What is the prime purpose of selecting a composite material over material from the other family groups? MODULE 3 – STRUCTURE OF SOLID MATERIALS The ability of a material to exist in different space lattices is called a. Allotropic b. Crystalline c. Solvent d. Amorphous Amorphous metals develop their microstructure as a result of ___________. a. Dendrites b. Directional solidification c. Slip d. Extremely rapid cooling In an alloy, the material that dissolves the alloying element is the ___________. a. Solute b. Solvent c. Matrix d. Allotrope What is the coordination number (CN) for the fcc structure formed by ions of sodium and chlorine that is in the chemical compound NaCl (salt) ? a. 6 b. 8 c. 14 d. 16 What pressure is normally used in constructing a phase diagram? a. 100 psi b. Depends on material c. Ambient d. Normal atmospheric pressure What line on a binary diagram indicates the upper limit of the solid solution phase? a. Liquidus b. Eutectic c. Eutectoid d. Solidus What holds the atoms (ions) together in a compound such as NaCl are electrostatic forces between ___________. a. Atom and ion b. Covalent bonds c. Electrons and nuclei d. Neutrons Diffusion of atoms through a solid takes place by two main mechanisms. One is diffusion through vacancies in the atomic structure. Another method of diffusion is ___________. a. Cold b. APF c. Substitutional d. Interstitial Give a brief explanation of the Lever rule (P117) Grain boundaries ___________ movement of dislocations through a solid. a. Improve b. Inhibit c. Do not affect Iron can be alloyed with carbon because it is ___________. a. Crystalline b. Amorphous c. A mixture d. Allotropic Metals can be cooled only to crystalline solids. a. T (true) b. F (false) Sketch an fcc unit cell. Metals are classified as crystalline materials. Name one metal that is an amorphous solid and name at least one recent application in which its use is saving energy or providing greater strength and/or corrosion resistance. MODULE 4 – MECHANICAL PROPERTIES Give two examples of a mechanical property. a. Thermal resistance b. Wear resistance c. Hardness d. Strength Scissors used in the home cut material by concentrating forces that ultimately produce a certain type of stress within the material. Identify this stress. a. Bearing stress b. Shearing stress c. Compressive stress An aluminum rod 1 in. in diameter (E =10.4 x 106psi) experiences an elastic tensile strain of 0.0048 in./in. Calculate the stress in the rod. a. 49,920 ksi b. 49,920 psi c. 49,920 msi A 1-in.-diameter steel circular rod is subject to a tensile load that reduces its cross-sectional area to 0.64 in2. Express the rod’s ductility using a standard unit of measure. a. 18.5% b. 1.85% c. 18.5 d. (a) and (c) What term is used to describe the low-temperature creep of polymerics? a. Springback b. Creep rupture c. Cold flow d. Creep forming MODULE 7 – TESTING, FAILURE ANALYSIS, STANDARDS, & INSPECTION Factors of safety are defined either in terms of the ultimate strength of a material or its yield strength. In other words, by the use of a suitable factor, the ultimate or yield strength is reduced in size to what is known as the design stress or safe working stress. Which factor of safety would be more appropriate for a material that will be subjected to repetitious, suddenly applied loads? Product liability court cases have risen sharply in recent years because of poor procedures in selecting materials for particular applications. Assuming that a knowledge of a material’s properties is a valid step in the selection process, cite two examples where such lack of knowledge could or did lead to failure or unsatisfactory performance. Make a sketch and fully dimension an Izod impact test specimen. Which agency publishes the Annual Book of standard test methods used worldwide for evaluation of materials? a. NASA b. NIST c. ASTM d. SPE

What is the prime purpose of selecting a composite material over material from the other family groups? MODULE 3 – STRUCTURE OF SOLID MATERIALS The ability of a material to exist in different space lattices is called a. Allotropic b. Crystalline c. Solvent d. Amorphous Amorphous metals develop their microstructure as a result of ___________. a. Dendrites b. Directional solidification c. Slip d. Extremely rapid cooling In an alloy, the material that dissolves the alloying element is the ___________. a. Solute b. Solvent c. Matrix d. Allotrope What is the coordination number (CN) for the fcc structure formed by ions of sodium and chlorine that is in the chemical compound NaCl (salt) ? a. 6 b. 8 c. 14 d. 16 What pressure is normally used in constructing a phase diagram? a. 100 psi b. Depends on material c. Ambient d. Normal atmospheric pressure What line on a binary diagram indicates the upper limit of the solid solution phase? a. Liquidus b. Eutectic c. Eutectoid d. Solidus What holds the atoms (ions) together in a compound such as NaCl are electrostatic forces between ___________. a. Atom and ion b. Covalent bonds c. Electrons and nuclei d. Neutrons Diffusion of atoms through a solid takes place by two main mechanisms. One is diffusion through vacancies in the atomic structure. Another method of diffusion is ___________. a. Cold b. APF c. Substitutional d. Interstitial Give a brief explanation of the Lever rule (P117) Grain boundaries ___________ movement of dislocations through a solid. a. Improve b. Inhibit c. Do not affect Iron can be alloyed with carbon because it is ___________. a. Crystalline b. Amorphous c. A mixture d. Allotropic Metals can be cooled only to crystalline solids. a. T (true) b. F (false) Sketch an fcc unit cell. Metals are classified as crystalline materials. Name one metal that is an amorphous solid and name at least one recent application in which its use is saving energy or providing greater strength and/or corrosion resistance. MODULE 4 – MECHANICAL PROPERTIES Give two examples of a mechanical property. a. Thermal resistance b. Wear resistance c. Hardness d. Strength Scissors used in the home cut material by concentrating forces that ultimately produce a certain type of stress within the material. Identify this stress. a. Bearing stress b. Shearing stress c. Compressive stress An aluminum rod 1 in. in diameter (E =10.4 x 106psi) experiences an elastic tensile strain of 0.0048 in./in. Calculate the stress in the rod. a. 49,920 ksi b. 49,920 psi c. 49,920 msi A 1-in.-diameter steel circular rod is subject to a tensile load that reduces its cross-sectional area to 0.64 in2. Express the rod’s ductility using a standard unit of measure. a. 18.5% b. 1.85% c. 18.5 d. (a) and (c) What term is used to describe the low-temperature creep of polymerics? a. Springback b. Creep rupture c. Cold flow d. Creep forming MODULE 7 – TESTING, FAILURE ANALYSIS, STANDARDS, & INSPECTION Factors of safety are defined either in terms of the ultimate strength of a material or its yield strength. In other words, by the use of a suitable factor, the ultimate or yield strength is reduced in size to what is known as the design stress or safe working stress. Which factor of safety would be more appropriate for a material that will be subjected to repetitious, suddenly applied loads? Product liability court cases have risen sharply in recent years because of poor procedures in selecting materials for particular applications. Assuming that a knowledge of a material’s properties is a valid step in the selection process, cite two examples where such lack of knowledge could or did lead to failure or unsatisfactory performance. Make a sketch and fully dimension an Izod impact test specimen. Which agency publishes the Annual Book of standard test methods used worldwide for evaluation of materials? a. NASA b. NIST c. ASTM d. SPE

info@checkyourstudy.com
Ch 2 Questions that might be on the test. If you cannot answer them, check your class notes or the textbook. 1. A mineral is a naturally occurring substance formed through geological processes that has: a) a characteristic chemical composition, b) a highly ordered atomic structure c) specific physical properties d) all of the above 2. There are currently more than ______ known minerals, according to the International Mineralogical Association, a) 40 b) 400 c) 4000 d) 40 000 3. Some minerals, like quartz, mica or feldspar are: a) rare b) common c) valuable d) priceless 4. Rocks from which minerals are mined for economic purposes are referred to as: a) gangue b) tailings c) ores d) granite 5. Electrons, which have a _____ charge, a size which is so small as to be currently unmeasurable, and which are the least massive of the three types of basic particles. a) positive b) negative c) neutral 6. Both protons and neutrons are themselves now thought to be composed of even more elementary particles called: a) quarks b) quakes c) parsons d) megans 7. In processes which change the number of protons in a nucleus, the atom becomes an atom of a different chemical: a) isotope b) compound c) element d) planet 8. Atoms which have either a deficit or a surplus of electrons are called: a) elements b) isotopes c) ions d) molecules 9. In the Bohr model of the atom, electrons can only orbit the nucleus in particular circular orbits with fixed angular momentum and energy, their distances from the nucleus being proportional to their respective energies. They can only make _____ leaps between the fixed energy levels. a) tiny b) quantum c) gradual 10. It is impossible to simultaneously derive precise values for both the position and momentum of a particle for any given point in time; this became known as the ______ principle. a) Bohr b) Einstein c) uncertainty d) quantum 11. The modern model of the atom describes the positions of electrons in an atom in terms of: a) quantum levels b) orbital paths c) probabilities d) GPS 12. Isotopes of an element have nuclei with the same number of protons (the same atomic number) but different numbers of: a) electrons b) neutrons c) ions d) photons 13. In helium-3 (or 3He), how many protons are present? a) 1 b) 2 c) 3 d) 4 14. In helium-3 (or 3He), how many neutrons are present? a) 1 b) 2 c) 3 d) 4 15. The relative abundance of an isotope is strongly correlated with its tendency toward nuclear _____, short-lived nuclides quickly go away, while their long-lived counterparts endure. a) fission b) fusion c) decay d) bombardment 16. The isotopic composition of elements is different on different planets. a) True b) False 17. As a general rule, the fewer electrons in an atom’s valence shell, the ____ reactive it is. Lithium, sodium, and potassium have one electron in their outer shells. a) more b) less 18. Every atom is much more stable, or less reactive, with a ____ valence shell. a) partly full b) completely full 19. A positively-charged ion, which has fewer electrons than protons, is known as a: a) anion b) cation c) fermion d) bation 20. Bonds vary widely in their strength. Generally covalent and ionic bonds are often described as “strong”, whereas ______ bonds are generally considered to be “weak”. a) van der Waals b) Faradays c) van Neumans 21. This bonding involves sharing of electrons in which the positively charged nuclei of two or more atoms simultaneously attract the negatively charged electrons that are being shared a) ionic b) covalent c) van der Waals d) metallic 22. This bond results from electrostatic attraction between atoms: a) ionic b) covalent c) van der Waals d) metallic 23. A sea of delocalized electrons causes this bonding: a) ionic b) covalent c) van der Waals d) metallic 24. The chemical composition of minerals may vary between end members of a mineral system. For example the ______ feldspars comprise a continuous series from sodiumrich albite to calcium-rich anorthite. a) plagioclase b) orthoclase c) alkaline d) acidic 25. Crystal structure is based on ____ internal atomic arrangement. a) irregular b) regular c) random d) curvilinear 26. Pyrite and marcasite are both _______, but their arrangement of atoms differs. a) iron sulfide b) lead sulfide c) copper silfide d) silver sulfide 27. The carbon atoms in ______ are arranged into sheets which can slide easily past each other, while the carbon atoms in diamond form a strong, interlocking three-dimensional network. a) sapphire b) graphite c) aluminum d) carbonate 28. TGCFAOQTCD a) Crystal habit b) Hardness scale c) Luster scale 29. Dull to metallic, submetallic, adamantine, vitreous, pearly, resinous, or silky. a) Crystal habit b) Hardness scale c) Luster scale d) Heft scale 30. The color of the powder a mineral leaves after rubbing it on unglazed porcelain. a) color b) streak c) lustre d) iridescense 31. Describes the way a mineral may split apart along various planes. a) fracture b) streak c) lustre d) cleavage 32. In modern physics, the position of electrons about a nucleus are defined in terms of: a) probabilities b) circles c) ellipses d) chromodomes 33. The symbol H+ suggests a: a) hydrogen atom b) hydrogen isotope c) hydrogen cation d) hydrogen anion 34. The tabulated atomic mass of natural carbon is not exactly 12 because carbon in nature always has multiple ________ present. a) electrons b) isotopes c) quarks d) protons 35. This type of bonding due to delocalized electrons leads to malleability, ductility, and high melting points: a) covalent b) ionic c) van der Waals d) metallic 36. The mineral ___________ is 3 on Mohs Scale whereas the mineral ___________ is 9. a) calcite, corundum b) corundum, calcite c) caliche, calcite d) chalcedony, quartz 37. In hand specimens, geologists identify most minerals based on: a) physical properties b) chemical analyses c) xray diffraction 38. This type of chemical bonding is the weakest but occurs in all substances. a) covalent b) ionic c) metallic d) none of the above 39. Quartz, feldspar, mica, chlorite, kaolin, calcite, epidote, olivine, augite, hornblende, magnetite, hematite, limonite: these minerals are: a) common in rocks b) occasionally found c) rare d) extremely rare 40. Characteristics of a mineral do NOT include: a) naturally occurring b) characteristic chemical formula c) crystalline d) organic e) all of the above 41. The chemical composition of a particular mineral may vary between end members. For example, the common mineral plagioclase feldspar varies from being _______-rich to being _________-rich. a) sodium, calcium b) potassium, sodium c) iron, magnesium d) carbon, oxygen 42. Sharing of electrons typifies the __________ bond whereas electrostatic attraction typifies the _______ bond. a) ionic, covalent b) ionic, triclinic c) covalent, ionic d) triclinic, covalent 43. If number of protons does not equal the number of electrons, the atom is a(n) : a) isotope b) ion c) quark d) simplex e) google 44. Atoms generally consist of: a) electrons b) protons c) neutrons d) all of the above 45. Not counting rare minerals, about how many mineral species are at least occasionally encountered in rocks? a) 20 b) 200 c) 2000 46. Carbon is atomic number 6. Carbon-13 has _______ protons and _______ neutrons. a) thirteen, six b) six, seven c) twelve, twenty-five d) twelve, twelve 47. Which of these particles are not nucleons? a) electrons b) neutrons c) protons 48. A mineral with visibly recognizable crystals is said to have good crystal habit; otherwise the mineral is said to be: a) massive b) granular c) compact d) any of the above 49. In chemical bonding, two atoms become linked by moving or sharing __________. a) neutrons b) protons c) electrons 50. The name of an element is determined by the number of ______ present in the ______ of an atom. a) electrons, nucleus b) neutrons, nucleus c) protons, nucleus d) protons, electron cloud e) neutrons, electron cloud 51. Generally ________ and ____________ bonds are strong whereas the ______________ bond is weak. a) covalent, ionic, van der Waals b) van der Waals, covalent, ionic c) ionic, van der Waals, covalent 52. Which of the following are held together by chemical bonds? a) molecules b) crystals c) diatomic gases 53. An ion with fewer electrons than protons is called an ______ and it carries a _________ electric charge. a) cation, positive b) anion, negative c) cation, negative d) anion, positive 54. Two or more minerals may have the same _________ composition but different _______ structure. These are called polymorphs. a) crystal, chemical b) chemical, crystal 55. Industrial minerals are: a) gem quality b) commercially valuable c) tailings d) worthless 56. All minerals are crystalline. If the crystals are too small to see, they can be detected by: a) x-ray diffraction b) cosmic rays c) sound waves d) odor 57. If two atomes have the same number of protons but different numbers of neutrons, the atoms are _______ of the same _________. a) elements, mineral b) atoms, isotope c) elements, isotope d) isotopes, element 58. Modern physics recognizes that electrons show both particle and ______ behavior. a) wave b) emotional c) thermal d) revolting 59. Sodium and potassium have one ______ electron in their outer shells and are extremely ________. a) valence, stable b) inverted, reactive c) valence, reactive d) contaminated, inactive 60. The luster of _______ would be described as ________. a) glass, vitreous b) diamond, dull c) pyrite, silky d) graphite, resinous 61. The minerals ________ and __________ are polymorphs of carbon. a) diamond, graphite b) calcite, silicate c) bonite, bronzite 62. In the ______ atom based on _______ physics, electrons were restricted to circular orbits of fixed energy levels. a) Bohr , quantum b) Rutherford, classical c) Bohr, classical d) Rutherford, quantum 63. Virtually all elements other than ______ and _______ were formed in stars and supernovae long after the Big Bang. a) hydrogen, helium b) carbon, phosphorus c) carbon, oxygen d) silica, carbon 64. Physicist Werner _________ developed the ___________ principle which means that it is impossible to know exactly the position and momentum of a particle. a) Heisenberg, certainty b) Heisenberg, uncertainty c) Bohr, uncertainty d) Bohr, certainty

Ch 2 Questions that might be on the test. If you cannot answer them, check your class notes or the textbook. 1. A mineral is a naturally occurring substance formed through geological processes that has: a) a characteristic chemical composition, b) a highly ordered atomic structure c) specific physical properties d) all of the above 2. There are currently more than ______ known minerals, according to the International Mineralogical Association, a) 40 b) 400 c) 4000 d) 40 000 3. Some minerals, like quartz, mica or feldspar are: a) rare b) common c) valuable d) priceless 4. Rocks from which minerals are mined for economic purposes are referred to as: a) gangue b) tailings c) ores d) granite 5. Electrons, which have a _____ charge, a size which is so small as to be currently unmeasurable, and which are the least massive of the three types of basic particles. a) positive b) negative c) neutral 6. Both protons and neutrons are themselves now thought to be composed of even more elementary particles called: a) quarks b) quakes c) parsons d) megans 7. In processes which change the number of protons in a nucleus, the atom becomes an atom of a different chemical: a) isotope b) compound c) element d) planet 8. Atoms which have either a deficit or a surplus of electrons are called: a) elements b) isotopes c) ions d) molecules 9. In the Bohr model of the atom, electrons can only orbit the nucleus in particular circular orbits with fixed angular momentum and energy, their distances from the nucleus being proportional to their respective energies. They can only make _____ leaps between the fixed energy levels. a) tiny b) quantum c) gradual 10. It is impossible to simultaneously derive precise values for both the position and momentum of a particle for any given point in time; this became known as the ______ principle. a) Bohr b) Einstein c) uncertainty d) quantum 11. The modern model of the atom describes the positions of electrons in an atom in terms of: a) quantum levels b) orbital paths c) probabilities d) GPS 12. Isotopes of an element have nuclei with the same number of protons (the same atomic number) but different numbers of: a) electrons b) neutrons c) ions d) photons 13. In helium-3 (or 3He), how many protons are present? a) 1 b) 2 c) 3 d) 4 14. In helium-3 (or 3He), how many neutrons are present? a) 1 b) 2 c) 3 d) 4 15. The relative abundance of an isotope is strongly correlated with its tendency toward nuclear _____, short-lived nuclides quickly go away, while their long-lived counterparts endure. a) fission b) fusion c) decay d) bombardment 16. The isotopic composition of elements is different on different planets. a) True b) False 17. As a general rule, the fewer electrons in an atom’s valence shell, the ____ reactive it is. Lithium, sodium, and potassium have one electron in their outer shells. a) more b) less 18. Every atom is much more stable, or less reactive, with a ____ valence shell. a) partly full b) completely full 19. A positively-charged ion, which has fewer electrons than protons, is known as a: a) anion b) cation c) fermion d) bation 20. Bonds vary widely in their strength. Generally covalent and ionic bonds are often described as “strong”, whereas ______ bonds are generally considered to be “weak”. a) van der Waals b) Faradays c) van Neumans 21. This bonding involves sharing of electrons in which the positively charged nuclei of two or more atoms simultaneously attract the negatively charged electrons that are being shared a) ionic b) covalent c) van der Waals d) metallic 22. This bond results from electrostatic attraction between atoms: a) ionic b) covalent c) van der Waals d) metallic 23. A sea of delocalized electrons causes this bonding: a) ionic b) covalent c) van der Waals d) metallic 24. The chemical composition of minerals may vary between end members of a mineral system. For example the ______ feldspars comprise a continuous series from sodiumrich albite to calcium-rich anorthite. a) plagioclase b) orthoclase c) alkaline d) acidic 25. Crystal structure is based on ____ internal atomic arrangement. a) irregular b) regular c) random d) curvilinear 26. Pyrite and marcasite are both _______, but their arrangement of atoms differs. a) iron sulfide b) lead sulfide c) copper silfide d) silver sulfide 27. The carbon atoms in ______ are arranged into sheets which can slide easily past each other, while the carbon atoms in diamond form a strong, interlocking three-dimensional network. a) sapphire b) graphite c) aluminum d) carbonate 28. TGCFAOQTCD a) Crystal habit b) Hardness scale c) Luster scale 29. Dull to metallic, submetallic, adamantine, vitreous, pearly, resinous, or silky. a) Crystal habit b) Hardness scale c) Luster scale d) Heft scale 30. The color of the powder a mineral leaves after rubbing it on unglazed porcelain. a) color b) streak c) lustre d) iridescense 31. Describes the way a mineral may split apart along various planes. a) fracture b) streak c) lustre d) cleavage 32. In modern physics, the position of electrons about a nucleus are defined in terms of: a) probabilities b) circles c) ellipses d) chromodomes 33. The symbol H+ suggests a: a) hydrogen atom b) hydrogen isotope c) hydrogen cation d) hydrogen anion 34. The tabulated atomic mass of natural carbon is not exactly 12 because carbon in nature always has multiple ________ present. a) electrons b) isotopes c) quarks d) protons 35. This type of bonding due to delocalized electrons leads to malleability, ductility, and high melting points: a) covalent b) ionic c) van der Waals d) metallic 36. The mineral ___________ is 3 on Mohs Scale whereas the mineral ___________ is 9. a) calcite, corundum b) corundum, calcite c) caliche, calcite d) chalcedony, quartz 37. In hand specimens, geologists identify most minerals based on: a) physical properties b) chemical analyses c) xray diffraction 38. This type of chemical bonding is the weakest but occurs in all substances. a) covalent b) ionic c) metallic d) none of the above 39. Quartz, feldspar, mica, chlorite, kaolin, calcite, epidote, olivine, augite, hornblende, magnetite, hematite, limonite: these minerals are: a) common in rocks b) occasionally found c) rare d) extremely rare 40. Characteristics of a mineral do NOT include: a) naturally occurring b) characteristic chemical formula c) crystalline d) organic e) all of the above 41. The chemical composition of a particular mineral may vary between end members. For example, the common mineral plagioclase feldspar varies from being _______-rich to being _________-rich. a) sodium, calcium b) potassium, sodium c) iron, magnesium d) carbon, oxygen 42. Sharing of electrons typifies the __________ bond whereas electrostatic attraction typifies the _______ bond. a) ionic, covalent b) ionic, triclinic c) covalent, ionic d) triclinic, covalent 43. If number of protons does not equal the number of electrons, the atom is a(n) : a) isotope b) ion c) quark d) simplex e) google 44. Atoms generally consist of: a) electrons b) protons c) neutrons d) all of the above 45. Not counting rare minerals, about how many mineral species are at least occasionally encountered in rocks? a) 20 b) 200 c) 2000 46. Carbon is atomic number 6. Carbon-13 has _______ protons and _______ neutrons. a) thirteen, six b) six, seven c) twelve, twenty-five d) twelve, twelve 47. Which of these particles are not nucleons? a) electrons b) neutrons c) protons 48. A mineral with visibly recognizable crystals is said to have good crystal habit; otherwise the mineral is said to be: a) massive b) granular c) compact d) any of the above 49. In chemical bonding, two atoms become linked by moving or sharing __________. a) neutrons b) protons c) electrons 50. The name of an element is determined by the number of ______ present in the ______ of an atom. a) electrons, nucleus b) neutrons, nucleus c) protons, nucleus d) protons, electron cloud e) neutrons, electron cloud 51. Generally ________ and ____________ bonds are strong whereas the ______________ bond is weak. a) covalent, ionic, van der Waals b) van der Waals, covalent, ionic c) ionic, van der Waals, covalent 52. Which of the following are held together by chemical bonds? a) molecules b) crystals c) diatomic gases 53. An ion with fewer electrons than protons is called an ______ and it carries a _________ electric charge. a) cation, positive b) anion, negative c) cation, negative d) anion, positive 54. Two or more minerals may have the same _________ composition but different _______ structure. These are called polymorphs. a) crystal, chemical b) chemical, crystal 55. Industrial minerals are: a) gem quality b) commercially valuable c) tailings d) worthless 56. All minerals are crystalline. If the crystals are too small to see, they can be detected by: a) x-ray diffraction b) cosmic rays c) sound waves d) odor 57. If two atomes have the same number of protons but different numbers of neutrons, the atoms are _______ of the same _________. a) elements, mineral b) atoms, isotope c) elements, isotope d) isotopes, element 58. Modern physics recognizes that electrons show both particle and ______ behavior. a) wave b) emotional c) thermal d) revolting 59. Sodium and potassium have one ______ electron in their outer shells and are extremely ________. a) valence, stable b) inverted, reactive c) valence, reactive d) contaminated, inactive 60. The luster of _______ would be described as ________. a) glass, vitreous b) diamond, dull c) pyrite, silky d) graphite, resinous 61. The minerals ________ and __________ are polymorphs of carbon. a) diamond, graphite b) calcite, silicate c) bonite, bronzite 62. In the ______ atom based on _______ physics, electrons were restricted to circular orbits of fixed energy levels. a) Bohr , quantum b) Rutherford, classical c) Bohr, classical d) Rutherford, quantum 63. Virtually all elements other than ______ and _______ were formed in stars and supernovae long after the Big Bang. a) hydrogen, helium b) carbon, phosphorus c) carbon, oxygen d) silica, carbon 64. Physicist Werner _________ developed the ___________ principle which means that it is impossible to know exactly the position and momentum of a particle. a) Heisenberg, certainty b) Heisenberg, uncertainty c) Bohr, uncertainty d) Bohr, certainty

info@checkyourstudy.com
1. Develop a thought experiment that attempts to uncover hidden assumptions about human freedom. 2. Find a paragraph from a book, magazine, ect. First, tell whether there are claims in the paragraph. If there are, identify the types of claims (descriptive, normative, a priori, a posteriori) in the paragraph

1. Develop a thought experiment that attempts to uncover hidden assumptions about human freedom. 2. Find a paragraph from a book, magazine, ect. First, tell whether there are claims in the paragraph. If there are, identify the types of claims (descriptive, normative, a priori, a posteriori) in the paragraph

Let us think of a thought experiment that wants to … Read More...
Critical Thinking: How much stress is too much? The level of stress a person can experience before it does harm to the human body remains an important question. In a study of medical students, many working between 70-80 hours per week, nearly half suffered from extremely high levels of stress. In general, the more hours worked, the greater the level of stress experienced by the student. Higher levels of stress often corresponded with unhealthy coping strategies, including drug and alcohol abuse (Kasi et al., 2007) In addition, the study found that the students’ stress level also put their patients at risk. Stressed residents were more likely to make errors and to compromise patient care (Pitt et al., 2004).

Critical Thinking: How much stress is too much? The level of stress a person can experience before it does harm to the human body remains an important question. In a study of medical students, many working between 70-80 hours per week, nearly half suffered from extremely high levels of stress. In general, the more hours worked, the greater the level of stress experienced by the student. Higher levels of stress often corresponded with unhealthy coping strategies, including drug and alcohol abuse (Kasi et al., 2007) In addition, the study found that the students’ stress level also put their patients at risk. Stressed residents were more likely to make errors and to compromise patient care (Pitt et al., 2004).

info@checkyourstudy.com
Question 1 In order to properly manage expenses, the company investigates the amount of money spent by its sales office. The below numbers are related to six randomly selected receipts provided by the staff. $147 $124 $93 $158 $164 $171 a) Calculate ̅ , s2 and s for the expense data. b) Assume that the distribution of expenses is approximately normally distributed. Calculate estimates of tolerance intervals containing 68.26 percent, 95.44 percent, and 99.73 percent of all expenses by the sales office. c) If a member of the sales office submits a receipt with the amount of $190, should this expense be considered unusually high? Explain your answer. d) Compute and interpret the z-score for each of the six expenses. Question 2 A survey presents the results of a concept study for the taste of new food. Three hundred consumers between 18 and 49 years old were randomly selected. After sampling the new cuisine, each was asked to rate the quality of food. The rating was made on a scale from 1 to 5, with 5 representing “extremely agree with the quality” and with 1 representing “not at all agree with the new food.” The results obtained are given in Table 1. Estimate the probability that a randomly selected 18- to 49-year-old consumer a) Would give the phrase a rating of 4. b) Would give the phrase a rating of 3 or higher. c) Is in the 18–26 age group; the 27–35 age group; the 36–49 age group. d) Is a male who gives the phrase a rating of 5. e) Is a 36- to 49-year-old who gives the phrase a rating of 2. f) Estimate the probability that a randomly selected 18- to 49-year-old consumer is a 27- to 49-year-old who gives the phrase a rating of 3. g) Estimate the probability that a randomly selected 18- to 49-year-old consumer would 1) give the phrase a rating of 2 or 4 given that the consumer is male; 2) give the phrase a rating of 4 or 5 given that the consumer is female. Based on the results of parts 1 and 2, is the appeal of the phrase among males much different from the appeal of the phrase among females? Explain. h) Give the phrase a rating of 4 or 5, 1) given that the consumer is in the 18–26 age group; 2) given that the consumer is in the 27–35 age group; 3) given that the consumer is in the 36–49 age group. Table 1. Gender Age Group Rating Total Male Female 18-26 27-35 36-49 Extremely Appealing (5) 151 68 83 48 66 37 (4) 91 51 40 36 36 19 (3) 36 21 15 9 12 15 (2) 13 7 6 4 6 3 Not at all appealing(1) 9 3 6 4 3 2 Question 3 Based on the reports provided by the brokers, it is concluded that the annual returns on common stocks are approximately normally distributed with a mean of 17.8 percent and a standard deviation of 29.3 percent. On the other hand, the company reports that the annual returns on tax-free municipal bonds are approximately normally distributed with a mean return of 4.7 percent and a standard deviation of 10.2 percent. Find the probability that a randomly selected a) Common stock will give a positive yearly return. b) Tax-free municipal bond will give a positive yearly return. c) Common stock will give more than a 13 percent return. d) Tax-free municipal bond will give more than a 11.5 percent return. e) Common stock will give a loss of at least 7 percent. f) Tax-free municipal bond will give a loss of at least 10 percent. Question 4 Based on a sample of 176 workers, it is estimated that the mean amount of paid time lost during a three-month period was 1.4 days per employee with a standard deviation of 1.3 days. It is also estimated that the mean amount of unpaid time lost during a three-month period was 1.0 day per employee with a standard deviation of 1.8 days. We randomly select a sample of 100 workers. a) What is the probability that the average amount of paid time lost during a three-month period for the 100 blue-collar workers will exceed 1.5 days? Assume σ equals 1.3 days. b) What is the probability that the average amount of unpaid time lost during a three-month period for the 100 workers will exceed 1.5 days? Assume σ equals 1.8 days. c) A sample of 100 workers is randomly selected. Suppose the sample mean amount of unpaid time lost during a three-month period actually exceeds 1.5 days. Would it be reasonable to conclude that the mean amount of unpaid time lost has increased above the previously estimated 1.0 day? Explain. Assume σ still equals 1.8 days.

Question 1 In order to properly manage expenses, the company investigates the amount of money spent by its sales office. The below numbers are related to six randomly selected receipts provided by the staff. $147 $124 $93 $158 $164 $171 a) Calculate ̅ , s2 and s for the expense data. b) Assume that the distribution of expenses is approximately normally distributed. Calculate estimates of tolerance intervals containing 68.26 percent, 95.44 percent, and 99.73 percent of all expenses by the sales office. c) If a member of the sales office submits a receipt with the amount of $190, should this expense be considered unusually high? Explain your answer. d) Compute and interpret the z-score for each of the six expenses. Question 2 A survey presents the results of a concept study for the taste of new food. Three hundred consumers between 18 and 49 years old were randomly selected. After sampling the new cuisine, each was asked to rate the quality of food. The rating was made on a scale from 1 to 5, with 5 representing “extremely agree with the quality” and with 1 representing “not at all agree with the new food.” The results obtained are given in Table 1. Estimate the probability that a randomly selected 18- to 49-year-old consumer a) Would give the phrase a rating of 4. b) Would give the phrase a rating of 3 or higher. c) Is in the 18–26 age group; the 27–35 age group; the 36–49 age group. d) Is a male who gives the phrase a rating of 5. e) Is a 36- to 49-year-old who gives the phrase a rating of 2. f) Estimate the probability that a randomly selected 18- to 49-year-old consumer is a 27- to 49-year-old who gives the phrase a rating of 3. g) Estimate the probability that a randomly selected 18- to 49-year-old consumer would 1) give the phrase a rating of 2 or 4 given that the consumer is male; 2) give the phrase a rating of 4 or 5 given that the consumer is female. Based on the results of parts 1 and 2, is the appeal of the phrase among males much different from the appeal of the phrase among females? Explain. h) Give the phrase a rating of 4 or 5, 1) given that the consumer is in the 18–26 age group; 2) given that the consumer is in the 27–35 age group; 3) given that the consumer is in the 36–49 age group. Table 1. Gender Age Group Rating Total Male Female 18-26 27-35 36-49 Extremely Appealing (5) 151 68 83 48 66 37 (4) 91 51 40 36 36 19 (3) 36 21 15 9 12 15 (2) 13 7 6 4 6 3 Not at all appealing(1) 9 3 6 4 3 2 Question 3 Based on the reports provided by the brokers, it is concluded that the annual returns on common stocks are approximately normally distributed with a mean of 17.8 percent and a standard deviation of 29.3 percent. On the other hand, the company reports that the annual returns on tax-free municipal bonds are approximately normally distributed with a mean return of 4.7 percent and a standard deviation of 10.2 percent. Find the probability that a randomly selected a) Common stock will give a positive yearly return. b) Tax-free municipal bond will give a positive yearly return. c) Common stock will give more than a 13 percent return. d) Tax-free municipal bond will give more than a 11.5 percent return. e) Common stock will give a loss of at least 7 percent. f) Tax-free municipal bond will give a loss of at least 10 percent. Question 4 Based on a sample of 176 workers, it is estimated that the mean amount of paid time lost during a three-month period was 1.4 days per employee with a standard deviation of 1.3 days. It is also estimated that the mean amount of unpaid time lost during a three-month period was 1.0 day per employee with a standard deviation of 1.8 days. We randomly select a sample of 100 workers. a) What is the probability that the average amount of paid time lost during a three-month period for the 100 blue-collar workers will exceed 1.5 days? Assume σ equals 1.3 days. b) What is the probability that the average amount of unpaid time lost during a three-month period for the 100 workers will exceed 1.5 days? Assume σ equals 1.8 days. c) A sample of 100 workers is randomly selected. Suppose the sample mean amount of unpaid time lost during a three-month period actually exceeds 1.5 days. Would it be reasonable to conclude that the mean amount of unpaid time lost has increased above the previously estimated 1.0 day? Explain. Assume σ still equals 1.8 days.

info@checkyourstudy.com
You have had the unique opportunity to develop a career plan in this academic program. By determining career goals and objectives, you should have become insightful and capable of assessing your current skills and abilities and their respective usefulness in attaining that ideal position. According to your plan, what training and education may be required before advancement is possible with respect to your future plans? What is the biggest obstacle you face in search of success?

You have had the unique opportunity to develop a career plan in this academic program. By determining career goals and objectives, you should have become insightful and capable of assessing your current skills and abilities and their respective usefulness in attaining that ideal position. According to your plan, what training and education may be required before advancement is possible with respect to your future plans? What is the biggest obstacle you face in search of success?

We can’t escape from the reality that if we wish … Read More...
2. Career development process is complex and rapidly evolving and new theories are continually developing presenting challenges to traditional understandings. Discuss why an understanding of career development processes is critical to management, employee and organizational success.

2. Career development process is complex and rapidly evolving and new theories are continually developing presenting challenges to traditional understandings. Discuss why an understanding of career development processes is critical to management, employee and organizational success.

Studies are at the present extrapolative huge employment income in … Read More...
Problem 5: Physical Fitness versus Weight. You may have noticed from your analysis in Problem 4 that height does not explain 100% of the variation that we have observed in students’ heights. Is it possible that the amount of time students devote to physical fitness each week may help us to better understand their weights? a. Question 12 of the survey asked students, “About how much time per week (on average) do you devote to physical fitness?” We have named this variable FITNESS. Create a suitable graph to display the distribution of FITNESS and insert it here. b. What is the mode of this distribution? (Please underline one option.) Between 0 & 2 hours Between 2 & 5 hours Between 5 & 9 hours Between 9 & 15 hours Over 15 hours c. Create side-by-side boxplots to display students’ weights for the different levels of FITNESS. (Go to Graph > Boxplot > One Y with Groups > OK. Select WEIGHT for the “Graph variables” slot and FITNESS for the “Categorical variables for grouping” slot.) Insert your graph here. d. Use Minitab to calculate the basic statistics of WEIGHT for each level of FITNESS. Copy and paste the output here. e. With regard to FITNESS levels, which group of students has the lowest mean weight? (Please underline one option.) Between 0 & 2 hours Between 2 & 5 hours Between 5 & 9 hours Between 9 & 15 hours Over 15 hours f. Discuss the results: Describe the distributions of WEIGHT for the different levels of FITNESS as well as draw comparisons (i.e., What do they have in common?) and contrasts (i.e., How are they different?) between these distributions. Are there any surprises in the results? Explain why you think so, or why not. Problem 6 (Even): If your E number ends in an even number (0, 2, 4, 6, or 8) then do this question. (Omit this page/problem if your E# ends with an odd number.) Gender and Nuclear Safety. Question 5 in the survey asked students “How safe would you feel if a nuclear energy plant were built near where you live?” (Students could choose one of these options: Extremely safe, Very Safe, Moderately safe, Slightly safe, or Not at all safe.) Is there a relationship between gender and students’ opinions about nuclear safety? a. Create an appropriate graph to display the relationship between GENDER and NUCLEAR SAFETY. You don’t want to display information for students that didn’t answer both of these questions on the survey, so click on Data Options > Group Options and remove the checks in the boxes beside “Include missing as a group” and “Include empty cells.” Insert your graph here. b. Create an appropriate two-way table to summarize the data. Click on Options > Display missing values for… and put a dot in the circle beside “No variables.” Insert your table here. c. SUPPOSE WE SELECT ONE STUDENT AT RANDOM: (Calculate the following probabilities and show your work.) i. What is the probability that this student is a female and feels “very safe”? P = ii. What is the probability that this student is either a male or that he/she feels “very safe”? P = iii. What is the probability that this student feels “not at all safe” given that the student selected is a female? P = iv. What is the probability that this student is a male given that the student selected feels “not at all safe”? P = d. Do you think there may be an association between GENDER and NUCLEAR SAFETY? Why or why not? Explain your reasoning based on what you see in your graph.

Problem 5: Physical Fitness versus Weight. You may have noticed from your analysis in Problem 4 that height does not explain 100% of the variation that we have observed in students’ heights. Is it possible that the amount of time students devote to physical fitness each week may help us to better understand their weights? a. Question 12 of the survey asked students, “About how much time per week (on average) do you devote to physical fitness?” We have named this variable FITNESS. Create a suitable graph to display the distribution of FITNESS and insert it here. b. What is the mode of this distribution? (Please underline one option.) Between 0 & 2 hours Between 2 & 5 hours Between 5 & 9 hours Between 9 & 15 hours Over 15 hours c. Create side-by-side boxplots to display students’ weights for the different levels of FITNESS. (Go to Graph > Boxplot > One Y with Groups > OK. Select WEIGHT for the “Graph variables” slot and FITNESS for the “Categorical variables for grouping” slot.) Insert your graph here. d. Use Minitab to calculate the basic statistics of WEIGHT for each level of FITNESS. Copy and paste the output here. e. With regard to FITNESS levels, which group of students has the lowest mean weight? (Please underline one option.) Between 0 & 2 hours Between 2 & 5 hours Between 5 & 9 hours Between 9 & 15 hours Over 15 hours f. Discuss the results: Describe the distributions of WEIGHT for the different levels of FITNESS as well as draw comparisons (i.e., What do they have in common?) and contrasts (i.e., How are they different?) between these distributions. Are there any surprises in the results? Explain why you think so, or why not. Problem 6 (Even): If your E number ends in an even number (0, 2, 4, 6, or 8) then do this question. (Omit this page/problem if your E# ends with an odd number.) Gender and Nuclear Safety. Question 5 in the survey asked students “How safe would you feel if a nuclear energy plant were built near where you live?” (Students could choose one of these options: Extremely safe, Very Safe, Moderately safe, Slightly safe, or Not at all safe.) Is there a relationship between gender and students’ opinions about nuclear safety? a. Create an appropriate graph to display the relationship between GENDER and NUCLEAR SAFETY. You don’t want to display information for students that didn’t answer both of these questions on the survey, so click on Data Options > Group Options and remove the checks in the boxes beside “Include missing as a group” and “Include empty cells.” Insert your graph here. b. Create an appropriate two-way table to summarize the data. Click on Options > Display missing values for… and put a dot in the circle beside “No variables.” Insert your table here. c. SUPPOSE WE SELECT ONE STUDENT AT RANDOM: (Calculate the following probabilities and show your work.) i. What is the probability that this student is a female and feels “very safe”? P = ii. What is the probability that this student is either a male or that he/she feels “very safe”? P = iii. What is the probability that this student feels “not at all safe” given that the student selected is a female? P = iv. What is the probability that this student is a male given that the student selected feels “not at all safe”? P = d. Do you think there may be an association between GENDER and NUCLEAR SAFETY? Why or why not? Explain your reasoning based on what you see in your graph.

info@checkyourstudy.com