Take Home Exam 3: Special Note Before Starting the Exam: If you scan your solutions to the exam and save it as a pdf or image file and put it on dropbox and I can not read it or open it, you will not receive credit for the exam. Furthermore, if you write the solutions up in word, latex ect. and give me a print out, which does not include all the pages you will not get credit for the missing pages. Also if your folder on dropbox is not clearly labeled and I can not find your exam then you will not get credit for the exam. Finally, please make sure you put your name on the exam!! Math 2100 Exam 3, Out of Class, Due by December 8th, 2015 at 5:00 pm. Name: Problem 1. (15 points) A random variable is said to have the (standard) Cauchy distribution if its PDF is given by f (x) = 1 π 1 1+ x2 , −∞< x <∞ This problem uses computer simulations to demonstrate that a) samples from this distribution often have extreme outliers (a consequence of the heavy tails of the distribution), and b) the sample mean is prone to the same type of outliers. Below is a graph of the pdf a) (5 points) The R commands x=rcauchy(500); summary(x) generate a random sample of size 500 from the Cauchy distribution and display the sample’s five number summary; Report the five number summary and the interquartile range, and comment on whether or not the smallest and largest numbers generated from this sample of 500 are outliers. Repeat this 10 times. b) (5 points) The R commands m=matrix(rcauchy(50000), nrow=500); xb=apply(m,1,mean);summary(xb) generate the matrix m that has 500 rows, each of which is a sample of size n=100 from the Cauchy distribution, compute the 500 sample means and store them in xb. and display the five number summary xb. Repeat these commands 10 times, and report the 10 sets of five number summaries. Compare with the 10 sets of five number summaries from part (a), and comment on whether or not the distribution of the averages seems to be more prone to extreme outliers as that of the individual observations. c) (5 points) Why does this happen? (hint: try to calculate E(X) and V(X) for this distribution) and does the LLN and CLT apply for samples from a Cauchy distribution? Hint: E(X) is undefined for this distribution unless you use the Cauchy Principle Value as such for the mean lim a→∞ xf (x)dx −a a∫ In addition x2 1+ x2 dx = x2 +1−1 1+ x2 dx = 1− 1 1+ x2 " # $ % & ' ∫ ∫ ∫ dx 1 1+ x2 dx = tan−1 ∫ x +C Problem 2. (5 points) A marketing expert for a pasta-making company believes that 40% of pasta lovers prefer lasagna. If 9 out of 20 pasta lovers choose lasagna over other pastas, what can be concluded about the expert's claim? Use a 0.05 level of significance. Problem 3. (10 points) A coin is tossed 20 times, resulting in 5 heads. Is this sufficient evidence to reject the hypothesis that the coin is balanced in favor of the alternative that heads occur less than 50% of the time (essentially is this significant evidence to claim that the coin is unbalanced in favor of tails)? Use a 0.05 level of significance. Problem 4. (25 points) Since the chemical benzene may cause cancer, the federal government has set the maximum allowable benzene concentration in the workplace at 1 part per million (1 ppm) Suppose that a steel manufacturing plant is under investigation for possible violations regarding benzene level. The Occupational Safety and Health Administration (OSHA) will analyze 14 air samples over a one-month period. Assume normality of the population from which the samples were drawn. a) (3 points) What is an appropriate null hypothesis for this scenario? (Give this in symbols) b) (3 points) What is an appropriate alternative hypothesis for this scenario? (Give this in symbols) c) (3 points) What kind of hypothesis test is this: left-tailed, right-tailed or two-tailed? Explain how you picked your answer. d) (3 points) Is this a one-sample t-test or a one-sample test using a normal distribution? Explain how you picked your answer. e) (4 points) If the test using this sample of size 14 is to be done at the 1% significance level, calculate the critical value(s) and describe the rejection region(s) for the test statistic. Show your work. f) (5 points) OHSA finds the following for their sample of size 14: a mean benzene level of 1.51 ppm and a standard deviation of 1.415 ppm. What should be concluded at the 1% significance level? Support your answer with calculation(s) and reasoning. g) (4 points) Calculate the p-value for this test and verify that this answer would lead to the same conclusion you made in part f. Problem 5. (15 points) A normally distributed random variable Y possesses a mean of μ = 20 and a standard deviation of σ = 5. A random sample of n = 31 observations is to be selected. Let X be the sample average. (X in this problem is really x _ ) a)(5 points) Describe the sampling distribution of X (i.e. describe the distribution of X and give μx, σx ) b) (5 points) Find the z-score of x = 22 c) (5 points) Find P(X ≥ 22) = Problem 6. (10 points) A restaurants receipts show that the cost of customers' dinners has a distribution with a mean of $54 and a standard deviation of $18. What is the probability that the next 100 customers will spend a total of at least $5800 on dinner? Problem 7. (10 points) The operations manager of a large production plant would like to estimate the mean amount of time a worker takes to assemble a new electronic component. Assume that the standard deviation of this assembly time is 3.6 minutes and is normally distributed. a) (3 points) After observing 120 workers assembling similar devices, the manager noticed that their average time was 16.2 minutes. Construct a 92% confidence interval for the mean assembly time. b) (2 points) How many workers should be involved in this study in order to have the mean assembly time estimated up to ± 15 seconds with 92% confidence? c) (5 points) Construct a 92% confidence interval if instead of observing 120 workers assembling similar devices, rather the manager observes 25 workers and notice their average time was 16.2 minutes with a standard deviation of 4.0 minutes. Problem 8. (10 points): A manufacturer of candy must monitor the temperature at which the candies are baked. Too much variation will cause inconsistency in the taste of the candy. Past records show that the standard deviation of the temperature has been 1.2oF . A random sample of 30 batches of candy is selected, and the sample standard deviation of the temperature is 2.1oF . a. (5 points) At the 0.05 level of significance, is there evidence that the population standard deviation has increased above 1.2oF ? b. (3 points) What assumption do you need to make in order to perform this test? c. (2 points) Compute the p-value in (a) and interpret its meaning.

Take Home Exam 3: Special Note Before Starting the Exam: If you scan your solutions to the exam and save it as a pdf or image file and put it on dropbox and I can not read it or open it, you will not receive credit for the exam. Furthermore, if you write the solutions up in word, latex ect. and give me a print out, which does not include all the pages you will not get credit for the missing pages. Also if your folder on dropbox is not clearly labeled and I can not find your exam then you will not get credit for the exam. Finally, please make sure you put your name on the exam!! Math 2100 Exam 3, Out of Class, Due by December 8th, 2015 at 5:00 pm. Name: Problem 1. (15 points) A random variable is said to have the (standard) Cauchy distribution if its PDF is given by f (x) = 1 π 1 1+ x2 , −∞< x <∞ This problem uses computer simulations to demonstrate that a) samples from this distribution often have extreme outliers (a consequence of the heavy tails of the distribution), and b) the sample mean is prone to the same type of outliers. Below is a graph of the pdf a) (5 points) The R commands x=rcauchy(500); summary(x) generate a random sample of size 500 from the Cauchy distribution and display the sample’s five number summary; Report the five number summary and the interquartile range, and comment on whether or not the smallest and largest numbers generated from this sample of 500 are outliers. Repeat this 10 times. b) (5 points) The R commands m=matrix(rcauchy(50000), nrow=500); xb=apply(m,1,mean);summary(xb) generate the matrix m that has 500 rows, each of which is a sample of size n=100 from the Cauchy distribution, compute the 500 sample means and store them in xb. and display the five number summary xb. Repeat these commands 10 times, and report the 10 sets of five number summaries. Compare with the 10 sets of five number summaries from part (a), and comment on whether or not the distribution of the averages seems to be more prone to extreme outliers as that of the individual observations. c) (5 points) Why does this happen? (hint: try to calculate E(X) and V(X) for this distribution) and does the LLN and CLT apply for samples from a Cauchy distribution? Hint: E(X) is undefined for this distribution unless you use the Cauchy Principle Value as such for the mean lim a→∞ xf (x)dx −a a∫ In addition x2 1+ x2 dx = x2 +1−1 1+ x2 dx = 1− 1 1+ x2 " # $ % & ' ∫ ∫ ∫ dx 1 1+ x2 dx = tan−1 ∫ x +C Problem 2. (5 points) A marketing expert for a pasta-making company believes that 40% of pasta lovers prefer lasagna. If 9 out of 20 pasta lovers choose lasagna over other pastas, what can be concluded about the expert's claim? Use a 0.05 level of significance. Problem 3. (10 points) A coin is tossed 20 times, resulting in 5 heads. Is this sufficient evidence to reject the hypothesis that the coin is balanced in favor of the alternative that heads occur less than 50% of the time (essentially is this significant evidence to claim that the coin is unbalanced in favor of tails)? Use a 0.05 level of significance. Problem 4. (25 points) Since the chemical benzene may cause cancer, the federal government has set the maximum allowable benzene concentration in the workplace at 1 part per million (1 ppm) Suppose that a steel manufacturing plant is under investigation for possible violations regarding benzene level. The Occupational Safety and Health Administration (OSHA) will analyze 14 air samples over a one-month period. Assume normality of the population from which the samples were drawn. a) (3 points) What is an appropriate null hypothesis for this scenario? (Give this in symbols) b) (3 points) What is an appropriate alternative hypothesis for this scenario? (Give this in symbols) c) (3 points) What kind of hypothesis test is this: left-tailed, right-tailed or two-tailed? Explain how you picked your answer. d) (3 points) Is this a one-sample t-test or a one-sample test using a normal distribution? Explain how you picked your answer. e) (4 points) If the test using this sample of size 14 is to be done at the 1% significance level, calculate the critical value(s) and describe the rejection region(s) for the test statistic. Show your work. f) (5 points) OHSA finds the following for their sample of size 14: a mean benzene level of 1.51 ppm and a standard deviation of 1.415 ppm. What should be concluded at the 1% significance level? Support your answer with calculation(s) and reasoning. g) (4 points) Calculate the p-value for this test and verify that this answer would lead to the same conclusion you made in part f. Problem 5. (15 points) A normally distributed random variable Y possesses a mean of μ = 20 and a standard deviation of σ = 5. A random sample of n = 31 observations is to be selected. Let X be the sample average. (X in this problem is really x _ ) a)(5 points) Describe the sampling distribution of X (i.e. describe the distribution of X and give μx, σx ) b) (5 points) Find the z-score of x = 22 c) (5 points) Find P(X ≥ 22) = Problem 6. (10 points) A restaurants receipts show that the cost of customers' dinners has a distribution with a mean of $54 and a standard deviation of $18. What is the probability that the next 100 customers will spend a total of at least $5800 on dinner? Problem 7. (10 points) The operations manager of a large production plant would like to estimate the mean amount of time a worker takes to assemble a new electronic component. Assume that the standard deviation of this assembly time is 3.6 minutes and is normally distributed. a) (3 points) After observing 120 workers assembling similar devices, the manager noticed that their average time was 16.2 minutes. Construct a 92% confidence interval for the mean assembly time. b) (2 points) How many workers should be involved in this study in order to have the mean assembly time estimated up to ± 15 seconds with 92% confidence? c) (5 points) Construct a 92% confidence interval if instead of observing 120 workers assembling similar devices, rather the manager observes 25 workers and notice their average time was 16.2 minutes with a standard deviation of 4.0 minutes. Problem 8. (10 points): A manufacturer of candy must monitor the temperature at which the candies are baked. Too much variation will cause inconsistency in the taste of the candy. Past records show that the standard deviation of the temperature has been 1.2oF . A random sample of 30 batches of candy is selected, and the sample standard deviation of the temperature is 2.1oF . a. (5 points) At the 0.05 level of significance, is there evidence that the population standard deviation has increased above 1.2oF ? b. (3 points) What assumption do you need to make in order to perform this test? c. (2 points) Compute the p-value in (a) and interpret its meaning.

No expert has answered this question yet. You can browse … Read More...
Statistical Methods (STAT 4303) Review for Final Comprehensive Exam Measures of Central Tendency, Dispersion Q.1. The data below represents the test scores obtained by students in college algebra class. 10,12,15,20,13,16,14 Calculate (a) Mean (b) Median (c) Mode (d) Variance, s2 (e) Coefficient of variation (CV) Q.2. The data below represents the test scores obtained by students in English class. 12,15,16,18,13,10,17,20 Calculate (a) Mean (b) Median (c) Mode (d) Variance, s2 (e) Coefficient of variation (CV) (f) Compare the results of Q.1 and Q.2, Which scores College Algebra or English do you think is more precise (less spread)? Q.3 Following data represents the score obtained by students in one of the exams 9, 13, 14, 15, 16, 16, 17, 19, 20, 21, 21, 22, 25, 25, 26 Create a frequency table to calculate the following descriptive statistics (a) mean (b) median (c) mode (d) first and third quartiles (e) Construct Box and Whisker plot. (f) Comment on the shape of the distribution. (g) Find inter quartile range (IQR). (h) Are there any outliers (based on IQR technique)? In the above problem, if the score 26 is replaced by 37 (i) What will happen to the mean? Will it increase, decrease or remains the same? (j) What will be the new median? (k) What can you say about the effect of outliers on mean and median? Q.4 Following data represents the score obtained by students in one of the exams 19, 14, 14, 15, 17, 16, 17, 20, 20, 21, 21, 22, 25, 25, 26, 27, 28 Create a frequency table to calculate the following descriptive statistics a) mean b) median c) mode d) first and third quartiles e) Construct Box and Whisker plot. f) Comment on the shape of the distribution. g) Find inter quartile range (IQR). h) Are there any outliers (based on IQR technique)? In the above problem, if the score 28 is replaced by 48 i) What will happen to the mean? Will it increase, decrease or remains the same? j) What will be the new median? k) What can you say about the effect of outliers on mean and median? Q.5 Consider the following data of height (in inch) and weight(in lbs). Height(x) Frequency 50 2 52 3 55 2 60 4 62 3  Find the mean height.  What is the variance of height? Also, find the standard deviation. (c) Find the coefficient of variation (CV). Q.6. The following table shows the number of miles run during one week for a sample of 20 runners: Miles Mid-value (x) Frequency (f) 5.5-10.5 1 10.5-15.5 2 15.5-20.5 3 20.5-25.5 5 25.5-30.5 4 (a) Find the average (mean) miles run. (Hint: Find mid-value of mile range first) (b) What is the variance of miles run? Also, find the standard deviation. (c) Find the coefficient of variation (CV). Q.7. (a) If the mean of 20 observations is 20.5, find the sum of all observations? (b) If the mean of 30 observations is 40, find the sum of all observations? Probability Q.8 Out of forty students, 14 are taking English Composition and 29 are taking Chemistry. a) How many students are in both classes? b) What is the probability that a randomly-chosen student from this group is taking only the Chemistry class? Q.9 A drawer contains 4 red balls, 5 green balls, and 5 blue balls. One ball is taken from the drawer and then replaced. Another ball is taken from the drawer. What is the probability that (Draw tree diagram to facilitate your calculation). (a) both balls are red (b) first ball is red (c) both balls are of same colors (d) both balls are of different colors (e) first ball is red and second ball is blue (f) first ball is red or blue Q.10 A drawer contains 3 red balls, 5 green balls, and 5 blue balls. One ball is taken from the drawer and not replaced. Another ball is then taken from the drawer. Draw tree diagram to facilitate your calculation. What is the probability that (a) both balls are red (b) first ball is red (c) both balls are of same colors (d) both balls are of different colors (e) first ball is red and second ball is blue (f) first ball is red or blue Q. 11 Missile A has 45% chance of hitting target. Missile B has 55% chance of hitting a target. What is the probability that (i) both miss the target. (ii) at least one will hit the target. (iii) exactly one will hit the target. Q. 12 A politician from D party speaks truth 65% of times; another politician from rival party speaks truth 75% of times. Both politicians were asked about their personal love affair with their own office secretary, what is the probability that (i) both lie the actual fact . (ii) at least one will speak truth. (iii) exactly one speaks the truth. (iv) both speak the truth. Q.13 The question, “Do you drink alcohol?” was asked to 220 people. Results are shown in the table. . Yes No Total Male 48 82 Female 24 66 Total (a) What is the probability of a randomly selected individual being a male also drinks? (b) What is the probability of a randomly selected individual being a female? (c) What is the probability that a randomly selected individual drinks? (d) A person is selected at random and if the person is female, what is the probability that she drinks? (e) What is the probability that a randomly selected alcoholic person is a male? Q.14 A professor, Dr. Drakula, taught courses that included statements from across the five colleges abbreviated as AH, AS, BA, ED and EN. He taught at Texas A&M University – Kingsville (TAMUK) during the span of five academic years AY09 to AY13. The following table shows the total number of graduates during AY09 to AY13. One day, he was running late to his class. He was so focused on the class that he did not stop for a red light. As soon as he crossed through the intersection, a police officer Asked him to stop. ( a ) It is turned out that the police officer was TAMUK graduate during the past five years. What is the probability that the Police Officer was from ED College? ( b ) What is the probability that the Police Officer graduated in the academic year of 2011? ( c ) If the traffic officer graduated from TAMUK in the academic year of 2011(AY11). What is the conditional probability that he graduated from the ED college? ( d ) Are the events the academic year “AY 11” and the college of Education “ED” independent? Yes or no , why? Discrete Distribution Q.15 Find k and probability for X=2 and X=4. X 1 2 3 4 5 P(X=x) 0.1 3k 0.2 2k 0.2 (Hint: First find k, and then plug in) Also, calculate the expected value of X, E(X) and variance V(X). A game plan is derived based on above table, a player wins $5 if he can blindly choose 3 and loses $1 if he chooses other numbers.What is his expected win or loss per game? If he plays this game for 20 times, what is total win or lose? Q.16 Find k. X 3 4 5 6 7 P(X=x) k 2k 2k k 2k (Hint: First find k, and then plug in) Also, calculate the expected value of X, E(X) and variance V(X). A game plan is derived based on above table, a player wins $5 if he can blindly choose 3 and loses $1 if he chooses other numbers. What is his expected win or loss per game? If he plays this game for 20 times, what is total win or lose? Binomial Distribution: Q.17 (a) Hospital records show that of patients suffering from a certain disease, 75% die of it. What is the probability that of 6 randomly selected patients, 4 will recover? (b) A (blindfolded) marksman finds that on the average he hits the target 4 times out of 5. If he fires 4 shots, what is the probability of (i) more than 2 hits? (ii) at least 3 misses? (c) which of the following are binomial experiments? Explain the reason. i. Telephone surveying a group of 200 people to ask if they voted for George Bush. ii. Counting the average number of dogs seen at a veterinarian’s office daily. iii. You take a survey of 50 traffic lights in a certain city, at 3 p.m., recording whether the light was red, green, or yellow at that time. iv. You are at a fair, playing “pop the balloon” with 6 darts. There are 20 balloons. 10 of the balloons have a ticket inside that say “win,” and 10 have a ticket that says “lose.” Normal Distribution Q.18 Use standard normal distribution table to find the following probabilities: (a) P(Z<2.5) (b) P(Z< -1.3) (c) P(Z>0.12) (d) P(Z> -2.15) (e) P(0.11<Z<0.22) (f) P(-0.11<Z<0.5) Q.19. Use normal distribution table to find the missing values (?). (a) P(Z< ?)=0.40 (b) P(Z< ?)=0.76 (c) P(Z> ?)=0.87 (d) P(Z> ?)=0.34 Q.20. The length of life of certain type of light bulb is normally distributed with mean=220hrs and standard deviation=20hrs. (a) Define a random variable, X A light bulb is randomly selected, what is the probability that (b) it will last will last more than 207 hrs. ? (c) it will last less than 214 hrs. (d) it will last in between 199 to 207 hrs. Q.21. The length of life of an instrument produced by a machine has a normal distribution with a mean of 22 months and standard deviation of 4 months. Find the probability that an instrument produced by this machine will last (a) less than 10 months. (b) more than 28 months (c) between 10 and 28 months. Distribution of sample mean and Central Limit Theorem (CLT) Q.22 It is assumed that weight of teenage student is normally distributed with mean=140 lbs. and standard deviation =15 lbs. A simple random sample of 40 teenage students is taken and sample mean is calculated. If several such samples of same size are taken (i) what could be the mean of all sample means. (ii) what could be the standard deviation of all sample means. (iii) will the distribution of sample means be normal ? (iv) What is CLT? Write down the distribution of sample mean in the form of ~ ( , ) 2 n X N   . Q.23 The time it takes students in a cooking school to learn to prepare seafood gumbo is a random variable with a normal distribution where the average is 3.2 hours and a standard deviation of 1.8 hours. A sample of 40 students was investigated. What is the distribution of sample mean (express in numbers)? Hypothesis Testing Q.24 The NCHS reported that the mean total cholesterol level in 2002 for all adults was 203 with standard deviation of 37. Total cholesterol levels in participants who attended the seventh examination of the Offspring in the Framingham Heart Study are summarized as follows: n=3,00, =200.3. Is there statistical evidence of a difference in mean cholesterol levels in the Framingham Offspring (means does the result form current examination differs from 2002 report)?? (Follow the steps below to reach the conclusion) (i) Define null and alternate hypothesis (Also write what is  , and x in words at the beginning) (ii) Identify the significance level ,  and check whether it is one sided or two sided test. (iii) Calculate test statistics, Z. (iv) Use standard normal table to find the p-value and state whether you reject or accept (fail to reject) the null hypothesis. (v) what is the critical value, do you reject or accept the H0. (vi) Write down the conclusion based on part (iv). Q.25 A sample of 145 boxes of Kellogg’s Raisin Bran contain in average 1.95 scoops of raisins. It is known from past experiments that the standard deviation for the number of scoops of raisins is 0.25. The manufacturer of Kellogg’s Raisin Bran claimed that in average their product contains more than 2 scoops of raisins, do you reject or accept the manufacturers claim (follow all five steps)? Q.26 It is assumed that the mean systolic blood pressure is μ = 120 mm Hg. In the Honolulu Heart Study, a sample of n = 100 people had an average systolic blood pressure of 130.1 mm Hg. The standard deviation from the population is 21.21 mm Hg. Is the group significantly different (with respect to systolic blood pressure!) from the regular population? Use 10% level of significance. Q.27 A CEO claims that at least 80 percent of the company’s 1,000,000 customers are very satisfied. Again, 100 customers are surveyed using simple random sampling. The result: 73 percent are very satisfied. Based on these results, should we accept or reject the CEO’s hypothesis? Assume a significance level of 0.05. Q.28 True/False questions (These questions are collected from previous HW, review and exam problems, see the previous solutions for answers) (a) Total sum of probability can exceed 1. (b) If you throw a die, getting 2 or any even number are independent events. (c) If you roll a die for 20 times, the probability of getting 5 in 15th roll is 20 15 . (d) A student is taking a 5 question True-False quiz but he has not been doing any work in the course and does not know the material so he randomly guesses at all the answers. Probability that he gets the first question right is 2 1 . (e) Typing in laptop and writing emails using the same laptop are independent events. (f) Normal distribution is right skewed. (g) Mean is more robust to outliers. So mean is used for data with extreme values. (h) It is possible to have no mode in the data. (i) Standard normal variable, Z has some unit. (j) Only two parameters are required to describe the entire normal distribution. (k) Mean of standard normal variable, Z is 1. (l) If p-value of more than level of significance (alpha), we reject the H0. (m) Very small p-value indicates rejection of H0. (n) H0 always contains equality sign. (o) CLT indicates that distribution of sample mean can be anything, not just normal. (p) Sample mean is always equal to population mean. (q) Variance of sample mean is less than population mean. (r) Variance of sample mean does not depend on sample size. (s) Mr. A has cancer but a medical doctor diagnosed him as “no cancer”. It is a type I error. (t) Level of significance is probability of making type II error. (u) Type II error can be controlled. (v) Type I error is more serious than type II error. (w) Type I and Type II errors are based on null hypothesis. Q.29 Type I and Type II Errors : Make statements about Type I (False Positive) and Type II errors (False Negative). (a) The Alpha-Fetoprotein (AFP) Test has both Type I and Type II error possibilities. This test screens the mother’s blood during pregnancy for AFP and determines risk. Abnormally high or low levels may indicate Down syndrome. (Hint: Take actual status as down syndrome or not) Ho: patient is healthy Ha: patient is unhealthy (b) The mechanic inspects the brake pads for the minimum allowable thickness. Ho: Vehicles breaks meet the standard for the minimum allowable thickness. Ha: Vehicles brakes do not meet the standard for the minimum allowable thickness. (c) Celiac disease is one of the diseases which can be misdiagnosed or have less diagnosis. Following table shows the actual celiac patients and their diagnosis status by medical doctors: Actual Status Yes No Diagnosed as celiac Yes 85 5 No 25 105 I. Calculate the probability of making type I and type II error rates. II. Calculate the power of the test. (Power of the test= 1- P(type II error) Answers: USEFUL FORMULAE: Descriptive Statistics Possible Outliers, any value beyond the range of Q 1.5( ) and Q 1.5( ) Range = Maximum value -Minimum value 100 where 1 ( ) (Preferred) 1 and , n fx x For data with repeats, 1 ( ) (Preferred ) OR 1 and n x x For data without repeats, 1 3 1 3 3 1 2 2 2 2 2 2 2 2 2 2 Q Q Q Q x s CV n f n f x x OR s n fx nx s n x x s n x nx s                             Discrete Distribution         ( ) ( ) ( ) ( ) { ( )} ( ) ( ) 2 2 2 2 E X x P X x V X E X E X E X xP X x Binomial Distribution Probability mass function, P(X=x)= x n x n x C p q  for x=0,1,2,…,n. E(X)=np, Var(X)=npq Hypothesis Testing based on Normal Distribution      X std X mean Z Standard Normal Variable, Probability Bayes Rule, ( ) ( and ) ( ) ( ) ( | ) P B P A B P B P A B P A B    Central Limit Theorem For large n (n>30), ~ ( , ) 2 n X N   and ˆ ~ ( , ) n pq p N p For hypothesis testing of μ, σ known           n x Z   For hypothesis testing of p n pq p p Z   ˆ ANSWERS: Q.1 (a) 14.286 (b) 14 (c) none (d) 10.24 (e) 22.40 Q.2 (a) 15.125 (b) 15.5 (c) No (d) 10.98 (e) 21.9 (f) English Q.3 (a) 18.6 (b)19 (c) 16, 21, and 25 (d) 15, 22 (f) slightly left (g) 7 (h) no outliers (i) increase (j) same Q.4 (a) 0.41 (b) 20 (c)14, 17, 20, 21,25 (d) 16.5, 25 (f) slightly right (g) 8.5 (h) no (i) increase (j) same Q.5 (a)56.57 (b) 22.26 (c) 8.34 Q.6 (a) 21 (b) 38.57 (c) 29.57 Q.7 (a) 410 (b) 1200 Q.8 (a)3 (b) 0.65 Q.9 (a) 0.082 (b) 0.29 (c)0.34 (d) 0.66 (e)0.10 (f) 0.64 Q.10 (a) 0.038 (b)0.23 (c) 0.71 (d) 0.29 (e)0.096 (f) 0.62 Q.11 (i)0.248 (ii)0.752 (iii)0.505 Q.12 (i)0.0875 (ii)0.913 (iii)0.425 (iii)0.488 Q.13 (a)0.22 (b)0.41 (c)0.33 (d)0.27 (e) 0.67 Q.14 (a) 0.13 (b) 0.18 (c)0.12 Q.15 E(X)=3.1 , V(X)=1.69, $0.2 per game, $ 4 win. Q.16 E(X)=5.125, V(X)=1.86, $0.25 loss per game, $5 loss. Q.17 (a)0.201 (b) 0.819, 0.027 Q.18 (a)0.9938 (b)0.0968 (c)0.452 (d)0.984 (e) 0.0433 (f)0.2353 Q.19 (a) -0.25 (b)0.71 (c) -1.13 (d)0.41 Q.20 (b) 0.7422 (c) 0.3821 (d) 0.1109 Q.21 (a)0.0014 (b) 0.0668 (c) 0.9318 Q.22 (a) 140 (b)2.37 Q.24 Z=-1.26, Accept null. Q.25 Z=-2.41, accept null Q.26 Z=4.76, reject H0 Q.27 Z=-1.75, reject H0 Q.28 F, F, F, T , F, F, F, T, F, T, F, F, T, T, F, F, T, F, T, F, F, T, T Q.29 (c)0.113 , 0.022 , 0.977 (or 98%)

Statistical Methods (STAT 4303) Review for Final Comprehensive Exam Measures of Central Tendency, Dispersion Q.1. The data below represents the test scores obtained by students in college algebra class. 10,12,15,20,13,16,14 Calculate (a) Mean (b) Median (c) Mode (d) Variance, s2 (e) Coefficient of variation (CV) Q.2. The data below represents the test scores obtained by students in English class. 12,15,16,18,13,10,17,20 Calculate (a) Mean (b) Median (c) Mode (d) Variance, s2 (e) Coefficient of variation (CV) (f) Compare the results of Q.1 and Q.2, Which scores College Algebra or English do you think is more precise (less spread)? Q.3 Following data represents the score obtained by students in one of the exams 9, 13, 14, 15, 16, 16, 17, 19, 20, 21, 21, 22, 25, 25, 26 Create a frequency table to calculate the following descriptive statistics (a) mean (b) median (c) mode (d) first and third quartiles (e) Construct Box and Whisker plot. (f) Comment on the shape of the distribution. (g) Find inter quartile range (IQR). (h) Are there any outliers (based on IQR technique)? In the above problem, if the score 26 is replaced by 37 (i) What will happen to the mean? Will it increase, decrease or remains the same? (j) What will be the new median? (k) What can you say about the effect of outliers on mean and median? Q.4 Following data represents the score obtained by students in one of the exams 19, 14, 14, 15, 17, 16, 17, 20, 20, 21, 21, 22, 25, 25, 26, 27, 28 Create a frequency table to calculate the following descriptive statistics a) mean b) median c) mode d) first and third quartiles e) Construct Box and Whisker plot. f) Comment on the shape of the distribution. g) Find inter quartile range (IQR). h) Are there any outliers (based on IQR technique)? In the above problem, if the score 28 is replaced by 48 i) What will happen to the mean? Will it increase, decrease or remains the same? j) What will be the new median? k) What can you say about the effect of outliers on mean and median? Q.5 Consider the following data of height (in inch) and weight(in lbs). Height(x) Frequency 50 2 52 3 55 2 60 4 62 3  Find the mean height.  What is the variance of height? Also, find the standard deviation. (c) Find the coefficient of variation (CV). Q.6. The following table shows the number of miles run during one week for a sample of 20 runners: Miles Mid-value (x) Frequency (f) 5.5-10.5 1 10.5-15.5 2 15.5-20.5 3 20.5-25.5 5 25.5-30.5 4 (a) Find the average (mean) miles run. (Hint: Find mid-value of mile range first) (b) What is the variance of miles run? Also, find the standard deviation. (c) Find the coefficient of variation (CV). Q.7. (a) If the mean of 20 observations is 20.5, find the sum of all observations? (b) If the mean of 30 observations is 40, find the sum of all observations? Probability Q.8 Out of forty students, 14 are taking English Composition and 29 are taking Chemistry. a) How many students are in both classes? b) What is the probability that a randomly-chosen student from this group is taking only the Chemistry class? Q.9 A drawer contains 4 red balls, 5 green balls, and 5 blue balls. One ball is taken from the drawer and then replaced. Another ball is taken from the drawer. What is the probability that (Draw tree diagram to facilitate your calculation). (a) both balls are red (b) first ball is red (c) both balls are of same colors (d) both balls are of different colors (e) first ball is red and second ball is blue (f) first ball is red or blue Q.10 A drawer contains 3 red balls, 5 green balls, and 5 blue balls. One ball is taken from the drawer and not replaced. Another ball is then taken from the drawer. Draw tree diagram to facilitate your calculation. What is the probability that (a) both balls are red (b) first ball is red (c) both balls are of same colors (d) both balls are of different colors (e) first ball is red and second ball is blue (f) first ball is red or blue Q. 11 Missile A has 45% chance of hitting target. Missile B has 55% chance of hitting a target. What is the probability that (i) both miss the target. (ii) at least one will hit the target. (iii) exactly one will hit the target. Q. 12 A politician from D party speaks truth 65% of times; another politician from rival party speaks truth 75% of times. Both politicians were asked about their personal love affair with their own office secretary, what is the probability that (i) both lie the actual fact . (ii) at least one will speak truth. (iii) exactly one speaks the truth. (iv) both speak the truth. Q.13 The question, “Do you drink alcohol?” was asked to 220 people. Results are shown in the table. . Yes No Total Male 48 82 Female 24 66 Total (a) What is the probability of a randomly selected individual being a male also drinks? (b) What is the probability of a randomly selected individual being a female? (c) What is the probability that a randomly selected individual drinks? (d) A person is selected at random and if the person is female, what is the probability that she drinks? (e) What is the probability that a randomly selected alcoholic person is a male? Q.14 A professor, Dr. Drakula, taught courses that included statements from across the five colleges abbreviated as AH, AS, BA, ED and EN. He taught at Texas A&M University – Kingsville (TAMUK) during the span of five academic years AY09 to AY13. The following table shows the total number of graduates during AY09 to AY13. One day, he was running late to his class. He was so focused on the class that he did not stop for a red light. As soon as he crossed through the intersection, a police officer Asked him to stop. ( a ) It is turned out that the police officer was TAMUK graduate during the past five years. What is the probability that the Police Officer was from ED College? ( b ) What is the probability that the Police Officer graduated in the academic year of 2011? ( c ) If the traffic officer graduated from TAMUK in the academic year of 2011(AY11). What is the conditional probability that he graduated from the ED college? ( d ) Are the events the academic year “AY 11” and the college of Education “ED” independent? Yes or no , why? Discrete Distribution Q.15 Find k and probability for X=2 and X=4. X 1 2 3 4 5 P(X=x) 0.1 3k 0.2 2k 0.2 (Hint: First find k, and then plug in) Also, calculate the expected value of X, E(X) and variance V(X). A game plan is derived based on above table, a player wins $5 if he can blindly choose 3 and loses $1 if he chooses other numbers.What is his expected win or loss per game? If he plays this game for 20 times, what is total win or lose? Q.16 Find k. X 3 4 5 6 7 P(X=x) k 2k 2k k 2k (Hint: First find k, and then plug in) Also, calculate the expected value of X, E(X) and variance V(X). A game plan is derived based on above table, a player wins $5 if he can blindly choose 3 and loses $1 if he chooses other numbers. What is his expected win or loss per game? If he plays this game for 20 times, what is total win or lose? Binomial Distribution: Q.17 (a) Hospital records show that of patients suffering from a certain disease, 75% die of it. What is the probability that of 6 randomly selected patients, 4 will recover? (b) A (blindfolded) marksman finds that on the average he hits the target 4 times out of 5. If he fires 4 shots, what is the probability of (i) more than 2 hits? (ii) at least 3 misses? (c) which of the following are binomial experiments? Explain the reason. i. Telephone surveying a group of 200 people to ask if they voted for George Bush. ii. Counting the average number of dogs seen at a veterinarian’s office daily. iii. You take a survey of 50 traffic lights in a certain city, at 3 p.m., recording whether the light was red, green, or yellow at that time. iv. You are at a fair, playing “pop the balloon” with 6 darts. There are 20 balloons. 10 of the balloons have a ticket inside that say “win,” and 10 have a ticket that says “lose.” Normal Distribution Q.18 Use standard normal distribution table to find the following probabilities: (a) P(Z<2.5) (b) P(Z< -1.3) (c) P(Z>0.12) (d) P(Z> -2.15) (e) P(0.11 ?)=0.87 (d) P(Z> ?)=0.34 Q.20. The length of life of certain type of light bulb is normally distributed with mean=220hrs and standard deviation=20hrs. (a) Define a random variable, X A light bulb is randomly selected, what is the probability that (b) it will last will last more than 207 hrs. ? (c) it will last less than 214 hrs. (d) it will last in between 199 to 207 hrs. Q.21. The length of life of an instrument produced by a machine has a normal distribution with a mean of 22 months and standard deviation of 4 months. Find the probability that an instrument produced by this machine will last (a) less than 10 months. (b) more than 28 months (c) between 10 and 28 months. Distribution of sample mean and Central Limit Theorem (CLT) Q.22 It is assumed that weight of teenage student is normally distributed with mean=140 lbs. and standard deviation =15 lbs. A simple random sample of 40 teenage students is taken and sample mean is calculated. If several such samples of same size are taken (i) what could be the mean of all sample means. (ii) what could be the standard deviation of all sample means. (iii) will the distribution of sample means be normal ? (iv) What is CLT? Write down the distribution of sample mean in the form of ~ ( , ) 2 n X N   . Q.23 The time it takes students in a cooking school to learn to prepare seafood gumbo is a random variable with a normal distribution where the average is 3.2 hours and a standard deviation of 1.8 hours. A sample of 40 students was investigated. What is the distribution of sample mean (express in numbers)? Hypothesis Testing Q.24 The NCHS reported that the mean total cholesterol level in 2002 for all adults was 203 with standard deviation of 37. Total cholesterol levels in participants who attended the seventh examination of the Offspring in the Framingham Heart Study are summarized as follows: n=3,00, =200.3. Is there statistical evidence of a difference in mean cholesterol levels in the Framingham Offspring (means does the result form current examination differs from 2002 report)?? (Follow the steps below to reach the conclusion) (i) Define null and alternate hypothesis (Also write what is  , and x in words at the beginning) (ii) Identify the significance level ,  and check whether it is one sided or two sided test. (iii) Calculate test statistics, Z. (iv) Use standard normal table to find the p-value and state whether you reject or accept (fail to reject) the null hypothesis. (v) what is the critical value, do you reject or accept the H0. (vi) Write down the conclusion based on part (iv). Q.25 A sample of 145 boxes of Kellogg’s Raisin Bran contain in average 1.95 scoops of raisins. It is known from past experiments that the standard deviation for the number of scoops of raisins is 0.25. The manufacturer of Kellogg’s Raisin Bran claimed that in average their product contains more than 2 scoops of raisins, do you reject or accept the manufacturers claim (follow all five steps)? Q.26 It is assumed that the mean systolic blood pressure is μ = 120 mm Hg. In the Honolulu Heart Study, a sample of n = 100 people had an average systolic blood pressure of 130.1 mm Hg. The standard deviation from the population is 21.21 mm Hg. Is the group significantly different (with respect to systolic blood pressure!) from the regular population? Use 10% level of significance. Q.27 A CEO claims that at least 80 percent of the company’s 1,000,000 customers are very satisfied. Again, 100 customers are surveyed using simple random sampling. The result: 73 percent are very satisfied. Based on these results, should we accept or reject the CEO’s hypothesis? Assume a significance level of 0.05. Q.28 True/False questions (These questions are collected from previous HW, review and exam problems, see the previous solutions for answers) (a) Total sum of probability can exceed 1. (b) If you throw a die, getting 2 or any even number are independent events. (c) If you roll a die for 20 times, the probability of getting 5 in 15th roll is 20 15 . (d) A student is taking a 5 question True-False quiz but he has not been doing any work in the course and does not know the material so he randomly guesses at all the answers. Probability that he gets the first question right is 2 1 . (e) Typing in laptop and writing emails using the same laptop are independent events. (f) Normal distribution is right skewed. (g) Mean is more robust to outliers. So mean is used for data with extreme values. (h) It is possible to have no mode in the data. (i) Standard normal variable, Z has some unit. (j) Only two parameters are required to describe the entire normal distribution. (k) Mean of standard normal variable, Z is 1. (l) If p-value of more than level of significance (alpha), we reject the H0. (m) Very small p-value indicates rejection of H0. (n) H0 always contains equality sign. (o) CLT indicates that distribution of sample mean can be anything, not just normal. (p) Sample mean is always equal to population mean. (q) Variance of sample mean is less than population mean. (r) Variance of sample mean does not depend on sample size. (s) Mr. A has cancer but a medical doctor diagnosed him as “no cancer”. It is a type I error. (t) Level of significance is probability of making type II error. (u) Type II error can be controlled. (v) Type I error is more serious than type II error. (w) Type I and Type II errors are based on null hypothesis. Q.29 Type I and Type II Errors : Make statements about Type I (False Positive) and Type II errors (False Negative). (a) The Alpha-Fetoprotein (AFP) Test has both Type I and Type II error possibilities. This test screens the mother’s blood during pregnancy for AFP and determines risk. Abnormally high or low levels may indicate Down syndrome. (Hint: Take actual status as down syndrome or not) Ho: patient is healthy Ha: patient is unhealthy (b) The mechanic inspects the brake pads for the minimum allowable thickness. Ho: Vehicles breaks meet the standard for the minimum allowable thickness. Ha: Vehicles brakes do not meet the standard for the minimum allowable thickness. (c) Celiac disease is one of the diseases which can be misdiagnosed or have less diagnosis. Following table shows the actual celiac patients and their diagnosis status by medical doctors: Actual Status Yes No Diagnosed as celiac Yes 85 5 No 25 105 I. Calculate the probability of making type I and type II error rates. II. Calculate the power of the test. (Power of the test= 1- P(type II error) Answers: USEFUL FORMULAE: Descriptive Statistics Possible Outliers, any value beyond the range of Q 1.5( ) and Q 1.5( ) Range = Maximum value -Minimum value 100 where 1 ( ) (Preferred) 1 and , n fx x For data with repeats, 1 ( ) (Preferred ) OR 1 and n x x For data without repeats, 1 3 1 3 3 1 2 2 2 2 2 2 2 2 2 2 Q Q Q Q x s CV n f n f x x OR s n fx nx s n x x s n x nx s                             Discrete Distribution         ( ) ( ) ( ) ( ) { ( )} ( ) ( ) 2 2 2 2 E X x P X x V X E X E X E X xP X x Binomial Distribution Probability mass function, P(X=x)= x n x n x C p q  for x=0,1,2,…,n. E(X)=np, Var(X)=npq Hypothesis Testing based on Normal Distribution      X std X mean Z Standard Normal Variable, Probability Bayes Rule, ( ) ( and ) ( ) ( ) ( | ) P B P A B P B P A B P A B    Central Limit Theorem For large n (n>30), ~ ( , ) 2 n X N   and ˆ ~ ( , ) n pq p N p For hypothesis testing of μ, σ known           n x Z   For hypothesis testing of p n pq p p Z   ˆ ANSWERS: Q.1 (a) 14.286 (b) 14 (c) none (d) 10.24 (e) 22.40 Q.2 (a) 15.125 (b) 15.5 (c) No (d) 10.98 (e) 21.9 (f) English Q.3 (a) 18.6 (b)19 (c) 16, 21, and 25 (d) 15, 22 (f) slightly left (g) 7 (h) no outliers (i) increase (j) same Q.4 (a) 0.41 (b) 20 (c)14, 17, 20, 21,25 (d) 16.5, 25 (f) slightly right (g) 8.5 (h) no (i) increase (j) same Q.5 (a)56.57 (b) 22.26 (c) 8.34 Q.6 (a) 21 (b) 38.57 (c) 29.57 Q.7 (a) 410 (b) 1200 Q.8 (a)3 (b) 0.65 Q.9 (a) 0.082 (b) 0.29 (c)0.34 (d) 0.66 (e)0.10 (f) 0.64 Q.10 (a) 0.038 (b)0.23 (c) 0.71 (d) 0.29 (e)0.096 (f) 0.62 Q.11 (i)0.248 (ii)0.752 (iii)0.505 Q.12 (i)0.0875 (ii)0.913 (iii)0.425 (iii)0.488 Q.13 (a)0.22 (b)0.41 (c)0.33 (d)0.27 (e) 0.67 Q.14 (a) 0.13 (b) 0.18 (c)0.12 Q.15 E(X)=3.1 , V(X)=1.69, $0.2 per game, $ 4 win. Q.16 E(X)=5.125, V(X)=1.86, $0.25 loss per game, $5 loss. Q.17 (a)0.201 (b) 0.819, 0.027 Q.18 (a)0.9938 (b)0.0968 (c)0.452 (d)0.984 (e) 0.0433 (f)0.2353 Q.19 (a) -0.25 (b)0.71 (c) -1.13 (d)0.41 Q.20 (b) 0.7422 (c) 0.3821 (d) 0.1109 Q.21 (a)0.0014 (b) 0.0668 (c) 0.9318 Q.22 (a) 140 (b)2.37 Q.24 Z=-1.26, Accept null. Q.25 Z=-2.41, accept null Q.26 Z=4.76, reject H0 Q.27 Z=-1.75, reject H0 Q.28 F, F, F, T , F, F, F, T, F, T, F, F, T, T, F, F, T, F, T, F, F, T, T Q.29 (c)0.113 , 0.022 , 0.977 (or 98%)

No expert has answered this question yet. You can browse … Read More...
1-Two notions serve as the basis for all torts: wrongs and compensation. True False 2-The goal of tort law is to put a defendant in the position that he or she would have been in had the tort occurred to the defendant. True False 3-Hayley is injured in an accident precipitated by Isolde. Hayley files a tort action against Isolde, seeking to recover for the damage suffered. Damages that are intended to compensate or reimburse a plaintiff for actual losses are: compensatory damages. reimbursement damages. actual damages. punitive damages. 4-Ladd throws a rock intending to hit Minh but misses and hits Nasir instead. On the basis of the tort of battery, Nasir can sue: Ladd. Minh. the rightful owner of the rock. no one. 4-Luella trespasses on Merchandise Mart’s property. Through the use of reasonable force, Merchandise Mart’s security guard detains Luella until the police arrive. Merchandise Mart is liable for: assault. battery. false imprisonment. none of the choice 6-The extreme risk of an activity is a defense against imposing strict liability. True False 7-Misrepresentation in an ad is enough to show an intent to induce the reliance of anyone who may use the product. True False 8-Luke is playing a video game on a defective disk that melts in his game player, starting a fire that injures his hands. Luke files a suit against Mystic Maze, Inc., the game’s maker under the doctrine of strict liability. A significant application of this doctrine is in the area of: cyber torts. intentional torts. product liability. unintentional torts 9-More than two hundred years ago, the Declaration of Independence recognized the importance of protecting creative works. True False 10-n 2014, Cloud Computing Corporation registers its trademark as provided by federal law. After the first renewal, this registration: is renewable every ten years. is renewable every twenty years. runs for life of the corporation plus seventy years. runs forever. 11-Wendy works as a weather announcer for a TV station under the character name Weather Wendy. Wendy can register her character’s name as: a certification mark. a trade name. a service mark. none of the choices 12-Much of the material on the Internet, including software and database information, is not copyrighted. True False 13-In a criminal case, the state must prove its case by a preponderance of the evidence. True False 14-Under the Fourth Amendmentt, general searches through a person’s belongings are permissible. True False 15-Maura enters a gas station and points a gun at the clerk Nate. She then forces Nate to open the cash register and give her all the money. Maura can be charged with: burglary. robbery. larceny. receiving stolen property. 16-Reno, driving while intoxicated, causes a car accident that results in the death of Santo. Reno is arrested and charged with a felony. A felony is a crime punishable by death or imprisonment for: any period of time. more than one year. more than six months. more than ten days. 17-Corporate officers and directors may be held criminally liable for the actions of employees under their supervision. True False 18-Sal assures Tom that she will deliver a truckload of hay to his cattle ranch. A person’s declaration to do a certain act is part of the definition of: an expectation. a moral obligation. a prediction. a promise. 19-Lark promises to buy Mac’s used textbook for $60. Lark is: an offeror. an offeree a promisee. a promisor. 20-Casey offers to sell a certain used forklift to DIY Lumber Outlet, but Casey dies before DIY accepts. Most likely, Casey’s death: did not affect the offer. shortened the time of the offer but did not terminated it. extended the time of the offer. terminated the offer.

1-Two notions serve as the basis for all torts: wrongs and compensation. True False 2-The goal of tort law is to put a defendant in the position that he or she would have been in had the tort occurred to the defendant. True False 3-Hayley is injured in an accident precipitated by Isolde. Hayley files a tort action against Isolde, seeking to recover for the damage suffered. Damages that are intended to compensate or reimburse a plaintiff for actual losses are: compensatory damages. reimbursement damages. actual damages. punitive damages. 4-Ladd throws a rock intending to hit Minh but misses and hits Nasir instead. On the basis of the tort of battery, Nasir can sue: Ladd. Minh. the rightful owner of the rock. no one. 4-Luella trespasses on Merchandise Mart’s property. Through the use of reasonable force, Merchandise Mart’s security guard detains Luella until the police arrive. Merchandise Mart is liable for: assault. battery. false imprisonment. none of the choice 6-The extreme risk of an activity is a defense against imposing strict liability. True False 7-Misrepresentation in an ad is enough to show an intent to induce the reliance of anyone who may use the product. True False 8-Luke is playing a video game on a defective disk that melts in his game player, starting a fire that injures his hands. Luke files a suit against Mystic Maze, Inc., the game’s maker under the doctrine of strict liability. A significant application of this doctrine is in the area of: cyber torts. intentional torts. product liability. unintentional torts 9-More than two hundred years ago, the Declaration of Independence recognized the importance of protecting creative works. True False 10-n 2014, Cloud Computing Corporation registers its trademark as provided by federal law. After the first renewal, this registration: is renewable every ten years. is renewable every twenty years. runs for life of the corporation plus seventy years. runs forever. 11-Wendy works as a weather announcer for a TV station under the character name Weather Wendy. Wendy can register her character’s name as: a certification mark. a trade name. a service mark. none of the choices 12-Much of the material on the Internet, including software and database information, is not copyrighted. True False 13-In a criminal case, the state must prove its case by a preponderance of the evidence. True False 14-Under the Fourth Amendmentt, general searches through a person’s belongings are permissible. True False 15-Maura enters a gas station and points a gun at the clerk Nate. She then forces Nate to open the cash register and give her all the money. Maura can be charged with: burglary. robbery. larceny. receiving stolen property. 16-Reno, driving while intoxicated, causes a car accident that results in the death of Santo. Reno is arrested and charged with a felony. A felony is a crime punishable by death or imprisonment for: any period of time. more than one year. more than six months. more than ten days. 17-Corporate officers and directors may be held criminally liable for the actions of employees under their supervision. True False 18-Sal assures Tom that she will deliver a truckload of hay to his cattle ranch. A person’s declaration to do a certain act is part of the definition of: an expectation. a moral obligation. a prediction. a promise. 19-Lark promises to buy Mac’s used textbook for $60. Lark is: an offeror. an offeree a promisee. a promisor. 20-Casey offers to sell a certain used forklift to DIY Lumber Outlet, but Casey dies before DIY accepts. Most likely, Casey’s death: did not affect the offer. shortened the time of the offer but did not terminated it. extended the time of the offer. terminated the offer.

1-Two notions serve as the basis for all torts: wrongs … Read More...
. What behaviors indicate psychological distress? Name 5 and explain.

. What behaviors indicate psychological distress? Name 5 and explain.

The term ‘distress’ is commonly used in nursing literature to … Read More...
. Pt 1. Making Observations (Introduction) Write a brief, introductory paragraph that includes general observations related to the topic. You may consider information from the news, media (tv, movies), social media, popular views, ideas from the general public, or your personal experiences. Your paragraph should specifically mention three (3) observations related to this topic and be sure to cite your sources. You should also include your thoughts on why this topic is of interest to you or relevant to society (i.e. what is the significance?). Pt 2. Apply The Content Choose five (5) terms or concepts that we have covered in this unit that are related to the chosen topic. Define each term in your own words and then write one (1) sentence that explains how it is related to the topic. The concept are: Define evolution. What was Darwin’s role in establishing the theory of evolution? What does the phrase “descent with modification” mean? How are fossils, anatomical studies, and molecular biology used to provide evidence for the theory of evolution? What is “fitness” in a biological organism? What role do mutations have in natural selection? What are the types of natural selection? How do they effect the genetic variation in a population? What is genetic drift? gene flow? How do they effect the genetic variation in a population? What forces can lead to adaptive evolution? What is the biological definition of a species? What are the three domains of living organisms? What are the six kingdoms? For each kingdom you should be able to describe the cellular structure, means of reproduction, ways of getting nutrients/food, general/adaptive features, and an example organism. How does Helicobacter pylori avoid competition? What extreme environment does a hermoacidophile occupy? What is unique about the Volvox compared to other protists? How do pitcher plants thrive in low nutrient environments? How does the puffball mushroom achieve reproductive success? What adaptations allowed plants to live on the land? What major adaptations occurred in the animal kingdom? In vertebrates? What domain, kingdom, phylum, sub phylum, and class do humans belong to? What do we share with organisms in these groups? What are the ecological levels of the biological hierarchy? What are the elements of a habitat? What are the criteria used by ecologists to measure and observe populations? What common patterns of population distribution are seen in nature? Compare the three kinds of survivorship curves? What do they show? What kind of reproductive behaviors lead to type I, II, and III survivorship curves? How does idealized population growth differ from how actual populations grow? What are factors that affect the growth of a population? How do density-dependent factors affect population growth? What are examples of density-independent factors that can affect population growth? What is a population boom? What is a population bust? Describe the boom and bust cycles often observed in nature. What kinds of competition occur in a habitat? What kinds of symbiotic relationships occur in a habitat? How do organisms avoid predation? What are the levels in a trophic structure? How can plants and animals avoid being eaten? Why is a food web a more accurate representation of the organisms in a community compared to a food chain? Why are most food chains limited to only three or four trophic levels.What are some common threats to biodiversity? What are common types of pollution? Explain why we must be concerned about even small levels of polluting chemicals in the environment. What is sustainability? How can we contribute to the sustainability of life on our planet? Pt 3. Form A Claim Write a claim statement related to the chosen topic. Consider the major question that you are addressing and then develop a statement that will guide your research and writing as you develop your scientific explanation (in Pt 4). Pt 4. Construct a Scientific Explanation Write a scientific explanation that includes evidence and reasoning to support your claim. Your explanation should demonstrate your understanding of the chosen topic using discussion and content from this course as a starting point. Your explanation should include information from a minimum of three (3) sources and one (1) of these sources must be a peer-reviewed scientific article or a review of a scientific study or studies (i.e. a primary or secondary source). You should cite your sources within the body of your explanation and include a list of references at the end (any standard formatting method is acceptable).

. Pt 1. Making Observations (Introduction) Write a brief, introductory paragraph that includes general observations related to the topic. You may consider information from the news, media (tv, movies), social media, popular views, ideas from the general public, or your personal experiences. Your paragraph should specifically mention three (3) observations related to this topic and be sure to cite your sources. You should also include your thoughts on why this topic is of interest to you or relevant to society (i.e. what is the significance?). Pt 2. Apply The Content Choose five (5) terms or concepts that we have covered in this unit that are related to the chosen topic. Define each term in your own words and then write one (1) sentence that explains how it is related to the topic. The concept are: Define evolution. What was Darwin’s role in establishing the theory of evolution? What does the phrase “descent with modification” mean? How are fossils, anatomical studies, and molecular biology used to provide evidence for the theory of evolution? What is “fitness” in a biological organism? What role do mutations have in natural selection? What are the types of natural selection? How do they effect the genetic variation in a population? What is genetic drift? gene flow? How do they effect the genetic variation in a population? What forces can lead to adaptive evolution? What is the biological definition of a species? What are the three domains of living organisms? What are the six kingdoms? For each kingdom you should be able to describe the cellular structure, means of reproduction, ways of getting nutrients/food, general/adaptive features, and an example organism. How does Helicobacter pylori avoid competition? What extreme environment does a hermoacidophile occupy? What is unique about the Volvox compared to other protists? How do pitcher plants thrive in low nutrient environments? How does the puffball mushroom achieve reproductive success? What adaptations allowed plants to live on the land? What major adaptations occurred in the animal kingdom? In vertebrates? What domain, kingdom, phylum, sub phylum, and class do humans belong to? What do we share with organisms in these groups? What are the ecological levels of the biological hierarchy? What are the elements of a habitat? What are the criteria used by ecologists to measure and observe populations? What common patterns of population distribution are seen in nature? Compare the three kinds of survivorship curves? What do they show? What kind of reproductive behaviors lead to type I, II, and III survivorship curves? How does idealized population growth differ from how actual populations grow? What are factors that affect the growth of a population? How do density-dependent factors affect population growth? What are examples of density-independent factors that can affect population growth? What is a population boom? What is a population bust? Describe the boom and bust cycles often observed in nature. What kinds of competition occur in a habitat? What kinds of symbiotic relationships occur in a habitat? How do organisms avoid predation? What are the levels in a trophic structure? How can plants and animals avoid being eaten? Why is a food web a more accurate representation of the organisms in a community compared to a food chain? Why are most food chains limited to only three or four trophic levels.What are some common threats to biodiversity? What are common types of pollution? Explain why we must be concerned about even small levels of polluting chemicals in the environment. What is sustainability? How can we contribute to the sustainability of life on our planet? Pt 3. Form A Claim Write a claim statement related to the chosen topic. Consider the major question that you are addressing and then develop a statement that will guide your research and writing as you develop your scientific explanation (in Pt 4). Pt 4. Construct a Scientific Explanation Write a scientific explanation that includes evidence and reasoning to support your claim. Your explanation should demonstrate your understanding of the chosen topic using discussion and content from this course as a starting point. Your explanation should include information from a minimum of three (3) sources and one (1) of these sources must be a peer-reviewed scientific article or a review of a scientific study or studies (i.e. a primary or secondary source). You should cite your sources within the body of your explanation and include a list of references at the end (any standard formatting method is acceptable).

No expert has answered this question yet. You can browse … Read More...