The ratio of product (hydrogen gas) to reactant (magnesium) is determined by the equation: Ratio (L/g) = ( Initial mL of acid – Final mL of acid ) / ( 1000 ml/L ) Mass of magnesium (g) Calculate the ratio for using the following data: Initial mL of acid = 200 mL Final mL of acid = 93 mL Mass of magnesium = 0.1081 g Note: Show your work and be sure to report the final result with the proper number of significant figures.

The ratio of product (hydrogen gas) to reactant (magnesium) is determined by the equation: Ratio (L/g) = ( Initial mL of acid – Final mL of acid ) / ( 1000 ml/L ) Mass of magnesium (g) Calculate the ratio for using the following data: Initial mL of acid = 200 mL Final mL of acid = 93 mL Mass of magnesium = 0.1081 g Note: Show your work and be sure to report the final result with the proper number of significant figures.

  Solution: Ratio (L/g)   =             (200 – 93 ) … Read More...
EE214 Fall 2015 Problem Set1 I am submitting my own work in this exercise, and I am aware of the penalties for cheating that will be assessed if I submit work for credit that is not my own. Print Name Sign Name Date Contains material © Digilent, Inc. 7 pages 1. (15 points) Below are some circuit elements from a simple digital system. 3.3V 20mA VB 1Kohm VA 1.3V RB 1K RC RD SW1 SW2 RA VC When the pushbutton SW1 is not pressed, what is the voltage at VA? (1pt) When the SW1 is pressed, what is the voltage at VA? (1pt) When the SW1 is pressed, what current flows in the 1K resistor RA? (1pt) When SW1 is pressed, what power is dissipated in RA? (2pt) In the LED circuit, 1.3V is required at VB to forward-bias the LED and cause current to flow. Given there is a 1.3V drop across the LED, what resistance RB is required for 20mA to flow through the LED? (2pt) What power is dissipated in the LED? (1pt) In the circuit on the far right, if RC dissipates 25mW, what is VC? (2pt) Using the VC voltage you calculated, if RC is changed to 100Ohms, how much power would it dissipate? (2pt) Using the VC voltage you calculated and a 1K RC, if pressing SW2 causes the total circuit power to increase to 75mW, what value must RD be? (3pt) EE214 Problem Set 1 2. (20 points) Complete the truth tables below. Provide SOP equations for the bottom three tables. F <= Σ ( ) F <= Σ ( ) F <= Σ ( ) 3. (12 points) Write the number of transistors required for each logic gate below inside the gate symbol, and then write the logic gate name below the symbol. 4. (12 points) Complete truth tables for the circuits shown below A B F AND A B F OR A B F XOR A F INV A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 ? = ? ̅ ∙ ? + ? A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 ? = ? ∙ ? ∙? ̅ + ? ∙ ? A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 ? = ? ∙? ̅+? ̅ ∙ ? A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 A F B C A B C Y EE214 Problem Set 1 5. (18 points) Show the total transistor count and gate/input number for the circuits below. Then sketch equivalent circuits using NAND gates that use fewer transistors (do not minimize the circuits). 6. (12 points) Sketch circuits for the following logic equations F = A̅ ∙ B ∙ C + A ∙B̅ ∙C̅ +A̅ ∙ C F = A̅ ∙ B ∙C̅ ̅̅̅̅̅̅̅̅̅̅ + ̅A̅̅+̅̅̅B̅ F = (? +? ̅ ) ∙ ̅̅?̅̅̅̅̅+̅̅̅̅̅̅̅?̅̅̅∙̅̅?̅̅ G AB C D AB C D H G F F AB C EE214 Problem Set 1 7. (22 points) Sketch a circuit similar to the figure below that asserts logic 1 only when both switches are closed. Label the switches 1 and 2, and complete the truth table below. Then circle the correct term (high or low, and open or closed) to complete the following sentences describing the AND and OR relationships: AND Relationship: The output F is [high / low] when SW1 is [open / closed], and SW2 is [open / closed]. OR Relationship: The output F is [high / low] when SW1 is [open / closed], or SW2 is [open / closed]. Sketch a circuit similar to the figure below that asserts logic 0 whenever one or both switches are closed. Label the switches 1 and 2, and complete the truth table below. Circle the correct term (high or low, and open or closed) to complete the following sentences describing the AND and OR relationships: AND Relationship: The output F is [high / low] when SW1 is [open / closed], and SW2 is [open / closed]. OR Relationship: The output F is [high / low] when SW1 is [open / closed], or SW2 is [open / closed]. 8. (4 points) Complete the following. A pFET turns [ ON / OFF ] with LLV and conducts [ LHV / LLV ] well (circle one in each bracket). An nFET turns [ ON / OFF ] with LLV and conducts [ LHV / LLV ] well (circle one in each bracket). Vdd GND F SW1 SW2 Vdd GND F SW1 SW2 SW1 SW2 F SW1 SW2 F EE214 Problem Set 1 9. (8 points) Sketch circuits and write Verilog assignment statements for the following equations. F = m(1, 2, 6) F = M(0, 7) 10. (21 points) Complete the truth tables below (enter “on” or “off” under each transistor entry, and “1” or “0” for output F), and enter the gate name and schematic shapes in the tables. You get 1/2 point for each correct column, and 1/2 point each for correct names and shapes. Q1 Q2 Q3 Q4 A B F Vdd Q2 Q1 Q3 Q4 A B F Vdd A B Q1 Q2 Q3 Q4 F 0 0 0 1 1 0 1 1 Gate Name AND shape OR shape A B Q1 Q2 Q3 Q4 F 0 0 0 1 1 0 1 1 Gate Name AND shape OR shape EE214 Problem Set 1 Q2 Q1 Q3 Q4 A B F Q5 Q6 Vdd Q1 Q2 Q3 Q4 A B F Q5 Q6 Vdd (2 points) Enter the logic equation for the 3-input circuit above: A B Q1 Q2 Q3 Q4 F 0 0 0 1 1 0 1 1 Gate Name AND shape OR shape A B Q1 Q2 Q3 Q4 F 0 0 0 1 1 0 1 1 Gate Name AND shape OR shape A B C Q1 Q2 Q3 Q4 Q5 Q6 F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 F = Q1 Q2 Q4 Q5 A B F Q6 Vdd C Q3 EE214 Problem Set 1 11. (20 points) In a logic function with n inputs, there are 2? unique combinations of inputs and 22? possible logic functions. The table below has four rows that show the four possible combinations of two inputs (22 = 4), and 16 output columns that show all possible two-input logic function (222 = 16). Six of these output columns are associated with common logic functions of two variables. Circle the six columns, and label them with the appropriate logic gate name. Draw the circuit symbols for the functions represented. INPUTS ALL POSSIBLE FUNCTIONS A B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 A table like the one above for 3 inputs would need _________ rows and _________ columns. A table like the one above for 4 inputs would need _________ rows and _________ columns. A table like the one above for 5 inputs would need _________ rows and _________ columns. 12. (15 points) Find global minimum circuits for the following three logic signal outputs that are all functions of the same three inputs. Show all work. F1 =  m (0, 3, 4) F2 =  m (1, 6, 7) F3 =  m (0, 1, 3, 4)

EE214 Fall 2015 Problem Set1 I am submitting my own work in this exercise, and I am aware of the penalties for cheating that will be assessed if I submit work for credit that is not my own. Print Name Sign Name Date Contains material © Digilent, Inc. 7 pages 1. (15 points) Below are some circuit elements from a simple digital system. 3.3V 20mA VB 1Kohm VA 1.3V RB 1K RC RD SW1 SW2 RA VC When the pushbutton SW1 is not pressed, what is the voltage at VA? (1pt) When the SW1 is pressed, what is the voltage at VA? (1pt) When the SW1 is pressed, what current flows in the 1K resistor RA? (1pt) When SW1 is pressed, what power is dissipated in RA? (2pt) In the LED circuit, 1.3V is required at VB to forward-bias the LED and cause current to flow. Given there is a 1.3V drop across the LED, what resistance RB is required for 20mA to flow through the LED? (2pt) What power is dissipated in the LED? (1pt) In the circuit on the far right, if RC dissipates 25mW, what is VC? (2pt) Using the VC voltage you calculated, if RC is changed to 100Ohms, how much power would it dissipate? (2pt) Using the VC voltage you calculated and a 1K RC, if pressing SW2 causes the total circuit power to increase to 75mW, what value must RD be? (3pt) EE214 Problem Set 1 2. (20 points) Complete the truth tables below. Provide SOP equations for the bottom three tables. F <= Σ ( ) F <= Σ ( ) F <= Σ ( ) 3. (12 points) Write the number of transistors required for each logic gate below inside the gate symbol, and then write the logic gate name below the symbol. 4. (12 points) Complete truth tables for the circuits shown below A B F AND A B F OR A B F XOR A F INV A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 ? = ? ̅ ∙ ? + ? A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 ? = ? ∙ ? ∙? ̅ + ? ∙ ? A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 ? = ? ∙? ̅+? ̅ ∙ ? A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 A B C F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 A F B C A B C Y EE214 Problem Set 1 5. (18 points) Show the total transistor count and gate/input number for the circuits below. Then sketch equivalent circuits using NAND gates that use fewer transistors (do not minimize the circuits). 6. (12 points) Sketch circuits for the following logic equations F = A̅ ∙ B ∙ C + A ∙B̅ ∙C̅ +A̅ ∙ C F = A̅ ∙ B ∙C̅ ̅̅̅̅̅̅̅̅̅̅ + ̅A̅̅+̅̅̅B̅ F = (? +? ̅ ) ∙ ̅̅?̅̅̅̅̅+̅̅̅̅̅̅̅?̅̅̅∙̅̅?̅̅ G AB C D AB C D H G F F AB C EE214 Problem Set 1 7. (22 points) Sketch a circuit similar to the figure below that asserts logic 1 only when both switches are closed. Label the switches 1 and 2, and complete the truth table below. Then circle the correct term (high or low, and open or closed) to complete the following sentences describing the AND and OR relationships: AND Relationship: The output F is [high / low] when SW1 is [open / closed], and SW2 is [open / closed]. OR Relationship: The output F is [high / low] when SW1 is [open / closed], or SW2 is [open / closed]. Sketch a circuit similar to the figure below that asserts logic 0 whenever one or both switches are closed. Label the switches 1 and 2, and complete the truth table below. Circle the correct term (high or low, and open or closed) to complete the following sentences describing the AND and OR relationships: AND Relationship: The output F is [high / low] when SW1 is [open / closed], and SW2 is [open / closed]. OR Relationship: The output F is [high / low] when SW1 is [open / closed], or SW2 is [open / closed]. 8. (4 points) Complete the following. A pFET turns [ ON / OFF ] with LLV and conducts [ LHV / LLV ] well (circle one in each bracket). An nFET turns [ ON / OFF ] with LLV and conducts [ LHV / LLV ] well (circle one in each bracket). Vdd GND F SW1 SW2 Vdd GND F SW1 SW2 SW1 SW2 F SW1 SW2 F EE214 Problem Set 1 9. (8 points) Sketch circuits and write Verilog assignment statements for the following equations. F = m(1, 2, 6) F = M(0, 7) 10. (21 points) Complete the truth tables below (enter “on” or “off” under each transistor entry, and “1” or “0” for output F), and enter the gate name and schematic shapes in the tables. You get 1/2 point for each correct column, and 1/2 point each for correct names and shapes. Q1 Q2 Q3 Q4 A B F Vdd Q2 Q1 Q3 Q4 A B F Vdd A B Q1 Q2 Q3 Q4 F 0 0 0 1 1 0 1 1 Gate Name AND shape OR shape A B Q1 Q2 Q3 Q4 F 0 0 0 1 1 0 1 1 Gate Name AND shape OR shape EE214 Problem Set 1 Q2 Q1 Q3 Q4 A B F Q5 Q6 Vdd Q1 Q2 Q3 Q4 A B F Q5 Q6 Vdd (2 points) Enter the logic equation for the 3-input circuit above: A B Q1 Q2 Q3 Q4 F 0 0 0 1 1 0 1 1 Gate Name AND shape OR shape A B Q1 Q2 Q3 Q4 F 0 0 0 1 1 0 1 1 Gate Name AND shape OR shape A B C Q1 Q2 Q3 Q4 Q5 Q6 F 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 F = Q1 Q2 Q4 Q5 A B F Q6 Vdd C Q3 EE214 Problem Set 1 11. (20 points) In a logic function with n inputs, there are 2? unique combinations of inputs and 22? possible logic functions. The table below has four rows that show the four possible combinations of two inputs (22 = 4), and 16 output columns that show all possible two-input logic function (222 = 16). Six of these output columns are associated with common logic functions of two variables. Circle the six columns, and label them with the appropriate logic gate name. Draw the circuit symbols for the functions represented. INPUTS ALL POSSIBLE FUNCTIONS A B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 A table like the one above for 3 inputs would need _________ rows and _________ columns. A table like the one above for 4 inputs would need _________ rows and _________ columns. A table like the one above for 5 inputs would need _________ rows and _________ columns. 12. (15 points) Find global minimum circuits for the following three logic signal outputs that are all functions of the same three inputs. Show all work. F1 =  m (0, 3, 4) F2 =  m (1, 6, 7) F3 =  m (0, 1, 3, 4)

info@checkyourstudy.com
Assignment 8 Due: 11:59pm on Friday, April 4, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 10.3 Part A If a particle’s speed increases by a factor of 5, by what factor does its kinetic energy change? ANSWER: Correct Conceptual Question 10.11 A spring is compressed 1.5 . Part A How far must you compress a spring with twice the spring constant to store the same amount of energy? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct = 25 K2 K1 cm x = 1.1 cm Problem 10.2 The lowest point in Death Valley is below sea level. The summit of nearby Mt. Whitney has an elevation of 4420 . Part A What is the change in potential energy of an energetic 80 hiker who makes it from the floor of Death Valley to the top of Mt.Whitney? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 10.3 Part A At what speed does a 1800 compact car have the same kinetic energy as a 1.80×104 truck going 21.0 ? Express your answer with the appropriate units. ANSWER: Correct Problem 10.5 A boy reaches out of a window and tosses a ball straight up with a speed of 13 . The ball is 21 above the ground as he releases it. 85m m kg U = 3.5×106 J kg kg km/hr vc = 66.4 km hr m/s m Part A Use energy to find the ball’s maximum height above the ground. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B Use energy to find the ball’s speed as it passes the window on its way down. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C Use energy to find the speed of impact on the ground. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Hmax = 30 m v = 13 ms v = 24 ms Problem 10.8 A 59.0 skateboarder wants to just make it to the upper edge of a “quarter pipe,” a track that is one-quarter of a circle with a radius of 2.30 . Part A What speed does he need at the bottom? Express your answer with the appropriate units. ANSWER: Correct Problem 10.12 A 1500 car traveling at 12 suddenly runs out of gas while approaching the valley shown in the figure. The alert driver immediately puts the car in neutral so that it will roll. Part A kg m 6.71 ms kg m/s What will be the car’s speed as it coasts into the gas station on the other side of the valley? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Ups and Downs Learning Goal: To apply the law of conservation of energy to an object launched upward in the gravitational field of the earth. In the absence of nonconservative forces such as friction and air resistance, the total mechanical energy in a closed system is conserved. This is one particular case of the law of conservation of energy. In this problem, you will apply the law of conservation of energy to different objects launched from the earth. The energy transformations that take place involve the object’s kinetic energy and its gravitational potential energy . The law of conservation of energy for such cases implies that the sum of the object’s kinetic energy and potential energy does not change with time. This idea can be expressed by the equation , where “i” denotes the “initial” moment and “f” denotes the “final” moment. Since any two moments will work, the choice of the moments to consider is, technically, up to you. That choice, though, is usually suggested by the question posed in the problem. First, let us consider an object launched vertically upward with an initial speed . Neglect air resistance. Part A As the projectile goes upward, what energy changes take place? ANSWER: v = 6.8 ms K = (1/2)mv2 U = mgh Ki + Ui = Kf + Uf v Correct Part B At the top point of the flight, what can be said about the projectile’s kinetic and potential energy? ANSWER: Correct Strictly speaking, it is not the ball that possesses potential energy; rather, it is the system “Earth-ball.” Although we will often talk about “the gravitational potential energy of an elevated object,” it is useful to keep in mind that the energy, in fact, is associated with the interactions between the earth and the elevated object. Part C The potential energy of the object at the moment of launch __________. ANSWER: Both kinetic and potential energy decrease. Both kinetic and potential energy increase. Kinetic energy decreases; potential energy increases. Kinetic energy increases; potential energy decreases. Both kinetic and potential energy are at their maximum values. Both kinetic and potential energy are at their minimum values. Kinetic energy is at a maximum; potential energy is at a minimum. Kinetic energy is at a minimum; potential energy is at a maximum. Correct Usually, the zero level is chosen so as to make the relevant calculations simpler. In this case, it makes good sense to assume that at the ground level–but this is not, by any means, the only choice! Part D Using conservation of energy, find the maximum height to which the object will rise. Express your answer in terms of and the magnitude of the acceleration of gravity . ANSWER: Correct You may remember this result from kinematics. It is comforting to know that our new approach yields the same answer. Part E At what height above the ground does the projectile have a speed of ? Express your answer in terms of and the magnitude of the acceleration of gravity . ANSWER: is negative is positive is zero depends on the choice of the “zero level” of potential energy U = 0 hmax v g hmax = v2 2g h 0.5v v g h = 3 v2 8g Correct Part F What is the speed of the object at the height of ? Express your answer in terms of and . Use three significant figures in the numeric coefficient. Hint 1. How to approach the problem You are being asked for the speed at half of the maximum height. You know that at the initial height ( ), the speed is . All of the energy is kinetic energy, and so, the total energy is . At the maximum height, all of the energy is potential energy. Since the gravitational potential energy is proportional to , half of the initial kinetic energy must have been converted to potential energy when the projectile is at . Thus, the kinetic energy must be half of its original value (i.e., when ). You need to determine the speed, as a multiple of , that corresponds to such a kinetic energy. ANSWER: Correct Let us now consider objects launched at an angle. For such situations, using conservation of energy leads to a quicker solution than can be produced by kinematics. Part G A ball is launched as a projectile with initial speed at an angle above the horizontal. Using conservation of energy, find the maximum height of the ball’s flight. Express your answer in terms of , , and . Hint 1. Find the final kinetic energy Find the final kinetic energy of the ball. Here, the best choice of “final” moment is the point at which the ball reaches its maximum height, since this is the point we are interested in. u (1/2)hmax v g h = 0 v (1/2)mv2 h (1/2)hmax (1/4)mv2 h = (1/2)hmax v u = 0.707v v hmax v g Kf Express your answer in terms of , , and . Hint 1. Find the speed at the maximum height The speed of the ball at the maximum height is __________. ANSWER: ANSWER: ANSWER: Correct Part H A ball is launched with initial speed from ground level up a frictionless slope. The slope makes an angle with the horizontal. Using conservation of energy, find the maximum vertical height to which the ball will climb. Express your answer in terms of , , and . You may or may not use all of these quantities. v m 0 v v cos v sin v tan Kf = 0.5m(vcos( ))2 hmax = (vsin( ))2 2g v hmax v g ANSWER: Correct Interestingly, the answer does not depend on . The difference between this situation and the projectile case is that the ball moving up a slope has no kinetic energy at the top of its trajectory whereas the projectile launched at an angle does. Part I A ball is launched with initial speed from the ground level up a frictionless hill. The hill becomes steeper as the ball slides up; however, the ball remains in contact with the hill at all times. Using conservation of energy, find the maximum vertical height to which the ball will climb. Express your answer in terms of and . ANSWER: Correct The profile of the hill does not matter; the equation would have the same terms regardless of the steepness of the hill. Problem 10.14 A 12- -long spring is attached to the ceiling. When a 2.2 mass is hung from it, the spring stretches to a length of 17 . Part A What is the spring constant ? Express your answer to two significant figures and include the appropriate units. hmax = v2 2g v hmax v g hmax = v2 2g Ki + Ui = Kf + Uf cm kg cm k ANSWER: Correct Part B How long is the spring when a 3.0 mass is suspended from it? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 10.17 A 6.2 mass hanging from a spring scale is slowly lowered onto a vertical spring, as shown in . You may want to review ( pages 255 – 257) . For help with math skills, you may want to review: Solving Algebraic Equations = 430 k Nm kg y = 19 cm kg Part A What does the spring scale read just before the mass touches the lower spring? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture showing the forces acting on the mass before it touches the scale. What is the net force on the mass? What is the force on the mass due to gravity? What is the force on the mass due to the scale? ANSWER: Correct Part B The scale reads 22 when the lower spring has been compressed by 2.7 . What is the value of the spring constant for the lower spring? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture showing the forces acting on the mass. What is the net force on the mass? What is the force on the mass due to gravity? What is the force on the mass due to the scale? Use these to determine the force on the mass by the spring, taking note of the directions from your picture. How is the spring constant related to the force by the spring and the compression of the spring? Check your units. ANSWER: F = 61 N N cm k = 1400 k Nm Correct Part C At what compression length will the scale read zero? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture showing the forces on the mass. When the scale reads zero, what is the force on the mass due to the scale? What is the gravitational force on the mass? What is the force on the mass by the spring? How is the compression length related to the force by the spring and the spring constant? Check your units. ANSWER: Correct Problem 10.18 Part A How far must you stretch a spring with = 800 to store 180 of energy? Express your answer to two significant figures and include the appropriate units. ANSWER: y = 4.2 cm k N/m J Correct Problem 10.22 A 15 runaway grocery cart runs into a spring with spring constant 230 and compresses it by 57 . Part A What was the speed of the cart just before it hit the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Spring Gun A spring-loaded toy gun is used to shoot a ball straight up in the air. The ball reaches a maximum height , measured from the equilibrium position of the spring. s = 0.67 m kg N/m cm v = 2.2 ms H Part A The same ball is shot straight up a second time from the same gun, but this time the spring is compressed only half as far before firing. How far up does the ball go this time? Neglect friction. Assume that the spring is ideal and that the distance by which the spring is compressed is negligible compared to . Hint 1. Potential energy of the spring The potential energy of a spring is proportional to the square of the distance the spring is compressed. The spring was compressed half the distance, so the mass, when launched, has one quarter of the energy as in the first trial. Hint 2. Potential energy of the ball At the highest point in the ball’s trajectory, all of the spring’s potential energy has been converted into gravitational potential energy of the ball. ANSWER: Correct A Bullet Is Fired into a Wooden Block A bullet of mass is fired horizontally with speed at a wooden block of mass resting on a frictionless table. The bullet hits the block and becomes completely embedded within it. After the bullet has come to rest within the block, the block, with the bullet in it, is traveling at speed . H height = H 4 mb vi mw vf Part A Which of the following best describes this collision? Hint 1. Types of collisions An inelastic collision is a collision in which kinetic energy is not conserved. In a partially inelastic collision, kinetic energy is lost, but the objects colliding do not stick together. From this information, you can infer what completely inelastic and elastic collisions are. ANSWER: Correct Part B Which of the following quantities, if any, are conserved during this collision? Hint 1. When is kinetic energy conserved? Kinetic energy is conserved only in perfectly elastic collisions. ANSWER: perfectly elastic partially inelastic perfectly inelastic Correct Part C What is the speed of the block/bullet system after the collision? Express your answer in terms of , , and . Hint 1. Find the momentum after the collision What is the total momentum of the block/bullet system after the collision? Express your answer in terms of and other given quantities. ANSWER: Hint 2. Use conservation of momentum The momentum of the block/bullet system is conserved. Therefore, the momentum before the collision is the same as the momentum after the collision. Find a second expression for , this time expressed as the total momentum of the system before the collision. Express your answer in terms of and other given quantities. ANSWER: kinetic energy only momentum only kinetic energy and momentum neither momentum nor kinetic energy vi mw mb ptotal vf ptotal = (mw + mb)vf ptotal vi ptotal = mbvi ANSWER: Correct Problem 10.31 Ball 1, with a mass of 150 and traveling at 15.0 , collides head on with ball 2, which has a mass of 340 and is initially at rest. Part A What are the final velocities of each ball if the collision is perfectly elastic? Express your answer with the appropriate units. ANSWER: Correct Part B Express your answer with the appropriate units. ANSWER: Correct Part C vf = mb vi mb+mw g m/s g (vfx) = -5.82 1 ms (vfx) = 9.18 2 ms What are the final velocities of each ball if the collision is perfectly inelastic? Express your answer with the appropriate units. ANSWER: Correct Part D Express your answer with the appropriate units. ANSWER: Correct Enhanced EOC: Problem 10.43 A package of mass is released from rest at a warehouse loading dock and slides down the = 2.2 – high, frictionless chute to a waiting truck. Unfortunately, the truck driver went on a break without having removed the previous package, of mass , from the bottom of the chute. You may want to review ( pages 265 – 269) . For help with math skills, you may want to review: Solving Algebraic Equations (vfx) = 4.59 1 ms (vfx) = 4.59 2 ms m h m 2m Part A Suppose the packages stick together. What is their common speed after the collision? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem There are two parts to this problem: the block sliding down the frictionless incline and the collision. What conservation laws are valid in each part? In terms of , what are the kinetic and potential energies of the block at the top of the incline? What is the potential energy of the same block at the bottom just before the collision? What are the kinetic energy and velocity of block just before the collision? What is conserved during the collision? What is the total momentum of the two blocks before the collision? What is the momentum of the two blocks stuck together after the collision? What is the velocity of the two blocks after the collision? ANSWER: Correct Part B Suppose the collision between the packages is perfectly elastic. To what height does the package of mass rebound? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem There are three parts to this problem: the block sliding down the incline, the collision, and mass going back up the incline. What conservation laws are valid in each part? m m v = 2.2 ms m m What is an elastic collision? For an elastic collision, how are the initial and final velocities related when one of the masses is initially at rest? Using the velocity of just before the collision from Part A, what is the velocity of just after the collision in this case? What are the kinetic and potential energies of mass just after the collision? What is the kinetic energy of mass at its maximum rebound height? Using conservation of energy, what is the potential energy of mass at its maximum height? What is the maximum height? ANSWER: Correct Problem 10.35 A cannon tilted up at a 35.0 angle fires a cannon ball at 79.0 from atop a 21.0 -high fortress wall. Part A What is the ball’s impact speed on the ground below? Express your answer with the appropriate units. ANSWER: Correct Problem 10.45 A 1000 safe is 2.5 above a heavy-duty spring when the rope holding the safe breaks. The safe hits the spring and compresses it 48 . m m m m m h = 24 cm $ m/s m vf = 81.6 ms kg m cm Part A What is the spring constant of the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 10.49 A 100 block on a frictionless table is firmly attached to one end of a spring with = 21 . The other end of the spring is anchored to the wall. A 30 ball is thrown horizontally toward the block with a speed of 6.0 . Part A If the collision is perfectly elastic, what is the ball’s speed immediately after the collision? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the maximum compression of the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: = 2.5×105 k Nm g k N/m g m/s v = 3.2 ms Correct Part C Repeat part A for the case of a perfectly inelastic collision. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part D Repeat part B for the case of a perfectly inelastic collision. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 99.4%. You received 120.28 out of a possible total of 121 points. x = 0.19 m v = 1.4 ms x = 0.11 m

Assignment 8 Due: 11:59pm on Friday, April 4, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 10.3 Part A If a particle’s speed increases by a factor of 5, by what factor does its kinetic energy change? ANSWER: Correct Conceptual Question 10.11 A spring is compressed 1.5 . Part A How far must you compress a spring with twice the spring constant to store the same amount of energy? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct = 25 K2 K1 cm x = 1.1 cm Problem 10.2 The lowest point in Death Valley is below sea level. The summit of nearby Mt. Whitney has an elevation of 4420 . Part A What is the change in potential energy of an energetic 80 hiker who makes it from the floor of Death Valley to the top of Mt.Whitney? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 10.3 Part A At what speed does a 1800 compact car have the same kinetic energy as a 1.80×104 truck going 21.0 ? Express your answer with the appropriate units. ANSWER: Correct Problem 10.5 A boy reaches out of a window and tosses a ball straight up with a speed of 13 . The ball is 21 above the ground as he releases it. 85m m kg U = 3.5×106 J kg kg km/hr vc = 66.4 km hr m/s m Part A Use energy to find the ball’s maximum height above the ground. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B Use energy to find the ball’s speed as it passes the window on its way down. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C Use energy to find the speed of impact on the ground. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Hmax = 30 m v = 13 ms v = 24 ms Problem 10.8 A 59.0 skateboarder wants to just make it to the upper edge of a “quarter pipe,” a track that is one-quarter of a circle with a radius of 2.30 . Part A What speed does he need at the bottom? Express your answer with the appropriate units. ANSWER: Correct Problem 10.12 A 1500 car traveling at 12 suddenly runs out of gas while approaching the valley shown in the figure. The alert driver immediately puts the car in neutral so that it will roll. Part A kg m 6.71 ms kg m/s What will be the car’s speed as it coasts into the gas station on the other side of the valley? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Ups and Downs Learning Goal: To apply the law of conservation of energy to an object launched upward in the gravitational field of the earth. In the absence of nonconservative forces such as friction and air resistance, the total mechanical energy in a closed system is conserved. This is one particular case of the law of conservation of energy. In this problem, you will apply the law of conservation of energy to different objects launched from the earth. The energy transformations that take place involve the object’s kinetic energy and its gravitational potential energy . The law of conservation of energy for such cases implies that the sum of the object’s kinetic energy and potential energy does not change with time. This idea can be expressed by the equation , where “i” denotes the “initial” moment and “f” denotes the “final” moment. Since any two moments will work, the choice of the moments to consider is, technically, up to you. That choice, though, is usually suggested by the question posed in the problem. First, let us consider an object launched vertically upward with an initial speed . Neglect air resistance. Part A As the projectile goes upward, what energy changes take place? ANSWER: v = 6.8 ms K = (1/2)mv2 U = mgh Ki + Ui = Kf + Uf v Correct Part B At the top point of the flight, what can be said about the projectile’s kinetic and potential energy? ANSWER: Correct Strictly speaking, it is not the ball that possesses potential energy; rather, it is the system “Earth-ball.” Although we will often talk about “the gravitational potential energy of an elevated object,” it is useful to keep in mind that the energy, in fact, is associated with the interactions between the earth and the elevated object. Part C The potential energy of the object at the moment of launch __________. ANSWER: Both kinetic and potential energy decrease. Both kinetic and potential energy increase. Kinetic energy decreases; potential energy increases. Kinetic energy increases; potential energy decreases. Both kinetic and potential energy are at their maximum values. Both kinetic and potential energy are at their minimum values. Kinetic energy is at a maximum; potential energy is at a minimum. Kinetic energy is at a minimum; potential energy is at a maximum. Correct Usually, the zero level is chosen so as to make the relevant calculations simpler. In this case, it makes good sense to assume that at the ground level–but this is not, by any means, the only choice! Part D Using conservation of energy, find the maximum height to which the object will rise. Express your answer in terms of and the magnitude of the acceleration of gravity . ANSWER: Correct You may remember this result from kinematics. It is comforting to know that our new approach yields the same answer. Part E At what height above the ground does the projectile have a speed of ? Express your answer in terms of and the magnitude of the acceleration of gravity . ANSWER: is negative is positive is zero depends on the choice of the “zero level” of potential energy U = 0 hmax v g hmax = v2 2g h 0.5v v g h = 3 v2 8g Correct Part F What is the speed of the object at the height of ? Express your answer in terms of and . Use three significant figures in the numeric coefficient. Hint 1. How to approach the problem You are being asked for the speed at half of the maximum height. You know that at the initial height ( ), the speed is . All of the energy is kinetic energy, and so, the total energy is . At the maximum height, all of the energy is potential energy. Since the gravitational potential energy is proportional to , half of the initial kinetic energy must have been converted to potential energy when the projectile is at . Thus, the kinetic energy must be half of its original value (i.e., when ). You need to determine the speed, as a multiple of , that corresponds to such a kinetic energy. ANSWER: Correct Let us now consider objects launched at an angle. For such situations, using conservation of energy leads to a quicker solution than can be produced by kinematics. Part G A ball is launched as a projectile with initial speed at an angle above the horizontal. Using conservation of energy, find the maximum height of the ball’s flight. Express your answer in terms of , , and . Hint 1. Find the final kinetic energy Find the final kinetic energy of the ball. Here, the best choice of “final” moment is the point at which the ball reaches its maximum height, since this is the point we are interested in. u (1/2)hmax v g h = 0 v (1/2)mv2 h (1/2)hmax (1/4)mv2 h = (1/2)hmax v u = 0.707v v hmax v g Kf Express your answer in terms of , , and . Hint 1. Find the speed at the maximum height The speed of the ball at the maximum height is __________. ANSWER: ANSWER: ANSWER: Correct Part H A ball is launched with initial speed from ground level up a frictionless slope. The slope makes an angle with the horizontal. Using conservation of energy, find the maximum vertical height to which the ball will climb. Express your answer in terms of , , and . You may or may not use all of these quantities. v m 0 v v cos v sin v tan Kf = 0.5m(vcos( ))2 hmax = (vsin( ))2 2g v hmax v g ANSWER: Correct Interestingly, the answer does not depend on . The difference between this situation and the projectile case is that the ball moving up a slope has no kinetic energy at the top of its trajectory whereas the projectile launched at an angle does. Part I A ball is launched with initial speed from the ground level up a frictionless hill. The hill becomes steeper as the ball slides up; however, the ball remains in contact with the hill at all times. Using conservation of energy, find the maximum vertical height to which the ball will climb. Express your answer in terms of and . ANSWER: Correct The profile of the hill does not matter; the equation would have the same terms regardless of the steepness of the hill. Problem 10.14 A 12- -long spring is attached to the ceiling. When a 2.2 mass is hung from it, the spring stretches to a length of 17 . Part A What is the spring constant ? Express your answer to two significant figures and include the appropriate units. hmax = v2 2g v hmax v g hmax = v2 2g Ki + Ui = Kf + Uf cm kg cm k ANSWER: Correct Part B How long is the spring when a 3.0 mass is suspended from it? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 10.17 A 6.2 mass hanging from a spring scale is slowly lowered onto a vertical spring, as shown in . You may want to review ( pages 255 – 257) . For help with math skills, you may want to review: Solving Algebraic Equations = 430 k Nm kg y = 19 cm kg Part A What does the spring scale read just before the mass touches the lower spring? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture showing the forces acting on the mass before it touches the scale. What is the net force on the mass? What is the force on the mass due to gravity? What is the force on the mass due to the scale? ANSWER: Correct Part B The scale reads 22 when the lower spring has been compressed by 2.7 . What is the value of the spring constant for the lower spring? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture showing the forces acting on the mass. What is the net force on the mass? What is the force on the mass due to gravity? What is the force on the mass due to the scale? Use these to determine the force on the mass by the spring, taking note of the directions from your picture. How is the spring constant related to the force by the spring and the compression of the spring? Check your units. ANSWER: F = 61 N N cm k = 1400 k Nm Correct Part C At what compression length will the scale read zero? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem Draw a picture showing the forces on the mass. When the scale reads zero, what is the force on the mass due to the scale? What is the gravitational force on the mass? What is the force on the mass by the spring? How is the compression length related to the force by the spring and the spring constant? Check your units. ANSWER: Correct Problem 10.18 Part A How far must you stretch a spring with = 800 to store 180 of energy? Express your answer to two significant figures and include the appropriate units. ANSWER: y = 4.2 cm k N/m J Correct Problem 10.22 A 15 runaway grocery cart runs into a spring with spring constant 230 and compresses it by 57 . Part A What was the speed of the cart just before it hit the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Spring Gun A spring-loaded toy gun is used to shoot a ball straight up in the air. The ball reaches a maximum height , measured from the equilibrium position of the spring. s = 0.67 m kg N/m cm v = 2.2 ms H Part A The same ball is shot straight up a second time from the same gun, but this time the spring is compressed only half as far before firing. How far up does the ball go this time? Neglect friction. Assume that the spring is ideal and that the distance by which the spring is compressed is negligible compared to . Hint 1. Potential energy of the spring The potential energy of a spring is proportional to the square of the distance the spring is compressed. The spring was compressed half the distance, so the mass, when launched, has one quarter of the energy as in the first trial. Hint 2. Potential energy of the ball At the highest point in the ball’s trajectory, all of the spring’s potential energy has been converted into gravitational potential energy of the ball. ANSWER: Correct A Bullet Is Fired into a Wooden Block A bullet of mass is fired horizontally with speed at a wooden block of mass resting on a frictionless table. The bullet hits the block and becomes completely embedded within it. After the bullet has come to rest within the block, the block, with the bullet in it, is traveling at speed . H height = H 4 mb vi mw vf Part A Which of the following best describes this collision? Hint 1. Types of collisions An inelastic collision is a collision in which kinetic energy is not conserved. In a partially inelastic collision, kinetic energy is lost, but the objects colliding do not stick together. From this information, you can infer what completely inelastic and elastic collisions are. ANSWER: Correct Part B Which of the following quantities, if any, are conserved during this collision? Hint 1. When is kinetic energy conserved? Kinetic energy is conserved only in perfectly elastic collisions. ANSWER: perfectly elastic partially inelastic perfectly inelastic Correct Part C What is the speed of the block/bullet system after the collision? Express your answer in terms of , , and . Hint 1. Find the momentum after the collision What is the total momentum of the block/bullet system after the collision? Express your answer in terms of and other given quantities. ANSWER: Hint 2. Use conservation of momentum The momentum of the block/bullet system is conserved. Therefore, the momentum before the collision is the same as the momentum after the collision. Find a second expression for , this time expressed as the total momentum of the system before the collision. Express your answer in terms of and other given quantities. ANSWER: kinetic energy only momentum only kinetic energy and momentum neither momentum nor kinetic energy vi mw mb ptotal vf ptotal = (mw + mb)vf ptotal vi ptotal = mbvi ANSWER: Correct Problem 10.31 Ball 1, with a mass of 150 and traveling at 15.0 , collides head on with ball 2, which has a mass of 340 and is initially at rest. Part A What are the final velocities of each ball if the collision is perfectly elastic? Express your answer with the appropriate units. ANSWER: Correct Part B Express your answer with the appropriate units. ANSWER: Correct Part C vf = mb vi mb+mw g m/s g (vfx) = -5.82 1 ms (vfx) = 9.18 2 ms What are the final velocities of each ball if the collision is perfectly inelastic? Express your answer with the appropriate units. ANSWER: Correct Part D Express your answer with the appropriate units. ANSWER: Correct Enhanced EOC: Problem 10.43 A package of mass is released from rest at a warehouse loading dock and slides down the = 2.2 – high, frictionless chute to a waiting truck. Unfortunately, the truck driver went on a break without having removed the previous package, of mass , from the bottom of the chute. You may want to review ( pages 265 – 269) . For help with math skills, you may want to review: Solving Algebraic Equations (vfx) = 4.59 1 ms (vfx) = 4.59 2 ms m h m 2m Part A Suppose the packages stick together. What is their common speed after the collision? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem There are two parts to this problem: the block sliding down the frictionless incline and the collision. What conservation laws are valid in each part? In terms of , what are the kinetic and potential energies of the block at the top of the incline? What is the potential energy of the same block at the bottom just before the collision? What are the kinetic energy and velocity of block just before the collision? What is conserved during the collision? What is the total momentum of the two blocks before the collision? What is the momentum of the two blocks stuck together after the collision? What is the velocity of the two blocks after the collision? ANSWER: Correct Part B Suppose the collision between the packages is perfectly elastic. To what height does the package of mass rebound? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem There are three parts to this problem: the block sliding down the incline, the collision, and mass going back up the incline. What conservation laws are valid in each part? m m v = 2.2 ms m m What is an elastic collision? For an elastic collision, how are the initial and final velocities related when one of the masses is initially at rest? Using the velocity of just before the collision from Part A, what is the velocity of just after the collision in this case? What are the kinetic and potential energies of mass just after the collision? What is the kinetic energy of mass at its maximum rebound height? Using conservation of energy, what is the potential energy of mass at its maximum height? What is the maximum height? ANSWER: Correct Problem 10.35 A cannon tilted up at a 35.0 angle fires a cannon ball at 79.0 from atop a 21.0 -high fortress wall. Part A What is the ball’s impact speed on the ground below? Express your answer with the appropriate units. ANSWER: Correct Problem 10.45 A 1000 safe is 2.5 above a heavy-duty spring when the rope holding the safe breaks. The safe hits the spring and compresses it 48 . m m m m m h = 24 cm $ m/s m vf = 81.6 ms kg m cm Part A What is the spring constant of the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 10.49 A 100 block on a frictionless table is firmly attached to one end of a spring with = 21 . The other end of the spring is anchored to the wall. A 30 ball is thrown horizontally toward the block with a speed of 6.0 . Part A If the collision is perfectly elastic, what is the ball’s speed immediately after the collision? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the maximum compression of the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: = 2.5×105 k Nm g k N/m g m/s v = 3.2 ms Correct Part C Repeat part A for the case of a perfectly inelastic collision. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part D Repeat part B for the case of a perfectly inelastic collision. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 99.4%. You received 120.28 out of a possible total of 121 points. x = 0.19 m v = 1.4 ms x = 0.11 m

please email info@checkyourstudy.com
Assignment 11 Due: 11:59pm on Wednesday, April 30, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 13.2 The gravitational force of a star on orbiting planet 1 is . Planet 2, which is twice as massive as planet 1 and orbits at twice the distance from the star, experiences gravitational force . Part A What is the ratio ? ANSWER: Correct Conceptual Question 13.3 A 1500 satellite and a 2200 satellite follow exactly the same orbit around the earth. Part A What is the ratio of the force on the first satellite to that on the second satellite? ANSWER: Correct F1 F2 F1 F2 = 2 F1 F2 kg kg F1 F2 = 0.682 F1 F2 Part B What is the ratio of the acceleration of the first satellite to that of the second satellite? ANSWER: Correct Problem 13.2 The centers of a 15.0 lead ball and a 90.0 lead ball are separated by 9.00 . Part A What gravitational force does each exert on the other? Express your answer with the appropriate units. ANSWER: Correct Part B What is the ratio of this gravitational force to the weight of the 90.0 ball? ANSWER: a1 a2 = 1 a1 a2 kg g cm 1.11×10−8 N g 1.26×10−8 Typesetting math: 100% Correct Problem 13.6 The space shuttle orbits 310 above the surface of the earth. Part A What is the gravitational force on a 7.5 sphere inside the space shuttle? Express your answer with the appropriate units. ANSWER: Correct ± A Satellite in Orbit A satellite used in a cellular telephone network has a mass of 2310 and is in a circular orbit at a height of 650 above the surface of the earth. Part A What is the gravitational force on the satellite? Take the gravitational constant to be = 6.67×10−11 , the mass of the earth to be = 5.97×1024 , and the radius of the Earth to be = 6.38×106 . Express your answer in newtons. Hint 1. How to approach the problem Use the equation for the law of gravitation to calculate the force on the satellite. Be careful about the units when performing the calculations. km kg Fe on s = 67.0 N kg km Fgrav G N m2/kg2 me kg re m Typesetting math: 100% Hint 2. Law of gravitation According to Newton’s law of gravitation, , where is the gravitational constant, and are the masses of the two objects, and is the distance between the centers of mass of the two objects. Hint 3. Calculate the distance between the centers of mass What is the distance from the center of mass of the satellite to the center of mass of the earth? Express your answer in meters. ANSWER: ANSWER: Correct Part B What fraction is this of the satellite’s weight at the surface of the earth? Take the free-fall acceleration at the surface of the earth to be = 9.80 . Hint 1. How to approach the problem All you need to do is to take the ratio of the gravitational force on the satellite to the weight of the satellite at ground level. There are two ways to do this, depending on how you define the force of gravity at the surface of the earth. ANSWER: F = Gm1m2/r2 G m1 m2 r r = 7.03×10r 6 m = 1.86×10Fgrav 4 N g m/s2 0.824 Typesetting math: 100% Correct Although it is easy to find the weight of the satellite using the constant acceleration due to gravity, it is instructional to consider the weight calculated using the law of gravitation: . Dividing the gravitational force on the satellite by , we find that the ratio of the forces due to the earth’s gravity is simply the square of the ratio of the earth’s radius to the sum of the earth’s radius and the height of the orbit of the satellite above the earth, . This will also be the fraction of the weight of, say, an astronaut in an orbit at the same altitude. Notice that an astronaut’s weight is never zero. When people speak of “weightlessness” in space, what they really mean is “free fall.” Problem 13.8 Part A What is the free-fall acceleration at the surface of the moon? Express your answer with the appropriate units. ANSWER: Correct Part B What is the free-fall acceleration at the surface of the Jupiter? Express your answer with the appropriate units. ANSWER: Correct w = G m/ me r2e Fgrav = Gmem/(re + h)2 w [re/(re + h)]2 gmoon = 1.62 m s2 gJupiter = 25.9 m s2 Typesetting math: 100% Enhanced EOC: Problem 13.14 A rocket is launched straight up from the earth’s surface at a speed of 1.90×104 . You may want to review ( pages 362 – 365) . For help with math skills, you may want to review: Mathematical Expressions Involving Squares Part A What is its speed when it is very far away from the earth? Express your answer with the appropriate units. Hint 1. How to approach the problem What is conserved in this problem? What is the rocket’s initial kinetic energy in terms of its unknown mass, ? What is the rocket’s initial gravitational potential energy in terms of its unknown mass, ? When the rocket is very far away from the Earth, what is its gravitational potential energy? Using conservation of energy, what is the rocket’s kinetic energy when it is very far away from the Earth? Therefore, what is the rocket’s velocity when it is very far away from the Earth? ANSWER: Correct Problem 13.13 Part A m/s m m 1.54×104 ms Typesetting math: 100% What is the escape speed from Venus? Express your answer with the appropriate units. ANSWER: Correct Problem 13.17 The asteroid belt circles the sun between the orbits of Mars and Jupiter. One asteroid has a period of 4.2 earth years. Part A What is the asteroid’s orbital radius? Express your answer with the appropriate units. ANSWER: Correct Part B What is the asteroid’s orbital speed? Express your answer with the appropriate units. ANSWER: vescape = 10.4 km s = 3.89×1011 R m = 1.85×104 v ms Typesetting math: 100% Correct Problem 13.32 Part A At what height above the earth is the acceleration due to gravity 15.0% of its value at the surface? Express your answer with the appropriate units. ANSWER: Correct Part B What is the speed of a satellite orbiting at that height? Express your answer with the appropriate units. ANSWER: Correct Problem 13.36 Two meteoroids are heading for earth. Their speeds as they cross the moon’s orbit are 2 . 1.01×107 m 4920 ms km/s Typesetting math: 100% Part A The first meteoroid is heading straight for earth. What is its speed of impact? Express your answer with the appropriate units. ANSWER: Correct Part B The second misses the earth by 5500 . What is its speed at its closest point? Express your answer with the appropriate units. ANSWER: Incorrect; Try Again Problem 14.2 An air-track glider attached to a spring oscillates between the 11.0 mark and the 67.0 mark on the track. The glider completes 11.0 oscillations in 32.0 . Part A What is the period of the oscillations? Express your answer with the appropriate units. v1 = 11.3 km s km v2 = cm cm s Typesetting math: 100% ANSWER: Correct Part B What is the frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part C What is the angular frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part D What is the amplitude? Express your answer with the appropriate units. 2.91 s 0.344 Hz 2.16 rad s Typesetting math: 100% ANSWER: Correct Part E What is the maximum speed of the glider? Express your answer with the appropriate units. ANSWER: Correct Good Vibes: Introduction to Oscillations Learning Goal: To learn the basic terminology and relationships among the main characteristics of simple harmonic motion. Motion that repeats itself over and over is called periodic motion. There are many examples of periodic motion: the earth revolving around the sun, an elastic ball bouncing up and down, or a block attached to a spring oscillating back and forth. The last example differs from the first two, in that it represents a special kind of periodic motion called simple harmonic motion. The conditions that lead to simple harmonic motion are as follows: There must be a position of stable equilibrium. There must be a restoring force acting on the oscillating object. The direction of this force must always point toward the equilibrium, and its magnitude must be directly proportional to the magnitude of the object’s displacement from its equilibrium position. Mathematically, the restoring force is given by , where is the displacement from equilibrium and is a constant that depends on the properties of the oscillating system. The resistive forces in the system must be reasonably small. In this problem, we will introduce some of the basic quantities that describe oscillations and the relationships among them. Consider a block of mass attached to a spring with force constant , as shown in the figure. The spring can be either stretched or compressed. The block slides on a frictionless horizontal surface, as shown. When the spring is relaxed, the block is located at . If the 28.0 cm 60.5 cms F  F = −kx x k m k x = 0 Typesetting math: 100% block is pulled to the right a distance and then released, will be the amplitude of the resulting oscillations. Assume that the mechanical energy of the block-spring system remains unchanged in the subsequent motion of the block. Part A After the block is released from , it will ANSWER: Correct As the block begins its motion to the left, it accelerates. Although the restoring force decreases as the block approaches equilibrium, it still pulls the block to the left, so by the time the equilibrium position is reached, the block has gained some speed. It will, therefore, pass the equilibrium position and keep moving, compressing the spring. The spring will now be pushing the block to the right, and the block will slow down, temporarily coming to rest at . After is reached, the block will begin its motion to the right, pushed by the spring. The block will pass the equilibrium position and continue until it reaches , completing one cycle of motion. The motion will then repeat; if, as we’ve assumed, there is no friction, the motion will repeat indefinitely. The time it takes the block to complete one cycle is called the period. Usually, the period is denoted and is measured in seconds. The frequency, denoted , is the number of cycles that are completed per unit of time: . In SI units, is measured in inverse seconds, or hertz ( ). A A x = A remain at rest. move to the left until it reaches equilibrium and stop there. move to the left until it reaches and stop there. move to the left until it reaches and then begin to move to the right. x = −A x = −A x = −A x = −A x = A T f f = 1/T f Hz Typesetting math: 100% Part B If the period is doubled, the frequency is ANSWER: Correct Part C An oscillating object takes 0.10 to complete one cycle; that is, its period is 0.10 . What is its frequency ? Express your answer in hertz. ANSWER: Correct unchanged. doubled. halved. s s f f = 10 Hz Typesetting math: 100% Part D If the frequency is 40 , what is the period ? Express your answer in seconds. ANSWER: Correct The following questions refer to the figure that graphically depicts the oscillations of the block on the spring. Note that the vertical axis represents the x coordinate of the oscillating object, and the horizontal axis represents time. Part E Which points on the x axis are located a distance from the equilibrium position? ANSWER: Hz T T = 0.025 s A Typesetting math: 100% Correct Part F Suppose that the period is . Which of the following points on the t axis are separated by the time interval ? ANSWER: Correct Now assume for the remaining Parts G – J, that the x coordinate of point R is 0.12 and the t coordinate of point K is 0.0050 . Part G What is the period ? Express your answer in seconds. Hint 1. How to approach the problem In moving from the point to the point K, what fraction of a full wavelength is covered? Call that fraction . Then you can set . Dividing by the fraction will give the R only Q only both R and Q T T K and L K and M K and P L and N M and P m s T t = 0 a aT = 0.005 s a Typesetting math: 100% period . ANSWER: Correct Part H How much time does the block take to travel from the point of maximum displacement to the opposite point of maximum displacement? Express your answer in seconds. ANSWER: Correct Part I What distance does the object cover during one period of oscillation? Express your answer in meters. ANSWER: Correct Part J What distance does the object cover between the moments labeled K and N on the graph? T T = 0.02 s t t = 0.01 s d d = 0.48 m d Typesetting math: 100% Express your answer in meters. ANSWER: Correct Problem 14.4 Part A What is the amplitude of the oscillation shown in the figure? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct d = 0.36 m A = 20.0 cm Typesetting math: 100% Part B What is the frequency of this oscillation? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the phase constant? Express your answer to two significant figures and include the appropriate units. ANSWER: Incorrect; Try Again Problem 14.10 An air-track glider attached to a spring oscillates with a period of 1.50 . At the glider is 4.60 left of the equilibrium position and moving to the right at 33.4 . Part A What is the phase constant? Express your answer to three significant figures and include the appropriate units. ANSWER: f = 0.25 Hz 0 = s t = 0 s cm cm/s Typesetting math: 100% Incorrect; Try Again Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Problem 14.12 A 140 air-track glider is attached to a spring. The glider is pushed in 12.2 and released. A student with a stopwatch finds that 14.0 oscillations take 19.0 . Part A What is the spring constant? Express your answer with the appropriate units. ANSWER: 0 = g cm s Typesetting math: 100% Correct Problem 14.14 The position of a 50 g oscillating mass is given by , where is in s. If necessary, round your answers to three significant figures. Determine: Part A The amplitude. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part B The period. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part C 3.00 Nm x(t) = (2.0 cm)cos(10t − /4) t 2.00 cm 0.628 s Typesetting math: 100% The spring constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Part D The phase constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Incorrect; Try Again Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G Typesetting math: 100% This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). Part I This question will be shown after you complete previous question(s). Enhanced EOC: Problem 14.17 A spring with spring constant 16 hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 4.0 and released. The ball makes 35 oscillations in 18 seconds. You may want to review ( pages 389 – 391) . For help with math skills, you may want to review: Differentiation of Trigonometric Functions Part A What is its the mass of the ball? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the period of oscillation? What is the angular frequency of the oscillations? How is the angular frequency related to the mass and spring constant? What is the mass? N/m cm s Typesetting math: 100% ANSWER: Correct Part B What is its maximum speed? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the amplitude of the oscillations? How is the maximum speed related to the amplitude of the oscillations and the angular frequency? ANSWER: Correct Changing the Period of a Pendulum A simple pendulum consisting of a bob of mass attached to a string of length swings with a period . Part A If the bob’s mass is doubled, approximately what will the pendulum’s new period be? Hint 1. Period of a simple pendulum The period of a simple pendulum of length is given by m = 110 g vmax = 49 cms m L T Typesetting math: 10T0% L , where is the acceleration due to gravity. ANSWER: Correct Part B If the pendulum is brought on the moon where the gravitational acceleration is about , approximately what will its period now be? Hint 1. How to approach the problem Recall the formula of the period of a simple pendulum. Since the gravitational acceleration appears in the denominator, the period must increase when the gravitational acceleration decreases. ANSWER: T = 2 Lg −−  g T/2 T &2T 2T g/6 T/6 T/&6 &6T 6T Typesetting math: 100% Correct Part C If the pendulum is taken into the orbiting space station what will happen to the bob? Hint 1. How to approach the problem Recall that the oscillations of a simple pendulum occur when a pendulum bob is raised above its equilibrium position and let go, causing the pendulum bob to fall. The gravitational force acts to bring the bob back to its equilibrium position. In the space station, the earth’s gravity acts on both the station and everything inside it, giving them the same acceleration. These objects are said to be in free fall. ANSWER: Correct In the space station, where all objects undergo the same acceleration due to the earth’s gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. Problem 14.20 A 175 ball is tied to a string. It is pulled to an angle of 8.0 and released to swing as a pendulum. A student with a stopwatch finds that 15 oscillations take 13 . Part A How long is the string? Express your answer to two significant figures and include the appropriate units. It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. It will oscillate much faster with a period that approaches zero. g ( s Typesetting math: 100% ANSWER: Correct Problem 14.22 Part A What is the length of a pendulum whose period on the moon matches the period of a 2.1- -long pendulum on the earth? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.42 An ultrasonic transducer, of the type used in medical ultrasound imaging, is a very thin disk ( = 0.17 ) driven back and forth in SHM at by an electromagnetic coil. Part A The maximum restoring force that can be applied to the disk without breaking it is 4.4×104 . What is the maximum oscillation amplitude that won’t rupture the disk? Express your answer to two significant figures and include the appropriate units. ANSWER: L = 19 cm m lmoon = 0.35 m m g 1.0 MHz N amax = 6.6 μm Typesetting math: 100% Correct Part B What is the disk’s maximum speed at this amplitude? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 81.4%. You received 117.25 out of a possible total of 144 points. vmax = 41 ms

Assignment 11 Due: 11:59pm on Wednesday, April 30, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 13.2 The gravitational force of a star on orbiting planet 1 is . Planet 2, which is twice as massive as planet 1 and orbits at twice the distance from the star, experiences gravitational force . Part A What is the ratio ? ANSWER: Correct Conceptual Question 13.3 A 1500 satellite and a 2200 satellite follow exactly the same orbit around the earth. Part A What is the ratio of the force on the first satellite to that on the second satellite? ANSWER: Correct F1 F2 F1 F2 = 2 F1 F2 kg kg F1 F2 = 0.682 F1 F2 Part B What is the ratio of the acceleration of the first satellite to that of the second satellite? ANSWER: Correct Problem 13.2 The centers of a 15.0 lead ball and a 90.0 lead ball are separated by 9.00 . Part A What gravitational force does each exert on the other? Express your answer with the appropriate units. ANSWER: Correct Part B What is the ratio of this gravitational force to the weight of the 90.0 ball? ANSWER: a1 a2 = 1 a1 a2 kg g cm 1.11×10−8 N g 1.26×10−8 Typesetting math: 100% Correct Problem 13.6 The space shuttle orbits 310 above the surface of the earth. Part A What is the gravitational force on a 7.5 sphere inside the space shuttle? Express your answer with the appropriate units. ANSWER: Correct ± A Satellite in Orbit A satellite used in a cellular telephone network has a mass of 2310 and is in a circular orbit at a height of 650 above the surface of the earth. Part A What is the gravitational force on the satellite? Take the gravitational constant to be = 6.67×10−11 , the mass of the earth to be = 5.97×1024 , and the radius of the Earth to be = 6.38×106 . Express your answer in newtons. Hint 1. How to approach the problem Use the equation for the law of gravitation to calculate the force on the satellite. Be careful about the units when performing the calculations. km kg Fe on s = 67.0 N kg km Fgrav G N m2/kg2 me kg re m Typesetting math: 100% Hint 2. Law of gravitation According to Newton’s law of gravitation, , where is the gravitational constant, and are the masses of the two objects, and is the distance between the centers of mass of the two objects. Hint 3. Calculate the distance between the centers of mass What is the distance from the center of mass of the satellite to the center of mass of the earth? Express your answer in meters. ANSWER: ANSWER: Correct Part B What fraction is this of the satellite’s weight at the surface of the earth? Take the free-fall acceleration at the surface of the earth to be = 9.80 . Hint 1. How to approach the problem All you need to do is to take the ratio of the gravitational force on the satellite to the weight of the satellite at ground level. There are two ways to do this, depending on how you define the force of gravity at the surface of the earth. ANSWER: F = Gm1m2/r2 G m1 m2 r r = 7.03×10r 6 m = 1.86×10Fgrav 4 N g m/s2 0.824 Typesetting math: 100% Correct Although it is easy to find the weight of the satellite using the constant acceleration due to gravity, it is instructional to consider the weight calculated using the law of gravitation: . Dividing the gravitational force on the satellite by , we find that the ratio of the forces due to the earth’s gravity is simply the square of the ratio of the earth’s radius to the sum of the earth’s radius and the height of the orbit of the satellite above the earth, . This will also be the fraction of the weight of, say, an astronaut in an orbit at the same altitude. Notice that an astronaut’s weight is never zero. When people speak of “weightlessness” in space, what they really mean is “free fall.” Problem 13.8 Part A What is the free-fall acceleration at the surface of the moon? Express your answer with the appropriate units. ANSWER: Correct Part B What is the free-fall acceleration at the surface of the Jupiter? Express your answer with the appropriate units. ANSWER: Correct w = G m/ me r2e Fgrav = Gmem/(re + h)2 w [re/(re + h)]2 gmoon = 1.62 m s2 gJupiter = 25.9 m s2 Typesetting math: 100% Enhanced EOC: Problem 13.14 A rocket is launched straight up from the earth’s surface at a speed of 1.90×104 . You may want to review ( pages 362 – 365) . For help with math skills, you may want to review: Mathematical Expressions Involving Squares Part A What is its speed when it is very far away from the earth? Express your answer with the appropriate units. Hint 1. How to approach the problem What is conserved in this problem? What is the rocket’s initial kinetic energy in terms of its unknown mass, ? What is the rocket’s initial gravitational potential energy in terms of its unknown mass, ? When the rocket is very far away from the Earth, what is its gravitational potential energy? Using conservation of energy, what is the rocket’s kinetic energy when it is very far away from the Earth? Therefore, what is the rocket’s velocity when it is very far away from the Earth? ANSWER: Correct Problem 13.13 Part A m/s m m 1.54×104 ms Typesetting math: 100% What is the escape speed from Venus? Express your answer with the appropriate units. ANSWER: Correct Problem 13.17 The asteroid belt circles the sun between the orbits of Mars and Jupiter. One asteroid has a period of 4.2 earth years. Part A What is the asteroid’s orbital radius? Express your answer with the appropriate units. ANSWER: Correct Part B What is the asteroid’s orbital speed? Express your answer with the appropriate units. ANSWER: vescape = 10.4 km s = 3.89×1011 R m = 1.85×104 v ms Typesetting math: 100% Correct Problem 13.32 Part A At what height above the earth is the acceleration due to gravity 15.0% of its value at the surface? Express your answer with the appropriate units. ANSWER: Correct Part B What is the speed of a satellite orbiting at that height? Express your answer with the appropriate units. ANSWER: Correct Problem 13.36 Two meteoroids are heading for earth. Their speeds as they cross the moon’s orbit are 2 . 1.01×107 m 4920 ms km/s Typesetting math: 100% Part A The first meteoroid is heading straight for earth. What is its speed of impact? Express your answer with the appropriate units. ANSWER: Correct Part B The second misses the earth by 5500 . What is its speed at its closest point? Express your answer with the appropriate units. ANSWER: Incorrect; Try Again Problem 14.2 An air-track glider attached to a spring oscillates between the 11.0 mark and the 67.0 mark on the track. The glider completes 11.0 oscillations in 32.0 . Part A What is the period of the oscillations? Express your answer with the appropriate units. v1 = 11.3 km s km v2 = cm cm s Typesetting math: 100% ANSWER: Correct Part B What is the frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part C What is the angular frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part D What is the amplitude? Express your answer with the appropriate units. 2.91 s 0.344 Hz 2.16 rad s Typesetting math: 100% ANSWER: Correct Part E What is the maximum speed of the glider? Express your answer with the appropriate units. ANSWER: Correct Good Vibes: Introduction to Oscillations Learning Goal: To learn the basic terminology and relationships among the main characteristics of simple harmonic motion. Motion that repeats itself over and over is called periodic motion. There are many examples of periodic motion: the earth revolving around the sun, an elastic ball bouncing up and down, or a block attached to a spring oscillating back and forth. The last example differs from the first two, in that it represents a special kind of periodic motion called simple harmonic motion. The conditions that lead to simple harmonic motion are as follows: There must be a position of stable equilibrium. There must be a restoring force acting on the oscillating object. The direction of this force must always point toward the equilibrium, and its magnitude must be directly proportional to the magnitude of the object’s displacement from its equilibrium position. Mathematically, the restoring force is given by , where is the displacement from equilibrium and is a constant that depends on the properties of the oscillating system. The resistive forces in the system must be reasonably small. In this problem, we will introduce some of the basic quantities that describe oscillations and the relationships among them. Consider a block of mass attached to a spring with force constant , as shown in the figure. The spring can be either stretched or compressed. The block slides on a frictionless horizontal surface, as shown. When the spring is relaxed, the block is located at . If the 28.0 cm 60.5 cms F  F = −kx x k m k x = 0 Typesetting math: 100% block is pulled to the right a distance and then released, will be the amplitude of the resulting oscillations. Assume that the mechanical energy of the block-spring system remains unchanged in the subsequent motion of the block. Part A After the block is released from , it will ANSWER: Correct As the block begins its motion to the left, it accelerates. Although the restoring force decreases as the block approaches equilibrium, it still pulls the block to the left, so by the time the equilibrium position is reached, the block has gained some speed. It will, therefore, pass the equilibrium position and keep moving, compressing the spring. The spring will now be pushing the block to the right, and the block will slow down, temporarily coming to rest at . After is reached, the block will begin its motion to the right, pushed by the spring. The block will pass the equilibrium position and continue until it reaches , completing one cycle of motion. The motion will then repeat; if, as we’ve assumed, there is no friction, the motion will repeat indefinitely. The time it takes the block to complete one cycle is called the period. Usually, the period is denoted and is measured in seconds. The frequency, denoted , is the number of cycles that are completed per unit of time: . In SI units, is measured in inverse seconds, or hertz ( ). A A x = A remain at rest. move to the left until it reaches equilibrium and stop there. move to the left until it reaches and stop there. move to the left until it reaches and then begin to move to the right. x = −A x = −A x = −A x = −A x = A T f f = 1/T f Hz Typesetting math: 100% Part B If the period is doubled, the frequency is ANSWER: Correct Part C An oscillating object takes 0.10 to complete one cycle; that is, its period is 0.10 . What is its frequency ? Express your answer in hertz. ANSWER: Correct unchanged. doubled. halved. s s f f = 10 Hz Typesetting math: 100% Part D If the frequency is 40 , what is the period ? Express your answer in seconds. ANSWER: Correct The following questions refer to the figure that graphically depicts the oscillations of the block on the spring. Note that the vertical axis represents the x coordinate of the oscillating object, and the horizontal axis represents time. Part E Which points on the x axis are located a distance from the equilibrium position? ANSWER: Hz T T = 0.025 s A Typesetting math: 100% Correct Part F Suppose that the period is . Which of the following points on the t axis are separated by the time interval ? ANSWER: Correct Now assume for the remaining Parts G – J, that the x coordinate of point R is 0.12 and the t coordinate of point K is 0.0050 . Part G What is the period ? Express your answer in seconds. Hint 1. How to approach the problem In moving from the point to the point K, what fraction of a full wavelength is covered? Call that fraction . Then you can set . Dividing by the fraction will give the R only Q only both R and Q T T K and L K and M K and P L and N M and P m s T t = 0 a aT = 0.005 s a Typesetting math: 100% period . ANSWER: Correct Part H How much time does the block take to travel from the point of maximum displacement to the opposite point of maximum displacement? Express your answer in seconds. ANSWER: Correct Part I What distance does the object cover during one period of oscillation? Express your answer in meters. ANSWER: Correct Part J What distance does the object cover between the moments labeled K and N on the graph? T T = 0.02 s t t = 0.01 s d d = 0.48 m d Typesetting math: 100% Express your answer in meters. ANSWER: Correct Problem 14.4 Part A What is the amplitude of the oscillation shown in the figure? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct d = 0.36 m A = 20.0 cm Typesetting math: 100% Part B What is the frequency of this oscillation? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the phase constant? Express your answer to two significant figures and include the appropriate units. ANSWER: Incorrect; Try Again Problem 14.10 An air-track glider attached to a spring oscillates with a period of 1.50 . At the glider is 4.60 left of the equilibrium position and moving to the right at 33.4 . Part A What is the phase constant? Express your answer to three significant figures and include the appropriate units. ANSWER: f = 0.25 Hz 0 = s t = 0 s cm cm/s Typesetting math: 100% Incorrect; Try Again Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Problem 14.12 A 140 air-track glider is attached to a spring. The glider is pushed in 12.2 and released. A student with a stopwatch finds that 14.0 oscillations take 19.0 . Part A What is the spring constant? Express your answer with the appropriate units. ANSWER: 0 = g cm s Typesetting math: 100% Correct Problem 14.14 The position of a 50 g oscillating mass is given by , where is in s. If necessary, round your answers to three significant figures. Determine: Part A The amplitude. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part B The period. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part C 3.00 Nm x(t) = (2.0 cm)cos(10t − /4) t 2.00 cm 0.628 s Typesetting math: 100% The spring constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Part D The phase constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Incorrect; Try Again Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G Typesetting math: 100% This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). Part I This question will be shown after you complete previous question(s). Enhanced EOC: Problem 14.17 A spring with spring constant 16 hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 4.0 and released. The ball makes 35 oscillations in 18 seconds. You may want to review ( pages 389 – 391) . For help with math skills, you may want to review: Differentiation of Trigonometric Functions Part A What is its the mass of the ball? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the period of oscillation? What is the angular frequency of the oscillations? How is the angular frequency related to the mass and spring constant? What is the mass? N/m cm s Typesetting math: 100% ANSWER: Correct Part B What is its maximum speed? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the amplitude of the oscillations? How is the maximum speed related to the amplitude of the oscillations and the angular frequency? ANSWER: Correct Changing the Period of a Pendulum A simple pendulum consisting of a bob of mass attached to a string of length swings with a period . Part A If the bob’s mass is doubled, approximately what will the pendulum’s new period be? Hint 1. Period of a simple pendulum The period of a simple pendulum of length is given by m = 110 g vmax = 49 cms m L T Typesetting math: 10T0% L , where is the acceleration due to gravity. ANSWER: Correct Part B If the pendulum is brought on the moon where the gravitational acceleration is about , approximately what will its period now be? Hint 1. How to approach the problem Recall the formula of the period of a simple pendulum. Since the gravitational acceleration appears in the denominator, the period must increase when the gravitational acceleration decreases. ANSWER: T = 2 Lg −−  g T/2 T &2T 2T g/6 T/6 T/&6 &6T 6T Typesetting math: 100% Correct Part C If the pendulum is taken into the orbiting space station what will happen to the bob? Hint 1. How to approach the problem Recall that the oscillations of a simple pendulum occur when a pendulum bob is raised above its equilibrium position and let go, causing the pendulum bob to fall. The gravitational force acts to bring the bob back to its equilibrium position. In the space station, the earth’s gravity acts on both the station and everything inside it, giving them the same acceleration. These objects are said to be in free fall. ANSWER: Correct In the space station, where all objects undergo the same acceleration due to the earth’s gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. Problem 14.20 A 175 ball is tied to a string. It is pulled to an angle of 8.0 and released to swing as a pendulum. A student with a stopwatch finds that 15 oscillations take 13 . Part A How long is the string? Express your answer to two significant figures and include the appropriate units. It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. It will oscillate much faster with a period that approaches zero. g ( s Typesetting math: 100% ANSWER: Correct Problem 14.22 Part A What is the length of a pendulum whose period on the moon matches the period of a 2.1- -long pendulum on the earth? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.42 An ultrasonic transducer, of the type used in medical ultrasound imaging, is a very thin disk ( = 0.17 ) driven back and forth in SHM at by an electromagnetic coil. Part A The maximum restoring force that can be applied to the disk without breaking it is 4.4×104 . What is the maximum oscillation amplitude that won’t rupture the disk? Express your answer to two significant figures and include the appropriate units. ANSWER: L = 19 cm m lmoon = 0.35 m m g 1.0 MHz N amax = 6.6 μm Typesetting math: 100% Correct Part B What is the disk’s maximum speed at this amplitude? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 81.4%. You received 117.25 out of a possible total of 144 points. vmax = 41 ms

info@checkyourstudy.com
Tornado Eddy Investigation Abstract The objective of this lab was to write a bunch of jibberish to provide students with a formatting template. Chemical engineering, bioengineering, and environmental engineering are “process engineering” disciplines. Good abstracts contains real content, such as 560 mL/min, 35 deg, and 67 percent yield. Ideal degreed graduates are technically strong, bring broad system perspectives to problem solving, and have the professional “soft skills” to make immediate contributions in the workplace. The senior lab sequence is the “capstone” opportunity to realize this ideal by integrating technical skills and developing professional soft skills to ensure workforce preparedness. The best conclusions are objective and numerical, such as operating conditions of 45 L/min at 32 deg C with expected costs of $4.55/lb. Background Insect exchange processes are often used in bug filtration, as they are effective at removing either positive or negative insects from water. An insect exchange column is a packed or fluidized bed filled with resin beads. Water flows through the column and most of the insects from the water enter the beads, but some of them pass in between the beads, which makes the exchange of insects non-ideal. Insectac 249 resin is a cation exchange resin, as it is being used to attract cationic Ca2+ from the toxic waste stream. This means the resin is negatively charged, and needs to be regenerated with a solution that produces positively charged insects, in this case, salt water which contains Na+ insects. The resin contains acidic styrene backbones which capture the cationic insects in a reversible process. A curve of Ca2+ concentration concentration vs. time was obtained after a standard curve was made to determine how many drops from the low cost barium test kit from Aquarium Pharmaceuticals (API)1 bottle #2 would correspond to a certain concentration in solution. A standard curve works by preparing solutions with known concentrations and testing these concentrations using the kit to create a curve of number of drops from bottle #2 (obtained result) vs. concentration of Ca2+ in solution (desired response). The standard curve can then be used for every test on the prototype and in the field, to quickly and accurately obtain a concentration from the test kit. The barium concentration vs. time curve can be used to calculate the exchange capacity of the resin and, in later tests, the regeneration efficiency. The curves must be used to get the total amount of barium removed from the water, m. Seen in Equation 2, the volumetric flow rate of water, , is multiplied by the integral from tinitial to tfinal of the total concentration of Ca2+ absorbed by the resin as a function of time, C. (2) 1 http://aquariumpharm.com/Products/Product.aspx?ProductID=72 , date accessed: 11/26/10 CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 9 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A graphical trapezoid method was used to evaluate the integral and get the final solution in equivalents of Ca2+ per L, it must be noted that there are 2 equivalents per mole of barium, as the charge of the barium insect is +2. An initial exchange capacity was calculated for the virgin resin, and an adjusted exchange capacity was calculated once the resin was regenerated. The regenerated resin capacity was found by multiplying the virgin resin capacity by the regeneration efficiency, expressed in Equation 3. (3) See Appendix A for the calculation of the exchange capacities and the regeneration efficiency. Materials and Methods Rosalie and Peter Johnson of Corvallis established the Linus Pauling Chair in Chemical Engineering to honor Oregon State University’s most famous graduate. Peter Johnson, former President and owner of Tekmax, Inc., a company which revolutionized battery manufacturing equipment, is a 1955 graduate of the College of Engineering.2 The Chair, also known as the Linus Pauling Distinguished Engineer or Linus Pauling Engineer (LPE), was originally designed to focus on the traditional “capstone” senior lab sequence in the former Department of Chemical Engineering. The focus is now extended to all the process engineering disciplines. The LPE is charged with establishing strong ties with industry, ensuring current and relevant laboratory experiences, and helping upperclass students develop skills in communication, teamwork, project management, and leadership. Include details about lab procedures not sufficiently detailed in the SOP, problems you had, etc. The bulk solution prepared to create the standard curve was used in the second day of testing to obtain the exchange capacity of the insectac 249 resin. The solution was pumped through a bathroom scale into the prototype insect exchange column. 45 mL of resin was rinsed and added to the column. The bed was fluidized as the solution was pumped through the resin, but for the creation of the Ca2+ concentration vs. time curve, the solution was pumped down through the column, as illustrated in the process flow diagram seen in Figure 1. Figure 1. Process sketch of the insect exchange column used for the project. Ref: http://www.generon.co.uk/acatalog/Chromatography.html 2 Harding, P. Viscosity Measurement SOP, Spring, 2010. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 10 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A bathroom scale calibration curve was created to ensure that the 150 mL/min, used to calculate the breakthrough time, would be delivered to the resin. The bathroom scale used was a Dwyer brand with flowrates between 0 and 300 cc/min of water. Originally, values between 120 and 180 mL/min were chosen for the calibration, with three runs for each flowrate, however the bathroom scale values were so far away from the measure values the range was extended to 100 to 200 mL/min. The regeneration experiment was performed using a method similar to that used in the water softening experiment, however instead of using a 640 ppm Ca2+ solution to fill the resin, a 6000 ppm Na+ solution was used to eject the Ca2+ from the resin. Twelve samples times were chosen and adjusted as the experiment progressed, with more than half of the samples taken at times less than 10 minutes, and the last sample taken at 45 minutes. The bulk exit solution was also tested to determine the regeneration efficiency. Results and Discussion The senior lab sequence has its roots in the former Department of Chemical Engineering. CHE 414 and 415 were taught in Winter and Spring and included 6 hours of lab time per week. The School has endeavored to incorporate the courses into the BIOE and ENVE curriculum, and this will be complete in 2008-2009. Recent development of the senior lab course sequence is shown chronologically in Fig. 1. In 2006-2007, CHE 414 and 415 were moved to Fall and Winter to enable CHE 416, an elective independent senior project course. Also that year, BIOE students took BIOE 414 in the Fall and BIOE 415 was developed and taught. No BIOE students enrolled in the optional CHE. In 2007-2008, the program transitioned in a new Linus Pauling Engineer and ENVE 414 was offered. Also, approximately 30 percent of BIOE students enrolled in the optional CHE 416. Accommodating the academic calendars of the three disciplines required a reduction in weekly student lab time from 6 to 3 hours. The expected relationship between coughing rate, y, and length of canine, x, is Bx z y Fe− (1) where F is a pre-exponential constant, B is vitamin B concentration and z is the height of an average trapeze artist. 3 The 2008-2009 brings the challenge of the dramatic enrollment increase shown in Fig. 1 and the first offering of ENVE 415. The result, shown on the right in Fig. 1, is the delivery of the senior lab sequence uniformly across the process engineering disciplines. CBEE 416 is expected to drawn approximately of the students that take the 415 courses. In 2007-2008, 414 and 415 were required for CHEs, 414 and 415 for BIOEs, and only 414 for ENVEs. CHE 416 is ostensibly an elective for all disciplines. In 2008-2009, 414 and 415 is required for all disciplines and CHE 416 will be an elective. The content of 414 is essentially 3 Fundamentals of Momentum, Heat, and Mass Transfer, Welty, J.R. et al., 4th edition, John Wiley & Sons, Inc. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 11 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE identical for all three disciplines, 415 has discipline-specific labs, and 416 consists of senior projects with potentially cross-discipline teams of 2 to 4 students. Tremendous labor and struggling with the lab equipment resulted in the data shown in y = –‐0.29x + 1.71 y = –‐0.25x + 2.03 y = –‐0.135x + 2.20 –‐1.5 –‐1.0 –‐0.5 0.0 0.5 1.0 1.5 2.0 2.5 0 2 4 6 8 10 ln y (units) x (units) ln y_1 ln y_2 ln y_3 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Case 1 Case 2 Case 3 Slope (units) (a) (b) Figure 1. (a) Data for y and x plotted for various values of z and (b) a comparison of slopes for the 3 cases investigate. The log plot slope yields the vitamin B concentration. The slopes were shown to be significantly at the 90% confidence level, but the instructor ran out of time and did not include error bars. The slope changed as predicted by the Snirtenhoffer equation. Improvements to the lab might include advice on how to legally change my name to something less embarrassing. My whole life I have been forced to repeat and spell it. I really feel that this has affected my psychologically. This was perhaps the worst lab I have ever done in my academic career, primarily due to the fact that there was no lab time. I simply typed in this entire report and filled it with jibberish. Some might think nobody will notice, but I know that …… Harding reads every word. Acknowledgments The author acknowledges his elementary teacher for providing truly foundational instruction in addition and subtraction. Jenny Burninbalm was instrumental with guidance on use of the RT-345 dog scratching device. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 12

Tornado Eddy Investigation Abstract The objective of this lab was to write a bunch of jibberish to provide students with a formatting template. Chemical engineering, bioengineering, and environmental engineering are “process engineering” disciplines. Good abstracts contains real content, such as 560 mL/min, 35 deg, and 67 percent yield. Ideal degreed graduates are technically strong, bring broad system perspectives to problem solving, and have the professional “soft skills” to make immediate contributions in the workplace. The senior lab sequence is the “capstone” opportunity to realize this ideal by integrating technical skills and developing professional soft skills to ensure workforce preparedness. The best conclusions are objective and numerical, such as operating conditions of 45 L/min at 32 deg C with expected costs of $4.55/lb. Background Insect exchange processes are often used in bug filtration, as they are effective at removing either positive or negative insects from water. An insect exchange column is a packed or fluidized bed filled with resin beads. Water flows through the column and most of the insects from the water enter the beads, but some of them pass in between the beads, which makes the exchange of insects non-ideal. Insectac 249 resin is a cation exchange resin, as it is being used to attract cationic Ca2+ from the toxic waste stream. This means the resin is negatively charged, and needs to be regenerated with a solution that produces positively charged insects, in this case, salt water which contains Na+ insects. The resin contains acidic styrene backbones which capture the cationic insects in a reversible process. A curve of Ca2+ concentration concentration vs. time was obtained after a standard curve was made to determine how many drops from the low cost barium test kit from Aquarium Pharmaceuticals (API)1 bottle #2 would correspond to a certain concentration in solution. A standard curve works by preparing solutions with known concentrations and testing these concentrations using the kit to create a curve of number of drops from bottle #2 (obtained result) vs. concentration of Ca2+ in solution (desired response). The standard curve can then be used for every test on the prototype and in the field, to quickly and accurately obtain a concentration from the test kit. The barium concentration vs. time curve can be used to calculate the exchange capacity of the resin and, in later tests, the regeneration efficiency. The curves must be used to get the total amount of barium removed from the water, m. Seen in Equation 2, the volumetric flow rate of water, , is multiplied by the integral from tinitial to tfinal of the total concentration of Ca2+ absorbed by the resin as a function of time, C. (2) 1 http://aquariumpharm.com/Products/Product.aspx?ProductID=72 , date accessed: 11/26/10 CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 9 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A graphical trapezoid method was used to evaluate the integral and get the final solution in equivalents of Ca2+ per L, it must be noted that there are 2 equivalents per mole of barium, as the charge of the barium insect is +2. An initial exchange capacity was calculated for the virgin resin, and an adjusted exchange capacity was calculated once the resin was regenerated. The regenerated resin capacity was found by multiplying the virgin resin capacity by the regeneration efficiency, expressed in Equation 3. (3) See Appendix A for the calculation of the exchange capacities and the regeneration efficiency. Materials and Methods Rosalie and Peter Johnson of Corvallis established the Linus Pauling Chair in Chemical Engineering to honor Oregon State University’s most famous graduate. Peter Johnson, former President and owner of Tekmax, Inc., a company which revolutionized battery manufacturing equipment, is a 1955 graduate of the College of Engineering.2 The Chair, also known as the Linus Pauling Distinguished Engineer or Linus Pauling Engineer (LPE), was originally designed to focus on the traditional “capstone” senior lab sequence in the former Department of Chemical Engineering. The focus is now extended to all the process engineering disciplines. The LPE is charged with establishing strong ties with industry, ensuring current and relevant laboratory experiences, and helping upperclass students develop skills in communication, teamwork, project management, and leadership. Include details about lab procedures not sufficiently detailed in the SOP, problems you had, etc. The bulk solution prepared to create the standard curve was used in the second day of testing to obtain the exchange capacity of the insectac 249 resin. The solution was pumped through a bathroom scale into the prototype insect exchange column. 45 mL of resin was rinsed and added to the column. The bed was fluidized as the solution was pumped through the resin, but for the creation of the Ca2+ concentration vs. time curve, the solution was pumped down through the column, as illustrated in the process flow diagram seen in Figure 1. Figure 1. Process sketch of the insect exchange column used for the project. Ref: http://www.generon.co.uk/acatalog/Chromatography.html 2 Harding, P. Viscosity Measurement SOP, Spring, 2010. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 10 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE A bathroom scale calibration curve was created to ensure that the 150 mL/min, used to calculate the breakthrough time, would be delivered to the resin. The bathroom scale used was a Dwyer brand with flowrates between 0 and 300 cc/min of water. Originally, values between 120 and 180 mL/min were chosen for the calibration, with three runs for each flowrate, however the bathroom scale values were so far away from the measure values the range was extended to 100 to 200 mL/min. The regeneration experiment was performed using a method similar to that used in the water softening experiment, however instead of using a 640 ppm Ca2+ solution to fill the resin, a 6000 ppm Na+ solution was used to eject the Ca2+ from the resin. Twelve samples times were chosen and adjusted as the experiment progressed, with more than half of the samples taken at times less than 10 minutes, and the last sample taken at 45 minutes. The bulk exit solution was also tested to determine the regeneration efficiency. Results and Discussion The senior lab sequence has its roots in the former Department of Chemical Engineering. CHE 414 and 415 were taught in Winter and Spring and included 6 hours of lab time per week. The School has endeavored to incorporate the courses into the BIOE and ENVE curriculum, and this will be complete in 2008-2009. Recent development of the senior lab course sequence is shown chronologically in Fig. 1. In 2006-2007, CHE 414 and 415 were moved to Fall and Winter to enable CHE 416, an elective independent senior project course. Also that year, BIOE students took BIOE 414 in the Fall and BIOE 415 was developed and taught. No BIOE students enrolled in the optional CHE. In 2007-2008, the program transitioned in a new Linus Pauling Engineer and ENVE 414 was offered. Also, approximately 30 percent of BIOE students enrolled in the optional CHE 416. Accommodating the academic calendars of the three disciplines required a reduction in weekly student lab time from 6 to 3 hours. The expected relationship between coughing rate, y, and length of canine, x, is Bx z y Fe− (1) where F is a pre-exponential constant, B is vitamin B concentration and z is the height of an average trapeze artist. 3 The 2008-2009 brings the challenge of the dramatic enrollment increase shown in Fig. 1 and the first offering of ENVE 415. The result, shown on the right in Fig. 1, is the delivery of the senior lab sequence uniformly across the process engineering disciplines. CBEE 416 is expected to drawn approximately of the students that take the 415 courses. In 2007-2008, 414 and 415 were required for CHEs, 414 and 415 for BIOEs, and only 414 for ENVEs. CHE 416 is ostensibly an elective for all disciplines. In 2008-2009, 414 and 415 is required for all disciplines and CHE 416 will be an elective. The content of 414 is essentially 3 Fundamentals of Momentum, Heat, and Mass Transfer, Welty, J.R. et al., 4th edition, John Wiley & Sons, Inc. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 11 Josephine Hornsnogger CBEE 414, Lab Section M 1300–‐1550 April 19, 2010 Oregon State University School of CBEE identical for all three disciplines, 415 has discipline-specific labs, and 416 consists of senior projects with potentially cross-discipline teams of 2 to 4 students. Tremendous labor and struggling with the lab equipment resulted in the data shown in y = –‐0.29x + 1.71 y = –‐0.25x + 2.03 y = –‐0.135x + 2.20 –‐1.5 –‐1.0 –‐0.5 0.0 0.5 1.0 1.5 2.0 2.5 0 2 4 6 8 10 ln y (units) x (units) ln y_1 ln y_2 ln y_3 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Case 1 Case 2 Case 3 Slope (units) (a) (b) Figure 1. (a) Data for y and x plotted for various values of z and (b) a comparison of slopes for the 3 cases investigate. The log plot slope yields the vitamin B concentration. The slopes were shown to be significantly at the 90% confidence level, but the instructor ran out of time and did not include error bars. The slope changed as predicted by the Snirtenhoffer equation. Improvements to the lab might include advice on how to legally change my name to something less embarrassing. My whole life I have been forced to repeat and spell it. I really feel that this has affected my psychologically. This was perhaps the worst lab I have ever done in my academic career, primarily due to the fact that there was no lab time. I simply typed in this entire report and filled it with jibberish. Some might think nobody will notice, but I know that …… Harding reads every word. Acknowledgments The author acknowledges his elementary teacher for providing truly foundational instruction in addition and subtraction. Jenny Burninbalm was instrumental with guidance on use of the RT-345 dog scratching device. CBEE 102: ENGINEERING PROBLEM SOLVING AND COMPUTATIONS PROJECT DESCRIPTION 12

For any additional help, please contact: info@checkyourstudy.com Call / Whatsapp … Read More...
PHSX 220 Homework 13 Paper – Due Online April 28 – 5:00 pm SHM and Wave the Equation Problem 1: A hanging mass system with a mass of 85 kg, spring constant of k= 490 N/m is realeased from rest from a distance of 10 meters below the systems equilibrium position (similar values to the bottom of a bungee jump). Calculate the following quantities in regards to this system after being released at t=0: a) The angular frequency of the system (radians/sec) b) The frequency of oscillations for the system (Hz) c) The period of oscillations for the system (seconds) d) The time it takes to get back to the equilibrium position of the system for the rst time Problem 2: A horizontal spring-mass system (mass of 2:21×10􀀀25 kg) with no friction has an ocsillation frequency of 9,192,631,770 cycles per second. (a second is de ned by 9,192,631,770 cycles of a Cs-133 atom)). Calculate the e ective spring constant of the system Problem 3: A swinging person, such as Tarzan, can be modeled after a simple pendulum with a mass of 85 kg and a length of 10 m. Consider the mass being released from rest at t=0 at an angle of +15 degrees from the vertical. Calculate the following quantities in regards to this system. You need to be in radians mode for this problem a) The angular frequency of the system (radians/sec) b) The frequency of oscillations for the system in (Hz) c) The period of oscillations of the system (seconds) d) Sketch plots of the angular position, angular velocity and angular acceleration of the system as a function of time. Hint: These will always help you with these time to it takes to a certain point in it’s cycle questions. e) The time it takes for the mass to get half way through its rst cycle (or to the other side of the swing if you were interested in timing say a rescue e ort or something along those lines) . f) The maximum angular velocity of the mass g) The maximum angular accleration of the mass h) The magnitude of the angular momentum of the mass at 3 seconds i) The magnitude of the torque acting on the mass at 3 seconds Problem 4: A wave has a wavenumber of 1 m-1, and an angular frequency of 2 radians per second, travels in the +x direction and has a maximum transverse amplitude of 0.1 m. At t=0, and x =0 the y position is equal to 0.0 m (y(0,0) = 0.0 m). a) Calculate the wavelength of the wave b) Calculate the period of oscillations for the wave c) Calculate the wave speed along the x axis d) Calculate the magnitude and direction of the transverse position of the wave at x=0.5 m and t = 8s e) Calculate the magnitude and direction of the transverse velocity of the wave at x=0.5 m and t = 8s f) Calculate the magnitude and direction of the transverse acceleration of the wave at x=0.5 m and t = 8s Problem 5-6: Chapter 16 Problem 10, 22 Additional Suggested Problems with Solutions Provided: Chapter 16 Problems 5, 9, 15, 45

PHSX 220 Homework 13 Paper – Due Online April 28 – 5:00 pm SHM and Wave the Equation Problem 1: A hanging mass system with a mass of 85 kg, spring constant of k= 490 N/m is realeased from rest from a distance of 10 meters below the systems equilibrium position (similar values to the bottom of a bungee jump). Calculate the following quantities in regards to this system after being released at t=0: a) The angular frequency of the system (radians/sec) b) The frequency of oscillations for the system (Hz) c) The period of oscillations for the system (seconds) d) The time it takes to get back to the equilibrium position of the system for the rst time Problem 2: A horizontal spring-mass system (mass of 2:21×10􀀀25 kg) with no friction has an ocsillation frequency of 9,192,631,770 cycles per second. (a second is de ned by 9,192,631,770 cycles of a Cs-133 atom)). Calculate the e ective spring constant of the system Problem 3: A swinging person, such as Tarzan, can be modeled after a simple pendulum with a mass of 85 kg and a length of 10 m. Consider the mass being released from rest at t=0 at an angle of +15 degrees from the vertical. Calculate the following quantities in regards to this system. You need to be in radians mode for this problem a) The angular frequency of the system (radians/sec) b) The frequency of oscillations for the system in (Hz) c) The period of oscillations of the system (seconds) d) Sketch plots of the angular position, angular velocity and angular acceleration of the system as a function of time. Hint: These will always help you with these time to it takes to a certain point in it’s cycle questions. e) The time it takes for the mass to get half way through its rst cycle (or to the other side of the swing if you were interested in timing say a rescue e ort or something along those lines) . f) The maximum angular velocity of the mass g) The maximum angular accleration of the mass h) The magnitude of the angular momentum of the mass at 3 seconds i) The magnitude of the torque acting on the mass at 3 seconds Problem 4: A wave has a wavenumber of 1 m-1, and an angular frequency of 2 radians per second, travels in the +x direction and has a maximum transverse amplitude of 0.1 m. At t=0, and x =0 the y position is equal to 0.0 m (y(0,0) = 0.0 m). a) Calculate the wavelength of the wave b) Calculate the period of oscillations for the wave c) Calculate the wave speed along the x axis d) Calculate the magnitude and direction of the transverse position of the wave at x=0.5 m and t = 8s e) Calculate the magnitude and direction of the transverse velocity of the wave at x=0.5 m and t = 8s f) Calculate the magnitude and direction of the transverse acceleration of the wave at x=0.5 m and t = 8s Problem 5-6: Chapter 16 Problem 10, 22 Additional Suggested Problems with Solutions Provided: Chapter 16 Problems 5, 9, 15, 45

Login to see content or contact +1 909 666-5988
Chapter 15 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, May 16, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Fluid Pressure in a U-Tube A U-tube is filled with water, and the two arms are capped. The tube is cylindrical, and the right arm has twice the radius of the left arm. The caps have negligible mass, are watertight, and can freely slide up and down the tube. Part A A one-inch depth of sand is poured onto the cap on each arm. After the caps have moved (if necessary) to reestablish equilibrium, is the right cap higher, lower, or the same height as the left cap? You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Pressure in the Ocean The pressure at 10 below the surface of the ocean is about 2.00×105 . Part A higher lower the same height m Pa Which of the following statements is true? You did not open hints for this part. ANSWER: Part B Now consider the pressure 20 below the surface of the ocean. Which of the following statements is true? You did not open hints for this part. ANSWER: Relating Pressure and Height in a Container Learning Goal: To understand the derivation of the law relating height and pressure in a container. The weight of a column of seawater 1 in cross section and 10 high is about 2.00×105 . The weight of a column of seawater 1 in cross section and 10 high plus the weight of a column of air with the same cross section extending up to the top of the atmosphere is about 2.00×105 . The weight of 1 of seawater at 10 below the surface of the ocean is about 2.00×105 . The density of seawater is about 2.00×105 times the density of air at sea level. m2 m N m2 m N m3 m N m The pressure is twice that at a depth of 10 . The pressure is the same as that at a depth of 10 . The pressure is equal to that at a depth of 10 plus the weight per 1 cross sectional area of a column of seawater 10 high. The pressure is equal to the weight per 1 cross sectional area of a column of seawater 20 high. m m m m2 m m2 m In this problem, you will derive the law relating pressure to height in a container by analyzing a particular system. A container of uniform cross-sectional area is filled with liquid of uniform density . Consider a thin horizontal layer of liquid (thickness ) at a height as measured from the bottom of the container. Let the pressure exerted upward on the bottom of the layer be and the pressure exerted downward on the top be . Assume throughout the problem that the system is in equilibrium (the container has not been recently shaken or moved, etc.). Part A What is , the magnitude of the force exerted upward on the bottom of the liquid? You did not open hints for this part. ANSWER: Part B What is , the magnitude of the force exerted downward on the top of the liquid? A  dy y p p + dp Fup Fup = Fdown You did not open hints for this part. ANSWER: Part C What is the weight of the thin layer of liquid? Express your answer in terms of quantities given in the problem introduction and , the magnitude of the acceleration due to gravity. You did not open hints for this part. ANSWER: Part D Since the liquid is in equilibrium, the net force on the thin layer of liquid is zero. Complete the force equation for the sum of the vertical forces acting on the liquid layer described in the problem introduction. Express your answer in terms of quantities given in the problem introduction and taking upward forces to be positive. You did not open hints for this part. ANSWER: Fdown = wlayer g wlayer = Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). A Submerged Ball A ball of mass and volume is lowered on a string into a fluid of density . Assume that the object would sink to the bottom if it were not supported by the string. Part A  = = i Fy,i mb V f What is the tension in the string when the ball is fully submerged but not touching the bottom, as shown in the figure? Express your answer in terms of any or all of the given quantities and , the magnitude of the acceleration due to gravity. You did not open hints for this part. ANSWER: Archimedes’ Principle Learning Goal: To understand the applications of Archimedes’ principle. Archimedes’ principle is a powerful tool for solving many problems involving equilibrium in fluids. It states the following: When a body is partially or completely submerged in a fluid (either a liquid or a gas), the fluid exerts an upward force on the body equal to the weight of the fluid displaced by the body. As a result of the upward Archimedes force (often called the buoyant force), some objects may float in a fluid, and all of them appear to weigh less. This is the familiar phenomenon of buoyancy. Quantitatively, the buoyant force can be found as , where is the force, is the density of the fluid, is the magnitude of the acceleration due to gravity, and is the volume of the displaced fluid. In this problem, you will be asked several qualitative questions that should help you develop a feel for Archimedes’ principle. An object is placed in a fluid and then released. Assume that the object either floats to the surface (settling so that the object is partly above and partly below the fluid surface) or sinks to the bottom. (Note that for Parts A through D, you should assume that the object has settled in equilibrium.) Part A Consider the following statement: The magnitude of the buoyant force is equal to the weight of fluid displaced by the object. Under what circumstances is this statement true? T g T = Fbuoyant = fluidgV Fbuoyant fluid g V You did not open hints for this part. ANSWER: Part B Consider the following statement: The magnitude of the buoyant force is equal to the weight of the amount of fluid that has the same total volume as the object. Under what circumstances is this statement true? You did not open hints for this part. ANSWER: Part C Consider the following statement: The magnitude of the buoyant force equals the weight of the object. Under what circumstances is this statement true? for every object submerged partially or completely in a fluid only for an object that floats only for an object that sinks for no object submerged in a fluid for an object that is partially submerged in a fluid only for an object that floats for an object completely submerged in a fluid for no object partially or completely submerged in a fluid You did not open hints for this part. ANSWER: Part D Consider the following statement: The magnitude of the buoyant force is less than the weight of the object. Under what circumstances is this statement true? ANSWER: Now apply what you know to some more complicated situations. Part E An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, filled with a denser liquid. What would you observe? You did not open hints for this part. ANSWER: for every object submerged partially or completely in a fluid for an object that floats only for an object that sinks for no object submerged in a fluid for every object submerged partially or completely in a fluid for an object that floats for an object that sinks for no object submerged in a fluid Part F An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, filled with a less dense liquid. What would you observe? You did not open hints for this part. ANSWER: Part G Two objects, T and B, have identical size and shape and have uniform density. They are carefully placed in a container filled with a liquid. Both objects float in equilibrium. Less of object T is submerged than of object B, which floats, fully submerged, closer to the bottom of the container. Which of the following statements is true? ANSWER: The object would sink all the way to the bottom. The object would float submerged more deeply than in the first container. The object would float submerged less deeply than in the first container. More than one of these outcomes is possible. The object would sink all the way to the bottom. The object would float submerged more deeply than in the first container. The object would float submerged less deeply than in the first container. More than one of these outcomes is possible. Object T has a greater density than object B. Object B has a greater density than object T. Both objects have the same density. ± Buoyant Force Conceptual Question A rectangular wooden block of weight floats with exactly one-half of its volume below the waterline. Part A What is the buoyant force acting on the block? You did not open hints for this part. ANSWER: Part B W The buoyant force cannot be determined. 2W W 1 W 2 The density of water is 1.00 . What is the density of the block? You did not open hints for this part. ANSWER: Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). g/cm3 2.00 between 1.00 and 2.00 1.00 between 0.50 and 1.00 0.50 The density cannot be determined. g/cm3 g/cm3 g/cm3 g/cm3 g/cm3 Flow Velocity of Blood Conceptual Question Arteriosclerotic plaques forming on the inner walls of arteries can decrease the effective cross-sectional area of an artery. Even small changes in the effective area of an artery can lead to very large changes in the blood pressure in the artery and possibly to the collapse of the blood vessel. Imagine a healthy artery, with blood flow velocity of and mass per unit volume of . The kinetic energy per unit volume of blood is given by Imagine that plaque has narrowed an artery to one-fifth of its normal cross-sectional area (an 80% blockage). Part A Compared to normal blood flow velocity, , what is the velocity of blood as it passes through this blockage? You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C v0 = 0.14 m/s  = 1050 kg/m3 K0 =  . 1 2 v20 v0 80v0 20v0 5v0 v0/5 This question will be shown after you complete previous question(s). For parts D – F imagine that plaque has grown to a 90% blockage. Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). ± Playing with a Water Hose Two children, Ferdinand and Isabella, are playing with a water hose on a sunny summer day. Isabella is holding the hose in her hand 1.0 meters above the ground and is trying to spray Ferdinand, who is standing 10.0 meters away. Part A Will Isabella be able to spray Ferdinand if the water is flowing out of the hose at a constant speed of 3.5 meters per second? Assume that the hose is pointed parallel to the ground and take the magnitude of the acceleration due to gravity to be 9.81 meters per second, per second. You did not open hints for this part. v0 g ANSWER: Part B This question will be shown after you complete previous question(s). Tactics Box 15.2 Finding Whether an Object Floats or Sinks Learning Goal: To practice Tactics Box 15.2 Finding whether an object floats or sinks. If you hold an object underwater and then release it, it can float to the surface, sink, or remain “hanging” in the water, depending on whether the fluid density is larger than, smaller than, or equal to the object’s average density . These conditions are summarized in this Tactics Box. Yes No f avg TACTICS BOX 15.2 Finding whether an object floats or sinks Object sinks Object floats Object has neutral buoyancy An object sinks if it weighs more than the fluid it displaces, that is, if its average density is greater than the density of the fluid: . An object floats on the surface if it weighs less than the fluid it displaces, that is, if its average density is less than the density of the fluid: . An object hangs motionless in the fluid if it weighs exactly the same as the fluid it displaces. It has neutral buoyancy if its average density equals the density of the fluid: . Part A Ice at 0.0 has a density of 917 . A 3.00 ice cube is gently released inside a small container filled with oil and is observed to be neutrally buoyant. What is the density of the oil, ? Express your answer in kilograms per meter cubed to three significant figures. ANSWER: Part B Once the ice cube melts, what happens to the liquid water that it produces? You did not open hints for this part. ANSWER: avg > f avg < f avg = f 'C kg/m3 cm3 oil oil = kg/m3 Part C What happens if some ethyl alcohol of density 790 is poured into the container after the ice cube has melted? ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. The liquid water sinks to the bottom of the container. The liquid water rises to the surface and floats on top of the oil. The liquid water is in static equilibrium at the location where the ice cube was originally placed. kg/m3 A layer of ethyl alcohol forms between the oil and the water. The layer of ethyl alcohol forms at the bottom of the container. The layer of ethyl alcohol forms on the surface.

Chapter 15 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, May 16, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Fluid Pressure in a U-Tube A U-tube is filled with water, and the two arms are capped. The tube is cylindrical, and the right arm has twice the radius of the left arm. The caps have negligible mass, are watertight, and can freely slide up and down the tube. Part A A one-inch depth of sand is poured onto the cap on each arm. After the caps have moved (if necessary) to reestablish equilibrium, is the right cap higher, lower, or the same height as the left cap? You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Pressure in the Ocean The pressure at 10 below the surface of the ocean is about 2.00×105 . Part A higher lower the same height m Pa Which of the following statements is true? You did not open hints for this part. ANSWER: Part B Now consider the pressure 20 below the surface of the ocean. Which of the following statements is true? You did not open hints for this part. ANSWER: Relating Pressure and Height in a Container Learning Goal: To understand the derivation of the law relating height and pressure in a container. The weight of a column of seawater 1 in cross section and 10 high is about 2.00×105 . The weight of a column of seawater 1 in cross section and 10 high plus the weight of a column of air with the same cross section extending up to the top of the atmosphere is about 2.00×105 . The weight of 1 of seawater at 10 below the surface of the ocean is about 2.00×105 . The density of seawater is about 2.00×105 times the density of air at sea level. m2 m N m2 m N m3 m N m The pressure is twice that at a depth of 10 . The pressure is the same as that at a depth of 10 . The pressure is equal to that at a depth of 10 plus the weight per 1 cross sectional area of a column of seawater 10 high. The pressure is equal to the weight per 1 cross sectional area of a column of seawater 20 high. m m m m2 m m2 m In this problem, you will derive the law relating pressure to height in a container by analyzing a particular system. A container of uniform cross-sectional area is filled with liquid of uniform density . Consider a thin horizontal layer of liquid (thickness ) at a height as measured from the bottom of the container. Let the pressure exerted upward on the bottom of the layer be and the pressure exerted downward on the top be . Assume throughout the problem that the system is in equilibrium (the container has not been recently shaken or moved, etc.). Part A What is , the magnitude of the force exerted upward on the bottom of the liquid? You did not open hints for this part. ANSWER: Part B What is , the magnitude of the force exerted downward on the top of the liquid? A  dy y p p + dp Fup Fup = Fdown You did not open hints for this part. ANSWER: Part C What is the weight of the thin layer of liquid? Express your answer in terms of quantities given in the problem introduction and , the magnitude of the acceleration due to gravity. You did not open hints for this part. ANSWER: Part D Since the liquid is in equilibrium, the net force on the thin layer of liquid is zero. Complete the force equation for the sum of the vertical forces acting on the liquid layer described in the problem introduction. Express your answer in terms of quantities given in the problem introduction and taking upward forces to be positive. You did not open hints for this part. ANSWER: Fdown = wlayer g wlayer = Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). A Submerged Ball A ball of mass and volume is lowered on a string into a fluid of density . Assume that the object would sink to the bottom if it were not supported by the string. Part A  = = i Fy,i mb V f What is the tension in the string when the ball is fully submerged but not touching the bottom, as shown in the figure? Express your answer in terms of any or all of the given quantities and , the magnitude of the acceleration due to gravity. You did not open hints for this part. ANSWER: Archimedes’ Principle Learning Goal: To understand the applications of Archimedes’ principle. Archimedes’ principle is a powerful tool for solving many problems involving equilibrium in fluids. It states the following: When a body is partially or completely submerged in a fluid (either a liquid or a gas), the fluid exerts an upward force on the body equal to the weight of the fluid displaced by the body. As a result of the upward Archimedes force (often called the buoyant force), some objects may float in a fluid, and all of them appear to weigh less. This is the familiar phenomenon of buoyancy. Quantitatively, the buoyant force can be found as , where is the force, is the density of the fluid, is the magnitude of the acceleration due to gravity, and is the volume of the displaced fluid. In this problem, you will be asked several qualitative questions that should help you develop a feel for Archimedes’ principle. An object is placed in a fluid and then released. Assume that the object either floats to the surface (settling so that the object is partly above and partly below the fluid surface) or sinks to the bottom. (Note that for Parts A through D, you should assume that the object has settled in equilibrium.) Part A Consider the following statement: The magnitude of the buoyant force is equal to the weight of fluid displaced by the object. Under what circumstances is this statement true? T g T = Fbuoyant = fluidgV Fbuoyant fluid g V You did not open hints for this part. ANSWER: Part B Consider the following statement: The magnitude of the buoyant force is equal to the weight of the amount of fluid that has the same total volume as the object. Under what circumstances is this statement true? You did not open hints for this part. ANSWER: Part C Consider the following statement: The magnitude of the buoyant force equals the weight of the object. Under what circumstances is this statement true? for every object submerged partially or completely in a fluid only for an object that floats only for an object that sinks for no object submerged in a fluid for an object that is partially submerged in a fluid only for an object that floats for an object completely submerged in a fluid for no object partially or completely submerged in a fluid You did not open hints for this part. ANSWER: Part D Consider the following statement: The magnitude of the buoyant force is less than the weight of the object. Under what circumstances is this statement true? ANSWER: Now apply what you know to some more complicated situations. Part E An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, filled with a denser liquid. What would you observe? You did not open hints for this part. ANSWER: for every object submerged partially or completely in a fluid for an object that floats only for an object that sinks for no object submerged in a fluid for every object submerged partially or completely in a fluid for an object that floats for an object that sinks for no object submerged in a fluid Part F An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, filled with a less dense liquid. What would you observe? You did not open hints for this part. ANSWER: Part G Two objects, T and B, have identical size and shape and have uniform density. They are carefully placed in a container filled with a liquid. Both objects float in equilibrium. Less of object T is submerged than of object B, which floats, fully submerged, closer to the bottom of the container. Which of the following statements is true? ANSWER: The object would sink all the way to the bottom. The object would float submerged more deeply than in the first container. The object would float submerged less deeply than in the first container. More than one of these outcomes is possible. The object would sink all the way to the bottom. The object would float submerged more deeply than in the first container. The object would float submerged less deeply than in the first container. More than one of these outcomes is possible. Object T has a greater density than object B. Object B has a greater density than object T. Both objects have the same density. ± Buoyant Force Conceptual Question A rectangular wooden block of weight floats with exactly one-half of its volume below the waterline. Part A What is the buoyant force acting on the block? You did not open hints for this part. ANSWER: Part B W The buoyant force cannot be determined. 2W W 1 W 2 The density of water is 1.00 . What is the density of the block? You did not open hints for this part. ANSWER: Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). g/cm3 2.00 between 1.00 and 2.00 1.00 between 0.50 and 1.00 0.50 The density cannot be determined. g/cm3 g/cm3 g/cm3 g/cm3 g/cm3 Flow Velocity of Blood Conceptual Question Arteriosclerotic plaques forming on the inner walls of arteries can decrease the effective cross-sectional area of an artery. Even small changes in the effective area of an artery can lead to very large changes in the blood pressure in the artery and possibly to the collapse of the blood vessel. Imagine a healthy artery, with blood flow velocity of and mass per unit volume of . The kinetic energy per unit volume of blood is given by Imagine that plaque has narrowed an artery to one-fifth of its normal cross-sectional area (an 80% blockage). Part A Compared to normal blood flow velocity, , what is the velocity of blood as it passes through this blockage? You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C v0 = 0.14 m/s  = 1050 kg/m3 K0 =  . 1 2 v20 v0 80v0 20v0 5v0 v0/5 This question will be shown after you complete previous question(s). For parts D – F imagine that plaque has grown to a 90% blockage. Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). ± Playing with a Water Hose Two children, Ferdinand and Isabella, are playing with a water hose on a sunny summer day. Isabella is holding the hose in her hand 1.0 meters above the ground and is trying to spray Ferdinand, who is standing 10.0 meters away. Part A Will Isabella be able to spray Ferdinand if the water is flowing out of the hose at a constant speed of 3.5 meters per second? Assume that the hose is pointed parallel to the ground and take the magnitude of the acceleration due to gravity to be 9.81 meters per second, per second. You did not open hints for this part. v0 g ANSWER: Part B This question will be shown after you complete previous question(s). Tactics Box 15.2 Finding Whether an Object Floats or Sinks Learning Goal: To practice Tactics Box 15.2 Finding whether an object floats or sinks. If you hold an object underwater and then release it, it can float to the surface, sink, or remain “hanging” in the water, depending on whether the fluid density is larger than, smaller than, or equal to the object’s average density . These conditions are summarized in this Tactics Box. Yes No f avg TACTICS BOX 15.2 Finding whether an object floats or sinks Object sinks Object floats Object has neutral buoyancy An object sinks if it weighs more than the fluid it displaces, that is, if its average density is greater than the density of the fluid: . An object floats on the surface if it weighs less than the fluid it displaces, that is, if its average density is less than the density of the fluid: . An object hangs motionless in the fluid if it weighs exactly the same as the fluid it displaces. It has neutral buoyancy if its average density equals the density of the fluid: . Part A Ice at 0.0 has a density of 917 . A 3.00 ice cube is gently released inside a small container filled with oil and is observed to be neutrally buoyant. What is the density of the oil, ? Express your answer in kilograms per meter cubed to three significant figures. ANSWER: Part B Once the ice cube melts, what happens to the liquid water that it produces? You did not open hints for this part. ANSWER: avg > f avg < f avg = f 'C kg/m3 cm3 oil oil = kg/m3 Part C What happens if some ethyl alcohol of density 790 is poured into the container after the ice cube has melted? ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. The liquid water sinks to the bottom of the container. The liquid water rises to the surface and floats on top of the oil. The liquid water is in static equilibrium at the location where the ice cube was originally placed. kg/m3 A layer of ethyl alcohol forms between the oil and the water. The layer of ethyl alcohol forms at the bottom of the container. The layer of ethyl alcohol forms on the surface.

please email info@checkyourstudy.com Chapter 15 Practice Problems (Practice – no … Read More...
Name:_____________________________ ENGR 381 Homework #3: Chapter 4 part 1 Due Oct. 7th at the beginning of class. Show your work! Practice problems that should be done but are NOT HANDED IN: 4-4E (answer: -5.14 Btu), 4-9 (answer: 1.355×105 kJ), 4-22 (answer: 25.3 kJ), 4-30E (answers: 40.23 °F, 47.73 lbm, 4167 Btu), 4-34, 4- 35, 4-37. Problems to be handed in: 1. (5 points) A piston/cylinder system contains 1.5 kg of water at 50 kPa and a quality factor of 0.4. Heat transfer occurs to the system until a temperature of 400 °C is achieved. Determine: a. The initial volume of liquid and the initial volume of vapor, both in m3; b. The boundary work out (Wb,out) of the system in kJ; c. The heat transfer in kJ. 2. (5 points) Solve using EES. A gas grill tank (i.e. rigid tank) contains 20 lbm of propane at 70 °F and has a quality factor of 0.001. The tank is left outside during the winter and reaches a temperature of -10°F. Determine: a. The tank volume; b. The initial pressure in psia; c. The final pressure in psia; d. The final quality factor; e. The heat transfer in Btu; Hint: You’ll want to switch the unit system to English units, under Options/Unit System. 3. (5 points) A mass of 3 kg of R-134a undergoes a polytropic process (PVn = constant) from a pressure of 400 kPa and temperature of 70 °C to a final pressure of 800 kPa. The polytropic exponent n is 1.15. Determine: a. The initial volume in m3; b. The final volume in m3; c. The final temperature in °C; d. The boundary work out (Wb,out) in kJ; e. The heat transfer in kJ; f. +1 Extra credit (solve the problem in EES in addition to the hand calculations) 4. (5 points) A piston/cylinder system contains 0.5 kg of saturated solid water (i.e. ice) at -12 °C. Heat transfer occurs to the system until the system contains only saturated vapor. a. What is the boundary work out (Wb,out) in kJ? b. What is the heat transfer in kJ? For EES problems, print the equation and solution windows.

Name:_____________________________ ENGR 381 Homework #3: Chapter 4 part 1 Due Oct. 7th at the beginning of class. Show your work! Practice problems that should be done but are NOT HANDED IN: 4-4E (answer: -5.14 Btu), 4-9 (answer: 1.355×105 kJ), 4-22 (answer: 25.3 kJ), 4-30E (answers: 40.23 °F, 47.73 lbm, 4167 Btu), 4-34, 4- 35, 4-37. Problems to be handed in: 1. (5 points) A piston/cylinder system contains 1.5 kg of water at 50 kPa and a quality factor of 0.4. Heat transfer occurs to the system until a temperature of 400 °C is achieved. Determine: a. The initial volume of liquid and the initial volume of vapor, both in m3; b. The boundary work out (Wb,out) of the system in kJ; c. The heat transfer in kJ. 2. (5 points) Solve using EES. A gas grill tank (i.e. rigid tank) contains 20 lbm of propane at 70 °F and has a quality factor of 0.001. The tank is left outside during the winter and reaches a temperature of -10°F. Determine: a. The tank volume; b. The initial pressure in psia; c. The final pressure in psia; d. The final quality factor; e. The heat transfer in Btu; Hint: You’ll want to switch the unit system to English units, under Options/Unit System. 3. (5 points) A mass of 3 kg of R-134a undergoes a polytropic process (PVn = constant) from a pressure of 400 kPa and temperature of 70 °C to a final pressure of 800 kPa. The polytropic exponent n is 1.15. Determine: a. The initial volume in m3; b. The final volume in m3; c. The final temperature in °C; d. The boundary work out (Wb,out) in kJ; e. The heat transfer in kJ; f. +1 Extra credit (solve the problem in EES in addition to the hand calculations) 4. (5 points) A piston/cylinder system contains 0.5 kg of saturated solid water (i.e. ice) at -12 °C. Heat transfer occurs to the system until the system contains only saturated vapor. a. What is the boundary work out (Wb,out) in kJ? b. What is the heat transfer in kJ? For EES problems, print the equation and solution windows.

Name:_____________________________ ENGR 381 Homework #3: Chapter 4 part 1 Due … Read More...
If 0.250 moles of bromine and 0.600 moles of ammonia react according to the equation below, what is the maximum amount of ammonium bromide (in moles) produced? 3 Br2() + 8 NH3(g) 6 NH4Br(s) + N2(g) 0.250 mol 0.800 mol 0.500 mol 0.600 mol 0.450 mol

If 0.250 moles of bromine and 0.600 moles of ammonia react according to the equation below, what is the maximum amount of ammonium bromide (in moles) produced? 3 Br2() + 8 NH3(g) 6 NH4Br(s) + N2(g) 0.250 mol 0.800 mol 0.500 mol 0.600 mol 0.450 mol

a) Find the inverse of the matrix A, where A is A= | 1 0 3, 2 0 1, 0 2 4, 4 0 0| b) given the following system of equations x+z=15, y+z=12, x+y=7, b1) Write the above system of equation in the form AX=B identifying each of the matrices A, X and respectively B. b2) Find A-1, the inverse of matrix A. b3) solve the system of equations by matrix inversion method

a) Find the inverse of the matrix A, where A is A= | 1 0 3, 2 0 1, 0 2 4, 4 0 0| b) given the following system of equations x+z=15, y+z=12, x+y=7, b1) Write the above system of equation in the form AX=B identifying each of the matrices A, X and respectively B. b2) Find A-1, the inverse of matrix A. b3) solve the system of equations by matrix inversion method