CIV ENG 280 Computer-based Engineering Analysis Assignment for Lab 5 1. The number of annual precipitation days of one-half of the 50 largest U.S. cities is listed below. Find the mean, mode, median, range, standard deviation and variance of the data. 135 128 78 116 77 111 79 44 97 116 123 88 102 26 82 156 133 107 35 112 98 45 122 125 2. Please go through the steps described in the instruction manual (from page 112 to 136). Your lab report should include the following exercises in the manual. a) Binomial distribution (Page 112) b) Poisson distribution (page 119) c) Normal distribution (page 125) d) t distribution (page 132) 3. A math exam contains 10 multiple-choice questions, each with four choices. Since you have not spent any time preparing the exam, you decided to guess at each question by flipping a coin twice (i.e., two heads for A, head and tail for B, tail and head for C, two tails for D). Let X = the number of questions answered correctly. a) Plot the probability mass function (pmf) of the random variable X. (using the chart type “column”). b) If you have to get at least 5 questions answered correctly to pass the exam, what is the probability that you will pass.

CIV ENG 280 Computer-based Engineering Analysis Assignment for Lab 5 1. The number of annual precipitation days of one-half of the 50 largest U.S. cities is listed below. Find the mean, mode, median, range, standard deviation and variance of the data. 135 128 78 116 77 111 79 44 97 116 123 88 102 26 82 156 133 107 35 112 98 45 122 125 2. Please go through the steps described in the instruction manual (from page 112 to 136). Your lab report should include the following exercises in the manual. a) Binomial distribution (Page 112) b) Poisson distribution (page 119) c) Normal distribution (page 125) d) t distribution (page 132) 3. A math exam contains 10 multiple-choice questions, each with four choices. Since you have not spent any time preparing the exam, you decided to guess at each question by flipping a coin twice (i.e., two heads for A, head and tail for B, tail and head for C, two tails for D). Let X = the number of questions answered correctly. a) Plot the probability mass function (pmf) of the random variable X. (using the chart type “column”). b) If you have to get at least 5 questions answered correctly to pass the exam, what is the probability that you will pass.

info@checkyourstudy.com Whatsapp +919911743277
Vermont Technical College Electronic Applications ELT-2060 Lab 05: DC characteristics, input offset voltage and input bias current Reference: Operational Amplifiers with Linear Integrated Circuits Fourth edition William D. Stanley, pages 154-155 (Problems 3-21, 3-22 and Lab exercises LE 3-1 to LE 3-4) For the following exercises, make sure to record all calculations, estimations and measured results. Components: 2 741 Op Amps, 10k Ω Potentiometer, 4-10kΩ, 1kΩ , 100kΩ , 100Ω , 560kΩ , 5.6M Ω, resistors Objectives: a. Voltage offset Null Circuit and Closed-loop Differential Circuit b. Measurement of dc Input Offset Voltage c. Measurement of dc Bias and Offset Currents a. Voltage offset Null Circuit and Closed-loop Differential Circuit In this exercise, investigate the use of a null circuit to reduce the output dc offset to its minimum possible value. Refer to the “Voltage Offset Null Circuit” describe in the 741 op amp data sheet from Appendix C of your text book. Although there are no specific closed-loop configurations shown, use a closed-loop differential Amplifier shown in Figure 1. The differential nature of this type of circuit makes it particularly sensitive, therefore well suited, to illustrate the concept dc voltage offset. 1. Connect the closed-loop difference amplifier of Figure 1 with R=10k Ω and A=1. Using a 10kΩ potentiometer connect the “Voltage Offset Null Circuit” between nodes 1 and 5 as shown in the 741 data sheet. Keep in mind that a potentiometer is a three terminal device. You will need to connect the potentiometer wiper terminal to the lowest potential in the circuit -VCC. 2. Connect the two external circuit inputs (v1 and v2) to ground, measure the dc voltage. From the data sheet the expected value of offset voltage at room temperature is 2mV typical and 6mV maximum. Voltages at these levels will be hard to measure with the laboratory multimeter. 3. Adjust the potentiometer until the dc output magnitude is either zero or it’s minimum possible value. Record the minimum value of voltage attained. 5. Do not break down you difference amplifier. Next, build the non-inverting amplifier as shown in figure 2 with Ri=1k Ω and Rf =100k Ω. Attach the output of the difference amplifier to the input of the non-inverting amplifier. This will amplify your offset by 101. 6. Adjust the potentiometer until the dc output magnitude is either zero or it’s minimum possible value. Record the minimum value of voltage attained. 7. In effect we amplified the voltage offset from the difference amplifier by 101. Please describe any possible flaws in using this approach. Compare this result to what was measured in step 2. 8. Write an equation that expresses the expected output voltage Vo in terms of the two input voltages V1 and V2. 9. Apply dc input voltage for the following six combinations, compare the results to the expected values you calculate with the equation from step 8 a. V1=10V, V2=0V b. V1=0V, V2=10V c. V1=V2=10V d. V1=10mV, V2=0 e. V1=0, V2=10mV f. V1=V2=10mV b. Measurement of dc Input Offset Voltage ( Stanley Problem 3-21 page 151) A circuit and equation to measure the input offset voltage Vio is show in figure 3. With the proper selection of resistors Ri, Rf, and Rc the effects of offset due to input bias currents can be neglected. When the input terminals are both held to ground the resulting output voltage should be a direct measurement of Vio. 1. Build the circuit in Figure 3 with Ri=100 Ω and Rf=10k Ω measure and record Vo. Compare your results with the specification of input offset voltage provided in the data sheet. 2. Increase the value of Rf to 100k Ω, and measure Vo again. Did the output increase by approximately 10x the value recorded in step 1, if so explain how that validates the assumption the input bias currents are negligible. 3. Be sure to include a comparison of the measured values in steps 1 and 2. Include a discussion on how there relationship demonstrates that neglecting input bias current was a valid assumption. c. Measurement of dc Bias and Offset Currents (Stanley Problem 3-22 page 152) Consider the three circuits of figure 4 .The resistance R is chosen large so that the contribution to the output from bias currents is considerably larger than the contribution from the input offset voltages. The accompanying equations will predict the values of Ib+, Ib- and Iio. 1. Start with setting R=560k Ω and build each circuit in figure 4 one at a time. Going from one configuration to the next configuration should be quick, all that is changing is the placement of the resistors. Measure Voa, Vob and Voc for each circuit and calculate Ib+, Ib-, and Iio, compare your measurements to the values in the data sheet. 2. Increase the value of R to 5.6M Ω. Measure Voa, Vob and Voc for each circuit and calculate Ib+, Ib-, and Iio, compare your measurements to the values in the data sheet and to the results in part 1.Did the output increase by approximately 10x the value recorded in step 1, if so explain how that validates the assumption the input offset voltage effect is negligible. 3. Be sure to include a comparison of the measured values in steps 1 and 2. Include a discussion on why neglecting input offset voltage was a valid assumption. LAB write up: This lab requires a semi-formal lab report. Record all calculations, estimations, and measured results. No MultiSim will be required for this report. Please include a written English language paragraph for all lab steps that required an explanation.

Vermont Technical College Electronic Applications ELT-2060 Lab 05: DC characteristics, input offset voltage and input bias current Reference: Operational Amplifiers with Linear Integrated Circuits Fourth edition William D. Stanley, pages 154-155 (Problems 3-21, 3-22 and Lab exercises LE 3-1 to LE 3-4) For the following exercises, make sure to record all calculations, estimations and measured results. Components: 2 741 Op Amps, 10k Ω Potentiometer, 4-10kΩ, 1kΩ , 100kΩ , 100Ω , 560kΩ , 5.6M Ω, resistors Objectives: a. Voltage offset Null Circuit and Closed-loop Differential Circuit b. Measurement of dc Input Offset Voltage c. Measurement of dc Bias and Offset Currents a. Voltage offset Null Circuit and Closed-loop Differential Circuit In this exercise, investigate the use of a null circuit to reduce the output dc offset to its minimum possible value. Refer to the “Voltage Offset Null Circuit” describe in the 741 op amp data sheet from Appendix C of your text book. Although there are no specific closed-loop configurations shown, use a closed-loop differential Amplifier shown in Figure 1. The differential nature of this type of circuit makes it particularly sensitive, therefore well suited, to illustrate the concept dc voltage offset. 1. Connect the closed-loop difference amplifier of Figure 1 with R=10k Ω and A=1. Using a 10kΩ potentiometer connect the “Voltage Offset Null Circuit” between nodes 1 and 5 as shown in the 741 data sheet. Keep in mind that a potentiometer is a three terminal device. You will need to connect the potentiometer wiper terminal to the lowest potential in the circuit -VCC. 2. Connect the two external circuit inputs (v1 and v2) to ground, measure the dc voltage. From the data sheet the expected value of offset voltage at room temperature is 2mV typical and 6mV maximum. Voltages at these levels will be hard to measure with the laboratory multimeter. 3. Adjust the potentiometer until the dc output magnitude is either zero or it’s minimum possible value. Record the minimum value of voltage attained. 5. Do not break down you difference amplifier. Next, build the non-inverting amplifier as shown in figure 2 with Ri=1k Ω and Rf =100k Ω. Attach the output of the difference amplifier to the input of the non-inverting amplifier. This will amplify your offset by 101. 6. Adjust the potentiometer until the dc output magnitude is either zero or it’s minimum possible value. Record the minimum value of voltage attained. 7. In effect we amplified the voltage offset from the difference amplifier by 101. Please describe any possible flaws in using this approach. Compare this result to what was measured in step 2. 8. Write an equation that expresses the expected output voltage Vo in terms of the two input voltages V1 and V2. 9. Apply dc input voltage for the following six combinations, compare the results to the expected values you calculate with the equation from step 8 a. V1=10V, V2=0V b. V1=0V, V2=10V c. V1=V2=10V d. V1=10mV, V2=0 e. V1=0, V2=10mV f. V1=V2=10mV b. Measurement of dc Input Offset Voltage ( Stanley Problem 3-21 page 151) A circuit and equation to measure the input offset voltage Vio is show in figure 3. With the proper selection of resistors Ri, Rf, and Rc the effects of offset due to input bias currents can be neglected. When the input terminals are both held to ground the resulting output voltage should be a direct measurement of Vio. 1. Build the circuit in Figure 3 with Ri=100 Ω and Rf=10k Ω measure and record Vo. Compare your results with the specification of input offset voltage provided in the data sheet. 2. Increase the value of Rf to 100k Ω, and measure Vo again. Did the output increase by approximately 10x the value recorded in step 1, if so explain how that validates the assumption the input bias currents are negligible. 3. Be sure to include a comparison of the measured values in steps 1 and 2. Include a discussion on how there relationship demonstrates that neglecting input bias current was a valid assumption. c. Measurement of dc Bias and Offset Currents (Stanley Problem 3-22 page 152) Consider the three circuits of figure 4 .The resistance R is chosen large so that the contribution to the output from bias currents is considerably larger than the contribution from the input offset voltages. The accompanying equations will predict the values of Ib+, Ib- and Iio. 1. Start with setting R=560k Ω and build each circuit in figure 4 one at a time. Going from one configuration to the next configuration should be quick, all that is changing is the placement of the resistors. Measure Voa, Vob and Voc for each circuit and calculate Ib+, Ib-, and Iio, compare your measurements to the values in the data sheet. 2. Increase the value of R to 5.6M Ω. Measure Voa, Vob and Voc for each circuit and calculate Ib+, Ib-, and Iio, compare your measurements to the values in the data sheet and to the results in part 1.Did the output increase by approximately 10x the value recorded in step 1, if so explain how that validates the assumption the input offset voltage effect is negligible. 3. Be sure to include a comparison of the measured values in steps 1 and 2. Include a discussion on why neglecting input offset voltage was a valid assumption. LAB write up: This lab requires a semi-formal lab report. Record all calculations, estimations, and measured results. No MultiSim will be required for this report. Please include a written English language paragraph for all lab steps that required an explanation.

info@checkyourstudy.com
Using the Earnings_and_Height dataset, perform the following exercises. 1. Test whether the difference in mean height for men and women is statistically significant? Is it? 2. Does the distribution of height for men and women in the US follow the normal distribution? Answer by looking at detailed summary statistics and high order moments of the data. 3. If you were to select one al observation from the data at random, what is the probability that individual is than sixty seven inches tall? 4a. Run the following regressions and interpret the coefficient on the height variable. I. Regress earnings on height II. Regress log of earning on height III. Regress log earnings on log of height 4b. which model is preferred? 5a. Regress log of earnings on height and height² 5b. is there a non-linear relationship between height and log earnings? 5c. Give a-formula for the effect of a change in height on the change in log earnings. 6. Create the following variables: I. A dummy variable for being-Hispania. ii. A dummy variable for being black. iii. A dummy variable for being female. iv. A set of region dummy variables. 7a. Run the following regression separately by gender: Regress log earnings on height education age black Hispanic 7b. Is there a difference in the estimated effect of height on earnings by gender? 8. Run the following regression: Regress log earnings on height education age black Hispanic female and a set of region indicators, and perform the following tests (and interpret the results): I. Test for the equality of coefficients on the Hispanic and black variables. ii. Test the hypothesis that the coefficients on female, black and Hispanic are all zero. 9a. Run the following regression for men: Regress log earnings on height height² education age black Hispanic and a set of region indicators. Is there evidence of a non-linear relationship between height andlog earnings for men? 9b. Estimate the effect of a one inch increase in height on log earnings for a man starting an average height) 10. Discuss the following threats to internal validity regarding the model in (8): I. measurement error focusing on earnings and height) ii. Omitted variables bias

Using the Earnings_and_Height dataset, perform the following exercises. 1. Test whether the difference in mean height for men and women is statistically significant? Is it? 2. Does the distribution of height for men and women in the US follow the normal distribution? Answer by looking at detailed summary statistics and high order moments of the data. 3. If you were to select one al observation from the data at random, what is the probability that individual is than sixty seven inches tall? 4a. Run the following regressions and interpret the coefficient on the height variable. I. Regress earnings on height II. Regress log of earning on height III. Regress log earnings on log of height 4b. which model is preferred? 5a. Regress log of earnings on height and height² 5b. is there a non-linear relationship between height and log earnings? 5c. Give a-formula for the effect of a change in height on the change in log earnings. 6. Create the following variables: I. A dummy variable for being-Hispania. ii. A dummy variable for being black. iii. A dummy variable for being female. iv. A set of region dummy variables. 7a. Run the following regression separately by gender: Regress log earnings on height education age black Hispanic 7b. Is there a difference in the estimated effect of height on earnings by gender? 8. Run the following regression: Regress log earnings on height education age black Hispanic female and a set of region indicators, and perform the following tests (and interpret the results): I. Test for the equality of coefficients on the Hispanic and black variables. ii. Test the hypothesis that the coefficients on female, black and Hispanic are all zero. 9a. Run the following regression for men: Regress log earnings on height height² education age black Hispanic and a set of region indicators. Is there evidence of a non-linear relationship between height andlog earnings for men? 9b. Estimate the effect of a one inch increase in height on log earnings for a man starting an average height) 10. Discuss the following threats to internal validity regarding the model in (8): I. measurement error focusing on earnings and height) ii. Omitted variables bias

No expert has answered this question yet. You can browse … Read More...
Biomedical Signal and Image Processing (4800_420_001) Assigned on September 12th, 2017 Assignment 4 – Noise and Correlation 1. If a signal is measured as 2.5 V and the noise is 28 mV (28 × 10−3 V), what is the SNR in dB? 2. A single sinusoidal signal is found with some noise. If the RMS value of the noise is 0.5 V and the SNR is 10 dB, what is the RMS amplitude of the sinusoid? 3. The file signal_noise.mat contains a variable x that consists of a 1.0-V peak sinusoidal signal buried in noise. What is the SNR for this signal and noise? Assume that the noise RMS is much greater than the signal RMS. Note: “signal_noise.mat” and other files used in these assignments can be downloaded from the content area of Brightspace, within the “Data Files for Exercises” folder. These files can be opened in Matlab by copying into the active folder and double-clicking on the file or using the Matlab load command using the format: load(‘signal_noise.mat’). To discover the variables within the files use the Matlab who command. 4. An 8-bit ADC converter that has an input range of ±5 V is used to convert a signal that ranges between ±2 V. What is the SNR of the input if the input noise equals the quantization noise of the converter? Hint: Refer to Equation below to find the quantization noise: 5. The file filter1.mat contains the spectrum of a fourth-order lowpass filter as variable x in dB. The file also contains the corresponding frequencies of x in variable freq. Plot the spectrum of this filter both as dB versus log frequency and as linear amplitude versus linear frequency. The frequency axis should range between 10 and 400 Hz in both plots. Hint: Use Equation below to convert: Biomedical Signal and Image Processing (4800_420_001) Assigned on September 12th, 2017 6. Generate one cycle of the square wave similar to the one shown below in a 500-point MATLAB array. Determine the RMS value of this waveform. [Hint: When you take the square of the data array, be sure to use a period before the up arrow so that MATLAB does the squaring point-by-point (i.e., x.^2).]. 7. A resistor produces 10 μV noise (i.e., 10 × 10−6 V noise) when the room temperature is 310 K and the bandwidth is 1 kHz (i.e., 1000 Hz). What current noise would be produced by this resistor? 8. A 3-ma current flows through both a diode (i.e., a semiconductor) and a 20,000-Ω (i.e., 20-kΩ) resistor. What is the net current noise, in? Assume a bandwidth of 1 kHz (i.e., 1 × 103 Hz). Which of the two components is responsible for producing the most noise? 9. Determine if the two signals, x and y, in file correl1.mat are correlated by checking the angle between them. 10. Modify the approach used in Practice Problem 3 to find the angle between short signals: Do not attempt to plot these vectors as it would require a 6-dimensional plot!

Biomedical Signal and Image Processing (4800_420_001) Assigned on September 12th, 2017 Assignment 4 – Noise and Correlation 1. If a signal is measured as 2.5 V and the noise is 28 mV (28 × 10−3 V), what is the SNR in dB? 2. A single sinusoidal signal is found with some noise. If the RMS value of the noise is 0.5 V and the SNR is 10 dB, what is the RMS amplitude of the sinusoid? 3. The file signal_noise.mat contains a variable x that consists of a 1.0-V peak sinusoidal signal buried in noise. What is the SNR for this signal and noise? Assume that the noise RMS is much greater than the signal RMS. Note: “signal_noise.mat” and other files used in these assignments can be downloaded from the content area of Brightspace, within the “Data Files for Exercises” folder. These files can be opened in Matlab by copying into the active folder and double-clicking on the file or using the Matlab load command using the format: load(‘signal_noise.mat’). To discover the variables within the files use the Matlab who command. 4. An 8-bit ADC converter that has an input range of ±5 V is used to convert a signal that ranges between ±2 V. What is the SNR of the input if the input noise equals the quantization noise of the converter? Hint: Refer to Equation below to find the quantization noise: 5. The file filter1.mat contains the spectrum of a fourth-order lowpass filter as variable x in dB. The file also contains the corresponding frequencies of x in variable freq. Plot the spectrum of this filter both as dB versus log frequency and as linear amplitude versus linear frequency. The frequency axis should range between 10 and 400 Hz in both plots. Hint: Use Equation below to convert: Biomedical Signal and Image Processing (4800_420_001) Assigned on September 12th, 2017 6. Generate one cycle of the square wave similar to the one shown below in a 500-point MATLAB array. Determine the RMS value of this waveform. [Hint: When you take the square of the data array, be sure to use a period before the up arrow so that MATLAB does the squaring point-by-point (i.e., x.^2).]. 7. A resistor produces 10 μV noise (i.e., 10 × 10−6 V noise) when the room temperature is 310 K and the bandwidth is 1 kHz (i.e., 1000 Hz). What current noise would be produced by this resistor? 8. A 3-ma current flows through both a diode (i.e., a semiconductor) and a 20,000-Ω (i.e., 20-kΩ) resistor. What is the net current noise, in? Assume a bandwidth of 1 kHz (i.e., 1 × 103 Hz). Which of the two components is responsible for producing the most noise? 9. Determine if the two signals, x and y, in file correl1.mat are correlated by checking the angle between them. 10. Modify the approach used in Practice Problem 3 to find the angle between short signals: Do not attempt to plot these vectors as it would require a 6-dimensional plot!

Whatsapp +919911743277  
About Me Introduction – About me This webfolio provides you with a template for the construction of your portfolio for the module. Construct this portfolio as you go along and it will provide the content for the assignment . There are resources at the end of the portfolio to help you. You can also find some of the material on WOLF. If you are unsure of anything please ASK your tutor. You must attend classes to ensure that you can work on the exercises that will form part of this portfolio. The purpose of this section is to help your tutors to understand the context of your answers and your understanding of strategic issues. Welcome to (put your name here) webfolio. I am currently a student at the University of Wolverhampton Business School, studying (put your degree course in here). I have chosen to come on this particular course because (reasons for joining here). Write a short piece about yourself and what you have studied before

About Me Introduction – About me This webfolio provides you with a template for the construction of your portfolio for the module. Construct this portfolio as you go along and it will provide the content for the assignment . There are resources at the end of the portfolio to help you. You can also find some of the material on WOLF. If you are unsure of anything please ASK your tutor. You must attend classes to ensure that you can work on the exercises that will form part of this portfolio. The purpose of this section is to help your tutors to understand the context of your answers and your understanding of strategic issues. Welcome to (put your name here) webfolio. I am currently a student at the University of Wolverhampton Business School, studying (put your degree course in here). I have chosen to come on this particular course because (reasons for joining here). Write a short piece about yourself and what you have studied before

info@checkyourstudy.com About Me Introduction – About me This webfolio provides … Read More...
1 Lab Assignment Q1) The PIC16F1937 Memory Banks i) The Special Function Registers within the PIC16F1937 microcontroller are held within a number of memory banks. How many memory banks are there within the PIC16F1937 microcontroller? ii) Explain two methods to show how a special function register within a particular memory bank can be selected. Q1) The TRIS Registers The PIC16F61937 microcontroller has five TRIS registers, TRISA, TRISB, TRISC, TRISD, and TRISE situated in bank 1 in the special function register memory map. i) What is the function of the TRIS registers? ii) How can the TRIS registers in bank 1 be accessed? Write a short program to configure PORTA of the microcontroller as inputs and PORTB of the microcontroller as outputs. For the remaining exercises assume that PORTA is connected to switches and PORTB is connected to LEDs in common cathode configuration (i.e. output a 1 to illuminate). Q2) Key Press Accumulator It is required to produce a system incorporating a microcontroller that keeps count (in binary) of the number of times that a key has been pressed. The key is connected to bit RA0 of PORTA and when pressed should increment the binary value displayed on LEDs connected to PORTB. Write a program to meet the above specification, simulate the program to ensure correct operation, program a microcontroller and test. (Marks allocated for correct program demonstration). 2 Q3) Software Delays The PIC16F1937 assembly language program listed below is a software time delay incorporating two nested loops. value1 equ 0x20 value2 equ 0x21 org 0x00 delay movlw .65 movwf value1 outer movlw .255 movwf value2 inner decfsz value2 goto inner decfsz value1 goto outer wait goto wait By incorporating breakpoints and using the stopwatch determine the amount of time elapsed in the software delay assuming the microcontroller is operating from a 4 MHz crystal oscillator. Compare the value obtained above with that obtained by calculation. Are the time values equal? Q4) Travelling LED program It is required to produce a system incorporating a PIC16F1937 to produce the following sequence on LEDs (travelling LED). And repeat The LEDs are connected to PORTB and the sequence should only start after the key connected to RA0 has been asserted. Should key RA1 be pressed then all of the LEDs should be switched off. The sequence can be set off again by reasserting key RA0. Incorporate a 100ms delay between changes of state of the sequence. Write a program to carry out the above specification, simulate, program a microcontroller and test. (Marks allocated for correct program demonstration). 3 Lab Assignment Checklist Marks allocation: Q1) The PIC16F1937 memory banks Qi) 2% Qii) 2% Q1) TRIS Registers Qi) 2% Qii) 2% Configuration program 4% Q2) Key Press Accumulator Program Flowchart 8% Program 20% Explanation 5% Demonstration 5% Q3) Software Delays By stopwatch 6% By calculation 6% Q4) Travelling LED program Flowchart 8% Program 20% Explanation 5% Demonstration 5% TOTAL 100%

1 Lab Assignment Q1) The PIC16F1937 Memory Banks i) The Special Function Registers within the PIC16F1937 microcontroller are held within a number of memory banks. How many memory banks are there within the PIC16F1937 microcontroller? ii) Explain two methods to show how a special function register within a particular memory bank can be selected. Q1) The TRIS Registers The PIC16F61937 microcontroller has five TRIS registers, TRISA, TRISB, TRISC, TRISD, and TRISE situated in bank 1 in the special function register memory map. i) What is the function of the TRIS registers? ii) How can the TRIS registers in bank 1 be accessed? Write a short program to configure PORTA of the microcontroller as inputs and PORTB of the microcontroller as outputs. For the remaining exercises assume that PORTA is connected to switches and PORTB is connected to LEDs in common cathode configuration (i.e. output a 1 to illuminate). Q2) Key Press Accumulator It is required to produce a system incorporating a microcontroller that keeps count (in binary) of the number of times that a key has been pressed. The key is connected to bit RA0 of PORTA and when pressed should increment the binary value displayed on LEDs connected to PORTB. Write a program to meet the above specification, simulate the program to ensure correct operation, program a microcontroller and test. (Marks allocated for correct program demonstration). 2 Q3) Software Delays The PIC16F1937 assembly language program listed below is a software time delay incorporating two nested loops. value1 equ 0x20 value2 equ 0x21 org 0x00 delay movlw .65 movwf value1 outer movlw .255 movwf value2 inner decfsz value2 goto inner decfsz value1 goto outer wait goto wait By incorporating breakpoints and using the stopwatch determine the amount of time elapsed in the software delay assuming the microcontroller is operating from a 4 MHz crystal oscillator. Compare the value obtained above with that obtained by calculation. Are the time values equal? Q4) Travelling LED program It is required to produce a system incorporating a PIC16F1937 to produce the following sequence on LEDs (travelling LED). And repeat The LEDs are connected to PORTB and the sequence should only start after the key connected to RA0 has been asserted. Should key RA1 be pressed then all of the LEDs should be switched off. The sequence can be set off again by reasserting key RA0. Incorporate a 100ms delay between changes of state of the sequence. Write a program to carry out the above specification, simulate, program a microcontroller and test. (Marks allocated for correct program demonstration). 3 Lab Assignment Checklist Marks allocation: Q1) The PIC16F1937 memory banks Qi) 2% Qii) 2% Q1) TRIS Registers Qi) 2% Qii) 2% Configuration program 4% Q2) Key Press Accumulator Program Flowchart 8% Program 20% Explanation 5% Demonstration 5% Q3) Software Delays By stopwatch 6% By calculation 6% Q4) Travelling LED program Flowchart 8% Program 20% Explanation 5% Demonstration 5% TOTAL 100%

info@checkyourstudy.com Whatsapp +919911743277