Assignment 1: Coulomb’s Law Due: 8:00am on Wednesday, January 11, 2012 Note: To understand how points are awarded, read your instructor’s Grading Policy. [Switch to Standard Assignment View] Coulomb’s Law Tutorial Learning Goal: To understand how to calculate forces between charged particles, particularly the dependence on the sign of the charges and the distance between them. Coulomb’s law describes the force that two charged particles exert on each other (by Newton’s third law, those two forces must be equal and opposite). The force exerted by particle 2 (with charge ) on particle 1 (with charge ) is proportional to the charge of each particle and inversely proportional to the square of the distance between them: , where and is the unit vector pointing from particle 2 to particle 1. The force vector will be parallel or antiparallel to the direction of , parallel if the product and antiparallel if ; the force is attractive if the charges are of opposite sign and repulsive if the charges are of the same sign. Part A Consider two positively charged particles, one of charge (particle 0) fixed at the origin, and another of charge (particle 1) fixed on the y-axis at . What is the net force on particle 0 due to particle 1? Express your answer (a vector) using any or all of , , , , , , and . ANSWER: = Correct Part B Now add a third, negatively charged, particle, whose charge is (particle 2). Particle 2 fixed on the y-axis at position . What is the new net force on particle 0, from particle 1 and particle 2? Express your answer (a vector) using any or all of , , , , , , , , and . ANSWER: = Correct Part C Particle 0 experiences a repulsion from particle 1 and an attraction toward particle 2. For certain values of and , the repulsion and attraction should balance each other, resulting in no net force. For what ratio is there no net force on particle 0? Express your answer in terms of any or all of the following variables: , , , . ANSWER: = Correct Part D Now add a fourth charged particle, particle 3, with positive charge , fixed in the yz-plane at . What is the net force on particle 0 due solely to this charge? Hint D.1 Find the magnitude of force from particle 3 Hint not displayed Hint D.2 Vector components Hint not displayed Express your answer (a vector) using , , , , , , and . Include only the force caused by particle 3. ANSWER: = Correct Exercise 21.4 You have a pure (24-karat) gold ring with mass . Gold has an atomic mass of and an atomic number of . Part A How many protons are in the ring? ANSWER: = 4.27×1024 Correct Part B What is their total positive charge? ANSWER: = 6.83×105 Correct Part C If the ring carries no net charge, how many electrons are in it? ANSWER: = 4.27×1024 Correct Exercise 21.22 Two point charges are placed on the x-axis as follows: charge = 4.05 is located at 0.197 , and charge = 5.00 is at -0.296 . Part A What is the magnitude of the total force exerted by these two charges on a negative point charge = -6.00 that is placed at the origin? ANSWER: = 2.55×10−6 Correct Part B What is the direction of the total force exerted by these two charges on a negative point charge = -6.00 that is placed at the origin? ANSWER: to the + direction to the – direction perpendicular to the -axis the force is zero Correct Problem 21.66 A charge 4.97 is placed at the origin of an xy-coordinate system, and a charge -1.99 is placed on the positive x-axis at = 3.98 . A third particle, of charge 6.05 is now placed at the point = 3.98 , = 3.01 . Part A Find the x-component of the total force exerted on the third charge by the other two. ANSWER: = 8.66×10−5 Correct Part B Find the y-component of the total force exerted on the third charge by the other two. ANSWER: = −5.40×10−5 Correct Part C Find the magnitude of the total force acting on the third charge. ANSWER: = 1.02×10−4 Correct Part D Find the direction of the total force acting on the third charge. ANSWER: = -0.557 Correct between and +x-axis Problem 21.68 Two identical spheres with mass are hung from silk threads of length , as shown in the figure . Each sphere has the same charge, so . The radius of each sphere is very small compared to the distance between the spheres, so they may be treated as point charges. Part A Suppose that the angle is small, and find the equilibrium separation between the spheres (Hint: If is small, then .) Express your answer in terms of the variables , , and appropriate constants. ANSWER: = Correct

Assignment 1: Coulomb’s Law Due: 8:00am on Wednesday, January 11, 2012 Note: To understand how points are awarded, read your instructor’s Grading Policy. [Switch to Standard Assignment View] Coulomb’s Law Tutorial Learning Goal: To understand how to calculate forces between charged particles, particularly the dependence on the sign of the charges and the distance between them. Coulomb’s law describes the force that two charged particles exert on each other (by Newton’s third law, those two forces must be equal and opposite). The force exerted by particle 2 (with charge ) on particle 1 (with charge ) is proportional to the charge of each particle and inversely proportional to the square of the distance between them: , where and is the unit vector pointing from particle 2 to particle 1. The force vector will be parallel or antiparallel to the direction of , parallel if the product and antiparallel if ; the force is attractive if the charges are of opposite sign and repulsive if the charges are of the same sign. Part A Consider two positively charged particles, one of charge (particle 0) fixed at the origin, and another of charge (particle 1) fixed on the y-axis at . What is the net force on particle 0 due to particle 1? Express your answer (a vector) using any or all of , , , , , , and . ANSWER: = Correct Part B Now add a third, negatively charged, particle, whose charge is (particle 2). Particle 2 fixed on the y-axis at position . What is the new net force on particle 0, from particle 1 and particle 2? Express your answer (a vector) using any or all of , , , , , , , , and . ANSWER: = Correct Part C Particle 0 experiences a repulsion from particle 1 and an attraction toward particle 2. For certain values of and , the repulsion and attraction should balance each other, resulting in no net force. For what ratio is there no net force on particle 0? Express your answer in terms of any or all of the following variables: , , , . ANSWER: = Correct Part D Now add a fourth charged particle, particle 3, with positive charge , fixed in the yz-plane at . What is the net force on particle 0 due solely to this charge? Hint D.1 Find the magnitude of force from particle 3 Hint not displayed Hint D.2 Vector components Hint not displayed Express your answer (a vector) using , , , , , , and . Include only the force caused by particle 3. ANSWER: = Correct Exercise 21.4 You have a pure (24-karat) gold ring with mass . Gold has an atomic mass of and an atomic number of . Part A How many protons are in the ring? ANSWER: = 4.27×1024 Correct Part B What is their total positive charge? ANSWER: = 6.83×105 Correct Part C If the ring carries no net charge, how many electrons are in it? ANSWER: = 4.27×1024 Correct Exercise 21.22 Two point charges are placed on the x-axis as follows: charge = 4.05 is located at 0.197 , and charge = 5.00 is at -0.296 . Part A What is the magnitude of the total force exerted by these two charges on a negative point charge = -6.00 that is placed at the origin? ANSWER: = 2.55×10−6 Correct Part B What is the direction of the total force exerted by these two charges on a negative point charge = -6.00 that is placed at the origin? ANSWER: to the + direction to the – direction perpendicular to the -axis the force is zero Correct Problem 21.66 A charge 4.97 is placed at the origin of an xy-coordinate system, and a charge -1.99 is placed on the positive x-axis at = 3.98 . A third particle, of charge 6.05 is now placed at the point = 3.98 , = 3.01 . Part A Find the x-component of the total force exerted on the third charge by the other two. ANSWER: = 8.66×10−5 Correct Part B Find the y-component of the total force exerted on the third charge by the other two. ANSWER: = −5.40×10−5 Correct Part C Find the magnitude of the total force acting on the third charge. ANSWER: = 1.02×10−4 Correct Part D Find the direction of the total force acting on the third charge. ANSWER: = -0.557 Correct between and +x-axis Problem 21.68 Two identical spheres with mass are hung from silk threads of length , as shown in the figure . Each sphere has the same charge, so . The radius of each sphere is very small compared to the distance between the spheres, so they may be treated as point charges. Part A Suppose that the angle is small, and find the equilibrium separation between the spheres (Hint: If is small, then .) Express your answer in terms of the variables , , and appropriate constants. ANSWER: = Correct

info@checkyourstudy.com
Question 1 1. When males reach puberty, _________ increases their muscle mass and skeletal development. A. prolactin B. protein C. androgen D. adipose tissue E. estrogen 3 points Question 2 1. Which of the following is the only 100percent effective method of fertility control and STI protection? A. Abstinence B. Condoms and spermicide together C. Condoms and a hormonal contraceptive together D. Oral contraceptives E. Condoms 3 points Question 3 1. The efficacy rate for implants is less than ________ pregnancy per 100 users per year. A. 1 B. 10 C. 11 D. 17 E. 4 3 points Question 4 1. Over-the-counter medications are ________ A. sold legally without a prescription. B. safe for pregnant women to use. C. sold illegally without a prescription. D. the safest drugs for self-medication purposes. E. harmful even when approved by the pregnant women’s physician. 3 points Question 5 1. The ________ activates the autonomic nervous system and the endocrine system through messages sent via nerves or substances released into the bloodstream. A. cerebral cortex B. pons C. thalamus D. subcortex E. hypothalamus 3 points Question 6 1. Ovulation methods center around ______ A. a female’s basal body temperature. B. a female’s cervical secretions. C. a female tracking her menstrual cycle by using a calendar. D. A and B. E. A and C. 3 points Question 7 1. Emergency contraception ______ A. can be used as a regular contraception method. B. provides protection against STDs. C. is the only method available if unprotected intercourse has occurred when fertility is likely. D. is significantly more effective than other contraceptive methods. E. All of the above 3 points Question 8 1. Although a simultaneous orgasm between sexual partners is an exciting event, it _______ A. is a relatively uncommon event and can actually detract from the coital experience if one is preoccupied by sharing this experience. B. is common and should be a priority as far as coitus is concerned. C. is of no particular importance. D. is immensely overrated. E. None of the above 3 points Question 9 1. Cervical caps are similar to ________, but the cervical cap is smaller. A. IUDs B. diaphragms C. Norplant D. oral contraceptives E. Depo-Provera 3 points Question 10 1. Which of the following increases the risk of having a low-birth-weight baby? A. The mother does not eat well during pregnancy. B. The mother does not take care of herself. C. The mother does not receive comprehensive prenatal care. D. The mother smokes. E. All of the above 3 points Question 11 1. An advantage to using IUDs and IUSs is that they ______ A. remain in place, so planning before sexual intercourse is unnecessary. B. have a high level of effectiveness. C. allow fertility to return immediately after they are removed. D. can remain in place during a woman’s period. E. all of the above 3 points Question 12 1. Contraception is the means of preventing _______ from occurring during sexual intercourse. A. conception B. pain C. infertility D. STDs E. pleasure 3 points Question 13 1. ________ is the contraceptive method of removing the penis from the vagina before ejaculation. A. Abstinence B. Sterilization C. Avoidance D. Withdrawal E. Monogamy 3 points Question 14 1. Compared to men, women employed full time __________ A. spend fewer hours on household tasks. B. work more hours in the workplace. C. work a proportionate number of hours on household tasks. D. spend more hours on household tasks. E. work fewer hours in the workplace. 3 points Question 15 1. At ________, the female central nervous system (CNS) is typically more advanced than the male CNS. A. birth B. conception C. adolescence D. adulthood E. puberty 3 points Question 16 1. Females sometimes experience a sexual response cycle similar to that of males, EXCEPT A. when they are menstruating. B. they can have multiple orgasms without a refractory period. C. they can have multiple orgasms with a refractory period. D. the resolution phase is shorter in duration than in males. E. they generally move from excitement to plateau and then to orgasm. 3 points Question 17 1. Fertilization normally takes place in the ________ A. ovary. B. cervix. C. vagina. D. uterus. E. fallopian tubes. 3 points Question 18 1. ________ come in the form of foam, gels, films, suppositories, creams, sponges, and tablets. A. Condoms B. Diaphragms C. Spermicides D. IUDs E. Sterilization agents 3 points Question 19 1. The three major settings in the United States where labor and delivery occur are ________ A. the hospital, health-care clinics, and the home. B. the home, the hospital, and the birthing room. C. free-standing birth centers, the home, and health-care clinics. D. the hospital, the home, and free-standing birth centers. E. the birthing room, the hospital, and free-standing birth centers. 3 points Question 20 1. Mode, a fashion magazine, _______ A. was developed for women who wear normal and large sizes. B. was developed for women who wear over a size 16. C. shows only pictures of clothing, with no models. D. was sued by a group of women who claimed the magazine contributed to their bouts with eating disorders. E. none of the above 3 points Question 21 1. All of the following are advantages to breastfeeding EXCEPT that: A. over-the-counter medications do not affect breast milk. B. babies are less likely to contract respiratory infection. C. mothers’ milk provides antibodies against disease. D. encourages bonding of infant and mother. E. breast milk is cheaper than formula. 3 points Question 22 1. Kaplan’s Triphasic Model consists of the A. excitement, plateau, and resolution phases. B. desire, plateau, and orgasm phases. C. plateau, orgasm, and resolution phases. D. desire, excitement, and resolution phases. E. desire, excitement, and orgasm phases. 3 points Question 23 1. The unique component of Kaplan’s triphasic model is the ______phase—a psychological, prephysical sexual response stage. A. excitement B. desire C. resolution D. plateau E. None of the above 3 points Question 24 1. Together, the ________ and the ______ form the lifeline between the mother and the fetus. A. placenta, cervix B. cervix, uterus C. umbilical cord, vagina D. fallopiantubes, vagina E. placenta, umbilical cord 3 points Question 25 1. When an employee switches genders, which of the following is a difficult issue that employers may face? A. How clients might react B. How others will handle a transitioning employee using the restroom C. How an employee informs coworkers about switching genders D. All of the above E. None of the above 3 points Question 26 1. In men, sex flush occurs during the ________ phase, whereas in women it occurs during the ________ phase. A. refractory, excitement B. excitement, resolution C. excitement, plateau D. plateau, excitement E. plateau, resolution 3 points Question 27 1. The process that results in vaginal lubrication during the excitement phase is: A. myotonia. B. uterine orgasm. C. orgasmic platform. D. transudation. E. tachycardia. 3 points Question 28 1. The ________ is the waxy protective substance that coats the fetus. A. amniotic sac B. amniocentesis C. amniotic fluid D. vernixcaseosa. E. chorionic fluid 3 points Question 29 1. ________ adolescent females seem to be happier with their bodies and less likely to diet than ________ adolescent females. A. Hispanic, European Americans B. Asian American; African American C. African American, European American D. European American, Hispanic 3 points Question 30 1. Intrauterine devices (IUDs) and intrauterine systems (IUSs) are ______ methods of contraception. A. not B. permanent C. effective D. reversible E. both c and d 3 points Question 31 1. In early adolescence, girls outperform boys at which of the following types of tasks? A. Visual-spatial B. Math C. Physical D. Language and verbal E. None of the above 3 points Question 32 1. Which of the following are common signs that a person may have an eating disorder? A. The person wears tight clothes to show off his or her “new” body. B. A female may quit menstruating C. Excessive exercise D. B and C E. A and C 3 points Question 33 1. The ________ is the valve that prevents urine from entering the urethra and sperm from entering the bladder during ejaculation. A. orgasmic platform B. vasocongestive valve C. sex flush D. internal urethral sphincter E. None of the above 3 points Question 34 1. Which of the following statements reflect gender bias? A. Boys in school will “act out.” B. Girls in school will be docile. C. Girls are neat. D. All of the above. E. None of the above 3 points Question 35 1. The calendar method and ovulation methods are examples of ______ A. natural planning. B. fertility awareness methods. C. natural family planning. D. fertility planning. E. both B and C 3 points Question 36 1. Dieting during pregnancy can be harmful because the breakdown of fat produces toxic substances called ______ A. fibers. B. pheromones. C. ketones. D. monosaccharides. E. hormones. 3 points Question 37 1. Oral contraceptives _____ A. suppress ovulation. B. mimic the changes that occur in pregnancy. C. can be taken by both males and females. D. A and B E. A and C 3 points Question 38 1. According to Fisher (2001), men usually _______, whereas women ________. A. cut straight to the point, see issues as a part of a larger whole B. discuss their feelings, are more stoic C. mull things over, tend to speak their mind D. waiver while making decisions, mull things over E. None of the above 3 points Question 39 1. The increase in heart rate that occurs during sexual activity is known as _______ A. hyperventilation. B. vasocongestion. C. myotonia. D. tachycardia. E. sex flush. 3 points Question 40 1. Women earned about _________ of all college degrees in 2008. A. 10% B. 35% C. 57% D. 85% E. None of the above

Question 1 1. When males reach puberty, _________ increases their muscle mass and skeletal development. A. prolactin B. protein C. androgen D. adipose tissue E. estrogen 3 points Question 2 1. Which of the following is the only 100percent effective method of fertility control and STI protection? A. Abstinence B. Condoms and spermicide together C. Condoms and a hormonal contraceptive together D. Oral contraceptives E. Condoms 3 points Question 3 1. The efficacy rate for implants is less than ________ pregnancy per 100 users per year. A. 1 B. 10 C. 11 D. 17 E. 4 3 points Question 4 1. Over-the-counter medications are ________ A. sold legally without a prescription. B. safe for pregnant women to use. C. sold illegally without a prescription. D. the safest drugs for self-medication purposes. E. harmful even when approved by the pregnant women’s physician. 3 points Question 5 1. The ________ activates the autonomic nervous system and the endocrine system through messages sent via nerves or substances released into the bloodstream. A. cerebral cortex B. pons C. thalamus D. subcortex E. hypothalamus 3 points Question 6 1. Ovulation methods center around ______ A. a female’s basal body temperature. B. a female’s cervical secretions. C. a female tracking her menstrual cycle by using a calendar. D. A and B. E. A and C. 3 points Question 7 1. Emergency contraception ______ A. can be used as a regular contraception method. B. provides protection against STDs. C. is the only method available if unprotected intercourse has occurred when fertility is likely. D. is significantly more effective than other contraceptive methods. E. All of the above 3 points Question 8 1. Although a simultaneous orgasm between sexual partners is an exciting event, it _______ A. is a relatively uncommon event and can actually detract from the coital experience if one is preoccupied by sharing this experience. B. is common and should be a priority as far as coitus is concerned. C. is of no particular importance. D. is immensely overrated. E. None of the above 3 points Question 9 1. Cervical caps are similar to ________, but the cervical cap is smaller. A. IUDs B. diaphragms C. Norplant D. oral contraceptives E. Depo-Provera 3 points Question 10 1. Which of the following increases the risk of having a low-birth-weight baby? A. The mother does not eat well during pregnancy. B. The mother does not take care of herself. C. The mother does not receive comprehensive prenatal care. D. The mother smokes. E. All of the above 3 points Question 11 1. An advantage to using IUDs and IUSs is that they ______ A. remain in place, so planning before sexual intercourse is unnecessary. B. have a high level of effectiveness. C. allow fertility to return immediately after they are removed. D. can remain in place during a woman’s period. E. all of the above 3 points Question 12 1. Contraception is the means of preventing _______ from occurring during sexual intercourse. A. conception B. pain C. infertility D. STDs E. pleasure 3 points Question 13 1. ________ is the contraceptive method of removing the penis from the vagina before ejaculation. A. Abstinence B. Sterilization C. Avoidance D. Withdrawal E. Monogamy 3 points Question 14 1. Compared to men, women employed full time __________ A. spend fewer hours on household tasks. B. work more hours in the workplace. C. work a proportionate number of hours on household tasks. D. spend more hours on household tasks. E. work fewer hours in the workplace. 3 points Question 15 1. At ________, the female central nervous system (CNS) is typically more advanced than the male CNS. A. birth B. conception C. adolescence D. adulthood E. puberty 3 points Question 16 1. Females sometimes experience a sexual response cycle similar to that of males, EXCEPT A. when they are menstruating. B. they can have multiple orgasms without a refractory period. C. they can have multiple orgasms with a refractory period. D. the resolution phase is shorter in duration than in males. E. they generally move from excitement to plateau and then to orgasm. 3 points Question 17 1. Fertilization normally takes place in the ________ A. ovary. B. cervix. C. vagina. D. uterus. E. fallopian tubes. 3 points Question 18 1. ________ come in the form of foam, gels, films, suppositories, creams, sponges, and tablets. A. Condoms B. Diaphragms C. Spermicides D. IUDs E. Sterilization agents 3 points Question 19 1. The three major settings in the United States where labor and delivery occur are ________ A. the hospital, health-care clinics, and the home. B. the home, the hospital, and the birthing room. C. free-standing birth centers, the home, and health-care clinics. D. the hospital, the home, and free-standing birth centers. E. the birthing room, the hospital, and free-standing birth centers. 3 points Question 20 1. Mode, a fashion magazine, _______ A. was developed for women who wear normal and large sizes. B. was developed for women who wear over a size 16. C. shows only pictures of clothing, with no models. D. was sued by a group of women who claimed the magazine contributed to their bouts with eating disorders. E. none of the above 3 points Question 21 1. All of the following are advantages to breastfeeding EXCEPT that: A. over-the-counter medications do not affect breast milk. B. babies are less likely to contract respiratory infection. C. mothers’ milk provides antibodies against disease. D. encourages bonding of infant and mother. E. breast milk is cheaper than formula. 3 points Question 22 1. Kaplan’s Triphasic Model consists of the A. excitement, plateau, and resolution phases. B. desire, plateau, and orgasm phases. C. plateau, orgasm, and resolution phases. D. desire, excitement, and resolution phases. E. desire, excitement, and orgasm phases. 3 points Question 23 1. The unique component of Kaplan’s triphasic model is the ______phase—a psychological, prephysical sexual response stage. A. excitement B. desire C. resolution D. plateau E. None of the above 3 points Question 24 1. Together, the ________ and the ______ form the lifeline between the mother and the fetus. A. placenta, cervix B. cervix, uterus C. umbilical cord, vagina D. fallopiantubes, vagina E. placenta, umbilical cord 3 points Question 25 1. When an employee switches genders, which of the following is a difficult issue that employers may face? A. How clients might react B. How others will handle a transitioning employee using the restroom C. How an employee informs coworkers about switching genders D. All of the above E. None of the above 3 points Question 26 1. In men, sex flush occurs during the ________ phase, whereas in women it occurs during the ________ phase. A. refractory, excitement B. excitement, resolution C. excitement, plateau D. plateau, excitement E. plateau, resolution 3 points Question 27 1. The process that results in vaginal lubrication during the excitement phase is: A. myotonia. B. uterine orgasm. C. orgasmic platform. D. transudation. E. tachycardia. 3 points Question 28 1. The ________ is the waxy protective substance that coats the fetus. A. amniotic sac B. amniocentesis C. amniotic fluid D. vernixcaseosa. E. chorionic fluid 3 points Question 29 1. ________ adolescent females seem to be happier with their bodies and less likely to diet than ________ adolescent females. A. Hispanic, European Americans B. Asian American; African American C. African American, European American D. European American, Hispanic 3 points Question 30 1. Intrauterine devices (IUDs) and intrauterine systems (IUSs) are ______ methods of contraception. A. not B. permanent C. effective D. reversible E. both c and d 3 points Question 31 1. In early adolescence, girls outperform boys at which of the following types of tasks? A. Visual-spatial B. Math C. Physical D. Language and verbal E. None of the above 3 points Question 32 1. Which of the following are common signs that a person may have an eating disorder? A. The person wears tight clothes to show off his or her “new” body. B. A female may quit menstruating C. Excessive exercise D. B and C E. A and C 3 points Question 33 1. The ________ is the valve that prevents urine from entering the urethra and sperm from entering the bladder during ejaculation. A. orgasmic platform B. vasocongestive valve C. sex flush D. internal urethral sphincter E. None of the above 3 points Question 34 1. Which of the following statements reflect gender bias? A. Boys in school will “act out.” B. Girls in school will be docile. C. Girls are neat. D. All of the above. E. None of the above 3 points Question 35 1. The calendar method and ovulation methods are examples of ______ A. natural planning. B. fertility awareness methods. C. natural family planning. D. fertility planning. E. both B and C 3 points Question 36 1. Dieting during pregnancy can be harmful because the breakdown of fat produces toxic substances called ______ A. fibers. B. pheromones. C. ketones. D. monosaccharides. E. hormones. 3 points Question 37 1. Oral contraceptives _____ A. suppress ovulation. B. mimic the changes that occur in pregnancy. C. can be taken by both males and females. D. A and B E. A and C 3 points Question 38 1. According to Fisher (2001), men usually _______, whereas women ________. A. cut straight to the point, see issues as a part of a larger whole B. discuss their feelings, are more stoic C. mull things over, tend to speak their mind D. waiver while making decisions, mull things over E. None of the above 3 points Question 39 1. The increase in heart rate that occurs during sexual activity is known as _______ A. hyperventilation. B. vasocongestion. C. myotonia. D. tachycardia. E. sex flush. 3 points Question 40 1. Women earned about _________ of all college degrees in 2008. A. 10% B. 35% C. 57% D. 85% E. None of the above

info@checkyourstudy.com
Lab Description: Follow the instructions in the lab tasks below to complete Problems 1 through 4. These problems will guide you in observing signal delays and timing hazards of logic circuits (both Sum-of-Products (SOP) and Product-of-Sums (POS) circuits). These problems will also guide you in adding circuitry to eliminate a timing hazard. Use VHDL to design the circuits. Carefully follow the directions provided in the lab tasks below. Write your answers to the questions asked by the problems. Do not print out the VHDL code and waveforms as asked by the problems, instead include these on the cover sheet for this lab and print this out when you are done. Do not worry about annotating or putting arrows/notes on the waveforms–just make sure any signals or transitions of interest are shown in your screenshot. For each problem, use VHDL assignment statements for each gate of the Boolean expression. You must add delay for each gate and inverter as described by the problem. Do this by using the “after” statement: Z <= (A and B) after 1 ns; Refer to Digilent Real Digital Module 8 for more information about the "after" statement. Lab Tasks: 1. Complete Problem 1 of Project 8. Simulate all input combinations for this SOP (Sum-of-Products) expression. However, be aware that specific input sequences are required to observe a timing hazard. The problem states that you will need to observe the output when B and C are both high (logic 1) and A transitions from high to low to high (logic 1 to 0, then back to 1). 2. Complete Problem 4 of Project 8. Increase the delay of the OR gate as specified and re-simulate to answer the questions. 3. Complete Problem 2 of Project 8. Change the delay of the OR gate back to the 1 ns that you used for Problem 1. Add the new logic gate (with delay) to your VHDL for the SOP expression and re-simulate to answer the questions. 4. Complete Problem 3 of Project 8. You may create any POS (Product-of-Sums) expression for this problem, however, not all POS expressions will have a timing hazard (so spend some time thinking about how a timing hazard can be generated with a POS expression). Once again, simulate all input combinations for your POS expression but be aware that specific input sequences are required to observe a timing hazard. For this problem, you will also add the new logic gate (with delay) to your VHDL for your POS expression in order to eliminate the timing hazard; you will need to re-simulate with this additional logic gate in order to answer the questions. Problem 1. Implement the function Y = A’.B + A.C in the VHDL tool. Define the INV, OR and two AND operations separately, and give each operation a 1ns delay. Simulate the circuit with all possible combinations of inputs. Watch all circuit nets (inputs, outputs, and intermediate nets) during the simulation. Answer the questions below. Observe the outputs of the AND gates and the overall circuit output when B and C are both high, and A transitions from H to L and then from L to H (you may want to create another simulation to focus on this behavior). What output behavior do you notice when A transitions? What happens when A transitions and B or C are held a ‘0’? How long is the output glitch? _______ Is it positive ( ) or negative ( ) (circle one)? Change the delay through the inverter to 2ns, and resimulate. Now how long is output glitch? ______ What can you say about the relationship between the inverter gate delay and the length of the timing glitch? Based on this simple experiment, an SOP circuit can exhibit positive/negative glitches (circle one) when an input that arrives at one AND gate in a complemented form and another AND gate in uncomplemented form transitions from a _____ to a _____. Problem 2. Enter the logic equation from problem 1 in the K-map below, and loop the equation with redundant term included. Add the redundant term to the Xilinx circuit, re-simulate, and answer the questions. B C A 00 01 11 10 0 1 F Did adding the new gate to the circuit change the logical behavior of the circuit? What effect did the new gate have on the output, particularly when A changes and B and C are both held high? Problem 3. Create a three-input POS circuit to illustrate the formation of a glitch. Drive the simulator to illustrate a glitch in the POS circuit, and answer the questions below. A POS circuit can exhibit a positive/negative glitch (circle one) when an input that arrives at one OR gate in a complemented form and another OR gate in un-complemented form transitions from a _____ to a _____. Write the POS equation you used to show the glitch: Enter the equation in the K-map below, loop the original equation with the redundant term, add the redundant gate to your Xilinx circuit, and resimulate. How did adding the new gate to the circuit change the logical behavior of the circuit? What effect did the new gate have on the output, particularly when A changes and B and C are both held high? Print and submit the circuits and simulation output, label the output glitches in the simulation output, and draw arrows on the simulation output between the events that caused the glitches (i.e., a transition in an input signal) and the glitches themselves. Problem 4. Copy the SOP circuit above to a new VHDL file, and increase the delay of the output OR gate. Simulate the circuit and answer the questions below. How did adding delay to the output gate change the output transition? Does adding delay to the output gate change the circuit’s glitch behavior in any way? Name: Signal Delays Date: Designing with VHDL Grade Item Grade Five segments of VHDL Code for Problems 1-4: /10 Five simulation screenshots for Problems 1-4: /10 Questions from Problems 1-4: /16 Total Grade: /36 VHDL Code: Copy-paste your VHDL design code (just the code you wrote) for: • The SOP expression with the timing hazard (Problem 1, Project 8): • The SOP expression with increased OR gate delay (Problem 4, Project 8): • The SOP expression with the extra logic gate in order to eliminate the timing hazard (Problem 2, Project 8): • Your POS expression with the timing hazard (Problem 3, Project 8): • Your POS expression with the extra logic gate in order to eliminate the timing hazard (Problem 3, Project 8): Simulation Screenshots: Use the “Print Screen” button to capture your screenshot (it should show the entire screen, not just the window of the program). • The SOP expression with the timing hazard (Problem 1, Project 8): • The SOP expression with increased OR gate delay (Problem 4, Project 8): • The SOP expression with the extra logic gate in order to eliminate the timing hazard (Problem 2, Project 8): • Your POS expression with the timing hazard (Problem 3, Project 8): • Your POS expression with the extra logic gate in order to eliminate the timing hazard (Problem 3, Project 8): Simulation Screenshot Tips: (you can delete this once you capture your screenshot) 1. Make the “Wave” window large by clicking the “+” button near the upper-right of the window 2. Click the “Zoom Full” button (looks like a blue/green-filled magnifying glass) to enlarge your waveforms 3. In order to not print a lot of black, change the color scheme of the “Wave” window: 3.1. Click ToolsEdit Preferences… 3.2. The “By Window” tab should be selected, then click Wave Windows in the “Window List” to the left 3.3. Scroll to the bottom of the “Wave Windows Color Scheme” list and click waveBackground. Then click white in the color “Palette” at the right of the screen. 3.4. Now color the waveforms and text black: 3.4.1. Click LOGIC_0 in the “Wave Windows Color Scheme.” Then click black in the color “Palette” at the right of the screen. 3.4.2. Repeat this for LOGIC_1, timeColor, and cursorColor (if you have a cursor you want to print) 3.5. Once you have captured your screenshot, you can click the Reset Defaults button to restore the “Wave” window to its original color scheme Questions: (Please use this cover sheet to type and print your responses) 1. List the references you used for this lab assignment (e.g. sources/websites used or students with whom you discussed this assignment) 2. Do you have any comments or suggestions for this lab exercise?

Lab Description: Follow the instructions in the lab tasks below to complete Problems 1 through 4. These problems will guide you in observing signal delays and timing hazards of logic circuits (both Sum-of-Products (SOP) and Product-of-Sums (POS) circuits). These problems will also guide you in adding circuitry to eliminate a timing hazard. Use VHDL to design the circuits. Carefully follow the directions provided in the lab tasks below. Write your answers to the questions asked by the problems. Do not print out the VHDL code and waveforms as asked by the problems, instead include these on the cover sheet for this lab and print this out when you are done. Do not worry about annotating or putting arrows/notes on the waveforms–just make sure any signals or transitions of interest are shown in your screenshot. For each problem, use VHDL assignment statements for each gate of the Boolean expression. You must add delay for each gate and inverter as described by the problem. Do this by using the “after” statement: Z <= (A and B) after 1 ns; Refer to Digilent Real Digital Module 8 for more information about the "after" statement. Lab Tasks: 1. Complete Problem 1 of Project 8. Simulate all input combinations for this SOP (Sum-of-Products) expression. However, be aware that specific input sequences are required to observe a timing hazard. The problem states that you will need to observe the output when B and C are both high (logic 1) and A transitions from high to low to high (logic 1 to 0, then back to 1). 2. Complete Problem 4 of Project 8. Increase the delay of the OR gate as specified and re-simulate to answer the questions. 3. Complete Problem 2 of Project 8. Change the delay of the OR gate back to the 1 ns that you used for Problem 1. Add the new logic gate (with delay) to your VHDL for the SOP expression and re-simulate to answer the questions. 4. Complete Problem 3 of Project 8. You may create any POS (Product-of-Sums) expression for this problem, however, not all POS expressions will have a timing hazard (so spend some time thinking about how a timing hazard can be generated with a POS expression). Once again, simulate all input combinations for your POS expression but be aware that specific input sequences are required to observe a timing hazard. For this problem, you will also add the new logic gate (with delay) to your VHDL for your POS expression in order to eliminate the timing hazard; you will need to re-simulate with this additional logic gate in order to answer the questions. Problem 1. Implement the function Y = A’.B + A.C in the VHDL tool. Define the INV, OR and two AND operations separately, and give each operation a 1ns delay. Simulate the circuit with all possible combinations of inputs. Watch all circuit nets (inputs, outputs, and intermediate nets) during the simulation. Answer the questions below. Observe the outputs of the AND gates and the overall circuit output when B and C are both high, and A transitions from H to L and then from L to H (you may want to create another simulation to focus on this behavior). What output behavior do you notice when A transitions? What happens when A transitions and B or C are held a ‘0’? How long is the output glitch? _______ Is it positive ( ) or negative ( ) (circle one)? Change the delay through the inverter to 2ns, and resimulate. Now how long is output glitch? ______ What can you say about the relationship between the inverter gate delay and the length of the timing glitch? Based on this simple experiment, an SOP circuit can exhibit positive/negative glitches (circle one) when an input that arrives at one AND gate in a complemented form and another AND gate in uncomplemented form transitions from a _____ to a _____. Problem 2. Enter the logic equation from problem 1 in the K-map below, and loop the equation with redundant term included. Add the redundant term to the Xilinx circuit, re-simulate, and answer the questions. B C A 00 01 11 10 0 1 F Did adding the new gate to the circuit change the logical behavior of the circuit? What effect did the new gate have on the output, particularly when A changes and B and C are both held high? Problem 3. Create a three-input POS circuit to illustrate the formation of a glitch. Drive the simulator to illustrate a glitch in the POS circuit, and answer the questions below. A POS circuit can exhibit a positive/negative glitch (circle one) when an input that arrives at one OR gate in a complemented form and another OR gate in un-complemented form transitions from a _____ to a _____. Write the POS equation you used to show the glitch: Enter the equation in the K-map below, loop the original equation with the redundant term, add the redundant gate to your Xilinx circuit, and resimulate. How did adding the new gate to the circuit change the logical behavior of the circuit? What effect did the new gate have on the output, particularly when A changes and B and C are both held high? Print and submit the circuits and simulation output, label the output glitches in the simulation output, and draw arrows on the simulation output between the events that caused the glitches (i.e., a transition in an input signal) and the glitches themselves. Problem 4. Copy the SOP circuit above to a new VHDL file, and increase the delay of the output OR gate. Simulate the circuit and answer the questions below. How did adding delay to the output gate change the output transition? Does adding delay to the output gate change the circuit’s glitch behavior in any way? Name: Signal Delays Date: Designing with VHDL Grade Item Grade Five segments of VHDL Code for Problems 1-4: /10 Five simulation screenshots for Problems 1-4: /10 Questions from Problems 1-4: /16 Total Grade: /36 VHDL Code: Copy-paste your VHDL design code (just the code you wrote) for: • The SOP expression with the timing hazard (Problem 1, Project 8): • The SOP expression with increased OR gate delay (Problem 4, Project 8): • The SOP expression with the extra logic gate in order to eliminate the timing hazard (Problem 2, Project 8): • Your POS expression with the timing hazard (Problem 3, Project 8): • Your POS expression with the extra logic gate in order to eliminate the timing hazard (Problem 3, Project 8): Simulation Screenshots: Use the “Print Screen” button to capture your screenshot (it should show the entire screen, not just the window of the program). • The SOP expression with the timing hazard (Problem 1, Project 8): • The SOP expression with increased OR gate delay (Problem 4, Project 8): • The SOP expression with the extra logic gate in order to eliminate the timing hazard (Problem 2, Project 8): • Your POS expression with the timing hazard (Problem 3, Project 8): • Your POS expression with the extra logic gate in order to eliminate the timing hazard (Problem 3, Project 8): Simulation Screenshot Tips: (you can delete this once you capture your screenshot) 1. Make the “Wave” window large by clicking the “+” button near the upper-right of the window 2. Click the “Zoom Full” button (looks like a blue/green-filled magnifying glass) to enlarge your waveforms 3. In order to not print a lot of black, change the color scheme of the “Wave” window: 3.1. Click ToolsEdit Preferences… 3.2. The “By Window” tab should be selected, then click Wave Windows in the “Window List” to the left 3.3. Scroll to the bottom of the “Wave Windows Color Scheme” list and click waveBackground. Then click white in the color “Palette” at the right of the screen. 3.4. Now color the waveforms and text black: 3.4.1. Click LOGIC_0 in the “Wave Windows Color Scheme.” Then click black in the color “Palette” at the right of the screen. 3.4.2. Repeat this for LOGIC_1, timeColor, and cursorColor (if you have a cursor you want to print) 3.5. Once you have captured your screenshot, you can click the Reset Defaults button to restore the “Wave” window to its original color scheme Questions: (Please use this cover sheet to type and print your responses) 1. List the references you used for this lab assignment (e.g. sources/websites used or students with whom you discussed this assignment) 2. Do you have any comments or suggestions for this lab exercise?

checkyourstudy.com Whatsapp +919911743277
You will receive no credit for items you complete after the assignment is due. Grading Policy Exercise 2.5 Starting from the front door of your ranch house, you walk 60.0 due east to your windmill, and then you turn around and slowly walk 35.0 west to a bench where you sit and watch the sunrise. It takes you 27.0 to walk from your house to the windmill and then 49.0 to walk from the windmill to the bench. Part A For the entire trip from your front door to the bench, what is your average velocity? Express your answer with the appropriate units. ANSWER: Correct Part B For the entire trip from your front door to the bench, what is your average speed? Express your answer with the appropriate units. ANSWER: Correct Exercise 2.7 A car is stopped at a traffic light. It then travels along a straight road so that its distance from the light is given by , where = 2.40 and = 0.110 . = -0.329 average speed = 1.25 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 1 of 16 3/23/2015 11:12 AM Part A Calculate the average velocity of the car for the time interval = 0 to = 10.0 . ANSWER: Correct Part B Calculate the instantaneous velocity of the car at =0. ANSWER: Correct Part C Calculate the instantaneous velocity of the car at =5.00 . ANSWER: Correct Part D Calculate the instantaneous velocity of the car at =10.0 . ANSWER: Correct Part E How long after starting from rest is the car again at rest? ANSWER: = 13.0 = 0 = 15.8 = 15.0 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 2 of 16 3/23/2015 11:12 AM Correct Exercise 2.9 A ball moves in a straight line (the x-axis). The graph in the figure shows this ball’s velocity as a function of time. Part A What are the ball’s average velocity during the first 2.8 ? Express your answer using two significant figures. ANSWER: Answer Requested Part B What are the ball’s average speed during the first 2.8 ? Express your answer using two significant figures. ANSWER: Correct = 14.5 = 2.3 = 2.3 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 3 of 16 3/23/2015 11:12 AM Part C Suppose that the ball moved in such a way that the graph segment after 2.0 was -3.0 instead of +3.0 . Find the ball’s and average velocity during the first 2.8 in this case. Express your answer using two significant figures. ANSWER: All attempts used; correct answer displayed Part D Suppose that the ball moved in such a way that the graph segment after 2.0 was -3.0 instead of +3.0 . Find the ball’s average speed during the first 2.8 in this case. Express your answer using two significant figures. ANSWER: Correct Exercise 2.13 Part A The table shows test data for the Bugatti Veyron, the fastest car made. The car is moving in a straight line (the x-axis). Time 0 2.10 20.0 53.0 Speed 0 60.0 205 259 Calculate the car’s average acceleration (in ) between 0 and 2.1 . ANSWER: Correct Part B Calculate the car’s average acceleration (in ) between 2.1 and 20.0 . = 0.57 = 2.3 = 12.8 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 4 of 16 3/23/2015 11:12 AM ANSWER: Correct Part C Calculate the car’s average acceleration (in ) between 20.0 and 53 . ANSWER: Correct Exercise 2.19 An antelope moving with constant acceleration covers the distance 79.0 between two points in time 7.00 . Its speed as it passes the second point is 14.5 . Part A What is its speed at the first point? ANSWER: Correct Part B What is the acceleration? ANSWER: Correct Exercise 2.22 In the fastest measured tennis serve, the ball left the racquet at 73.14 . A served tennis ball is typically in contact with = 3.62 = 0.731 = 8.07 = 0.918 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 5 of 16 3/23/2015 11:12 AM the racquet for 27.0 and starts from rest. Assume constant acceleration. Part A What was the ball’s acceleration during this serve? ANSWER: Correct Part B How far did the ball travel during the serve? ANSWER: Correct Exercise 2.30 A cat walks in a straight line, which we shall call the x-axis with the positive direction to the right. As an observant physicist, you make measurements of this cat’s motion and construct a graph of the feline’s velocity as a function of time (the figure ). Part A Find the cat’s velocity at = 5.0 . Express your answer using two significant figures. ANSWER: = 2710 = 0.987 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 6 of 16 3/23/2015 11:12 AM Correct Part B Find the cat’s velocity at = 8.0 . Express your answer using two significant figures. ANSWER: Correct Part C What is the cat’s acceleration at ? Express your answer using two significant figures. ANSWER: Correct Part D What is the cat’s acceleration at ? Express your answer using two significant figures. ANSWER: Correct Part E What is the cat’s acceleration at ? Express your answer using two significant figures. ANSWER: = 1.3 = -2.7 = -1.3 = -1.3 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 7 of 16 3/23/2015 11:12 AM Correct Part F What distance does the cat move during the first 4.5 ? Express your answer using two significant figures. ANSWER: Correct Part G What distance does the cat move from to ? Express your answer using two significant figures. ANSWER: Correct Part H Sketch clear graph of the cat’s acceleration as function of time, assuming that the cat started at the origin. ANSWER: = -1.3 = 23 = 26 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 8 of 16 3/23/2015 11:12 AM Correct Part I Sketch clear graph of the cat’s position as function of time, assuming that the cat started at the origin. ANSWER: Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 9 of 16 3/23/2015 11:12 AM All attempts used; correct answer displayed Exercise 2.35 Part A If a flea can jump straight up to a height of 0.510 , what is its initial speed as it leaves the ground? ANSWER: Correct Part B How long is it in the air? ANSWER: Correct = 3.16 = 0.645 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 10 of 16 3/23/2015 11:12 AM Exercise 2.36 A small rock is thrown vertically upward with a speed of 18.0 from the edge of the roof of a 39.0 tall building. The rock doesn’t hit the building on its way back down and lands in the street below. Air resistance can be neglected. Part A What is the speed of the rock just before it hits the street? Express your answer with the appropriate units. ANSWER: Correct Part B How much time elapses from when the rock is thrown until it hits the street? Express your answer with the appropriate units. ANSWER: Correct Exercise 2.38 You throw a glob of putty straight up toward the ceiling, which is 3.00 above the point where the putty leaves your hand. The initial speed of the putty as it leaves your hand is 9.70 . Part A What is the speed of the putty just before it strikes the ceiling? Express your answer with the appropriate units. ANSWER: Correct Part B = 33.0 = 5.20 = 5.94 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 11 of 16 3/23/2015 11:12 AM How much time from when it leaves your hand does it take the putty to reach the ceiling? Express your answer with the appropriate units. ANSWER: Correct Exercise 3.1 A squirrel has x- and y-coordinates ( 1.2 , 3.3 ) at time and coordinates ( 5.3 , -0.80 ) at time = 2.6 . Part A For this time interval, find the x-component of the average velocity. Express your answer using two significant figures. ANSWER: Correct Part B For this time interval, find the y-component of the average velocity. Express your answer using two significant figures. ANSWER: Correct Part C Find the magnitude of the average velocity. Express your answer using two significant figures. ANSWER: = 0.384 = 1.6 = -1.6 = 2.2 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 12 of 16 3/23/2015 11:12 AM Correct Part D Find the direction of the average velocity. Express your answer using two significant figures. ANSWER: Correct Exercise 3.3 A web page designer creates an animation in which a dot on a computer screen has a position of 4.1 2.1 4.7 . Part A Find the average velocity of the dot between and . Give your answer as a pair of components separated by a comma. For example, if you think the x component is 3 and the y component is 4, then you should enter 3,4. Express your answer using two significant figures. ANSWER: Correct Part B Find the instantaneous velocity at . Give your answer as a pair of components separated by a comma. For example, if you think the x component is 3 and the y component is 4, then you should enter 3,4. Express your answer using two significant figures. ANSWER: Correct Part C = 45 below the x-axis = 4.2,4.7 = 0,4.7 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 13 of 16 3/23/2015 11:12 AM Find the instantaneous velocity at . Give your answer as a pair of components separated by a comma. For example, if you think the x component is 3 and the y component is 4, then you should enter 3,4. Express your answer using two significant figures. ANSWER: Correct Part D Find the instantaneous velocity at . Give your answer as a pair of components separated by a comma. For example, if you think the x component is 3 and the y component is 4, then you should enter 3,4. Express your answer using two significant figures. ANSWER: Correct Exercise 3.5 A jet plane is flying at a constant altitude. At time it has components of velocity 89 , 108 . At time 32.5 the components are 165 , 37 . Part A For this time interval calculate the average acceleration. Give your answer as a pair of components separated by a comma. For example, if you think the x component is 3 and the y component is 4, then you should enter 3,4. Express your answer using two significant figures. ANSWER: Correct Part B Find the magnitude of the average acceleration. Express your answer using two significant figures. ANSWER: = 4.2,4.7 = 8.4,4.7 = 2.3,-2.2 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 14 of 16 3/23/2015 11:12 AM Correct Part C Find the direction of the average acceleration (let the direction be the angle that the vector makes with the +x-axis, measured counterclockwise). ANSWER: Correct Exercise 3.4 The position of a squirrel running in a park is given by . Part A What is , the -component of the velocity of the squirrel, as function of time? ANSWER: Correct Part B What is , the y-component of the velocity of the squirrel, as function of time? ANSWER: = 3.2 = -43.1 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 15 of 16 3/23/2015 11:12 AM Correct Part C At 4.51 , how far is the squirrel from its initial position? Express your answer to three significant figures and include the appropriate units. ANSWER: All attempts used; correct answer displayed Part D At 4.51 , what is the magnitude of the squirrel’s velocity? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part E At 4.51 , what is the direction (in degrees counterclockwise from +x-axis) of the squirrel’s velocity? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 90.1%. You received 14.42 out of a possible total of 16 points. = 2.65 = 1.31 = 62.5 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 16 of 16 3/23/2015 11:12 AM

You will receive no credit for items you complete after the assignment is due. Grading Policy Exercise 2.5 Starting from the front door of your ranch house, you walk 60.0 due east to your windmill, and then you turn around and slowly walk 35.0 west to a bench where you sit and watch the sunrise. It takes you 27.0 to walk from your house to the windmill and then 49.0 to walk from the windmill to the bench. Part A For the entire trip from your front door to the bench, what is your average velocity? Express your answer with the appropriate units. ANSWER: Correct Part B For the entire trip from your front door to the bench, what is your average speed? Express your answer with the appropriate units. ANSWER: Correct Exercise 2.7 A car is stopped at a traffic light. It then travels along a straight road so that its distance from the light is given by , where = 2.40 and = 0.110 . = -0.329 average speed = 1.25 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 1 of 16 3/23/2015 11:12 AM Part A Calculate the average velocity of the car for the time interval = 0 to = 10.0 . ANSWER: Correct Part B Calculate the instantaneous velocity of the car at =0. ANSWER: Correct Part C Calculate the instantaneous velocity of the car at =5.00 . ANSWER: Correct Part D Calculate the instantaneous velocity of the car at =10.0 . ANSWER: Correct Part E How long after starting from rest is the car again at rest? ANSWER: = 13.0 = 0 = 15.8 = 15.0 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 2 of 16 3/23/2015 11:12 AM Correct Exercise 2.9 A ball moves in a straight line (the x-axis). The graph in the figure shows this ball’s velocity as a function of time. Part A What are the ball’s average velocity during the first 2.8 ? Express your answer using two significant figures. ANSWER: Answer Requested Part B What are the ball’s average speed during the first 2.8 ? Express your answer using two significant figures. ANSWER: Correct = 14.5 = 2.3 = 2.3 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 3 of 16 3/23/2015 11:12 AM Part C Suppose that the ball moved in such a way that the graph segment after 2.0 was -3.0 instead of +3.0 . Find the ball’s and average velocity during the first 2.8 in this case. Express your answer using two significant figures. ANSWER: All attempts used; correct answer displayed Part D Suppose that the ball moved in such a way that the graph segment after 2.0 was -3.0 instead of +3.0 . Find the ball’s average speed during the first 2.8 in this case. Express your answer using two significant figures. ANSWER: Correct Exercise 2.13 Part A The table shows test data for the Bugatti Veyron, the fastest car made. The car is moving in a straight line (the x-axis). Time 0 2.10 20.0 53.0 Speed 0 60.0 205 259 Calculate the car’s average acceleration (in ) between 0 and 2.1 . ANSWER: Correct Part B Calculate the car’s average acceleration (in ) between 2.1 and 20.0 . = 0.57 = 2.3 = 12.8 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 4 of 16 3/23/2015 11:12 AM ANSWER: Correct Part C Calculate the car’s average acceleration (in ) between 20.0 and 53 . ANSWER: Correct Exercise 2.19 An antelope moving with constant acceleration covers the distance 79.0 between two points in time 7.00 . Its speed as it passes the second point is 14.5 . Part A What is its speed at the first point? ANSWER: Correct Part B What is the acceleration? ANSWER: Correct Exercise 2.22 In the fastest measured tennis serve, the ball left the racquet at 73.14 . A served tennis ball is typically in contact with = 3.62 = 0.731 = 8.07 = 0.918 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 5 of 16 3/23/2015 11:12 AM the racquet for 27.0 and starts from rest. Assume constant acceleration. Part A What was the ball’s acceleration during this serve? ANSWER: Correct Part B How far did the ball travel during the serve? ANSWER: Correct Exercise 2.30 A cat walks in a straight line, which we shall call the x-axis with the positive direction to the right. As an observant physicist, you make measurements of this cat’s motion and construct a graph of the feline’s velocity as a function of time (the figure ). Part A Find the cat’s velocity at = 5.0 . Express your answer using two significant figures. ANSWER: = 2710 = 0.987 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 6 of 16 3/23/2015 11:12 AM Correct Part B Find the cat’s velocity at = 8.0 . Express your answer using two significant figures. ANSWER: Correct Part C What is the cat’s acceleration at ? Express your answer using two significant figures. ANSWER: Correct Part D What is the cat’s acceleration at ? Express your answer using two significant figures. ANSWER: Correct Part E What is the cat’s acceleration at ? Express your answer using two significant figures. ANSWER: = 1.3 = -2.7 = -1.3 = -1.3 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 7 of 16 3/23/2015 11:12 AM Correct Part F What distance does the cat move during the first 4.5 ? Express your answer using two significant figures. ANSWER: Correct Part G What distance does the cat move from to ? Express your answer using two significant figures. ANSWER: Correct Part H Sketch clear graph of the cat’s acceleration as function of time, assuming that the cat started at the origin. ANSWER: = -1.3 = 23 = 26 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 8 of 16 3/23/2015 11:12 AM Correct Part I Sketch clear graph of the cat’s position as function of time, assuming that the cat started at the origin. ANSWER: Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 9 of 16 3/23/2015 11:12 AM All attempts used; correct answer displayed Exercise 2.35 Part A If a flea can jump straight up to a height of 0.510 , what is its initial speed as it leaves the ground? ANSWER: Correct Part B How long is it in the air? ANSWER: Correct = 3.16 = 0.645 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 10 of 16 3/23/2015 11:12 AM Exercise 2.36 A small rock is thrown vertically upward with a speed of 18.0 from the edge of the roof of a 39.0 tall building. The rock doesn’t hit the building on its way back down and lands in the street below. Air resistance can be neglected. Part A What is the speed of the rock just before it hits the street? Express your answer with the appropriate units. ANSWER: Correct Part B How much time elapses from when the rock is thrown until it hits the street? Express your answer with the appropriate units. ANSWER: Correct Exercise 2.38 You throw a glob of putty straight up toward the ceiling, which is 3.00 above the point where the putty leaves your hand. The initial speed of the putty as it leaves your hand is 9.70 . Part A What is the speed of the putty just before it strikes the ceiling? Express your answer with the appropriate units. ANSWER: Correct Part B = 33.0 = 5.20 = 5.94 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 11 of 16 3/23/2015 11:12 AM How much time from when it leaves your hand does it take the putty to reach the ceiling? Express your answer with the appropriate units. ANSWER: Correct Exercise 3.1 A squirrel has x- and y-coordinates ( 1.2 , 3.3 ) at time and coordinates ( 5.3 , -0.80 ) at time = 2.6 . Part A For this time interval, find the x-component of the average velocity. Express your answer using two significant figures. ANSWER: Correct Part B For this time interval, find the y-component of the average velocity. Express your answer using two significant figures. ANSWER: Correct Part C Find the magnitude of the average velocity. Express your answer using two significant figures. ANSWER: = 0.384 = 1.6 = -1.6 = 2.2 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 12 of 16 3/23/2015 11:12 AM Correct Part D Find the direction of the average velocity. Express your answer using two significant figures. ANSWER: Correct Exercise 3.3 A web page designer creates an animation in which a dot on a computer screen has a position of 4.1 2.1 4.7 . Part A Find the average velocity of the dot between and . Give your answer as a pair of components separated by a comma. For example, if you think the x component is 3 and the y component is 4, then you should enter 3,4. Express your answer using two significant figures. ANSWER: Correct Part B Find the instantaneous velocity at . Give your answer as a pair of components separated by a comma. For example, if you think the x component is 3 and the y component is 4, then you should enter 3,4. Express your answer using two significant figures. ANSWER: Correct Part C = 45 below the x-axis = 4.2,4.7 = 0,4.7 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 13 of 16 3/23/2015 11:12 AM Find the instantaneous velocity at . Give your answer as a pair of components separated by a comma. For example, if you think the x component is 3 and the y component is 4, then you should enter 3,4. Express your answer using two significant figures. ANSWER: Correct Part D Find the instantaneous velocity at . Give your answer as a pair of components separated by a comma. For example, if you think the x component is 3 and the y component is 4, then you should enter 3,4. Express your answer using two significant figures. ANSWER: Correct Exercise 3.5 A jet plane is flying at a constant altitude. At time it has components of velocity 89 , 108 . At time 32.5 the components are 165 , 37 . Part A For this time interval calculate the average acceleration. Give your answer as a pair of components separated by a comma. For example, if you think the x component is 3 and the y component is 4, then you should enter 3,4. Express your answer using two significant figures. ANSWER: Correct Part B Find the magnitude of the average acceleration. Express your answer using two significant figures. ANSWER: = 4.2,4.7 = 8.4,4.7 = 2.3,-2.2 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 14 of 16 3/23/2015 11:12 AM Correct Part C Find the direction of the average acceleration (let the direction be the angle that the vector makes with the +x-axis, measured counterclockwise). ANSWER: Correct Exercise 3.4 The position of a squirrel running in a park is given by . Part A What is , the -component of the velocity of the squirrel, as function of time? ANSWER: Correct Part B What is , the y-component of the velocity of the squirrel, as function of time? ANSWER: = 3.2 = -43.1 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 15 of 16 3/23/2015 11:12 AM Correct Part C At 4.51 , how far is the squirrel from its initial position? Express your answer to three significant figures and include the appropriate units. ANSWER: All attempts used; correct answer displayed Part D At 4.51 , what is the magnitude of the squirrel’s velocity? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part E At 4.51 , what is the direction (in degrees counterclockwise from +x-axis) of the squirrel’s velocity? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 90.1%. You received 14.42 out of a possible total of 16 points. = 2.65 = 1.31 = 62.5 Week 2 https://session.masteringphysics.com/myct/assignmentPrintView?assignme… 16 of 16 3/23/2015 11:12 AM