentiality and Ethical Concerns (include Informed Consent Form) B. Instrumentation Data Collection Instruments/Measures Describe Measures, Justify Choices, Address Issues of Validity, Reliability, and Cultural/Contextual Relevance; Rationale for Selection of Instruments C. Evaluation Design Data Collection Procedures (Research Design – Qualitative, Quantitative, Mixed Methods) Explain Choice for Data Collection Methods Selected D. Data Map (set up a data map or summary table to show how each step of the evaluation is related to each other); see example below) Evaluation Methodology Evaluation Proposal Guidelines (continued) Table 1. Data Map of Evaluation of the Kids House Afterschool Program (An Illustrative Example) Evaluation Questions Methodology Data Collection Strategy Timeline Does the program provide individual tutoring to the children in the community three days per week, as intended? (process question) Document analysis Evaluator will review copies of program’s weekly service delivery records Ongoing Has the program reached it intended target population? (process question) Document analysis Evaluator will review documents describing the children being served Six weeks after program start How satisfied are the children and their parents (guardian) with the Kids house Program? Qualitative Focus group interviews with the children in the program and separately with their parents (guardian) Ongoing after two weeks program start Did the children in the Kids House Program demonstrate significant improvements in reading? Quantitative Pretest/Posttest Questionnaire Pretest at first session Posttest at last session E. Projected Statistical Analysis of Data F. Data Collection Schedule (Timetable) (must be described in chart form) G. Standards for Evaluation (describe how your proposed evaluation will meet the Program Evaluation Standards – utility, feasibility, propriety, accuracy, accountability and the AEA Guiding Principles for Evaluation) III. Evaluation Products and Communication Plan (maximum two pages) A. Listing of Deliverable or Products Evaluation Methodology Evaluation Proposal Guidelines (continued) B. Communicating Results: The Evaluation Report (describe plan for communicating evaluation findings during the evaluation and at the end of the evaluation – orally? written report? combination? who will you involve in a discussion of the findings and why) . C. Potential Use of Findings for Aiding Direct and Indirect Stakeholders IV. Staffing, Management Plan, and Budget (maximum two pages) A. Describe tasks, deadlines, and who completes them? B. Describe the time, money, and other resources required for addressing your evaluation questions C. Include a narrative a budget and time schedule in table format V. References (minimum of three sources) VI. Appendices (include copies of instruments, consent forms, etc.) VII. Reflective Journaling (Separate Document) Using a diary format, describe// explain what you have learned about yourself and the evaluation profession by taking this course and writing this proposal Other Important Proposal Guidelines A. Typed, double space, 12 point font; one-inch margins on all sides B. Include title page, table of contents, and (if applicable) listing of figures and/or tables C. Maximum of 25 pages (excluding cover page, references, appendices) D. Proper and complete citation for all materials and sources using the American Psychological Association Style Manual (latest edition). Evaluation Methodology Evaluation Proposal Guidelines (cont’d.) E. As a general rule, sources (unless a classic) must be within the past decade and statistical/demographic data no earlier than 2009

Evaluation Methodology , Fall 2015 EVALUATION PROPOSAL GUIDELINES The evaluation proposal is a major application of knowledge assignment for this course. The proposal should represent your cumulative knowledge of evaluation research methodology. You may be required to submit part of this assignment in sequential stages. If so, you will be provided, in writing, the due dates for the various aspects of the proposal. The date for the submission of the entire proposal is indicated in your course outline. The below components must be included in the proposal. I. Introduction (maximum 10 pages) A. Description of the Program and Organization (the Evaluand) (In this section, be sure to describe who, what, when, and how long the program has been in place; describe the program, types of people involved in the program, and the types of services offered; briefly discussed need for program as determined by program managers) I. Organizational Overview 1. Program Mission, Goals, SMART Objectives, Activities, Resources 2. Organizational Context of the Program II. Program Logic Model of Evaluand (insert program logic model from your previous assignment, attending to feedback from instructor and classmates) III. Significance of the Program and the Evaluation Discuss the Rationale of the Evaluation B. Evaluation Goals, Objectives, and Stakeholders Objectives of the Evaluation Study Description of Key Direct and Indirect Evaluation Stakeholders (e.g., clients, agents, beneficiaries, etc.) Potential Constraints and Barriers of the Evaluation Evaluation Proposal Guidelines (continued) C. Evaluation Approach, Questions and/or Hypotheses Evaluation Approach/Guiding Framework Evaluation Questions (at least three process and three outcome questions) Describe How Evaluation Questions Will Be Generated II. Methodology (maximum 10 pages) A. Participants Target Population/Sample Plan (describe the target population/sample from whom you intend to obtain collect data; justify sampling procedures by relating them to stakeholder characteristics, evaluation questions and criteria, and constraints of the evaluation) Handling Respondents’ Confidentiality and Ethical Concerns (include Informed Consent Form) B. Instrumentation Data Collection Instruments/Measures Describe Measures, Justify Choices, Address Issues of Validity, Reliability, and Cultural/Contextual Relevance; Rationale for Selection of Instruments C. Evaluation Design Data Collection Procedures (Research Design – Qualitative, Quantitative, Mixed Methods) Explain Choice for Data Collection Methods Selected D. Data Map (set up a data map or summary table to show how each step of the evaluation is related to each other); see example below) Evaluation Methodology Evaluation Proposal Guidelines (continued) Table 1. Data Map of Evaluation of the Kids House Afterschool Program (An Illustrative Example) Evaluation Questions Methodology Data Collection Strategy Timeline Does the program provide individual tutoring to the children in the community three days per week, as intended? (process question) Document analysis Evaluator will review copies of program’s weekly service delivery records Ongoing Has the program reached it intended target population? (process question) Document analysis Evaluator will review documents describing the children being served Six weeks after program start How satisfied are the children and their parents (guardian) with the Kids house Program? Qualitative Focus group interviews with the children in the program and separately with their parents (guardian) Ongoing after two weeks program start Did the children in the Kids House Program demonstrate significant improvements in reading? Quantitative Pretest/Posttest Questionnaire Pretest at first session Posttest at last session E. Projected Statistical Analysis of Data F. Data Collection Schedule (Timetable) (must be described in chart form) G. Standards for Evaluation (describe how your proposed evaluation will meet the Program Evaluation Standards – utility, feasibility, propriety, accuracy, accountability and the AEA Guiding Principles for Evaluation) III. Evaluation Products and Communication Plan (maximum two pages) A. Listing of Deliverable or Products Evaluation Methodology Evaluation Proposal Guidelines (continued) B. Communicating Results: The Evaluation Report (describe plan for communicating evaluation findings during the evaluation and at the end of the evaluation – orally? written report? combination? who will you involve in a discussion of the findings and why) . C. Potential Use of Findings for Aiding Direct and Indirect Stakeholders IV. Staffing, Management Plan, and Budget (maximum two pages) A. Describe tasks, deadlines, and who completes them? B. Describe the time, money, and other resources required for addressing your evaluation questions C. Include a narrative a budget and time schedule in table format V. References (minimum of three sources) VI. Appendices (include copies of instruments, consent forms, etc.) VII. Reflective Journaling (Separate Document) Using a diary format, describe// explain what you have learned about yourself and the evaluation profession by taking this course and writing this proposal Other Important Proposal Guidelines A. Typed, double space, 12 point font; one-inch margins on all sides B. Include title page, table of contents, and (if applicable) listing of figures and/or tables C. Maximum of 25 pages (excluding cover page, references, appendices) D. Proper and complete citation for all materials and sources using the American Psychological Association Style Manual (latest edition). Evaluation Methodology Evaluation Proposal Guidelines (cont’d.) E. As a general rule, sources (unless a classic) must be within the past decade and statistical/demographic data no earlier than 2009

Phil 102 – The Good & the Beautiful-COMMUNICATION #3 : re Paper # 2 DETAILS : 2-3 pp. length (typed, in 1.5* spacing) / value: 15 points. Unless prearranged, submit in hard copy, not as an email attachment. Use in-text citations, especially for quotations (e.g., p. 27), and give full source information on a separate Bibliography page (not part of the page-length) at the end. Also, consult the Writing Tips handout provided, following its suggestions and avoiding the common errors listed there. / * To get 1.5 spacing, ‘select-all’ the entire text and type ‘5’ while holding down Ctrl. TOPIC : Describe Blackburn’s concept of the self and its ongoing construction through interactive ‘mirroring’ of / by various others. Then distinguish different kinds of esteem (toward self and others), and explain what it means to have ‘too much’, too little, or the ‘proper’ amount of such an attitude. Illustrate your comments by means of concrete examples of either specific individuals or typical behaviors drawn from your experience (personal, reading, movies, etc.). PROCEDURE: Begin (again) by reviewing your markings in the book, going over your class notes — filling in gaps, elaborating ideas, making connections, noting potentially useful (for the paper) concepts, and so on. That is, start with a broad view in order to cement your general competence toward the subject. Then go back to the specific concepts and distinctions and examples that you marked, and organize them in some way. After that, brainstorm about possible examples to use, and how these do or do not fit the profiles you wish to draw (remembering that there may be no perfect real-world instances of particular conceptual types: i.e., thought and world don’t fit together that well). Finally, organize the paper by making an outline, paying attention to sequencing, transitions, and clarity of focus and expression. After you are finished, let the paper lie a day or two, then go back and edit, proof-read, and polish the piece. / Again: review the writing-tips handed out earlier, and don’t violate those rules. / Not least: be sure to reread this assignment prompt as you work, so that you do not ignore its directives either. / A good paper is constructed in stages, not all at once the night before it is due.

Phil 102 – The Good & the Beautiful-COMMUNICATION #3 : re Paper # 2 DETAILS : 2-3 pp. length (typed, in 1.5* spacing) / value: 15 points. Unless prearranged, submit in hard copy, not as an email attachment. Use in-text citations, especially for quotations (e.g., p. 27), and give full source information on a separate Bibliography page (not part of the page-length) at the end. Also, consult the Writing Tips handout provided, following its suggestions and avoiding the common errors listed there. / * To get 1.5 spacing, ‘select-all’ the entire text and type ‘5’ while holding down Ctrl. TOPIC : Describe Blackburn’s concept of the self and its ongoing construction through interactive ‘mirroring’ of / by various others. Then distinguish different kinds of esteem (toward self and others), and explain what it means to have ‘too much’, too little, or the ‘proper’ amount of such an attitude. Illustrate your comments by means of concrete examples of either specific individuals or typical behaviors drawn from your experience (personal, reading, movies, etc.). PROCEDURE: Begin (again) by reviewing your markings in the book, going over your class notes — filling in gaps, elaborating ideas, making connections, noting potentially useful (for the paper) concepts, and so on. That is, start with a broad view in order to cement your general competence toward the subject. Then go back to the specific concepts and distinctions and examples that you marked, and organize them in some way. After that, brainstorm about possible examples to use, and how these do or do not fit the profiles you wish to draw (remembering that there may be no perfect real-world instances of particular conceptual types: i.e., thought and world don’t fit together that well). Finally, organize the paper by making an outline, paying attention to sequencing, transitions, and clarity of focus and expression. After you are finished, let the paper lie a day or two, then go back and edit, proof-read, and polish the piece. / Again: review the writing-tips handed out earlier, and don’t violate those rules. / Not least: be sure to reread this assignment prompt as you work, so that you do not ignore its directives either. / A good paper is constructed in stages, not all at once the night before it is due.

Realization about Self-Love         Introduction   Simon … Read More...
Lab 1: Introduction to Motion  You must make the following changes to your lab manual before coming to lab, not during lab!  Do not plan to consult this sheet during lab. There is not enough time.  The required changes must be in your lab manual in the proper sequence to complete the lab in a smooth and timely manner.  You should bring this paper to lab but only for reference to the images printed below. You have been warned! A note about vector addition: Adding Vectors: To add these two vectors: means to place them head-to-tail like so: and therefore they equal: Subtracting Vectors: Subtracting these two vectors: is the same as the sum of one vector and the negative of the other: which is the same as: which means to place them head-to-tail like so: and therefore they equal: Pg. 7 Activity 1-3 Cross off Step 1 Cross off Step 2 Pg. 7 Step 3) Replace “Try to make each of the graphs …” with “Try to make one of the graphs…” Pg. 7 Step 4) Replace this step with: “Describe how you must move to produce the graph you selected. Note if you selected graph C your description is at the top of page 8. Pg. 8 Activity 2-1 Step 2) Replace: “(Just draw smooth patterns; leave out…” with “(Quickly draw smooth patterns; leave out…” Then highlight this entire sentence. + − + (− ) + Pg. 10 Step 3) Where it states “(Be sure to adjust the time scale to 15 s.)” The way to do this is to click this clock icon And change the “Duration:” value Pg. 11 Question 2-3) At the end of the question add the following: “See the top of page 12 for the rest of the question.” Pg. 13 Step 2) Highlight the part that states: “Get the times right. Get the velocities right. Each person should take a turn.” At the end of the paragraph add: “But do not spend too much time getting things perfect.” Pg. 15 Step 1) Where is states: “Use the analysis feature of the software to read values of velocity…” Do this: Click here and then move the mouse over the graph. You can now quickly read data from the graph.

Lab 1: Introduction to Motion  You must make the following changes to your lab manual before coming to lab, not during lab!  Do not plan to consult this sheet during lab. There is not enough time.  The required changes must be in your lab manual in the proper sequence to complete the lab in a smooth and timely manner.  You should bring this paper to lab but only for reference to the images printed below. You have been warned! A note about vector addition: Adding Vectors: To add these two vectors: means to place them head-to-tail like so: and therefore they equal: Subtracting Vectors: Subtracting these two vectors: is the same as the sum of one vector and the negative of the other: which is the same as: which means to place them head-to-tail like so: and therefore they equal: Pg. 7 Activity 1-3 Cross off Step 1 Cross off Step 2 Pg. 7 Step 3) Replace “Try to make each of the graphs …” with “Try to make one of the graphs…” Pg. 7 Step 4) Replace this step with: “Describe how you must move to produce the graph you selected. Note if you selected graph C your description is at the top of page 8. Pg. 8 Activity 2-1 Step 2) Replace: “(Just draw smooth patterns; leave out…” with “(Quickly draw smooth patterns; leave out…” Then highlight this entire sentence. + − + (− ) + Pg. 10 Step 3) Where it states “(Be sure to adjust the time scale to 15 s.)” The way to do this is to click this clock icon And change the “Duration:” value Pg. 11 Question 2-3) At the end of the question add the following: “See the top of page 12 for the rest of the question.” Pg. 13 Step 2) Highlight the part that states: “Get the times right. Get the velocities right. Each person should take a turn.” At the end of the paragraph add: “But do not spend too much time getting things perfect.” Pg. 15 Step 1) Where is states: “Use the analysis feature of the software to read values of velocity…” Do this: Click here and then move the mouse over the graph. You can now quickly read data from the graph.

info@checkyourstudy.com
Tornado Eddy Investigation Abstract The objective of this lab was to write a bunch of jibberish to provide students with a formatting template. Chemical engineering, bioengineering, and environmental engineering are “process engineering” disciplines. Good abstracts contains real content, such as 560 mL/min, 35 deg, and 67 percent yield. Ideal degreed graduates are technically strong, bring broad system perspectives to problem solving, and have the professional “soft skills” to make immediate contributions in the workplace. The senior lab sequence is the “capstone” opportunity to realize this ideal by integrating technical skills and developing professional soft skills to ensure workforce preparedness. The best conclusions are objective and numerical, such as operating conditions of 45 L/min at 32 deg C with expected costs of $4.55/lb. Background Insect exchange processes are often used in bug filtration, as they are effective at removing either positive or negative insects from water. An insect exchange column is a packed or fluidized bed filled with resin beads. Water flows through the column and most of the insects from the water enter the beads, but some of them pass in between the beads, which makes the exchange of insects non-ideal. Insectac 249 resin is a cation exchange resin, as it is being used to attract cationic Ca2+ from the toxic waste stream. This means the resin is negatively charged, and needs to be regenerated with a solution that produces positively charged insects, in this case, salt water which contains Na+ insects. The resin contains acidic styrene backbones which capture the cationic insects in a reversible process. A curve of Ca2+ concentration concentration vs. time was obtained after a standard curve was made to determine how many drops from the low cost barium test kit from Aquarium Pharmaceuticals (API)1 bottle #2 would correspond to a certain concentration in solution. A standard curve works by preparing solutions with known concentrations and testing these concentrations using the kit to create a curve of number of drops from bottle #2 (obtained result) vs. concentration of Ca2+ in solution (desired response). The standard curve can then be used for every test on the prototype and in the field, to quickly and accurately obtain a concentration from the test kit. The barium concentration vs. time curve can be used to calculate the exchange capacity of the resin and, in later tests, the regeneration efficiency. The curves must be used to get the total amount of barium removed from the water, m. Seen in Equation 2, the volumetric flow rate of water, , is multiplied by the integral from tinitial to tfinal of the total concentration of Ca2+ absorbed by the resin as a function of time, C. (2) 1 http://aquariumpharm.com/Products/Product.aspx?ProductID=72 , date accessed: 11/26/10 CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 9 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A graphical trapezoid method was used to evaluate the integral and get the final solution in equivalents of Ca2+ per L, it must be noted that there are 2 equivalents per mole of barium, as the charge of the barium insect is +2. An initial exchange capacity was calculated for the virgin resin, and an adjusted exchange capacity was calculated once the resin was regenerated. The regenerated resin capacity was found by multiplying the virgin resin capacity by the regeneration efficiency, expressed in Equation 3. (3) See Appendix A for the calculation of the exchange capacities and the regeneration efficiency. Materials and Methods Rosalie and Peter Johnson of Corvallis established the Linus Pauling Chair in Chemical Engineering to honor Oregon State University’s most famous graduate. Peter Johnson, former President and owner of Tekmax, Inc., a company which revolutionized battery manufacturing equipment, is a 1955 graduate of the College of Engineering.2 The Chair, also known as the Linus Pauling Distinguished Engineer or Linus Pauling Engineer (LPE), was originally designed to focus on the traditional “capstone” senior lab sequence in the former Department of Chemical Engineering. The focus is now extended to all the process engineering disciplines. The LPE is charged with establishing strong ties with industry, ensuring current and relevant laboratory experiences, and helping upperclass students develop skills in communication, teamwork, project management, and leadership. Include details about lab procedures not sufficiently detailed in the SOP, problems you had, etc. The bulk solution prepared to create the standard curve was used in the second day of testing to obtain the exchange capacity of the insectac 249 resin. The solution was pumped through a bathroom scale into the prototype insect exchange column. 45 mL of resin was rinsed and added to the column. The bed was fluidized as the solution was pumped through the resin, but for the creation of the Ca2+ concentration vs. time curve, the solution was pumped down through the column, as illustrated in the process flow diagram seen in Figure 1. Figure 1. Process sketch of the insect exchange column used for the project. Ref: http://www.generon.co.uk/acatalog/Chromatography.html 2 Harding, P. Viscosity Measurement SOP, Spring, 2010. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 10 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A bathroom scale calibration curve was created to ensure that the 150 mL/min, used to calculate the breakthrough time, would be delivered to the resin. The bathroom scale used was a Dwyer brand with flowrates between 0 and 300 cc/min of water. Originally, values between 120 and 180 mL/min were chosen for the calibration, with three runs for each flowrate, however the bathroom scale values were so far away from the measure values the range was extended to 100 to 200 mL/min. The regeneration experiment was performed using a method similar to that used in the water softening experiment, however instead of using a 640 ppm Ca2+ solution to fill the resin, a 6000 ppm Na+ solution was used to eject the Ca2+ from the resin. Twelve samples times were chosen and adjusted as the experiment progressed, with more than half of the samples taken at times less than 10 minutes, and the last sample taken at 45 minutes. The bulk exit solution was also tested to determine the regeneration efficiency. Results and Discussion The senior lab sequence has its roots in the former Department of Chemical Engineering. CHE 414 and 415 were taught in Winter and Spring and included 6 hours of lab time per week. The School has endeavored to incorporate the courses into the BIOE and ENVE curriculum, and this will be complete in 2008-2009. Recent development of the senior lab course sequence is shown chronologically in Fig. 1. In 2006-2007, CHE 414 and 415 were moved to Fall and Winter to enable CHE 416, an elective independent senior project course. Also that year, BIOE students took BIOE 414 in the Fall and BIOE 415 was developed and taught. No BIOE students enrolled in the optional CHE. In 2007-2008, the program transitioned in a new Linus Pauling Engineer and ENVE 414 was offered. Also, approximately 30 percent of BIOE students enrolled in the optional CHE 416. Accommodating the academic calendars of the three disciplines required a reduction in weekly student lab time from 6 to 3 hours. The expected relationship between coughing rate, y, and length of canine, x, is Bx z y Fe− (1) where F is a pre-exponential constant, B is vitamin B concentration and z is the height of an average trapeze artist. 3 The 2008-2009 brings the challenge of the dramatic enrollment increase shown in Fig. 1 and the first offering of ENVE 415. The result, shown on the right in Fig. 1, is the delivery of the senior lab sequence uniformly across the process engineering disciplines. CBEE 416 is expected to drawn approximately of the students that take the 415 courses. In 2007-2008, 414 and 415 were required for CHEs, 414 and 415 for BIOEs, and only 414 for ENVEs. CHE 416 is ostensibly an elective for all disciplines. In 2008-2009, 414 and 415 is required for all disciplines and CHE 416 will be an elective. The content of 414 is essentially 3 Fundamentals of Momentum, Heat, and Mass Transfer, Welty, J.R. et al., 4th edition, John Wiley & Sons, Inc. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 11 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE identical for all three disciplines, 415 has discipline-specific labs, and 416 consists of senior projects with potentially cross-discipline teams of 2 to 4 students. Tremendous labor and struggling with the lab equipment resulted in the data shown in y = –‐0.29x + 1.71 y = –‐0.25x + 2.03 y = –‐0.135x + 2.20 –‐1.5 –‐1.0 –‐0.5 0.0 0.5 1.0 1.5 2.0 2.5 0 2 4 6 8 10 ln y (units) x (units) ln y_1 ln y_2 ln y_3 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Case 1 Case 2 Case 3 Slope (units) (a) (b) Figure 1. (a) Data for y and x plotted for various values of z and (b) a comparison of slopes for the 3 cases investigate. The log plot slope yields the vitamin B concentration. The slopes were shown to be significantly at the 90% confidence level, but the instructor ran out of time and did not include error bars. The slope changed as predicted by the Snirtenhoffer equation. Improvements to the lab might include advice on how to legally change my name to something less embarrassing. My whole life I have been forced to repeat and spell it. I really feel that this has affected my psychologically. This was perhaps the worst lab I have ever done in my academic career, primarily due to the fact that there was no lab time. I simply typed in this entire report and filled it with jibberish. Some might think nobody will notice, but I know that …… Harding reads every word. Acknowledgments The author acknowledges his elementary teacher for providing truly foundational instruction in addition and subtraction. Jenny Burninbalm was instrumental with guidance on use of the RT-345 dog scratching device. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 12

Tornado Eddy Investigation Abstract The objective of this lab was to write a bunch of jibberish to provide students with a formatting template. Chemical engineering, bioengineering, and environmental engineering are “process engineering” disciplines. Good abstracts contains real content, such as 560 mL/min, 35 deg, and 67 percent yield. Ideal degreed graduates are technically strong, bring broad system perspectives to problem solving, and have the professional “soft skills” to make immediate contributions in the workplace. The senior lab sequence is the “capstone” opportunity to realize this ideal by integrating technical skills and developing professional soft skills to ensure workforce preparedness. The best conclusions are objective and numerical, such as operating conditions of 45 L/min at 32 deg C with expected costs of $4.55/lb. Background Insect exchange processes are often used in bug filtration, as they are effective at removing either positive or negative insects from water. An insect exchange column is a packed or fluidized bed filled with resin beads. Water flows through the column and most of the insects from the water enter the beads, but some of them pass in between the beads, which makes the exchange of insects non-ideal. Insectac 249 resin is a cation exchange resin, as it is being used to attract cationic Ca2+ from the toxic waste stream. This means the resin is negatively charged, and needs to be regenerated with a solution that produces positively charged insects, in this case, salt water which contains Na+ insects. The resin contains acidic styrene backbones which capture the cationic insects in a reversible process. A curve of Ca2+ concentration concentration vs. time was obtained after a standard curve was made to determine how many drops from the low cost barium test kit from Aquarium Pharmaceuticals (API)1 bottle #2 would correspond to a certain concentration in solution. A standard curve works by preparing solutions with known concentrations and testing these concentrations using the kit to create a curve of number of drops from bottle #2 (obtained result) vs. concentration of Ca2+ in solution (desired response). The standard curve can then be used for every test on the prototype and in the field, to quickly and accurately obtain a concentration from the test kit. The barium concentration vs. time curve can be used to calculate the exchange capacity of the resin and, in later tests, the regeneration efficiency. The curves must be used to get the total amount of barium removed from the water, m. Seen in Equation 2, the volumetric flow rate of water, , is multiplied by the integral from tinitial to tfinal of the total concentration of Ca2+ absorbed by the resin as a function of time, C. (2) 1 http://aquariumpharm.com/Products/Product.aspx?ProductID=72 , date accessed: 11/26/10 CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 9 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A graphical trapezoid method was used to evaluate the integral and get the final solution in equivalents of Ca2+ per L, it must be noted that there are 2 equivalents per mole of barium, as the charge of the barium insect is +2. An initial exchange capacity was calculated for the virgin resin, and an adjusted exchange capacity was calculated once the resin was regenerated. The regenerated resin capacity was found by multiplying the virgin resin capacity by the regeneration efficiency, expressed in Equation 3. (3) See Appendix A for the calculation of the exchange capacities and the regeneration efficiency. Materials and Methods Rosalie and Peter Johnson of Corvallis established the Linus Pauling Chair in Chemical Engineering to honor Oregon State University’s most famous graduate. Peter Johnson, former President and owner of Tekmax, Inc., a company which revolutionized battery manufacturing equipment, is a 1955 graduate of the College of Engineering.2 The Chair, also known as the Linus Pauling Distinguished Engineer or Linus Pauling Engineer (LPE), was originally designed to focus on the traditional “capstone” senior lab sequence in the former Department of Chemical Engineering. The focus is now extended to all the process engineering disciplines. The LPE is charged with establishing strong ties with industry, ensuring current and relevant laboratory experiences, and helping upperclass students develop skills in communication, teamwork, project management, and leadership. Include details about lab procedures not sufficiently detailed in the SOP, problems you had, etc. The bulk solution prepared to create the standard curve was used in the second day of testing to obtain the exchange capacity of the insectac 249 resin. The solution was pumped through a bathroom scale into the prototype insect exchange column. 45 mL of resin was rinsed and added to the column. The bed was fluidized as the solution was pumped through the resin, but for the creation of the Ca2+ concentration vs. time curve, the solution was pumped down through the column, as illustrated in the process flow diagram seen in Figure 1. Figure 1. Process sketch of the insect exchange column used for the project. Ref: http://www.generon.co.uk/acatalog/Chromatography.html 2 Harding, P. Viscosity Measurement SOP, Spring, 2010. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 10 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A bathroom scale calibration curve was created to ensure that the 150 mL/min, used to calculate the breakthrough time, would be delivered to the resin. The bathroom scale used was a Dwyer brand with flowrates between 0 and 300 cc/min of water. Originally, values between 120 and 180 mL/min were chosen for the calibration, with three runs for each flowrate, however the bathroom scale values were so far away from the measure values the range was extended to 100 to 200 mL/min. The regeneration experiment was performed using a method similar to that used in the water softening experiment, however instead of using a 640 ppm Ca2+ solution to fill the resin, a 6000 ppm Na+ solution was used to eject the Ca2+ from the resin. Twelve samples times were chosen and adjusted as the experiment progressed, with more than half of the samples taken at times less than 10 minutes, and the last sample taken at 45 minutes. The bulk exit solution was also tested to determine the regeneration efficiency. Results and Discussion The senior lab sequence has its roots in the former Department of Chemical Engineering. CHE 414 and 415 were taught in Winter and Spring and included 6 hours of lab time per week. The School has endeavored to incorporate the courses into the BIOE and ENVE curriculum, and this will be complete in 2008-2009. Recent development of the senior lab course sequence is shown chronologically in Fig. 1. In 2006-2007, CHE 414 and 415 were moved to Fall and Winter to enable CHE 416, an elective independent senior project course. Also that year, BIOE students took BIOE 414 in the Fall and BIOE 415 was developed and taught. No BIOE students enrolled in the optional CHE. In 2007-2008, the program transitioned in a new Linus Pauling Engineer and ENVE 414 was offered. Also, approximately 30 percent of BIOE students enrolled in the optional CHE 416. Accommodating the academic calendars of the three disciplines required a reduction in weekly student lab time from 6 to 3 hours. The expected relationship between coughing rate, y, and length of canine, x, is Bx z y Fe− (1) where F is a pre-exponential constant, B is vitamin B concentration and z is the height of an average trapeze artist. 3 The 2008-2009 brings the challenge of the dramatic enrollment increase shown in Fig. 1 and the first offering of ENVE 415. The result, shown on the right in Fig. 1, is the delivery of the senior lab sequence uniformly across the process engineering disciplines. CBEE 416 is expected to drawn approximately of the students that take the 415 courses. In 2007-2008, 414 and 415 were required for CHEs, 414 and 415 for BIOEs, and only 414 for ENVEs. CHE 416 is ostensibly an elective for all disciplines. In 2008-2009, 414 and 415 is required for all disciplines and CHE 416 will be an elective. The content of 414 is essentially 3 Fundamentals of Momentum, Heat, and Mass Transfer, Welty, J.R. et al., 4th edition, John Wiley & Sons, Inc. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 11 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE identical for all three disciplines, 415 has discipline-specific labs, and 416 consists of senior projects with potentially cross-discipline teams of 2 to 4 students. Tremendous labor and struggling with the lab equipment resulted in the data shown in y = –‐0.29x + 1.71 y = –‐0.25x + 2.03 y = –‐0.135x + 2.20 –‐1.5 –‐1.0 –‐0.5 0.0 0.5 1.0 1.5 2.0 2.5 0 2 4 6 8 10 ln y (units) x (units) ln y_1 ln y_2 ln y_3 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Case 1 Case 2 Case 3 Slope (units) (a) (b) Figure 1. (a) Data for y and x plotted for various values of z and (b) a comparison of slopes for the 3 cases investigate. The log plot slope yields the vitamin B concentration. The slopes were shown to be significantly at the 90% confidence level, but the instructor ran out of time and did not include error bars. The slope changed as predicted by the Snirtenhoffer equation. Improvements to the lab might include advice on how to legally change my name to something less embarrassing. My whole life I have been forced to repeat and spell it. I really feel that this has affected my psychologically. This was perhaps the worst lab I have ever done in my academic career, primarily due to the fact that there was no lab time. I simply typed in this entire report and filled it with jibberish. Some might think nobody will notice, but I know that …… Harding reads every word. Acknowledgments The author acknowledges his elementary teacher for providing truly foundational instruction in addition and subtraction. Jenny Burninbalm was instrumental with guidance on use of the RT-345 dog scratching device. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 12

For any additional help, please contact: info@checkyourstudy.com Call / Whatsapp … Read More...
3) Draw a complete free body diagram for the entire truss. The complete free body diagram should include all relevant forces and couples, coordinate axis, and proper dimensions. (3 pt)

3) Draw a complete free body diagram for the entire truss. The complete free body diagram should include all relevant forces and couples, coordinate axis, and proper dimensions. (3 pt)

Figure 1: Examples of the 16-puzzle. The 16-puzzle consists of 15 tiles containing the numbers 1; 2; : : : ; 15 in a 4  4 grid, with an empty space left by the missing 16th tile. The goal of the 16-puzzle is to rearrange the tiles into order by sliding tiles to occupy an empty space. Figure 1 shows a sample board along with the goal con guration where the tiles are in order. A similar puzzle can be devised for any n  n board. On a board with N positions (including the empty space), the total number of possible con gurations is N!, since every arrangement of tiles can be encoded by a permutation of f1; : : : ;Ng (where the empty space is treated as an invisible tile marked with N), although some con gurations cannot be solved. The game graph for the N-puzzle contains vertices for each possible board, and an undirected edge connects every pair of boards which can be transformed into each other by one move. Since every move is reversible (that is, we can always move a tile back after the initial move), there is no need for directed edges. The game graph for the 4-puzzle contains only 4! = 24 states, and is shown in gure 2. The goal state is framed in green. The 9-puzzle has 9! = 362880 states, so it is possible to compute and store the entire game graph on a current machine. Graph algorithms can then be used to nd solutions to each board. For example, a path from a given board b to the goal con guration g (in which all tiles are in order and the empty space is at the lower right) represents a sequence of valid moves which solve b. If g is not reachable from b, then b has no solution. In general, the game graph of a puzzle may have several di erent connected components, and there may not be a goal state in each component. The game graph for an N-puzzle always has two components, and there is only one goal state. Algorithms for nding connected components can be used to nd all solvable con gurations of a puzzle. For the N-puzzle, it is also possible to determine whether a given board is solvable without traversing the game graph by using techniques from permutation theory (which is beyond the scope of this course). Figure 3 shows the neighbourhood of the goal state of the 9-puzzle. Algorithm 27 gives pseu- docode to build the game graph of an N puzzle. 1 Figure 2: The entire game graph for the 4-puzzle, with the goal state framed in green. Figure 3: A subset of the game graph for the 9-puzzle, with the goal state framed in green. 2 3

Figure 1: Examples of the 16-puzzle. The 16-puzzle consists of 15 tiles containing the numbers 1; 2; : : : ; 15 in a 4  4 grid, with an empty space left by the missing 16th tile. The goal of the 16-puzzle is to rearrange the tiles into order by sliding tiles to occupy an empty space. Figure 1 shows a sample board along with the goal con guration where the tiles are in order. A similar puzzle can be devised for any n  n board. On a board with N positions (including the empty space), the total number of possible con gurations is N!, since every arrangement of tiles can be encoded by a permutation of f1; : : : ;Ng (where the empty space is treated as an invisible tile marked with N), although some con gurations cannot be solved. The game graph for the N-puzzle contains vertices for each possible board, and an undirected edge connects every pair of boards which can be transformed into each other by one move. Since every move is reversible (that is, we can always move a tile back after the initial move), there is no need for directed edges. The game graph for the 4-puzzle contains only 4! = 24 states, and is shown in gure 2. The goal state is framed in green. The 9-puzzle has 9! = 362880 states, so it is possible to compute and store the entire game graph on a current machine. Graph algorithms can then be used to nd solutions to each board. For example, a path from a given board b to the goal con guration g (in which all tiles are in order and the empty space is at the lower right) represents a sequence of valid moves which solve b. If g is not reachable from b, then b has no solution. In general, the game graph of a puzzle may have several di erent connected components, and there may not be a goal state in each component. The game graph for an N-puzzle always has two components, and there is only one goal state. Algorithms for nding connected components can be used to nd all solvable con gurations of a puzzle. For the N-puzzle, it is also possible to determine whether a given board is solvable without traversing the game graph by using techniques from permutation theory (which is beyond the scope of this course). Figure 3 shows the neighbourhood of the goal state of the 9-puzzle. Algorithm 27 gives pseu- docode to build the game graph of an N puzzle. 1 Figure 2: The entire game graph for the 4-puzzle, with the goal state framed in green. Figure 3: A subset of the game graph for the 9-puzzle, with the goal state framed in green. 2 3

No expert has answered this question yet. You can browse … Read More...