What is Hobbes’s view of human nature – pessimistic or optimistic? Why?

What is Hobbes’s view of human nature – pessimistic or optimistic? Why?

Hobbes’s states that men squabble because of rivalry, lack of … Read More...
Describe and discuss: how your study of special education has informed your professional identity

Describe and discuss: how your study of special education has informed your professional identity

The force on culture variety and linguistic diversity in special … Read More...
1 | P a g e Lecture #2: Abortion (Warren) While studying this topic, we will ask whether it is morally permissible to intentionally terminate a pregnancy and, if so, whether certain restrictions should be placed upon such practices. Even though we will most often be speaking of terminating a fetus, biologists make further classifications: the zygote is the single cell resulting from the fusion of the egg and the sperm; the morula is the cluster of cells that travels through the fallopian tubes; the blastocyte exists once an outer shell of cells has formed around an inner group of cells; the embryo exists once the cells begin to take on specific functions (around the 15th day); the fetus comes into existence in the 8th week when the embryo gains a basic structural resemblance to the adult. Given these distinctions, there are certain kinds of non-fetal abortion—such as usage of RU-486 (the morning-after “abortion pill”)—though most of the writers we will study refer to fetal abortions. So now let us consider the “Classical Argument against Abortion”, which has been very influential: P1) It is wrong to kill innocent persons. P2) A fetus is an innocent person. C) It is wrong to kill a fetus. (Note that this argument has received various formulations, including those from Warren and Thomson which differ from the above. For this course, we will refer to the above formulation as the “Classical Argument”.) Before evaluating this argument, we should talk about terminology: A person is a member of the moral community; i.e., someone who has rights and/or duties. ‘Persons’ is the plural of ‘person’. ‘Person’ can be contrasted with ‘human being’; a human being is anyone who is genetically human (i.e., a member of Homo sapiens). ‘People’ (or ‘human beings’) is the plural of ‘human being’. Why does this matter? First, not all persons are human beings. For example, consider an alien from another planet who mentally resembled us. If he were to visit Earth, it would be morally reprehensible to kick him or to set him on fire because of the pain and suffering that these acts would cause. And, similarly, the alien would be morally condemnable if he were to propagate such acts on us; he has a moral duty not to act in those ways (again, assuming a certain mental resemblance to us). So, even though this alien is not a human being, he is nevertheless a person with the associative rights and/or duties. 2 | P a g e And, more controversially, maybe not all human beings are persons. For example, anencephalic infants—i.e., ones born without cerebral cortexes and therefore with severely limited cognitive abilities—certainly do not have duties since they are not capable of rational thought and autonomous action. Some philosophers have even argued that they do not have rights. Now let us return to the Classical Argument. It is valid insofar as, if the premises are true, then the conclusion has to be true. But maybe it commits equivocation, which is to say that it uses the same word in multiple senses; equivocation is an informal fallacy (i.e., attaches to arguments that are formally valid but otherwise fallacious). Consider the following: P1) I put my money in the bank. P2) The bank borders the river. C) I put my money somewhere that borders the river. This argument equivocates since ‘bank’ is being used in two different senses: in P1 it is used to represent a financial institution and, in P2, it is used to represent a geological feature. Returning to the classical argument, it could be argued that ‘person’ is being used in two different senses: in P1 it is used in its appropriate moral sense and, in P2, it is inappropriately used instead of ‘human being’. The critic might suggest that a more accurate way to represent the argument would be as follows: P1) It is wrong to kill innocent persons. P2) A fetus is a human being. C) It is wrong to kill a fetus. This argument is obviously invalid. So one way to criticize the Classical Argument is to say that it conflates two different concepts—viz., ‘person’ and ‘human being’—and therefore commits equivocation. However, the more straightforward way to attack the Classical Argument is just to deny its second premise and thus contend that the argument is unsound. This is the approach that Mary Anne Warren takes in “On the Moral and Legal Status of Abortion”. Why does Warren think that the second premise is false? Remember that we defined a person as “a member of the moral community.” And we said that an alien, for example, could be afforded moral status even though it is not a human being. Why do we think that this alien should not be tortured or set on fire? Warren thinks that, intuitively, we think that membership in the moral community is based upon possession of the following traits: 3 | P a g e 1. Consciousness of objects and events external and/or internal to the being and especially the capacity to feel pain; 2. Reasoning or rationality (i.e., the developed capacity to solve new and relatively complex problems); 3. Self-motivated activity (i.e., activity which is relatively independent of either genetic or direct external control); 4. Capacity to communicate (not necessarily verbal or linguistic); and 5. Possession of self-concepts and self-awareness. Warren then admits that, though all of the items on this list look promising, we need not require that a person have all of the items on this list. (4) is perhaps the most expendable: imagine someone who is fully paralyzed as well as deaf, these incapacities, which preclude communication, are not sufficient to justify torture. Similarly, we might be able to imagine certain psychological afflictions that negate (5) without compromising personhood. Warren suspects that (1) and (2) are might be sufficient to confer personhood, and thinks that (1)-(3) “quite probably” are sufficient. Note that, if she is right, we would not be able to torture chimps, let us say, but we could set plants on fire (and most likely ants as well). However, given Warren’s aims, she does not need to specify which of these traits are necessary or sufficient for personhood; all that she wants to observe is that the fetus has none of them! Therefore, regardless of which traits we want to require, Warren thinks that the fetus is not a person. Therefore she thinks that the Classical Argument is unsound and should be rejected. Even if we accept Warren’s refutation of the second premise, we might be inclined to say that, while the fetus is not (now) a person, it is a potential person: the fetus will hopefully mature into a being that possesses all five of the traits on Warren’s list. We might then propose the following adjustment to the Classical Argument: P1) It is wrong to kill all innocent persons. P2) A fetus is a potential person. C) It is wrong to kill a fetus. However, this argument is invalid. Warren grants that potentiality might serve as a prima facie reason (i.e., a reason that has some moral weight but which might be outweighed by other considerations) not to abort a fetus, but potentiality alone is insufficient to grant the fetus a moral right against being terminated. By analogy, consider the following argument: 4 | P a g e P1) The President has the right to declare war. P2) Mary is a potential President. C) Mary has the right to declare war. This argument is invalid since the premises are both true and the conclusion is false. By parity, the following argument is also invalid: P1) A person has a right to life. P2) A fetus is a potential person. C) A fetus has a right to life. Thus Warren thinks that considerations of potentiality are insufficient to undermine her argument that fetuses—which are potential persons but, she thinks, not persons—do not have a right to life.

1 | P a g e Lecture #2: Abortion (Warren) While studying this topic, we will ask whether it is morally permissible to intentionally terminate a pregnancy and, if so, whether certain restrictions should be placed upon such practices. Even though we will most often be speaking of terminating a fetus, biologists make further classifications: the zygote is the single cell resulting from the fusion of the egg and the sperm; the morula is the cluster of cells that travels through the fallopian tubes; the blastocyte exists once an outer shell of cells has formed around an inner group of cells; the embryo exists once the cells begin to take on specific functions (around the 15th day); the fetus comes into existence in the 8th week when the embryo gains a basic structural resemblance to the adult. Given these distinctions, there are certain kinds of non-fetal abortion—such as usage of RU-486 (the morning-after “abortion pill”)—though most of the writers we will study refer to fetal abortions. So now let us consider the “Classical Argument against Abortion”, which has been very influential: P1) It is wrong to kill innocent persons. P2) A fetus is an innocent person. C) It is wrong to kill a fetus. (Note that this argument has received various formulations, including those from Warren and Thomson which differ from the above. For this course, we will refer to the above formulation as the “Classical Argument”.) Before evaluating this argument, we should talk about terminology: A person is a member of the moral community; i.e., someone who has rights and/or duties. ‘Persons’ is the plural of ‘person’. ‘Person’ can be contrasted with ‘human being’; a human being is anyone who is genetically human (i.e., a member of Homo sapiens). ‘People’ (or ‘human beings’) is the plural of ‘human being’. Why does this matter? First, not all persons are human beings. For example, consider an alien from another planet who mentally resembled us. If he were to visit Earth, it would be morally reprehensible to kick him or to set him on fire because of the pain and suffering that these acts would cause. And, similarly, the alien would be morally condemnable if he were to propagate such acts on us; he has a moral duty not to act in those ways (again, assuming a certain mental resemblance to us). So, even though this alien is not a human being, he is nevertheless a person with the associative rights and/or duties. 2 | P a g e And, more controversially, maybe not all human beings are persons. For example, anencephalic infants—i.e., ones born without cerebral cortexes and therefore with severely limited cognitive abilities—certainly do not have duties since they are not capable of rational thought and autonomous action. Some philosophers have even argued that they do not have rights. Now let us return to the Classical Argument. It is valid insofar as, if the premises are true, then the conclusion has to be true. But maybe it commits equivocation, which is to say that it uses the same word in multiple senses; equivocation is an informal fallacy (i.e., attaches to arguments that are formally valid but otherwise fallacious). Consider the following: P1) I put my money in the bank. P2) The bank borders the river. C) I put my money somewhere that borders the river. This argument equivocates since ‘bank’ is being used in two different senses: in P1 it is used to represent a financial institution and, in P2, it is used to represent a geological feature. Returning to the classical argument, it could be argued that ‘person’ is being used in two different senses: in P1 it is used in its appropriate moral sense and, in P2, it is inappropriately used instead of ‘human being’. The critic might suggest that a more accurate way to represent the argument would be as follows: P1) It is wrong to kill innocent persons. P2) A fetus is a human being. C) It is wrong to kill a fetus. This argument is obviously invalid. So one way to criticize the Classical Argument is to say that it conflates two different concepts—viz., ‘person’ and ‘human being’—and therefore commits equivocation. However, the more straightforward way to attack the Classical Argument is just to deny its second premise and thus contend that the argument is unsound. This is the approach that Mary Anne Warren takes in “On the Moral and Legal Status of Abortion”. Why does Warren think that the second premise is false? Remember that we defined a person as “a member of the moral community.” And we said that an alien, for example, could be afforded moral status even though it is not a human being. Why do we think that this alien should not be tortured or set on fire? Warren thinks that, intuitively, we think that membership in the moral community is based upon possession of the following traits: 3 | P a g e 1. Consciousness of objects and events external and/or internal to the being and especially the capacity to feel pain; 2. Reasoning or rationality (i.e., the developed capacity to solve new and relatively complex problems); 3. Self-motivated activity (i.e., activity which is relatively independent of either genetic or direct external control); 4. Capacity to communicate (not necessarily verbal or linguistic); and 5. Possession of self-concepts and self-awareness. Warren then admits that, though all of the items on this list look promising, we need not require that a person have all of the items on this list. (4) is perhaps the most expendable: imagine someone who is fully paralyzed as well as deaf, these incapacities, which preclude communication, are not sufficient to justify torture. Similarly, we might be able to imagine certain psychological afflictions that negate (5) without compromising personhood. Warren suspects that (1) and (2) are might be sufficient to confer personhood, and thinks that (1)-(3) “quite probably” are sufficient. Note that, if she is right, we would not be able to torture chimps, let us say, but we could set plants on fire (and most likely ants as well). However, given Warren’s aims, she does not need to specify which of these traits are necessary or sufficient for personhood; all that she wants to observe is that the fetus has none of them! Therefore, regardless of which traits we want to require, Warren thinks that the fetus is not a person. Therefore she thinks that the Classical Argument is unsound and should be rejected. Even if we accept Warren’s refutation of the second premise, we might be inclined to say that, while the fetus is not (now) a person, it is a potential person: the fetus will hopefully mature into a being that possesses all five of the traits on Warren’s list. We might then propose the following adjustment to the Classical Argument: P1) It is wrong to kill all innocent persons. P2) A fetus is a potential person. C) It is wrong to kill a fetus. However, this argument is invalid. Warren grants that potentiality might serve as a prima facie reason (i.e., a reason that has some moral weight but which might be outweighed by other considerations) not to abort a fetus, but potentiality alone is insufficient to grant the fetus a moral right against being terminated. By analogy, consider the following argument: 4 | P a g e P1) The President has the right to declare war. P2) Mary is a potential President. C) Mary has the right to declare war. This argument is invalid since the premises are both true and the conclusion is false. By parity, the following argument is also invalid: P1) A person has a right to life. P2) A fetus is a potential person. C) A fetus has a right to life. Thus Warren thinks that considerations of potentiality are insufficient to undermine her argument that fetuses—which are potential persons but, she thinks, not persons—do not have a right to life.

Reading Guide 3 CHEM 101 Check here if you want your paper returned Chapter 3 – Section 3.1-3.4 Introduction to Chemistry Dr. Bragg Printed Last Name: First Name: WKUID: 1. Express in your own words the meaning of these terms: a. Hypothesis b. Law c. Theory d. Conservation e. Proportion f. Radioactive g. Atomic Number h. Mass Number i. Isotope j. Spectrum k. Ground State l. Excited State m. Quantum n. Valence o. Shell p. Subshell q. Orbital 2. Briefly describe the main points of Dalton’s Atomic Theory. On Time: Complete: Questions: Total Score: 3. Who experimentally verified the Law of Conservation of Matter? 4. Who experimentally verified the Law of Definite Proportions? 5. What are the three most important subatomic particles, and what is the charge on each? 6. Who discovered natural radioactivity? 7. What are the three main radioactive ‘particles,’ and what is the charge on each? 8. Who was the student that set up the experiments and made the observations that lead to the discovery of the nucleus of the atom? 9. Considering atomic numbers and mass numbers, which is the same among a set of isotopes and which is different? 10. What is the difference between a continuous spectrum and a line spectrum? 11. Who proposed the Shell Model of the hydrogen atom based on small energy steps between adjacent levels for electrons? 12. Which end of the electromagnetic spectrum is higher in ENERGY, ı-rays or radio waves? 13. Who proposed the mathematical wave theory that explained the existence of orbitals? 14. Give the general subshell filling order for electrons in ground state atoms. Reading Guide 3 CHEM 101 Dr. Bragg Chapter 3 – Sections 3.1 – 3.4 Introduction to Chemistry Page 2

Reading Guide 3 CHEM 101 Check here if you want your paper returned Chapter 3 – Section 3.1-3.4 Introduction to Chemistry Dr. Bragg Printed Last Name: First Name: WKUID: 1. Express in your own words the meaning of these terms: a. Hypothesis b. Law c. Theory d. Conservation e. Proportion f. Radioactive g. Atomic Number h. Mass Number i. Isotope j. Spectrum k. Ground State l. Excited State m. Quantum n. Valence o. Shell p. Subshell q. Orbital 2. Briefly describe the main points of Dalton’s Atomic Theory. On Time: Complete: Questions: Total Score: 3. Who experimentally verified the Law of Conservation of Matter? 4. Who experimentally verified the Law of Definite Proportions? 5. What are the three most important subatomic particles, and what is the charge on each? 6. Who discovered natural radioactivity? 7. What are the three main radioactive ‘particles,’ and what is the charge on each? 8. Who was the student that set up the experiments and made the observations that lead to the discovery of the nucleus of the atom? 9. Considering atomic numbers and mass numbers, which is the same among a set of isotopes and which is different? 10. What is the difference between a continuous spectrum and a line spectrum? 11. Who proposed the Shell Model of the hydrogen atom based on small energy steps between adjacent levels for electrons? 12. Which end of the electromagnetic spectrum is higher in ENERGY, ı-rays or radio waves? 13. Who proposed the mathematical wave theory that explained the existence of orbitals? 14. Give the general subshell filling order for electrons in ground state atoms. Reading Guide 3 CHEM 101 Dr. Bragg Chapter 3 – Sections 3.1 – 3.4 Introduction to Chemistry Page 2

info@checkyourstudy.com Whatsapp +919911743277
Assignment 9 Due: 11:59pm on Friday, April 11, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Problem 11.2 Part A Evaluate the dot product if and . Express your answer using two significant figures. ANSWER: Correct Part B Evaluate the dot product if and . Express your answer using two significant figures. ANSWER: Correct Problem 11.4  A B = 5 − 6 A i ^ j ^ = −9 − 5 B i ^ j ^ A  B  = -15  A B = −5 + 9 A i ^ j ^ = 5 + 6 B i ^ j ^ A  B  = 29 Part A What is the angle between vectors and if and ? Express your answer as an integer and include the appropriate units. ANSWER: Correct Part B What is the angle between vectors and if and ? Express your answer as an integer and include the appropriate units. ANSWER: Correct ± All Work and No Play Learning Goal: To be able to calculate work done by a constant force directed at different angles relative to displacement If an object undergoes displacement while being acted upon by a force (or several forces), it is said that work is being done on the object. If the object is moving in a straight line and the displacement and the force are known, the work done by the force can be calculated as , where is the work done by force on the object that undergoes displacement directed at angle relative to .  A B A = 2 + 5 ı ^  ^ B = −2 − 4 ı ^  ^  = 175  A B A = −6 + 2 ı ^  ^ B = − − 3 ı ^  ^  = 90 W =  = cos  F  s  F   s  W F  s  F  Note that depending on the value of , the work done can be positive, negative, or zero. In this problem, you will practice calculating work done on an object moving in a straight line. The first series of questions is related to the accompanying figure. Part A What can be said about the sign of the work done by the force ? ANSWER: Correct When , the cosine of is zero, and therefore the work done is zero. Part B cos  F  1 It is positive. It is negative. It is zero. There is not enough information to answer the question.  = 90  What can be said about the work done by force ? ANSWER: Correct When , is positive, and so the work done is positive. Part C The work done by force is ANSWER: Correct When , is negative, and so the work done is negative. Part D The work done by force is ANSWER: F  2 It is positive. It is negative. It is zero. 0 <  < 90 cos  F  3 positive negative zero 90 <  < 180 cos  F  4 Correct Part E The work done by force is ANSWER: Correct positive negative zero F  5 positive negative zero Part F The work done by force is ANSWER: Correct Part G The work done by force is ANSWER: Correct In the next series of questions, you will use the formula to calculate the work done by various forces on an object that moves 160 meters to the right. F  6 positive negative zero F  7 positive negative zero W =  = cos  F  s  F   s  Part H Find the work done by the 18-newton force. Use two significant figures in your answer. Express your answer in joules. ANSWER: Correct Part I Find the work done by the 30-newton force. Use two significant figures in your answer. Express your answer in joules. ANSWER: Correct Part J Find the work done by the 12-newton force. Use two significant figures in your answer. Express your answer in joules. W W = 2900 J W W = 4200 J W ANSWER: Correct Part K Find the work done by the 15-newton force. Use two significant figures in your answer. Express your answer in joules. ANSWER: Correct Introduction to Potential Energy Learning Goal: Understand that conservative forces can be removed from the work integral by incorporating them into a new form of energy called potential energy that must be added to the kinetic energy to get the total mechanical energy. The first part of this problem contains short-answer questions that review the work-energy theorem. In the second part we introduce the concept of potential energy. But for now, please answer in terms of the work-energy theorem. Work-Energy Theorem The work-energy theorem states , where is the work done by all forces that act on the object, and and are the initial and final kinetic energies, respectively. Part A The work-energy theorem states that a force acting on a particle as it moves over a ______ changes the ______ energy of the particle if the force has a component parallel to the motion. W = -1900 J W W = -1800 J Kf = Ki + Wall Wall Ki Kf Choose the best answer to fill in the blanks above: ANSWER: Correct It is important that the force have a component acting in the direction of motion. For example, if a ball is attached to a string and whirled in uniform circular motion, the string does apply a force to the ball, but since the string's force is always perpendicular to the motion it does no work and cannot change the kinetic energy of the ball. Part B To calculate the change in energy, you must know the force as a function of _______. The work done by the force causes the energy change. Choose the best answer to fill in the blank above: ANSWER: Correct Part C To illustrate the work-energy concept, consider the case of a stone falling from to under the influence of gravity. Using the work-energy concept, we say that work is done by the gravitational _____, resulting in an increase of the ______ energy of the stone. Choose the best answer to fill in the blanks above: distance / potential distance / kinetic vertical displacement / potential none of the above acceleration work distance potential energy xi xf ANSWER: Correct Potential Energy You should read about potential energy in your text before answering the following questions. Potential energy is a concept that builds on the work-energy theorem, enlarging the concept of energy in the most physically useful way. The key aspect that allows for potential energy is the existence of conservative forces, forces for which the work done on an object does not depend on the path of the object, only the initial and final positions of the object. The gravitational force is conservative; the frictional force is not. The change in potential energy is the negative of the work done by conservative forces. Hence considering the initial and final potential energies is equivalent to calculating the work done by the conservative forces. When potential energy is used, it replaces the work done by the associated conservative force. Then only the work due to nonconservative forces needs to be calculated. In summary, when using the concept of potential energy, only nonconservative forces contribute to the work, which now changes the total energy: , where and are the final and initial potential energies, and is the work due only to nonconservative forces. Now, we will revisit the falling stone example using the concept of potential energy. Part D Rather than ascribing the increased kinetic energy of the stone to the work of gravity, we now (when using potential energy rather than work-energy) say that the increased kinetic energy comes from the ______ of the _______ energy. Choose the best answer to fill in the blanks above: ANSWER: force / kinetic potential energy / potential force / potential potential energy / kinetic Kf + Uf = Ef = Wnc + Ei = Wnc + Ki + Ui Uf Ui Wnc Correct Part E This process happens in such a way that total mechanical energy, equal to the ______ of the kinetic and potential energies, is _______. Choose the best answer to fill in the blanks above: ANSWER: Correct Problem 11.7 Part A How much work is done by the force 2.2 6.6 on a particle that moves through displacement 3.9 Express your answer to two significant figures and include the appropriate units. ANSWER: work / potential force / kinetic change / potential sum / conserved sum / zero sum / not conserved difference / conserved F  = (− + i ^ ) N j ^ ! = r m i ^ Correct Part B How much work is done by the force 2.2 6.6 on a particle that moves through displacement 3.9 Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 11.10 A 1.8 book is lying on a 0.80- -high table. You pick it up and place it on a bookshelf 2.27 above the floor. Part A How much work does gravity do on the book? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B W = -8.6 J F  = (− + i ^ ) N j ^ ! = r m? j ^ W = 26 J kg m m Wg = -26 J How much work does your hand do on the book? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 11.12 The three ropes shown in the bird's-eye view of the figure are used to drag a crate 3.3 across the floor. Part A How much work is done by each of the three forces? Express your answers using two significant figures. Enter your answers numerically separated by commas. ANSWER: WH = 26 J m W1 , W2 , W3 = 1.9,1.2,-2.1 kJ Correct Enhanced EOC: Problem 11.16 A 1.2 particle moving along the x-axis experiences the force shown in the figure. The particle's velocity is 4.6 at . You may want to review ( pages 286 - 287) . For help with math skills, you may want to review: The Definite Integral Part A What is its velocity at ? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the work–kinetic energy theorem? What is the kinetic energy at ? How is the work done in going from to related to force shown in the graph? Using the work–kinetic energy theorem, what is the kinetic energy at ? What is the velocity at ? ANSWER: kg m/s x = 0m x = 2m x = 0 m x = 0 m x = 2 m x = 2 m x = 2 m Correct Part B What is its velocity at ? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the work–kinetic energy theorem? What is the kinetic energy at ? How is the work done in going from to related to force shown in the graph? Can the work be negative? Using the work–kinetic energy theorem, what is the kinetic energy at ? What is the velocity at ? ANSWER: Correct Work on a Sliding Block A block of weight sits on a frictionless inclined plane, which makes an angle with respect to the horizontal, as shown. A force of magnitude , applied parallel to the incline, pulls the block up the plane at constant speed. v = 6.2 ms x = 4m x = 0 m x = 0 m x = 4 m x = 4 m x = 4 m v = 4.6 ms w  F Part A The block moves a distance up the incline. The block does not stop after moving this distance but continues to move with constant speed. What is the total work done on the block by all forces? (Include only the work done after the block has started moving, not the work needed to start the block moving from rest.) Express your answer in terms of given quantities. Hint 1. What physical principle to use To find the total work done on the block, use the work-energy theorem: . Hint 2. Find the change in kinetic energy What is the change in the kinetic energy of the block, from the moment it starts moving until it has been pulled a distance ? Remember that the block is pulled at constant speed. Hint 1. Consider kinetic energy If the block's speed does not change, its kinetic energy cannot change. ANSWER: ANSWER: L Wtot Wtot = Kf − Ki L Kf − Ki = 0 Wtot = 0 Correct Part B What is , the work done on the block by the force of gravity as the block moves a distance up the incline? Express the work done by gravity in terms of the weight and any other quantities given in the problem introduction. Hint 1. Force diagram Hint 2. Force of gravity component What is the component of the force of gravity in the direction of the block's displacement (along the inclined plane)? Express your answer in terms of and . Hint 1. Relative direction of the force and the motion Remember that the force of gravity acts down the plane, whereas the block's displacement is directed up the plane. ANSWER: Wg L w w  ANSWER: Correct Part C What is , the work done on the block by the applied force as the block moves a distance up the incline? Express your answer in terms of and other given quantities. Hint 1. How to find the work done by a constant force Remember that the work done on an object by a particular force is the integral of the dot product of the force and the instantaneous displacement of the object, over the path followed by the object. In this case, since the force is constant and the path is a straight segment of length up the inclined plane, the dot product becomes simple multiplication. ANSWER: Correct Part D What is , the work done on the block by the normal force as the block moves a distance up the inclined plane? Express your answer in terms of given quantities. Hint 1. First step in computing the work Fg|| = −wsin() Wg = −wLsin() WF F L F L WF = FL Wnormal L The work done by the normal force is equal to the dot product of the force vector and the block's displacement vector. The normal force and the block's displacement vector are perpendicular. Therefore, what is their dot product? ANSWER: ANSWER: Correct Problem 11.20 A particle moving along the -axis has the potential energy , where is in . Part A What is the -component of the force on the particle at ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the -component of the force on the particle at ? Express your answer to two significant figures and include the appropriate units. N  L = 0 Wnormal = 0 y U = 3.2y3 J y m y y = 0 m Fy = 0 N y y = 1 m ANSWER: Correct Part C What is the -component of the force on the particle at ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 11.28 A cable with 25.0 of tension pulls straight up on a 1.08 block that is initially at rest. Part A What is the block's speed after being lifted 2.40 ? Solve this problem using work and energy. Express your answer with the appropriate units. ANSWER: Correct Fy = -9.6 N y y = 2 m Fy = -38 N N kg m vf = 8.00 ms Problem 11.29 Part A How much work does an elevator motor do to lift a 1500 elevator a height of 110 ? Express your answer with the appropriate units. ANSWER: Correct Part B How much power must the motor supply to do this in 50 at constant speed? Express your answer with the appropriate units. ANSWER: Correct Problem 11.32 How many energy is consumed by a 1.20 hair dryer used for 10.0 and a 11.0 night light left on for 16.0 ? Part A Hair dryer: Express your answer with the appropriate units. kg m Wext = 1.62×106 J s = 3.23×104 P W kW min W hr ANSWER: Correct Part B Night light: Express your answer with the appropriate units. ANSWER: Correct Problem 11.42 A 2500 elevator accelerates upward at 1.20 for 10.0 , starting from rest. Part A How much work does gravity do on the elevator? Express your answer with the appropriate units. ANSWER: Correct W = 7.20×105 J = 6.34×105 W J kg m/s2 m −2.45×105 J Part B How much work does the tension in the elevator cable do on the elevator? Express your answer with the appropriate units. ANSWER: Correct Part C Use the work-kinetic energy theorem to find the kinetic energy of the elevator as it reaches 10.0 . Express your answer with the appropriate units. ANSWER: Correct Part D What is the speed of the elevator as it reaches 10.0 ? Express your answer with the appropriate units. ANSWER: Correct 2.75×105 J m 3.00×104 J m 4.90 ms Problem 11.47 A horizontal spring with spring constant 130 is compressed 17 and used to launch a 2.4 box across a frictionless, horizontal surface. After the box travels some distance, the surface becomes rough. The coefficient of kinetic friction of the box on the surface is 0.15. Part A Use work and energy to find how far the box slides across the rough surface before stopping. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 11.49 Truck brakes can fail if they get too hot. In some mountainous areas, ramps of loose gravel are constructed to stop runaway trucks that have lost their brakes. The combination of a slight upward slope and a large coefficient of rolling friction as the truck tires sink into the gravel brings the truck safely to a halt. Suppose a gravel ramp slopes upward at 6.0 and the coefficient of rolling friction is 0.45. Part A Use work and energy to find the length of a ramp that will stop a 15,000 truck that enters the ramp at 30 . Express your answer to two significant figures and include the appropriate units. ANSWER: Correct N/m cm kg l = 53 cm kg m/s l = 83 m Problem 11.51 Use work and energy to find an expression for the speed of the block in the following figure just before it hits the floor. Part A Find an expression for the speed of the block if the coefficient of kinetic friction for the block on the table is . Express your answer in terms of the variables , , , , and free fall acceleration . ANSWER: Part B Find an expression for the speed of the block if the table is frictionless. Express your answer in terms of the variables , , , and free fall acceleration . ANSWER: μk M m h μk g v = M m h g Problem 11.57 The spring shown in the figure is compressed 60 and used to launch a 100 physics student. The track is frictionless until it starts up the incline. The student's coefficient of kinetic friction on the incline is 0.12 . Part A What is the student's speed just after losing contact with the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B How far up the incline does the student go? Express your answer to two significant figures and include the appropriate units. ANSWER: v = cm kg 30 v = 17 ms Correct Score Summary: Your score on this assignment is 93.6%. You received 112.37 out of a possible total of 120 points. !s = 41 m

Assignment 9 Due: 11:59pm on Friday, April 11, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Problem 11.2 Part A Evaluate the dot product if and . Express your answer using two significant figures. ANSWER: Correct Part B Evaluate the dot product if and . Express your answer using two significant figures. ANSWER: Correct Problem 11.4  A B = 5 − 6 A i ^ j ^ = −9 − 5 B i ^ j ^ A  B  = -15  A B = −5 + 9 A i ^ j ^ = 5 + 6 B i ^ j ^ A  B  = 29 Part A What is the angle between vectors and if and ? Express your answer as an integer and include the appropriate units. ANSWER: Correct Part B What is the angle between vectors and if and ? Express your answer as an integer and include the appropriate units. ANSWER: Correct ± All Work and No Play Learning Goal: To be able to calculate work done by a constant force directed at different angles relative to displacement If an object undergoes displacement while being acted upon by a force (or several forces), it is said that work is being done on the object. If the object is moving in a straight line and the displacement and the force are known, the work done by the force can be calculated as , where is the work done by force on the object that undergoes displacement directed at angle relative to .  A B A = 2 + 5 ı ^  ^ B = −2 − 4 ı ^  ^  = 175  A B A = −6 + 2 ı ^  ^ B = − − 3 ı ^  ^  = 90 W =  = cos  F  s  F   s  W F  s  F  Note that depending on the value of , the work done can be positive, negative, or zero. In this problem, you will practice calculating work done on an object moving in a straight line. The first series of questions is related to the accompanying figure. Part A What can be said about the sign of the work done by the force ? ANSWER: Correct When , the cosine of is zero, and therefore the work done is zero. Part B cos  F  1 It is positive. It is negative. It is zero. There is not enough information to answer the question.  = 90  What can be said about the work done by force ? ANSWER: Correct When , is positive, and so the work done is positive. Part C The work done by force is ANSWER: Correct When , is negative, and so the work done is negative. Part D The work done by force is ANSWER: F  2 It is positive. It is negative. It is zero. 0 <  < 90 cos  F  3 positive negative zero 90 <  < 180 cos  F  4 Correct Part E The work done by force is ANSWER: Correct positive negative zero F  5 positive negative zero Part F The work done by force is ANSWER: Correct Part G The work done by force is ANSWER: Correct In the next series of questions, you will use the formula to calculate the work done by various forces on an object that moves 160 meters to the right. F  6 positive negative zero F  7 positive negative zero W =  = cos  F  s  F   s  Part H Find the work done by the 18-newton force. Use two significant figures in your answer. Express your answer in joules. ANSWER: Correct Part I Find the work done by the 30-newton force. Use two significant figures in your answer. Express your answer in joules. ANSWER: Correct Part J Find the work done by the 12-newton force. Use two significant figures in your answer. Express your answer in joules. W W = 2900 J W W = 4200 J W ANSWER: Correct Part K Find the work done by the 15-newton force. Use two significant figures in your answer. Express your answer in joules. ANSWER: Correct Introduction to Potential Energy Learning Goal: Understand that conservative forces can be removed from the work integral by incorporating them into a new form of energy called potential energy that must be added to the kinetic energy to get the total mechanical energy. The first part of this problem contains short-answer questions that review the work-energy theorem. In the second part we introduce the concept of potential energy. But for now, please answer in terms of the work-energy theorem. Work-Energy Theorem The work-energy theorem states , where is the work done by all forces that act on the object, and and are the initial and final kinetic energies, respectively. Part A The work-energy theorem states that a force acting on a particle as it moves over a ______ changes the ______ energy of the particle if the force has a component parallel to the motion. W = -1900 J W W = -1800 J Kf = Ki + Wall Wall Ki Kf Choose the best answer to fill in the blanks above: ANSWER: Correct It is important that the force have a component acting in the direction of motion. For example, if a ball is attached to a string and whirled in uniform circular motion, the string does apply a force to the ball, but since the string's force is always perpendicular to the motion it does no work and cannot change the kinetic energy of the ball. Part B To calculate the change in energy, you must know the force as a function of _______. The work done by the force causes the energy change. Choose the best answer to fill in the blank above: ANSWER: Correct Part C To illustrate the work-energy concept, consider the case of a stone falling from to under the influence of gravity. Using the work-energy concept, we say that work is done by the gravitational _____, resulting in an increase of the ______ energy of the stone. Choose the best answer to fill in the blanks above: distance / potential distance / kinetic vertical displacement / potential none of the above acceleration work distance potential energy xi xf ANSWER: Correct Potential Energy You should read about potential energy in your text before answering the following questions. Potential energy is a concept that builds on the work-energy theorem, enlarging the concept of energy in the most physically useful way. The key aspect that allows for potential energy is the existence of conservative forces, forces for which the work done on an object does not depend on the path of the object, only the initial and final positions of the object. The gravitational force is conservative; the frictional force is not. The change in potential energy is the negative of the work done by conservative forces. Hence considering the initial and final potential energies is equivalent to calculating the work done by the conservative forces. When potential energy is used, it replaces the work done by the associated conservative force. Then only the work due to nonconservative forces needs to be calculated. In summary, when using the concept of potential energy, only nonconservative forces contribute to the work, which now changes the total energy: , where and are the final and initial potential energies, and is the work due only to nonconservative forces. Now, we will revisit the falling stone example using the concept of potential energy. Part D Rather than ascribing the increased kinetic energy of the stone to the work of gravity, we now (when using potential energy rather than work-energy) say that the increased kinetic energy comes from the ______ of the _______ energy. Choose the best answer to fill in the blanks above: ANSWER: force / kinetic potential energy / potential force / potential potential energy / kinetic Kf + Uf = Ef = Wnc + Ei = Wnc + Ki + Ui Uf Ui Wnc Correct Part E This process happens in such a way that total mechanical energy, equal to the ______ of the kinetic and potential energies, is _______. Choose the best answer to fill in the blanks above: ANSWER: Correct Problem 11.7 Part A How much work is done by the force 2.2 6.6 on a particle that moves through displacement 3.9 Express your answer to two significant figures and include the appropriate units. ANSWER: work / potential force / kinetic change / potential sum / conserved sum / zero sum / not conserved difference / conserved F  = (− + i ^ ) N j ^ ! = r m i ^ Correct Part B How much work is done by the force 2.2 6.6 on a particle that moves through displacement 3.9 Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 11.10 A 1.8 book is lying on a 0.80- -high table. You pick it up and place it on a bookshelf 2.27 above the floor. Part A How much work does gravity do on the book? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B W = -8.6 J F  = (− + i ^ ) N j ^ ! = r m? j ^ W = 26 J kg m m Wg = -26 J How much work does your hand do on the book? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 11.12 The three ropes shown in the bird's-eye view of the figure are used to drag a crate 3.3 across the floor. Part A How much work is done by each of the three forces? Express your answers using two significant figures. Enter your answers numerically separated by commas. ANSWER: WH = 26 J m W1 , W2 , W3 = 1.9,1.2,-2.1 kJ Correct Enhanced EOC: Problem 11.16 A 1.2 particle moving along the x-axis experiences the force shown in the figure. The particle's velocity is 4.6 at . You may want to review ( pages 286 - 287) . For help with math skills, you may want to review: The Definite Integral Part A What is its velocity at ? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the work–kinetic energy theorem? What is the kinetic energy at ? How is the work done in going from to related to force shown in the graph? Using the work–kinetic energy theorem, what is the kinetic energy at ? What is the velocity at ? ANSWER: kg m/s x = 0m x = 2m x = 0 m x = 0 m x = 2 m x = 2 m x = 2 m Correct Part B What is its velocity at ? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the work–kinetic energy theorem? What is the kinetic energy at ? How is the work done in going from to related to force shown in the graph? Can the work be negative? Using the work–kinetic energy theorem, what is the kinetic energy at ? What is the velocity at ? ANSWER: Correct Work on a Sliding Block A block of weight sits on a frictionless inclined plane, which makes an angle with respect to the horizontal, as shown. A force of magnitude , applied parallel to the incline, pulls the block up the plane at constant speed. v = 6.2 ms x = 4m x = 0 m x = 0 m x = 4 m x = 4 m x = 4 m v = 4.6 ms w  F Part A The block moves a distance up the incline. The block does not stop after moving this distance but continues to move with constant speed. What is the total work done on the block by all forces? (Include only the work done after the block has started moving, not the work needed to start the block moving from rest.) Express your answer in terms of given quantities. Hint 1. What physical principle to use To find the total work done on the block, use the work-energy theorem: . Hint 2. Find the change in kinetic energy What is the change in the kinetic energy of the block, from the moment it starts moving until it has been pulled a distance ? Remember that the block is pulled at constant speed. Hint 1. Consider kinetic energy If the block's speed does not change, its kinetic energy cannot change. ANSWER: ANSWER: L Wtot Wtot = Kf − Ki L Kf − Ki = 0 Wtot = 0 Correct Part B What is , the work done on the block by the force of gravity as the block moves a distance up the incline? Express the work done by gravity in terms of the weight and any other quantities given in the problem introduction. Hint 1. Force diagram Hint 2. Force of gravity component What is the component of the force of gravity in the direction of the block's displacement (along the inclined plane)? Express your answer in terms of and . Hint 1. Relative direction of the force and the motion Remember that the force of gravity acts down the plane, whereas the block's displacement is directed up the plane. ANSWER: Wg L w w  ANSWER: Correct Part C What is , the work done on the block by the applied force as the block moves a distance up the incline? Express your answer in terms of and other given quantities. Hint 1. How to find the work done by a constant force Remember that the work done on an object by a particular force is the integral of the dot product of the force and the instantaneous displacement of the object, over the path followed by the object. In this case, since the force is constant and the path is a straight segment of length up the inclined plane, the dot product becomes simple multiplication. ANSWER: Correct Part D What is , the work done on the block by the normal force as the block moves a distance up the inclined plane? Express your answer in terms of given quantities. Hint 1. First step in computing the work Fg|| = −wsin() Wg = −wLsin() WF F L F L WF = FL Wnormal L The work done by the normal force is equal to the dot product of the force vector and the block's displacement vector. The normal force and the block's displacement vector are perpendicular. Therefore, what is their dot product? ANSWER: ANSWER: Correct Problem 11.20 A particle moving along the -axis has the potential energy , where is in . Part A What is the -component of the force on the particle at ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the -component of the force on the particle at ? Express your answer to two significant figures and include the appropriate units. N  L = 0 Wnormal = 0 y U = 3.2y3 J y m y y = 0 m Fy = 0 N y y = 1 m ANSWER: Correct Part C What is the -component of the force on the particle at ? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 11.28 A cable with 25.0 of tension pulls straight up on a 1.08 block that is initially at rest. Part A What is the block's speed after being lifted 2.40 ? Solve this problem using work and energy. Express your answer with the appropriate units. ANSWER: Correct Fy = -9.6 N y y = 2 m Fy = -38 N N kg m vf = 8.00 ms Problem 11.29 Part A How much work does an elevator motor do to lift a 1500 elevator a height of 110 ? Express your answer with the appropriate units. ANSWER: Correct Part B How much power must the motor supply to do this in 50 at constant speed? Express your answer with the appropriate units. ANSWER: Correct Problem 11.32 How many energy is consumed by a 1.20 hair dryer used for 10.0 and a 11.0 night light left on for 16.0 ? Part A Hair dryer: Express your answer with the appropriate units. kg m Wext = 1.62×106 J s = 3.23×104 P W kW min W hr ANSWER: Correct Part B Night light: Express your answer with the appropriate units. ANSWER: Correct Problem 11.42 A 2500 elevator accelerates upward at 1.20 for 10.0 , starting from rest. Part A How much work does gravity do on the elevator? Express your answer with the appropriate units. ANSWER: Correct W = 7.20×105 J = 6.34×105 W J kg m/s2 m −2.45×105 J Part B How much work does the tension in the elevator cable do on the elevator? Express your answer with the appropriate units. ANSWER: Correct Part C Use the work-kinetic energy theorem to find the kinetic energy of the elevator as it reaches 10.0 . Express your answer with the appropriate units. ANSWER: Correct Part D What is the speed of the elevator as it reaches 10.0 ? Express your answer with the appropriate units. ANSWER: Correct 2.75×105 J m 3.00×104 J m 4.90 ms Problem 11.47 A horizontal spring with spring constant 130 is compressed 17 and used to launch a 2.4 box across a frictionless, horizontal surface. After the box travels some distance, the surface becomes rough. The coefficient of kinetic friction of the box on the surface is 0.15. Part A Use work and energy to find how far the box slides across the rough surface before stopping. Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 11.49 Truck brakes can fail if they get too hot. In some mountainous areas, ramps of loose gravel are constructed to stop runaway trucks that have lost their brakes. The combination of a slight upward slope and a large coefficient of rolling friction as the truck tires sink into the gravel brings the truck safely to a halt. Suppose a gravel ramp slopes upward at 6.0 and the coefficient of rolling friction is 0.45. Part A Use work and energy to find the length of a ramp that will stop a 15,000 truck that enters the ramp at 30 . Express your answer to two significant figures and include the appropriate units. ANSWER: Correct N/m cm kg l = 53 cm kg m/s l = 83 m Problem 11.51 Use work and energy to find an expression for the speed of the block in the following figure just before it hits the floor. Part A Find an expression for the speed of the block if the coefficient of kinetic friction for the block on the table is . Express your answer in terms of the variables , , , , and free fall acceleration . ANSWER: Part B Find an expression for the speed of the block if the table is frictionless. Express your answer in terms of the variables , , , and free fall acceleration . ANSWER: μk M m h μk g v = M m h g Problem 11.57 The spring shown in the figure is compressed 60 and used to launch a 100 physics student. The track is frictionless until it starts up the incline. The student's coefficient of kinetic friction on the incline is 0.12 . Part A What is the student's speed just after losing contact with the spring? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B How far up the incline does the student go? Express your answer to two significant figures and include the appropriate units. ANSWER: v = cm kg 30 v = 17 ms Correct Score Summary: Your score on this assignment is 93.6%. You received 112.37 out of a possible total of 120 points. !s = 41 m

please email info@checkyourstudy.com
Define: 41 Things Philosophy is: 1. Ignorant 2. Selfish 3. Ironic 4. Plain 5. Misunderstood 6. A failure 7. Poor 8. Unscientific 9. Unteachable 10. Foolish 11. Abnormal 12. Divine trickery 13. Egalitarian 14. A divine calling 15. Laborious 16. Countercultural 17. Uncomfortable 18. Virtuous 19. Dangerous 20. Simplistic<br />21. Polemical 22. Therapeutic 23. “conformist” 24. Embarrassi ng 25. Invulnerable 26. Annoying 27. Pneumatic 28. Apolitic al 29. Docile/teachable 30. Messianic 31. Pious 32. Impract ical 33. Happy 34. Necessary 35. Death-defying 36. Fallible 37. Immortal 38. Confident 39. Painful 40. agnostic</br

Define: 41 Things Philosophy is: 1. Ignorant 2. Selfish 3. Ironic 4. Plain 5. Misunderstood 6. A failure 7. Poor 8. Unscientific 9. Unteachable 10. Foolish 11. Abnormal 12. Divine trickery 13. Egalitarian 14. A divine calling 15. Laborious 16. Countercultural 17. Uncomfortable 18. Virtuous 19. Dangerous 20. Simplistic
21. Polemical 22. Therapeutic 23. “conformist” 24. Embarrassi ng 25. Invulnerable 26. Annoying 27. Pneumatic 28. Apolitic al 29. Docile/teachable 30. Messianic 31. Pious 32. Impract ical 33. Happy 34. Necessary 35. Death-defying 36. Fallible 37. Immortal 38. Confident 39. Painful 40. agnostic

Ignorant- A person is said to be ignorant if he … Read More...
What was valuable about today’s learning encounter and why was it of value to you? write example from your experience?

What was valuable about today’s learning encounter and why was it of value to you? write example from your experience?

Geert Hofstede is possibly the well acknowledged sociologist of background … Read More...