5. Which of the following statements is CORRECT? a. If Firms X and Y have the same P/E ratios, then their market-to-book ratios must also be equal. b. If Firms X and Y have the same net income, number of shares outstanding, and price per share, then their P/E ratios must also be the same. c. If Firms X and Y have the same earnings per share and market-to-book ratio, they must have the same price/earnings ratio. d. If Firm X’s P/E ratio exceeds that of Firm Y, then Y is likely to be less risky and/or be expected to grow at a faster rate. e. If Firms X and Y have the same net income, number of shares outstanding, and price per share, then their market-to-book ratios must also be the same.

5. Which of the following statements is CORRECT? a. If Firms X and Y have the same P/E ratios, then their market-to-book ratios must also be equal. b. If Firms X and Y have the same net income, number of shares outstanding, and price per share, then their P/E ratios must also be the same. c. If Firms X and Y have the same earnings per share and market-to-book ratio, they must have the same price/earnings ratio. d. If Firm X’s P/E ratio exceeds that of Firm Y, then Y is likely to be less risky and/or be expected to grow at a faster rate. e. If Firms X and Y have the same net income, number of shares outstanding, and price per share, then their market-to-book ratios must also be the same.

Answer: b No reason for a to be true. b … Read More...
FSE 100 Extra Credit (20 points) Instructions: Read the description below and work through the design process to build an automated waste sorting system. Turn in the following deliverables in one document, typed: 1. Problem Statement – 1 point 2. Technical System Requirements (at least 3 complete sentences using “shall”) – 3 points 3. Judging Criteria (at least 3, explain why you chose them) – 2 points 4. AHP – 2 points 5. Summaries of your 3 design options (paragraph minimum for each option) – 3 points 6. Design Decision Matrix – 3 points 7. Orthographic Drawing of your final design (3 projections required) – 3 points 8. Activity Diagram of how your sorter functions – 3 points Description: The city of Tempe waste management has notified ASU that due to the exceptional effort the Sundevil students have made in the sustainability area, ASU has been contributing three times the amount of recyclable materials than what was predicted on a monthly basis. Unfortunately, due to the immense amount of materials being delivered, the city of Tempe waste management has asked for assistance from ASU prior to picking up the recyclable waste. They have requested that ASU implement an automated waste sorting system that would pre-filter all the materials so the city of Tempe can collect the materials based on one of three types and process the waste much faster. ASU has hired you to design an automated sorter, but due to the unexpected nature of this request, ASU prefers that this design be as simple and inexpensive to build as possible. The city of Tempe would like to have the waste categorized as either glass, plastic, or metal. Paper will not be considered in this design. Any glass that is sorted in your device needs to stay intact, and not break. Very few people will be able to monitor this device as it sorts, so it must be able to sort the items with no input from a user, as quickly as possible. This design cannot exceed 2m in length, width, or height, but the weight is unlimited. ASU is not giving any guidance as to the materials you can use, so you are free to shop for whatever you’d like, but keep in mind, the final cost of this device must be as inexpensive as possible. Submit through Blackboard or print out your document and turn it in to me no later than the date shown on Blackboard.

FSE 100 Extra Credit (20 points) Instructions: Read the description below and work through the design process to build an automated waste sorting system. Turn in the following deliverables in one document, typed: 1. Problem Statement – 1 point 2. Technical System Requirements (at least 3 complete sentences using “shall”) – 3 points 3. Judging Criteria (at least 3, explain why you chose them) – 2 points 4. AHP – 2 points 5. Summaries of your 3 design options (paragraph minimum for each option) – 3 points 6. Design Decision Matrix – 3 points 7. Orthographic Drawing of your final design (3 projections required) – 3 points 8. Activity Diagram of how your sorter functions – 3 points Description: The city of Tempe waste management has notified ASU that due to the exceptional effort the Sundevil students have made in the sustainability area, ASU has been contributing three times the amount of recyclable materials than what was predicted on a monthly basis. Unfortunately, due to the immense amount of materials being delivered, the city of Tempe waste management has asked for assistance from ASU prior to picking up the recyclable waste. They have requested that ASU implement an automated waste sorting system that would pre-filter all the materials so the city of Tempe can collect the materials based on one of three types and process the waste much faster. ASU has hired you to design an automated sorter, but due to the unexpected nature of this request, ASU prefers that this design be as simple and inexpensive to build as possible. The city of Tempe would like to have the waste categorized as either glass, plastic, or metal. Paper will not be considered in this design. Any glass that is sorted in your device needs to stay intact, and not break. Very few people will be able to monitor this device as it sorts, so it must be able to sort the items with no input from a user, as quickly as possible. This design cannot exceed 2m in length, width, or height, but the weight is unlimited. ASU is not giving any guidance as to the materials you can use, so you are free to shop for whatever you’d like, but keep in mind, the final cost of this device must be as inexpensive as possible. Submit through Blackboard or print out your document and turn it in to me no later than the date shown on Blackboard.

  Problem statement      ASU has been contributing three … Read More...
Fact Debate Brief Introduction Crime doesn’t pay; it should be punished. Even since childhood, a slap on the hand has prevented possible criminals from ever committing the same offense; whether it was successful or not depended on how much that child wanted that cookie. While a slap on the wrist might or might not be an effective deterrent, the same can be said about the death penalty. Every day, somewhere in the world, a criminal is stopped permanently from committing any future costs, but this is by the means of the death. While effective in stopping one person permanently, it does nothing about the crime world as a whole. While it is necessary to end the career of a criminal, no matter what his or her crime is, we must not end it by taking a life. Through this paper, the death penalty will be proven ineffective at deterring crime by use of other environmental factors. Definition: The death penalty is defined as the universal punishment of death as legally applied by a fair court system. It is important for it to be a fair legal system, as not to confuse it with genocide, mob mentality, or any other ruling without trial. Claim 1: Use of the death penalty is in decline Ground 1: According to the book The Death Penalty: A Worldwide Perspective by Roger Hood and Carolyn Hoyle, published Dec. 8th, 2014, the Oxford professors in criminology say “As in most of the rest of the world, the death penalty in the US is in decline and distributed unevenly in frequency of use” even addressing that, as of April 2014, 18 states no longer have a death penalty, and even Oregon and Washington are considering removing their death penalty laws. Furthermore, in 2013, only 9 of these states still retaining the death penalty actually executed someone. Warrant 1: The death penalty can be reinstated at any time, but so far, it hasn’t been. At the same time, more states consider getting rid of it altogether. Therefore, it becomes clear that even states don’t want to be involved with this process showing that this is a disliked process. Claim 2: Even states with death penalty in effect still have high crime rates. Ground 2: With the reports gathered from fbi.gov, lawstreetmedia.com, a website based around political expertise and research determined the ranking of each state based on violent crime, published September 12th, 2014. Of the top ten most violent states, only three of which had the death penalty instituted (Maryland #9, New Mexico #4, Alaska #3). The other seven still had the system in place, and, despite it, still have a high amount of violent crime. On the opposite end of the spectrum, at the bottom ten most violent states, four of which, including the bottom-most states, do not have the death penalty in place. Warrant 2: With this ranking, it literally proves that the death penalty does not deter crime, or that there is a correlation between having the death penalty and having a decrease in the crime rate. Therefore, the idea of death penalty deterring crime is a null term in the sense that there is no, or a flawed connection. Claim 3: Violent crime is decreasing (but not because if the death penalty) Ground 3 A: According to an article published by The Economist, dated July 23rd, 2013, the rate of violent crime is in fact decreasing, but not because of the death penalty, but rather, because we have more police. From 1995 to 2010, policing has increased one-fifth, and with it, a decline in crime rate. In fact, in cities such as Detroit where policing has been cut, an opposite effect, an increase in crime, has been reported. Ground 3 B: An article from the Wall Street Journal, dated May 28th, 2011, also cites a decline in violent, only this time, citing the reason as a correlation with poverty levels. In 2009, at the start of the housing crisis, crime rates also dropped noticeably. Oddly enough, this article points out the belief that unemployment is often associated with crime; instead, the evidence presented is environmental in nature. Warrant 3: Crime rate isn’t deterred by death penalty, but rather, our surroundings. Seeing as how conditions have improved, so has the state of peace. Therefore, it becomes clear that the death penalty is ineffective at deterring crime because other key factors present more possibility for improvement of society. Claim 4: The death penalty is a historically flawed system. Ground 4A: According to the book The Death Penalty: Constitutional Issues, Commentaries, and Case Briefs by Scott Vollum, published in 2005, addresses how the case of the death penalty emerged to where it is today. While the book is now a decade old, it is used for historical context, particularly, in describing the first execution that took place in 1608. While it is true that most of these executions weren’t as well-grounded as the modern ones that take place now, they still had no effect in deterring crime. Why? Because even after America was established and more sane, the death penalty still had to be used because criminals still had violent behaviors. Ground 4B: According to data from Mother Jones, published May 17th, 2013, the reason why the crime rate was so high in the past could possibly be due to yet another environmental factor (affected by change over time), exposure to lead. Since the removal of lead from paint started over a hundred years ago, there has been a decline in homicide. Why is this important? Lead poisoning in child’s brain, if not lethal, can affect development and lead to mental disability, lower IQ, and lack of reasoning. Warrant 4: By examining history as a whole, there is a greater correlation between other factors that have resulted in a decline in violent crime. The decline in the crime rate has been an ongoing process, but has shown a faster decline due to other environmental factors, rather than the instatement of the death penalty. Claim 5: The world’s violent crime rate is changing, but not due to the death penalty. Ground 5A: According to article published by Amnesty USA in March of 2014, the number of executions under the death penalty reported in 2013 had increased by 15%. However, the rate of violent crime in the world has decreased significantly in the last decade. But, Latvia, for example, has permanently banned the death penalty since 2012. In 2014, the country was viewed overall as safe and low in violent crime rate. Ground 5B: However, while it is true that there is a decline in violent crime rate worldwide, The World Bank, April 17, 2013, reports that the rate of global poverty is decreasing. In a similar vein to the US, because wealth is being distributed better and conditions are improving overall, there is a steady decline in crime rate. Warrant 5: By examining the world as a whole, it becomes clear that it doesn’t matter if the death penalty is in place, violent crime will still exist. However, mirroring the US, as simple conditions improve, so does lifestyle. The death penalty does not deter crime in the world, rather a better quality of life is responsible for that. Works Cited “Death Sentences and Executions 2013.” Amnesty International USA. Amnesty USA, 26 Mar. 2014. Web. 15 Mar. 2015. <http://www.amnestyusa.org/research/reports/death-sentences-and-executions-2013>. D. K. “Why Is Crime Falling?” The Economist. The Economist Newspaper, 23 July 2013. Web. 12 Mar. 2015. <http://www.economist.com/blogs/economist-explains/2013/07/economist-explains-16>. Drum, Kevin. “The US Murder Rate Is on Track to Be Lowest in a Century.”Mother Jones. Mother Jones, 17 May 2013. Web. 13 Mar. 2015. <http://www.motherjones.com/kevin-drum/2013/05/us-murder-rate-track-be-lowest-century>. Hood, Roger, and Carolyn Hoyle. The Death Penalty: A Worldwide Perspective. Oxford: Oxford UP, 2002. 45. Print. Rizzo, Kevin. “Slideshow: America’s Safest and Most Dangerous States 2014.”Law Street Media. Law Street TM, 12 Sept. 2014. Web. 12 Mar. 2015. <http://lawstreetmedia.com/blogs/crime/safest-and-most-dangerous-states-2014/#slideshow>. Vollum, Scott. The Death Penalty: Constitutional Issues, Commentaries, and Case Briefs. Newark, NJ: LexisNexis, 2005. 2. Print. Theis, David. “Remarkable Declines in Global Poverty, But Major Challenges Remain.” The World Bank. The World Bank, 17 Apr. 2013. Web. 15 Mar. 2015. <http://www.worldbank.org/en/news/press-release/2013/04/17/remarkable-declines-in-global-poverty-but-major-challenges-remain>. Wilson, James Q. “Hard Times, Fewer Crimes.” WSJ. The Wall Street Journal, 28 May 2011. Web. 13 Mar. 2015. <http://www.wsj.com/articles/SB10001424052702304066504576345553135009870>.

Fact Debate Brief Introduction Crime doesn’t pay; it should be punished. Even since childhood, a slap on the hand has prevented possible criminals from ever committing the same offense; whether it was successful or not depended on how much that child wanted that cookie. While a slap on the wrist might or might not be an effective deterrent, the same can be said about the death penalty. Every day, somewhere in the world, a criminal is stopped permanently from committing any future costs, but this is by the means of the death. While effective in stopping one person permanently, it does nothing about the crime world as a whole. While it is necessary to end the career of a criminal, no matter what his or her crime is, we must not end it by taking a life. Through this paper, the death penalty will be proven ineffective at deterring crime by use of other environmental factors. Definition: The death penalty is defined as the universal punishment of death as legally applied by a fair court system. It is important for it to be a fair legal system, as not to confuse it with genocide, mob mentality, or any other ruling without trial. Claim 1: Use of the death penalty is in decline Ground 1: According to the book The Death Penalty: A Worldwide Perspective by Roger Hood and Carolyn Hoyle, published Dec. 8th, 2014, the Oxford professors in criminology say “As in most of the rest of the world, the death penalty in the US is in decline and distributed unevenly in frequency of use” even addressing that, as of April 2014, 18 states no longer have a death penalty, and even Oregon and Washington are considering removing their death penalty laws. Furthermore, in 2013, only 9 of these states still retaining the death penalty actually executed someone. Warrant 1: The death penalty can be reinstated at any time, but so far, it hasn’t been. At the same time, more states consider getting rid of it altogether. Therefore, it becomes clear that even states don’t want to be involved with this process showing that this is a disliked process. Claim 2: Even states with death penalty in effect still have high crime rates. Ground 2: With the reports gathered from fbi.gov, lawstreetmedia.com, a website based around political expertise and research determined the ranking of each state based on violent crime, published September 12th, 2014. Of the top ten most violent states, only three of which had the death penalty instituted (Maryland #9, New Mexico #4, Alaska #3). The other seven still had the system in place, and, despite it, still have a high amount of violent crime. On the opposite end of the spectrum, at the bottom ten most violent states, four of which, including the bottom-most states, do not have the death penalty in place. Warrant 2: With this ranking, it literally proves that the death penalty does not deter crime, or that there is a correlation between having the death penalty and having a decrease in the crime rate. Therefore, the idea of death penalty deterring crime is a null term in the sense that there is no, or a flawed connection. Claim 3: Violent crime is decreasing (but not because if the death penalty) Ground 3 A: According to an article published by The Economist, dated July 23rd, 2013, the rate of violent crime is in fact decreasing, but not because of the death penalty, but rather, because we have more police. From 1995 to 2010, policing has increased one-fifth, and with it, a decline in crime rate. In fact, in cities such as Detroit where policing has been cut, an opposite effect, an increase in crime, has been reported. Ground 3 B: An article from the Wall Street Journal, dated May 28th, 2011, also cites a decline in violent, only this time, citing the reason as a correlation with poverty levels. In 2009, at the start of the housing crisis, crime rates also dropped noticeably. Oddly enough, this article points out the belief that unemployment is often associated with crime; instead, the evidence presented is environmental in nature. Warrant 3: Crime rate isn’t deterred by death penalty, but rather, our surroundings. Seeing as how conditions have improved, so has the state of peace. Therefore, it becomes clear that the death penalty is ineffective at deterring crime because other key factors present more possibility for improvement of society. Claim 4: The death penalty is a historically flawed system. Ground 4A: According to the book The Death Penalty: Constitutional Issues, Commentaries, and Case Briefs by Scott Vollum, published in 2005, addresses how the case of the death penalty emerged to where it is today. While the book is now a decade old, it is used for historical context, particularly, in describing the first execution that took place in 1608. While it is true that most of these executions weren’t as well-grounded as the modern ones that take place now, they still had no effect in deterring crime. Why? Because even after America was established and more sane, the death penalty still had to be used because criminals still had violent behaviors. Ground 4B: According to data from Mother Jones, published May 17th, 2013, the reason why the crime rate was so high in the past could possibly be due to yet another environmental factor (affected by change over time), exposure to lead. Since the removal of lead from paint started over a hundred years ago, there has been a decline in homicide. Why is this important? Lead poisoning in child’s brain, if not lethal, can affect development and lead to mental disability, lower IQ, and lack of reasoning. Warrant 4: By examining history as a whole, there is a greater correlation between other factors that have resulted in a decline in violent crime. The decline in the crime rate has been an ongoing process, but has shown a faster decline due to other environmental factors, rather than the instatement of the death penalty. Claim 5: The world’s violent crime rate is changing, but not due to the death penalty. Ground 5A: According to article published by Amnesty USA in March of 2014, the number of executions under the death penalty reported in 2013 had increased by 15%. However, the rate of violent crime in the world has decreased significantly in the last decade. But, Latvia, for example, has permanently banned the death penalty since 2012. In 2014, the country was viewed overall as safe and low in violent crime rate. Ground 5B: However, while it is true that there is a decline in violent crime rate worldwide, The World Bank, April 17, 2013, reports that the rate of global poverty is decreasing. In a similar vein to the US, because wealth is being distributed better and conditions are improving overall, there is a steady decline in crime rate. Warrant 5: By examining the world as a whole, it becomes clear that it doesn’t matter if the death penalty is in place, violent crime will still exist. However, mirroring the US, as simple conditions improve, so does lifestyle. The death penalty does not deter crime in the world, rather a better quality of life is responsible for that. Works Cited “Death Sentences and Executions 2013.” Amnesty International USA. Amnesty USA, 26 Mar. 2014. Web. 15 Mar. 2015. . D. K. “Why Is Crime Falling?” The Economist. The Economist Newspaper, 23 July 2013. Web. 12 Mar. 2015. . Drum, Kevin. “The US Murder Rate Is on Track to Be Lowest in a Century.”Mother Jones. Mother Jones, 17 May 2013. Web. 13 Mar. 2015. . Hood, Roger, and Carolyn Hoyle. The Death Penalty: A Worldwide Perspective. Oxford: Oxford UP, 2002. 45. Print. Rizzo, Kevin. “Slideshow: America’s Safest and Most Dangerous States 2014.”Law Street Media. Law Street TM, 12 Sept. 2014. Web. 12 Mar. 2015. . Vollum, Scott. The Death Penalty: Constitutional Issues, Commentaries, and Case Briefs. Newark, NJ: LexisNexis, 2005. 2. Print. Theis, David. “Remarkable Declines in Global Poverty, But Major Challenges Remain.” The World Bank. The World Bank, 17 Apr. 2013. Web. 15 Mar. 2015. . Wilson, James Q. “Hard Times, Fewer Crimes.” WSJ. The Wall Street Journal, 28 May 2011. Web. 13 Mar. 2015. .

Fact Debate Brief Introduction Crime doesn’t pay; it should be … Read More...
Assignment One Suggested Due Date: July 17th In this assignment you will read three articles You will answer questions about Hayek, Lucas, and Mankiw et. al. which consider just those particular articles. Then at the end of the assignment there is a cluster of questions that deal with both Lucas and Mankiw et al where you will have an opportunity to compare and contrast those two articles. When you have completed the assignment, place it in the appropriate drop box in WTClass. Hayek: The Use of Knowledge in Society http://www.econlib.org/library/Essays/hykKnw1.html Adapted from Michael K. Salemi “The Use of Knowledge in Society” F. A. Hayek Discussion Questions 1.1. “The peculiar character of the problem of a rational economic order is determined precisely by the fact that the knowledge of the circumstances of which we must make use never exists in concentrated or integrated form, but solely as the dispersed bits of incomplete and frequently contradictory knowledge which all the separate individuals possess (H.3)” a. What does Hayek mean by a “rational economic order”? b. What does Hayek mean by “dispersed bits of incomplete and frequently contradictory knowledge”? c. Why is Hayek critical of the common assumptions in economic analysis that buyers, sellers, producers and the economist all know every relevant thing about the economy? d. What, in summary, does Hayek mean by the quoted statement? 1.2. What, according to Hayek, is the information needed to operate effectively in a complex market economy? a. What does Hayek mean by “planning”? b. What is the minimum information needed by economic planners and individuals? c. Does the minimum differ for planners and for individuals? How? Why? d. What happens when some individuals possess more information than other individuals? e. What does Hayek mean when he says (H.16) “…the sort of knowledge with which I have been concerned is knowledge of the kind which by its nature cannot enter into statistics and therefore cannot be conveyed to any central authority in statistical form”? f. Why, according to Hayek, can the “information problem” be solved by “the price system”? 1.3. Why, according to Hayek, is the true function of the price system the communication of information? a. Why does Hayek use the term ‘marvel’ in his discussion of the economy of knowledge? b. What does Hayek mean when he says (H.26) “…man has been able to develop that division of labor on which our civilization is based because he happened to stumble upon a method which made it possible”? Read Robert Lucas’ “Some Macroeconomics for the 21st Century” in the Journal of Economic Perspectives. (Skip the appendix.) All four of these links go to the same article. Some of the links might not be accessible to you, but I think that at least one of them should work for all of you. https://www.aeaweb.org/articles.php?doi=10.1257/jep.14.1.159 http://www.jstor.org/stable/2647059 http://www.econ.psu.edu/~aur10/Econ%20570%20Fall%202009/Lucas%20JEP%202000.pdf http://faculty.georgetown.edu/mh5/class/econ102/readings/Macro_21st_Century.pdf 1. According to Lucas, why has the world’s economy grown so much since 1960? 2. According to Lucas, why do some nations grow faster than others? 3. According to Lucas, why will growth and inequality decrease in the next 100 years? 4. Is Lucas’ model in this paper “economics?” Read Greg Mankiw, Romer and Wiel’s article in The Quarterly Journal of Economics. http://www.econ.nyu.edu/user/debraj/Courses/Readings/MankiwRomerWeil.pdf 1. Many economists think the Solow Growth Model is of limited use. (One of my professors at OU stated that it took economists 50 years to figure out that their growth model has nothing to do with growth.) But does the Solow model give “…the right answer to the questions it is designed to address?” 2. Why is human capital important when testing the Solow model against the data? 3. Explain how the authors conclude that the incomes of the world’s nations are converging? Now that you’ve answered questions about Lucas and Mankiw et al separately, consider this question: Both of these papers develop the notion that the economies of the world’s nations will tend to “converge” over time. Compare and contrast the way(s) in which the papers advance the idea of convergence. Assignment Two Due Date July 24th This assignment is very straight forward. You’ll read two papers and answer questions about each of them. Read Krugman’s paper on unemployment http://www.kc.frb.org/PUBLICAT/ECONREV/EconRevArchive/1994/4Q94KRUG.pdf 1. What is the difference between structural and cyclical unemployment? In this context, what is the difference between Europe and the US? What is the evidence that Krugman uses to back his opinion? 2. What is the natural rate of unemployment? Why is it higher/rising in Europe? Again, what is the evidence? 3. What is the relationship between the rising unemployment in Europe and the rise in inequality in the US. (What does Krugman mean by inequality?) 4. What is NOT to blame for either the rise in unemployment or inequality? 5. What policies, if any, can be put into place to combat rising inequality/unemployment? 6. Are you convinced by Krugman’s argument which rules out globalization as the likely cause for high European unemployment and high US wage inequality? 7. Consider Table 2 in Krugman. Why does Krugman include Table 2 in his paper? In other words, what point is strengthened by the data in Table 2 and why is it crucial to Krugman’s larger thesis? NOW, recreate the data for Table 2 for either the UK or US for the latest year possible. Has anything changed as a result of the Great Recession? Read Thomas Sargent’s paper about the credibility of “Reaganonomics.” http://minneapolisfed.contentdm.oclc.org/cdm/ref/collection/p15334coll1/id/366 http://minneapolisfed.contentdm.oclc.org/cdm/singleitem/collection/p15334coll1/id/366/rec/1 You might like this: http://www.ispot.tv/ad/7Lj9/ally-bank-predictions-featuring-thomas-sargent 1. What is a dynamic game? 2. Why should we think of monetary and fiscal policy as dynamic game? Who are the players and what are the strategies? 3. When are government budgets inflationary? (Again, think in terms of a game.) 4. What are the consequences if the monetary authority does not coordinate with fiscal policy agents? 5. Has Sargent done of good job characterizing the interplay between policymakers in the government, the central bank, and the public? 6. What is the connection between policy coordination and credibility? 7. Why, according to Sargent, were Reagan’s fiscal and monetary policy regimes “incredible?” Explain carefully. Assignment Three Due Date July 31 Read Taylor, Miskin, Obstfeld and Rogoff. Answer the questions for each article, then answer the final cluster that requires you to consider Miskin, Obstfeld and Rogoff. Suggested due date: January 2nd. Read John Taylor’s article about monetary transmission mechanisms. http://web.econ.unito.it/bagliano/ecmon_readings/taylor_jep95.pdf Also, to understand traditional monetary policy, listen to this: http://www.econtalk.org/archives/2008/08/john_taylor_on.html These questions refer to the article, not the podcast. 1. How does monetary policy (or changes in monetary policy) affect output and inflation? In other words, what is the monetary policy transmission mechanism? 2. What is the importance of financial market prices in Taylor’s view? 3. What is the importance of rational expectations and rigidities in the prices of labor and goods? 4. What is a reaction function? Why is a reaction function important? 5. What is an “optimal monetary policy rule?” 6. Has the monetary transmission mechanism changed? How? 7. What are the criticisms of Taylor’s views? How does he respond? What do you think? Read Mishkin’s article about global financial instability. http://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.13.4.3 1. What is a financial crisis? 2. How did adverse selection and moral hazard contribute to the financial crisis in Mexico and East Asia in the 1990s? What are adverse selection and moral hazard? 3. Did irresponsible monetary and fiscal policy contribute to the crisis in the 90s? Why or why not? 4. How is it possible for the IMF to help in a crisis when a domestic central bank might not be able to help. 5. What should the US learn (or have learned??) from the crisis in the 90s? Read Rogoff’s article about global financial instability. http://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.13.4.21 http://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.13.4.21 Answer the questions and place the answers in the appropriate drop box in WTClass. 1. According to Rogoff, is the status quo in international lending viable or not? Explain. 2. Can the IMF handle international financial crises? Why or why not? 3. Rogoff gives six solutions to save the global financial system (deep pockets lender of last resort, an international financial crisis manager, an international bankruptcy court, an international regulator, international deposit insurance corporation, and a world monetary authority.) What is wrong with all of these? 4. Can developing economies cope with speculative capital flows without help? Explain. 5. What will be (should be) the role that equity financing play in developing country projects? Read Obstfeld on Global Capital Markets: http://www.nber.org/papers/w6559.pdf 1. Look at table 1 and figure 1. How does Obstfeld use the data in that table to suggest that 1) markets became less open then more open in the 20th century. 2. What is the “openness trilemma?” What are the economic and/or policy trade-offs with having a global, open and integrated financial system? 3. How does economic integration impact a nation’s ability to tax capital? Can you think of some high profile cases in the news lately that illustrate this fact? (Hint: you should be able to.) 4. What is the international diversification puzzle? What market failures have arisen (if any) have arisen due to more integration and openness? Comparing Obstfeld, Miskin, and Rogoff 1. Would the authors’ advice about policies to reduce the costs of financial integration be the same? Why or why not? 2. Would the authors’ agree that we need an international regulatory body to stave off international financial crises? Why or why not? 3. What is your opinion? Is it good to have a global financial market? Why or why not? Assignment Four Due Date August 7 Straight forward assignment: Read and answer the questions. Read Arnold Kling’s history of the policies that created the great recession http://mercatus.org/publication/not-what-they-had-mind-history-policies-produced-financial-crisis-2008 1. Using only the executive summary, what does Kling think caused the Financial Crisis of 2008? (Use only one sentence.) 2. One page 5, what is “the fact?” and what does this “fact” mean to you? 3. Briefly summarize the four components of the Financial Crisis? 4. On page 10, Kling states, “These property bubbles (in the U.K. and Spain) cannot be blamed on U.S. policy.” How confident are you on that point? Is Kling wrong? 5. Kling’s matrix of causes, gives almost all weight to what two factors? What three factors are almost completely not responsible? 6. Many have blamed designer financial (my term) like CDS and CDO and the shadow banking system for the collapse. How do these fit into Kling’s narrative? 7. Outline the progression of policy that caused/responded to economic conditions in the 30s, 70s and 80s and 00s. 8. What role did the mortgage interest deduction have on housing market? 9. What institution invented and allowed the expansion of mortgage-backed securities? 10. What is regulatory arbitrage? 11. Why did the Basel agreement create an advantage for mortgage securitization? 12. Did the Federal Reserve (and presumably other regulatory agencies know and even encourage regulatory capital arbitrage? What author does Kling cite to establish this? 13. What did the 2002 modification of the Basel Rules do to capital requirements? (See figure 4) 14. Summarize the Shadow Regulatory Committee’s statement 160. 15. Did non market institutions, such as the IMF and Bernanke, think, in 2006, that financial innovation had make the banking sector more or less fragile? 16. What is time inconsistency? (You can look this up elsewhere.) 17. How might “barriers to entry” by related to “safety and soundness?” 18. A Curmudgeon is an old man who is easily annoyed and angered. He also complains a lot. (I had to look it up.) I think I’ll change my xbox gamertag to this word, but I’ll bet it is taken. 19. How did credit scoring and credit default swaps enlarge the mortgage securities market? 20. Why, up until 2007, did we think that monetary expansion was all that was needed to mitigate the impact of financial crises? 21. Suppose that financial markets are inherently unstable. What does this mean are two goals of regulation and regulators? 22. Why are type two errors so problematic? (Two reasons.) 23. How could we make the banking sector easy to fix? Assignment Five Due August 13 Read the linked lectures and answer the questions. Lecture 1 http://econlog.econlib.org/archives/2008/11/lectures_in_mac.html 1.1 Why do you think macroeconomic realities must be reconciled with microeconomic analysis? (This is not a rhetorical question, but it will be hard for you to answer. There is no “wrong” answer you could give. Just think about it for a few minutes.) Lecture 2 http://econlog.econlib.org/archives/2008/11/lectures_in_mac_1.html 2.1 Consider this article after you have read Hayek. How do prices and wages perform the function of “central planning?” 2.2 Kling makes that claim that, because most workers do not do manual labor anymore, the economy is different that it was in 1930. Assuming he is correct, do you think central planning would be harder today or easier? Why? Lecture 3 http://econlog.econlib.org/archives/2008/11/lectures_on_mac.html 3.1 Give a one sentence definition of structural unemployment, of frictional unemployment and of cyclical unemployment. Lecture 4 http://econlog.econlib.org/archives/2008/11/lectures_on_mac_1.html 4.1 So, why does the economy adjust employment rather than wages? Lecture 5 http://econlog.econlib.org/archives/2008/11/lectures_on_mac_2.html 5.1 Kling gives 5 reasons the DotCom recession was worse than the previous two recessions (at least in duration). Which reason do you think is the most compelling? Lecture 6 http://econlog.econlib.org/archives/2008/11/lectures_on_mac_3.html 6.1 Why are Keynesian remedies (blunt fiscal and monetary policy measures) less appropriate in a post industrial economy, according to Kling? Lecture 7 http://econlog.econlib.org/archives/2008/11/lectures_on_mac_4.html 7.1 Why is it so hard to separate finance and government, according to Kling? Lecture 8 http://econlog.econlib.org/archives/2008/11/lectures_on_mac_5.html 8.1 Why is American Express Travelers Checks so interesting? Do credit cards work in a similar way? (I really don’t know the answer to this one. I just know that credit cards have made travelers checks obsolete.) Lecture 9. http://econlog.econlib.org/archives/2008/12/lectures_on_mac_6.html 9.1 According to this article, why do we have banks (financial sector or financial intermediation?) Lecture 10 http://econlog.econlib.org/archives/2008/12/lectures_on_mac_7.html 10.1 Why are banks better than barter, according to this leture? 10.2 Politics tends to favor bailouts of failed firms. Why is this exactly wrong?

Assignment One Suggested Due Date: July 17th In this assignment you will read three articles You will answer questions about Hayek, Lucas, and Mankiw et. al. which consider just those particular articles. Then at the end of the assignment there is a cluster of questions that deal with both Lucas and Mankiw et al where you will have an opportunity to compare and contrast those two articles. When you have completed the assignment, place it in the appropriate drop box in WTClass. Hayek: The Use of Knowledge in Society http://www.econlib.org/library/Essays/hykKnw1.html Adapted from Michael K. Salemi “The Use of Knowledge in Society” F. A. Hayek Discussion Questions 1.1. “The peculiar character of the problem of a rational economic order is determined precisely by the fact that the knowledge of the circumstances of which we must make use never exists in concentrated or integrated form, but solely as the dispersed bits of incomplete and frequently contradictory knowledge which all the separate individuals possess (H.3)” a. What does Hayek mean by a “rational economic order”? b. What does Hayek mean by “dispersed bits of incomplete and frequently contradictory knowledge”? c. Why is Hayek critical of the common assumptions in economic analysis that buyers, sellers, producers and the economist all know every relevant thing about the economy? d. What, in summary, does Hayek mean by the quoted statement? 1.2. What, according to Hayek, is the information needed to operate effectively in a complex market economy? a. What does Hayek mean by “planning”? b. What is the minimum information needed by economic planners and individuals? c. Does the minimum differ for planners and for individuals? How? Why? d. What happens when some individuals possess more information than other individuals? e. What does Hayek mean when he says (H.16) “…the sort of knowledge with which I have been concerned is knowledge of the kind which by its nature cannot enter into statistics and therefore cannot be conveyed to any central authority in statistical form”? f. Why, according to Hayek, can the “information problem” be solved by “the price system”? 1.3. Why, according to Hayek, is the true function of the price system the communication of information? a. Why does Hayek use the term ‘marvel’ in his discussion of the economy of knowledge? b. What does Hayek mean when he says (H.26) “…man has been able to develop that division of labor on which our civilization is based because he happened to stumble upon a method which made it possible”? Read Robert Lucas’ “Some Macroeconomics for the 21st Century” in the Journal of Economic Perspectives. (Skip the appendix.) All four of these links go to the same article. Some of the links might not be accessible to you, but I think that at least one of them should work for all of you. https://www.aeaweb.org/articles.php?doi=10.1257/jep.14.1.159 http://www.jstor.org/stable/2647059 http://www.econ.psu.edu/~aur10/Econ%20570%20Fall%202009/Lucas%20JEP%202000.pdf http://faculty.georgetown.edu/mh5/class/econ102/readings/Macro_21st_Century.pdf 1. According to Lucas, why has the world’s economy grown so much since 1960? 2. According to Lucas, why do some nations grow faster than others? 3. According to Lucas, why will growth and inequality decrease in the next 100 years? 4. Is Lucas’ model in this paper “economics?” Read Greg Mankiw, Romer and Wiel’s article in The Quarterly Journal of Economics. http://www.econ.nyu.edu/user/debraj/Courses/Readings/MankiwRomerWeil.pdf 1. Many economists think the Solow Growth Model is of limited use. (One of my professors at OU stated that it took economists 50 years to figure out that their growth model has nothing to do with growth.) But does the Solow model give “…the right answer to the questions it is designed to address?” 2. Why is human capital important when testing the Solow model against the data? 3. Explain how the authors conclude that the incomes of the world’s nations are converging? Now that you’ve answered questions about Lucas and Mankiw et al separately, consider this question: Both of these papers develop the notion that the economies of the world’s nations will tend to “converge” over time. Compare and contrast the way(s) in which the papers advance the idea of convergence. Assignment Two Due Date July 24th This assignment is very straight forward. You’ll read two papers and answer questions about each of them. Read Krugman’s paper on unemployment http://www.kc.frb.org/PUBLICAT/ECONREV/EconRevArchive/1994/4Q94KRUG.pdf 1. What is the difference between structural and cyclical unemployment? In this context, what is the difference between Europe and the US? What is the evidence that Krugman uses to back his opinion? 2. What is the natural rate of unemployment? Why is it higher/rising in Europe? Again, what is the evidence? 3. What is the relationship between the rising unemployment in Europe and the rise in inequality in the US. (What does Krugman mean by inequality?) 4. What is NOT to blame for either the rise in unemployment or inequality? 5. What policies, if any, can be put into place to combat rising inequality/unemployment? 6. Are you convinced by Krugman’s argument which rules out globalization as the likely cause for high European unemployment and high US wage inequality? 7. Consider Table 2 in Krugman. Why does Krugman include Table 2 in his paper? In other words, what point is strengthened by the data in Table 2 and why is it crucial to Krugman’s larger thesis? NOW, recreate the data for Table 2 for either the UK or US for the latest year possible. Has anything changed as a result of the Great Recession? Read Thomas Sargent’s paper about the credibility of “Reaganonomics.” http://minneapolisfed.contentdm.oclc.org/cdm/ref/collection/p15334coll1/id/366 http://minneapolisfed.contentdm.oclc.org/cdm/singleitem/collection/p15334coll1/id/366/rec/1 You might like this: http://www.ispot.tv/ad/7Lj9/ally-bank-predictions-featuring-thomas-sargent 1. What is a dynamic game? 2. Why should we think of monetary and fiscal policy as dynamic game? Who are the players and what are the strategies? 3. When are government budgets inflationary? (Again, think in terms of a game.) 4. What are the consequences if the monetary authority does not coordinate with fiscal policy agents? 5. Has Sargent done of good job characterizing the interplay between policymakers in the government, the central bank, and the public? 6. What is the connection between policy coordination and credibility? 7. Why, according to Sargent, were Reagan’s fiscal and monetary policy regimes “incredible?” Explain carefully. Assignment Three Due Date July 31 Read Taylor, Miskin, Obstfeld and Rogoff. Answer the questions for each article, then answer the final cluster that requires you to consider Miskin, Obstfeld and Rogoff. Suggested due date: January 2nd. Read John Taylor’s article about monetary transmission mechanisms. http://web.econ.unito.it/bagliano/ecmon_readings/taylor_jep95.pdf Also, to understand traditional monetary policy, listen to this: http://www.econtalk.org/archives/2008/08/john_taylor_on.html These questions refer to the article, not the podcast. 1. How does monetary policy (or changes in monetary policy) affect output and inflation? In other words, what is the monetary policy transmission mechanism? 2. What is the importance of financial market prices in Taylor’s view? 3. What is the importance of rational expectations and rigidities in the prices of labor and goods? 4. What is a reaction function? Why is a reaction function important? 5. What is an “optimal monetary policy rule?” 6. Has the monetary transmission mechanism changed? How? 7. What are the criticisms of Taylor’s views? How does he respond? What do you think? Read Mishkin’s article about global financial instability. http://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.13.4.3 1. What is a financial crisis? 2. How did adverse selection and moral hazard contribute to the financial crisis in Mexico and East Asia in the 1990s? What are adverse selection and moral hazard? 3. Did irresponsible monetary and fiscal policy contribute to the crisis in the 90s? Why or why not? 4. How is it possible for the IMF to help in a crisis when a domestic central bank might not be able to help. 5. What should the US learn (or have learned??) from the crisis in the 90s? Read Rogoff’s article about global financial instability. http://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.13.4.21 http://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.13.4.21 Answer the questions and place the answers in the appropriate drop box in WTClass. 1. According to Rogoff, is the status quo in international lending viable or not? Explain. 2. Can the IMF handle international financial crises? Why or why not? 3. Rogoff gives six solutions to save the global financial system (deep pockets lender of last resort, an international financial crisis manager, an international bankruptcy court, an international regulator, international deposit insurance corporation, and a world monetary authority.) What is wrong with all of these? 4. Can developing economies cope with speculative capital flows without help? Explain. 5. What will be (should be) the role that equity financing play in developing country projects? Read Obstfeld on Global Capital Markets: http://www.nber.org/papers/w6559.pdf 1. Look at table 1 and figure 1. How does Obstfeld use the data in that table to suggest that 1) markets became less open then more open in the 20th century. 2. What is the “openness trilemma?” What are the economic and/or policy trade-offs with having a global, open and integrated financial system? 3. How does economic integration impact a nation’s ability to tax capital? Can you think of some high profile cases in the news lately that illustrate this fact? (Hint: you should be able to.) 4. What is the international diversification puzzle? What market failures have arisen (if any) have arisen due to more integration and openness? Comparing Obstfeld, Miskin, and Rogoff 1. Would the authors’ advice about policies to reduce the costs of financial integration be the same? Why or why not? 2. Would the authors’ agree that we need an international regulatory body to stave off international financial crises? Why or why not? 3. What is your opinion? Is it good to have a global financial market? Why or why not? Assignment Four Due Date August 7 Straight forward assignment: Read and answer the questions. Read Arnold Kling’s history of the policies that created the great recession http://mercatus.org/publication/not-what-they-had-mind-history-policies-produced-financial-crisis-2008 1. Using only the executive summary, what does Kling think caused the Financial Crisis of 2008? (Use only one sentence.) 2. One page 5, what is “the fact?” and what does this “fact” mean to you? 3. Briefly summarize the four components of the Financial Crisis? 4. On page 10, Kling states, “These property bubbles (in the U.K. and Spain) cannot be blamed on U.S. policy.” How confident are you on that point? Is Kling wrong? 5. Kling’s matrix of causes, gives almost all weight to what two factors? What three factors are almost completely not responsible? 6. Many have blamed designer financial (my term) like CDS and CDO and the shadow banking system for the collapse. How do these fit into Kling’s narrative? 7. Outline the progression of policy that caused/responded to economic conditions in the 30s, 70s and 80s and 00s. 8. What role did the mortgage interest deduction have on housing market? 9. What institution invented and allowed the expansion of mortgage-backed securities? 10. What is regulatory arbitrage? 11. Why did the Basel agreement create an advantage for mortgage securitization? 12. Did the Federal Reserve (and presumably other regulatory agencies know and even encourage regulatory capital arbitrage? What author does Kling cite to establish this? 13. What did the 2002 modification of the Basel Rules do to capital requirements? (See figure 4) 14. Summarize the Shadow Regulatory Committee’s statement 160. 15. Did non market institutions, such as the IMF and Bernanke, think, in 2006, that financial innovation had make the banking sector more or less fragile? 16. What is time inconsistency? (You can look this up elsewhere.) 17. How might “barriers to entry” by related to “safety and soundness?” 18. A Curmudgeon is an old man who is easily annoyed and angered. He also complains a lot. (I had to look it up.) I think I’ll change my xbox gamertag to this word, but I’ll bet it is taken. 19. How did credit scoring and credit default swaps enlarge the mortgage securities market? 20. Why, up until 2007, did we think that monetary expansion was all that was needed to mitigate the impact of financial crises? 21. Suppose that financial markets are inherently unstable. What does this mean are two goals of regulation and regulators? 22. Why are type two errors so problematic? (Two reasons.) 23. How could we make the banking sector easy to fix? Assignment Five Due August 13 Read the linked lectures and answer the questions. Lecture 1 http://econlog.econlib.org/archives/2008/11/lectures_in_mac.html 1.1 Why do you think macroeconomic realities must be reconciled with microeconomic analysis? (This is not a rhetorical question, but it will be hard for you to answer. There is no “wrong” answer you could give. Just think about it for a few minutes.) Lecture 2 http://econlog.econlib.org/archives/2008/11/lectures_in_mac_1.html 2.1 Consider this article after you have read Hayek. How do prices and wages perform the function of “central planning?” 2.2 Kling makes that claim that, because most workers do not do manual labor anymore, the economy is different that it was in 1930. Assuming he is correct, do you think central planning would be harder today or easier? Why? Lecture 3 http://econlog.econlib.org/archives/2008/11/lectures_on_mac.html 3.1 Give a one sentence definition of structural unemployment, of frictional unemployment and of cyclical unemployment. Lecture 4 http://econlog.econlib.org/archives/2008/11/lectures_on_mac_1.html 4.1 So, why does the economy adjust employment rather than wages? Lecture 5 http://econlog.econlib.org/archives/2008/11/lectures_on_mac_2.html 5.1 Kling gives 5 reasons the DotCom recession was worse than the previous two recessions (at least in duration). Which reason do you think is the most compelling? Lecture 6 http://econlog.econlib.org/archives/2008/11/lectures_on_mac_3.html 6.1 Why are Keynesian remedies (blunt fiscal and monetary policy measures) less appropriate in a post industrial economy, according to Kling? Lecture 7 http://econlog.econlib.org/archives/2008/11/lectures_on_mac_4.html 7.1 Why is it so hard to separate finance and government, according to Kling? Lecture 8 http://econlog.econlib.org/archives/2008/11/lectures_on_mac_5.html 8.1 Why is American Express Travelers Checks so interesting? Do credit cards work in a similar way? (I really don’t know the answer to this one. I just know that credit cards have made travelers checks obsolete.) Lecture 9. http://econlog.econlib.org/archives/2008/12/lectures_on_mac_6.html 9.1 According to this article, why do we have banks (financial sector or financial intermediation?) Lecture 10 http://econlog.econlib.org/archives/2008/12/lectures_on_mac_7.html 10.1 Why are banks better than barter, according to this leture? 10.2 Politics tends to favor bailouts of failed firms. Why is this exactly wrong?

info@checkyourstudy.com
Question 1 When using NTFS as a file system, what can be used to control the amount of hard disk space each user on the machine can have as a maximum? Answer Logical drives Extended partitions Disk quotas Security Center Question 2 Pin 1 of the floppy cable connects to pin 34 of the controller. Answer True False Question 3 What is the primary cause of hard drive failures? Answer Heat Dust Dirty laser lens Moving parts Question 4 The DBR contains the system files. Answer True False Question 5 A spanned volume requires a minimum of three hard drives. Answer True False Question 6 Which situation would not be appropriate for the use of SSDs? Answer A military operation where fast access to data is critical A medical imaging office that needs high-capacity storage A manufacturing plant with heat-sensitive equipment A research facility where noise must be kept to a minimum Question 7 Why are SSDs more susceptible than mechanical hard drives to electrostatic discharge? Answer The internal battery of the SSD provides additional current. SSDs are memory. The voltage level of the SSD is lower than a mechanical hard drive. The SSD is a more fragile component. Question 8 A motherboard has two PATA IDE connectors, A and B. A is nearer the edge than B. The IDE cable from A connects to a 500GB hard drive and then to a 200GB hard drive. The IDE cable from B connects to an R/W optical drive and then to a Blu-ray optical drive. Assuming the setup is optimal, which of the following describes the 500GB hard drive? Answer Primary slave Secondary slave Primary master Secondary master Question 9 The primary IDE motherboard connection normally uses I/O address 1F0 -1F7h and IRQ 15. Answer True False Question 10 A cable with a twist is used when installing two floppy drives. Answer True False Question 11 What does partitioning the hard drive mean? Answer Dividing the hard drive up into three different sections: one for each type of file system Preparing the drive to be mounted Giving the hard drive a drive letter and/or allowing the hard drive to be seen as more than one drive Preparing the drive for an operating system Question 12 The Network Engineering Technology departmental secretary is getting a new computer funded by a grant. The old computer is being moved by the PC technicians to give to the new program facilitator in another department. Which one of the following is most likely to be used before the program facilitator uses the computer? Answer Check Now Tool Backup Tool Disk Management Tool BitLocker Question 13 What is CHKDSK? Answer A command used to scan the disk for viruses during off hours A program used to defragment the hard drive A program used to locate and identify lost clusters A command used to verify the validity of the drive surface before installing a file system or an operating system Question 14 When a disk has been prepared to store data, it has been Answer Cleaned Tracked Enabled Formatted Question 15 Where would you go to enable a SATA port? Answer CMOS BIOS Disk Management Tool Task Manager Question 16 The Windows boot partition is the partition that must contain the majority of the operating system. Answer True False Question 17 Two considerations when adding or installing a floppy drive are an available drive bay and an available power connector. Answer True False Question 18 What is the difference between a SATA 2 and a SATA 3 hard drive? Answer The SATA 3 has a different power connector. The SATA 3 device transmits more simultaneous bits than SATA 2. The SATA 3 device transmits data faster. SATA 3 will always be a larger capacity drive. The SATA 3 device will be physically smaller. Question 19 What command would be used in Windows 7 to repair a partition table? Answer FDISK FORMAT FIXBOOT bootrec /FixMbr FIXMBR Question 20 What file system is optimized for optical media? Answer exFAT FAT32 CDFS NTFS Question 21 One of the most effective ways of increasing computer performance is to increase the size of virtual memory. Answer True False Question 22 Older PATA IDE cables and the Ultra ATA/66 cable differ by Answer Where the twist occurs The number of conductors The number of pins The number of devices they can connect to Question 23 Which of the following is NOT important in assigning SCSI IDs? Answer The hard drive that the system boots to may have a preset ID. ID priority must match the order of appearance on the SCSI chain. All devices must have unique IDs. Slower devices should have higher priority IDs. Question 24 The ATA standard is associated with the SCSI interface. Answer True False Question 25 A striped volume requires a minimum of two hard drives. Answer True False

Question 1 When using NTFS as a file system, what can be used to control the amount of hard disk space each user on the machine can have as a maximum? Answer Logical drives Extended partitions Disk quotas Security Center Question 2 Pin 1 of the floppy cable connects to pin 34 of the controller. Answer True False Question 3 What is the primary cause of hard drive failures? Answer Heat Dust Dirty laser lens Moving parts Question 4 The DBR contains the system files. Answer True False Question 5 A spanned volume requires a minimum of three hard drives. Answer True False Question 6 Which situation would not be appropriate for the use of SSDs? Answer A military operation where fast access to data is critical A medical imaging office that needs high-capacity storage A manufacturing plant with heat-sensitive equipment A research facility where noise must be kept to a minimum Question 7 Why are SSDs more susceptible than mechanical hard drives to electrostatic discharge? Answer The internal battery of the SSD provides additional current. SSDs are memory. The voltage level of the SSD is lower than a mechanical hard drive. The SSD is a more fragile component. Question 8 A motherboard has two PATA IDE connectors, A and B. A is nearer the edge than B. The IDE cable from A connects to a 500GB hard drive and then to a 200GB hard drive. The IDE cable from B connects to an R/W optical drive and then to a Blu-ray optical drive. Assuming the setup is optimal, which of the following describes the 500GB hard drive? Answer Primary slave Secondary slave Primary master Secondary master Question 9 The primary IDE motherboard connection normally uses I/O address 1F0 -1F7h and IRQ 15. Answer True False Question 10 A cable with a twist is used when installing two floppy drives. Answer True False Question 11 What does partitioning the hard drive mean? Answer Dividing the hard drive up into three different sections: one for each type of file system Preparing the drive to be mounted Giving the hard drive a drive letter and/or allowing the hard drive to be seen as more than one drive Preparing the drive for an operating system Question 12 The Network Engineering Technology departmental secretary is getting a new computer funded by a grant. The old computer is being moved by the PC technicians to give to the new program facilitator in another department. Which one of the following is most likely to be used before the program facilitator uses the computer? Answer Check Now Tool Backup Tool Disk Management Tool BitLocker Question 13 What is CHKDSK? Answer A command used to scan the disk for viruses during off hours A program used to defragment the hard drive A program used to locate and identify lost clusters A command used to verify the validity of the drive surface before installing a file system or an operating system Question 14 When a disk has been prepared to store data, it has been Answer Cleaned Tracked Enabled Formatted Question 15 Where would you go to enable a SATA port? Answer CMOS BIOS Disk Management Tool Task Manager Question 16 The Windows boot partition is the partition that must contain the majority of the operating system. Answer True False Question 17 Two considerations when adding or installing a floppy drive are an available drive bay and an available power connector. Answer True False Question 18 What is the difference between a SATA 2 and a SATA 3 hard drive? Answer The SATA 3 has a different power connector. The SATA 3 device transmits more simultaneous bits than SATA 2. The SATA 3 device transmits data faster. SATA 3 will always be a larger capacity drive. The SATA 3 device will be physically smaller. Question 19 What command would be used in Windows 7 to repair a partition table? Answer FDISK FORMAT FIXBOOT bootrec /FixMbr FIXMBR Question 20 What file system is optimized for optical media? Answer exFAT FAT32 CDFS NTFS Question 21 One of the most effective ways of increasing computer performance is to increase the size of virtual memory. Answer True False Question 22 Older PATA IDE cables and the Ultra ATA/66 cable differ by Answer Where the twist occurs The number of conductors The number of pins The number of devices they can connect to Question 23 Which of the following is NOT important in assigning SCSI IDs? Answer The hard drive that the system boots to may have a preset ID. ID priority must match the order of appearance on the SCSI chain. All devices must have unique IDs. Slower devices should have higher priority IDs. Question 24 The ATA standard is associated with the SCSI interface. Answer True False Question 25 A striped volume requires a minimum of two hard drives. Answer True False

Question 1   When using NTFS as a file system, … Read More...
Assignment 11 Due: 11:59pm on Wednesday, April 30, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 13.2 The gravitational force of a star on orbiting planet 1 is . Planet 2, which is twice as massive as planet 1 and orbits at twice the distance from the star, experiences gravitational force . Part A What is the ratio ? ANSWER: Correct Conceptual Question 13.3 A 1500 satellite and a 2200 satellite follow exactly the same orbit around the earth. Part A What is the ratio of the force on the first satellite to that on the second satellite? ANSWER: Correct F1 F2 F1 F2 = 2 F1 F2 kg kg F1 F2 = 0.682 F1 F2 Part B What is the ratio of the acceleration of the first satellite to that of the second satellite? ANSWER: Correct Problem 13.2 The centers of a 15.0 lead ball and a 90.0 lead ball are separated by 9.00 . Part A What gravitational force does each exert on the other? Express your answer with the appropriate units. ANSWER: Correct Part B What is the ratio of this gravitational force to the weight of the 90.0 ball? ANSWER: a1 a2 = 1 a1 a2 kg g cm 1.11×10−8 N g 1.26×10−8 Correct Problem 13.6 The space shuttle orbits 310 above the surface of the earth. Part A What is the gravitational force on a 7.5 sphere inside the space shuttle? Express your answer with the appropriate units. ANSWER: Correct ± A Satellite in Orbit A satellite used in a cellular telephone network has a mass of 2310 and is in a circular orbit at a height of 650 above the surface of the earth. Part A What is the gravitational force on the satellite? Take the gravitational constant to be = 6.67×10−11 , the mass of the earth to be = 5.97×1024 , and the radius of the Earth to be = 6.38×106 . Express your answer in newtons. Hint 1. How to approach the problem Use the equation for the law of gravitation to calculate the force on the satellite. Be careful about the units when performing the calculations. km kg Fe on s = 67.0 N kg km Fgrav G N m2/kg2 me kg re m Hint 2. Law of gravitation According to Newton’s law of gravitation, , where is the gravitational constant, and are the masses of the two objects, and is the distance between the centers of mass of the two objects. Hint 3. Calculate the distance between the centers of mass What is the distance from the center of mass of the satellite to the center of mass of the earth? Express your answer in meters. ANSWER: ANSWER: Correct Part B What fraction is this of the satellite’s weight at the surface of the earth? Take the free-fall acceleration at the surface of the earth to be = 9.80 . Hint 1. How to approach the problem All you need to do is to take the ratio of the gravitational force on the satellite to the weight of the satellite at ground level. There are two ways to do this, depending on how you define the force of gravity at the surface of the earth. ANSWER: F = Gm1m2/r2 G m1 m2 r r = 7.03×10r 6 m = 1.86×10Fgrav 4 N g m/s2 0.824 Correct Although it is easy to find the weight of the satellite using the constant acceleration due to gravity, it is instructional to consider the weight calculated using the law of gravitation: . Dividing the gravitational force on the satellite by , we find that the ratio of the forces due to the earth’s gravity is simply the square of the ratio of the earth’s radius to the sum of the earth’s radius and the height of the orbit of the satellite above the earth, . This will also be the fraction of the weight of, say, an astronaut in an orbit at the same altitude. Notice that an astronaut’s weight is never zero. When people speak of “weightlessness” in space, what they really mean is “free fall.” Problem 13.8 Part A What is the free-fall acceleration at the surface of the moon? Express your answer with the appropriate units. ANSWER: Correct Part B What is the free-fall acceleration at the surface of the Jupiter? Express your answer with the appropriate units. ANSWER: Correct w = G m/ me r2e Fgrav = Gmem/(re + h)2 w [re/(re + h)]2 gmoon = 1.62 m s2 gJupiter = 25.9 m s2 Enhanced EOC: Problem 13.14 A rocket is launched straight up from the earth’s surface at a speed of 1.90×104 . You may want to review ( pages 362 – 365) . For help with math skills, you may want to review: Mathematical Expressions Involving Squares Part A What is its speed when it is very far away from the earth? Express your answer with the appropriate units. Hint 1. How to approach the problem What is conserved in this problem? What is the rocket’s initial kinetic energy in terms of its unknown mass, ? What is the rocket’s initial gravitational potential energy in terms of its unknown mass, ? When the rocket is very far away from the Earth, what is its gravitational potential energy? Using conservation of energy, what is the rocket’s kinetic energy when it is very far away from the Earth? Therefore, what is the rocket’s velocity when it is very far away from the Earth? ANSWER: Correct Problem 13.13 Part A m/s m m 1.54×104 ms What is the escape speed from Venus? Express your answer with the appropriate units. ANSWER: Correct Problem 13.17 The asteroid belt circles the sun between the orbits of Mars and Jupiter. One asteroid has a period of 4.2 earth years. Part A What is the asteroid’s orbital radius? Express your answer with the appropriate units. ANSWER: Correct Part B What is the asteroid’s orbital speed? Express your answer with the appropriate units. ANSWER: vescape = 10.4 km s = 3.89×1011 R m = 1.85×104 v ms Correct Problem 13.32 Part A At what height above the earth is the acceleration due to gravity 15.0% of its value at the surface? Express your answer with the appropriate units. ANSWER: Correct Part B What is the speed of a satellite orbiting at that height? Express your answer with the appropriate units. ANSWER: Correct Problem 13.36 Two meteoroids are heading for earth. Their speeds as they cross the moon’s orbit are 2 . 1.01×107 m 4920 ms km/s Part A The first meteoroid is heading straight for earth. What is its speed of impact? Express your answer with the appropriate units. ANSWER: Correct Part B The second misses the earth by 5500 . What is its speed at its closest point? Express your answer with the appropriate units. ANSWER: Incorrect; Try Again Problem 14.2 An air-track glider attached to a spring oscillates between the 11.0 mark and the 67.0 mark on the track. The glider completes 11.0 oscillations in 32.0 . Part A What is the period of the oscillations? Express your answer with the appropriate units. v1 = 11.3 km s km v2 = cm cm s ANSWER: Correct Part B What is the frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part C What is the angular frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part D What is the amplitude? Express your answer with the appropriate units. 2.91 s 0.344 Hz 2.16 rad s ANSWER: Correct Part E What is the maximum speed of the glider? Express your answer with the appropriate units. ANSWER: Correct Good Vibes: Introduction to Oscillations Learning Goal: To learn the basic terminology and relationships among the main characteristics of simple harmonic motion. Motion that repeats itself over and over is called periodic motion. There are many examples of periodic motion: the earth revolving around the sun, an elastic ball bouncing up and down, or a block attached to a spring oscillating back and forth. The last example differs from the first two, in that it represents a special kind of periodic motion called simple harmonic motion. The conditions that lead to simple harmonic motion are as follows: There must be a position of stable equilibrium. There must be a restoring force acting on the oscillating object. The direction of this force must always point toward the equilibrium, and its magnitude must be directly proportional to the magnitude of the object’s displacement from its equilibrium position. Mathematically, the restoring force is given by , where is the displacement from equilibrium and is a constant that depends on the properties of the oscillating system. The resistive forces in the system must be reasonably small. In this problem, we will introduce some of the basic quantities that describe oscillations and the relationships among them. Consider a block of mass attached to a spring with force constant , as shown in the figure. The spring can be either stretched or compressed. The block slides on a frictionless horizontal surface, as shown. When the spring is relaxed, the block is located at . If the 28.0 cm 60.5 cms F  F = −kx x k m k x = 0 block is pulled to the right a distance and then released, will be the amplitude of the resulting oscillations. Assume that the mechanical energy of the block-spring system remains unchanged in the subsequent motion of the block. Part A After the block is released from , it will ANSWER: Correct As the block begins its motion to the left, it accelerates. Although the restoring force decreases as the block approaches equilibrium, it still pulls the block to the left, so by the time the equilibrium position is reached, the block has gained some speed. It will, therefore, pass the equilibrium position and keep moving, compressing the spring. The spring will now be pushing the block to the right, and the block will slow down, temporarily coming to rest at . After is reached, the block will begin its motion to the right, pushed by the spring. The block will pass the equilibrium position and continue until it reaches , completing one cycle of motion. The motion will then repeat; if, as we’ve assumed, there is no friction, the motion will repeat indefinitely. The time it takes the block to complete one cycle is called the period. Usually, the period is denoted and is measured in seconds. The frequency, denoted , is the number of cycles that are completed per unit of time: . In SI units, is measured in inverse seconds, or hertz ( ). A A x = A remain at rest. move to the left until it reaches equilibrium and stop there. move to the left until it reaches and stop there. move to the left until it reaches and then begin to move to the right. x = −A x = −A x = −A x = −A x = A T f f = 1/T f Hz Part B If the period is doubled, the frequency is ANSWER: Correct Part C An oscillating object takes 0.10 to complete one cycle; that is, its period is 0.10 . What is its frequency ? Express your answer in hertz. ANSWER: Correct unchanged. doubled. halved. s s f f = 10 Hz Part D If the frequency is 40 , what is the period ? Express your answer in seconds. ANSWER: Correct The following questions refer to the figure that graphically depicts the oscillations of the block on the spring. Note that the vertical axis represents the x coordinate of the oscillating object, and the horizontal axis represents time. Part E Which points on the x axis are located a distance from the equilibrium position? ANSWER: Hz T T = 0.025 s A Correct Part F Suppose that the period is . Which of the following points on the t axis are separated by the time interval ? ANSWER: Correct Now assume for the remaining Parts G – J, that the x coordinate of point R is 0.12 and the t coordinate of point K is 0.0050 . Part G What is the period ? Express your answer in seconds. Hint 1. How to approach the problem In moving from the point to the point K, what fraction of a full wavelength is covered? Call that fraction . Then you can set . Dividing by the fraction will give the R only Q only both R and Q T T K and L K and M K and P L and N M and P m s T t = 0 a aT = 0.005 s a period . ANSWER: Correct Part H How much time does the block take to travel from the point of maximum displacement to the opposite point of maximum displacement? Express your answer in seconds. ANSWER: Correct Part I What distance does the object cover during one period of oscillation? Express your answer in meters. ANSWER: Correct Part J What distance does the object cover between the moments labeled K and N on the graph? T T = 0.02 s t t = 0.01 s d d = 0.48 m d Express your answer in meters. ANSWER: Correct Problem 14.4 Part A What is the amplitude of the oscillation shown in the figure? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct d = 0.36 m A = 20.0 cm Part B What is the frequency of this oscillation? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the phase constant? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.10 An air-track glider attached to a spring oscillates with a period of 1.50 . At the glider is 4.60 left of the equilibrium position and moving to the right at 33.4 . Part A What is the phase constant? Express your answer to three significant figures and include the appropriate units. ANSWER: f = 0.25 Hz 0 = -60 % s t = 0 s cm cm/s 0 = -2.09 rad Correct Part B What is the phase at ? Express your answer as an integer and include the appropriate units. ANSWER: Correct Part C What is the phase at ? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part D What is the phase at ? Express your answer to three significant figures and include the appropriate units. ANSWER: t = 0.5 s  = 0 rad t = 1.0 s  = 2.09 rad t = 1.5 s  = 4.19 rad Correct Problem 14.12 A 140 air-track glider is attached to a spring. The glider is pushed in 12.2 and released. A student with a stopwatch finds that 14.0 oscillations take 19.0 . Part A What is the spring constant? Express your answer with the appropriate units. ANSWER: Correct Problem 14.14 The position of a 50 g oscillating mass is given by , where is in s. If necessary, round your answers to three significant figures. Determine: Part A The amplitude. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct g cm s 3.00 Nm x(t) = (2.0 cm)cos(10t − /4) t 2.00 cm Part B The period. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part C The spring constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part D The phase constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct 0.628 s 5.00 Nm -0.785 rad Part E The initial coordinate of the mass. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part F The initial velocity. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part G The maximum speed. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct 1.41 cm 14.1 cms 20.0 cms Part H The total energy. Express your answer to one decimal place and include the appropriate units. ANSWER: Correct Part I The velocity at . Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 14.17 A spring with spring constant 16 hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 4.0 and released. The ball makes 35 oscillations in 18 seconds. You may want to review ( pages 389 – 391) . For help with math skills, you may want to review: Differentiation of Trigonometric Functions Part A What is its the mass of the ball? 1.0 mJ t = 0.40 s 1.46 cms N/m cm s Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the period of oscillation? What is the angular frequency of the oscillations? How is the angular frequency related to the mass and spring constant? What is the mass? ANSWER: Correct Part B What is its maximum speed? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the amplitude of the oscillations? How is the maximum speed related to the amplitude of the oscillations and the angular frequency? ANSWER: Correct Changing the Period of a Pendulum m = 110 g vmax = 49 cms A simple pendulum consisting of a bob of mass attached to a string of length swings with a period . Part A If the bob’s mass is doubled, approximately what will the pendulum’s new period be? Hint 1. Period of a simple pendulum The period of a simple pendulum of length is given by , where is the acceleration due to gravity. ANSWER: Correct Part B If the pendulum is brought on the moon where the gravitational acceleration is about , approximately what will its period now be? Hint 1. How to approach the problem Recall the formula of the period of a simple pendulum. Since the gravitational acceleration appears in the denominator, the period must increase when the gravitational acceleration decreases. m L T T L T = 2 Lg −−  g T/2 T ‘2T 2T g/6 ANSWER: Correct Part C If the pendulum is taken into the orbiting space station what will happen to the bob? Hint 1. How to approach the problem Recall that the oscillations of a simple pendulum occur when a pendulum bob is raised above its equilibrium position and let go, causing the pendulum bob to fall. The gravitational force acts to bring the bob back to its equilibrium position. In the space station, the earth’s gravity acts on both the station and everything inside it, giving them the same acceleration. These objects are said to be in free fall. ANSWER: Correct In the space station, where all objects undergo the same acceleration due to the earth’s gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. T/6 T/’6 ‘6T 6T It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. It will oscillate much faster with a period that approaches zero. Problem 14.20 A 175 ball is tied to a string. It is pulled to an angle of 8.0 and released to swing as a pendulum. A student with a stopwatch finds that 15 oscillations take 13 . Part A How long is the string? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.22 Part A What is the length of a pendulum whose period on the moon matches the period of a 2.1- -long pendulum on the earth? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.42 An ultrasonic transducer, of the type used in medical ultrasound imaging, is a very thin disk ( = 0.17 ) driven back and forth in SHM at by an electromagnetic coil. g % s L = 19 cm m lmoon = 0.35 m m g 1.0 MHz Part A The maximum restoring force that can be applied to the disk without breaking it is 4.4×104 . What is the maximum oscillation amplitude that won’t rupture the disk? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the disk’s maximum speed at this amplitude? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 94.2%. You received 135.71 out of a possible total of 144 points. N amax = 6.6 μm vmax = 41 ms

Assignment 11 Due: 11:59pm on Wednesday, April 30, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 13.2 The gravitational force of a star on orbiting planet 1 is . Planet 2, which is twice as massive as planet 1 and orbits at twice the distance from the star, experiences gravitational force . Part A What is the ratio ? ANSWER: Correct Conceptual Question 13.3 A 1500 satellite and a 2200 satellite follow exactly the same orbit around the earth. Part A What is the ratio of the force on the first satellite to that on the second satellite? ANSWER: Correct F1 F2 F1 F2 = 2 F1 F2 kg kg F1 F2 = 0.682 F1 F2 Part B What is the ratio of the acceleration of the first satellite to that of the second satellite? ANSWER: Correct Problem 13.2 The centers of a 15.0 lead ball and a 90.0 lead ball are separated by 9.00 . Part A What gravitational force does each exert on the other? Express your answer with the appropriate units. ANSWER: Correct Part B What is the ratio of this gravitational force to the weight of the 90.0 ball? ANSWER: a1 a2 = 1 a1 a2 kg g cm 1.11×10−8 N g 1.26×10−8 Correct Problem 13.6 The space shuttle orbits 310 above the surface of the earth. Part A What is the gravitational force on a 7.5 sphere inside the space shuttle? Express your answer with the appropriate units. ANSWER: Correct ± A Satellite in Orbit A satellite used in a cellular telephone network has a mass of 2310 and is in a circular orbit at a height of 650 above the surface of the earth. Part A What is the gravitational force on the satellite? Take the gravitational constant to be = 6.67×10−11 , the mass of the earth to be = 5.97×1024 , and the radius of the Earth to be = 6.38×106 . Express your answer in newtons. Hint 1. How to approach the problem Use the equation for the law of gravitation to calculate the force on the satellite. Be careful about the units when performing the calculations. km kg Fe on s = 67.0 N kg km Fgrav G N m2/kg2 me kg re m Hint 2. Law of gravitation According to Newton’s law of gravitation, , where is the gravitational constant, and are the masses of the two objects, and is the distance between the centers of mass of the two objects. Hint 3. Calculate the distance between the centers of mass What is the distance from the center of mass of the satellite to the center of mass of the earth? Express your answer in meters. ANSWER: ANSWER: Correct Part B What fraction is this of the satellite’s weight at the surface of the earth? Take the free-fall acceleration at the surface of the earth to be = 9.80 . Hint 1. How to approach the problem All you need to do is to take the ratio of the gravitational force on the satellite to the weight of the satellite at ground level. There are two ways to do this, depending on how you define the force of gravity at the surface of the earth. ANSWER: F = Gm1m2/r2 G m1 m2 r r = 7.03×10r 6 m = 1.86×10Fgrav 4 N g m/s2 0.824 Correct Although it is easy to find the weight of the satellite using the constant acceleration due to gravity, it is instructional to consider the weight calculated using the law of gravitation: . Dividing the gravitational force on the satellite by , we find that the ratio of the forces due to the earth’s gravity is simply the square of the ratio of the earth’s radius to the sum of the earth’s radius and the height of the orbit of the satellite above the earth, . This will also be the fraction of the weight of, say, an astronaut in an orbit at the same altitude. Notice that an astronaut’s weight is never zero. When people speak of “weightlessness” in space, what they really mean is “free fall.” Problem 13.8 Part A What is the free-fall acceleration at the surface of the moon? Express your answer with the appropriate units. ANSWER: Correct Part B What is the free-fall acceleration at the surface of the Jupiter? Express your answer with the appropriate units. ANSWER: Correct w = G m/ me r2e Fgrav = Gmem/(re + h)2 w [re/(re + h)]2 gmoon = 1.62 m s2 gJupiter = 25.9 m s2 Enhanced EOC: Problem 13.14 A rocket is launched straight up from the earth’s surface at a speed of 1.90×104 . You may want to review ( pages 362 – 365) . For help with math skills, you may want to review: Mathematical Expressions Involving Squares Part A What is its speed when it is very far away from the earth? Express your answer with the appropriate units. Hint 1. How to approach the problem What is conserved in this problem? What is the rocket’s initial kinetic energy in terms of its unknown mass, ? What is the rocket’s initial gravitational potential energy in terms of its unknown mass, ? When the rocket is very far away from the Earth, what is its gravitational potential energy? Using conservation of energy, what is the rocket’s kinetic energy when it is very far away from the Earth? Therefore, what is the rocket’s velocity when it is very far away from the Earth? ANSWER: Correct Problem 13.13 Part A m/s m m 1.54×104 ms What is the escape speed from Venus? Express your answer with the appropriate units. ANSWER: Correct Problem 13.17 The asteroid belt circles the sun between the orbits of Mars and Jupiter. One asteroid has a period of 4.2 earth years. Part A What is the asteroid’s orbital radius? Express your answer with the appropriate units. ANSWER: Correct Part B What is the asteroid’s orbital speed? Express your answer with the appropriate units. ANSWER: vescape = 10.4 km s = 3.89×1011 R m = 1.85×104 v ms Correct Problem 13.32 Part A At what height above the earth is the acceleration due to gravity 15.0% of its value at the surface? Express your answer with the appropriate units. ANSWER: Correct Part B What is the speed of a satellite orbiting at that height? Express your answer with the appropriate units. ANSWER: Correct Problem 13.36 Two meteoroids are heading for earth. Their speeds as they cross the moon’s orbit are 2 . 1.01×107 m 4920 ms km/s Part A The first meteoroid is heading straight for earth. What is its speed of impact? Express your answer with the appropriate units. ANSWER: Correct Part B The second misses the earth by 5500 . What is its speed at its closest point? Express your answer with the appropriate units. ANSWER: Incorrect; Try Again Problem 14.2 An air-track glider attached to a spring oscillates between the 11.0 mark and the 67.0 mark on the track. The glider completes 11.0 oscillations in 32.0 . Part A What is the period of the oscillations? Express your answer with the appropriate units. v1 = 11.3 km s km v2 = cm cm s ANSWER: Correct Part B What is the frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part C What is the angular frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part D What is the amplitude? Express your answer with the appropriate units. 2.91 s 0.344 Hz 2.16 rad s ANSWER: Correct Part E What is the maximum speed of the glider? Express your answer with the appropriate units. ANSWER: Correct Good Vibes: Introduction to Oscillations Learning Goal: To learn the basic terminology and relationships among the main characteristics of simple harmonic motion. Motion that repeats itself over and over is called periodic motion. There are many examples of periodic motion: the earth revolving around the sun, an elastic ball bouncing up and down, or a block attached to a spring oscillating back and forth. The last example differs from the first two, in that it represents a special kind of periodic motion called simple harmonic motion. The conditions that lead to simple harmonic motion are as follows: There must be a position of stable equilibrium. There must be a restoring force acting on the oscillating object. The direction of this force must always point toward the equilibrium, and its magnitude must be directly proportional to the magnitude of the object’s displacement from its equilibrium position. Mathematically, the restoring force is given by , where is the displacement from equilibrium and is a constant that depends on the properties of the oscillating system. The resistive forces in the system must be reasonably small. In this problem, we will introduce some of the basic quantities that describe oscillations and the relationships among them. Consider a block of mass attached to a spring with force constant , as shown in the figure. The spring can be either stretched or compressed. The block slides on a frictionless horizontal surface, as shown. When the spring is relaxed, the block is located at . If the 28.0 cm 60.5 cms F  F = −kx x k m k x = 0 block is pulled to the right a distance and then released, will be the amplitude of the resulting oscillations. Assume that the mechanical energy of the block-spring system remains unchanged in the subsequent motion of the block. Part A After the block is released from , it will ANSWER: Correct As the block begins its motion to the left, it accelerates. Although the restoring force decreases as the block approaches equilibrium, it still pulls the block to the left, so by the time the equilibrium position is reached, the block has gained some speed. It will, therefore, pass the equilibrium position and keep moving, compressing the spring. The spring will now be pushing the block to the right, and the block will slow down, temporarily coming to rest at . After is reached, the block will begin its motion to the right, pushed by the spring. The block will pass the equilibrium position and continue until it reaches , completing one cycle of motion. The motion will then repeat; if, as we’ve assumed, there is no friction, the motion will repeat indefinitely. The time it takes the block to complete one cycle is called the period. Usually, the period is denoted and is measured in seconds. The frequency, denoted , is the number of cycles that are completed per unit of time: . In SI units, is measured in inverse seconds, or hertz ( ). A A x = A remain at rest. move to the left until it reaches equilibrium and stop there. move to the left until it reaches and stop there. move to the left until it reaches and then begin to move to the right. x = −A x = −A x = −A x = −A x = A T f f = 1/T f Hz Part B If the period is doubled, the frequency is ANSWER: Correct Part C An oscillating object takes 0.10 to complete one cycle; that is, its period is 0.10 . What is its frequency ? Express your answer in hertz. ANSWER: Correct unchanged. doubled. halved. s s f f = 10 Hz Part D If the frequency is 40 , what is the period ? Express your answer in seconds. ANSWER: Correct The following questions refer to the figure that graphically depicts the oscillations of the block on the spring. Note that the vertical axis represents the x coordinate of the oscillating object, and the horizontal axis represents time. Part E Which points on the x axis are located a distance from the equilibrium position? ANSWER: Hz T T = 0.025 s A Correct Part F Suppose that the period is . Which of the following points on the t axis are separated by the time interval ? ANSWER: Correct Now assume for the remaining Parts G – J, that the x coordinate of point R is 0.12 and the t coordinate of point K is 0.0050 . Part G What is the period ? Express your answer in seconds. Hint 1. How to approach the problem In moving from the point to the point K, what fraction of a full wavelength is covered? Call that fraction . Then you can set . Dividing by the fraction will give the R only Q only both R and Q T T K and L K and M K and P L and N M and P m s T t = 0 a aT = 0.005 s a period . ANSWER: Correct Part H How much time does the block take to travel from the point of maximum displacement to the opposite point of maximum displacement? Express your answer in seconds. ANSWER: Correct Part I What distance does the object cover during one period of oscillation? Express your answer in meters. ANSWER: Correct Part J What distance does the object cover between the moments labeled K and N on the graph? T T = 0.02 s t t = 0.01 s d d = 0.48 m d Express your answer in meters. ANSWER: Correct Problem 14.4 Part A What is the amplitude of the oscillation shown in the figure? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct d = 0.36 m A = 20.0 cm Part B What is the frequency of this oscillation? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the phase constant? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.10 An air-track glider attached to a spring oscillates with a period of 1.50 . At the glider is 4.60 left of the equilibrium position and moving to the right at 33.4 . Part A What is the phase constant? Express your answer to three significant figures and include the appropriate units. ANSWER: f = 0.25 Hz 0 = -60 % s t = 0 s cm cm/s 0 = -2.09 rad Correct Part B What is the phase at ? Express your answer as an integer and include the appropriate units. ANSWER: Correct Part C What is the phase at ? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part D What is the phase at ? Express your answer to three significant figures and include the appropriate units. ANSWER: t = 0.5 s  = 0 rad t = 1.0 s  = 2.09 rad t = 1.5 s  = 4.19 rad Correct Problem 14.12 A 140 air-track glider is attached to a spring. The glider is pushed in 12.2 and released. A student with a stopwatch finds that 14.0 oscillations take 19.0 . Part A What is the spring constant? Express your answer with the appropriate units. ANSWER: Correct Problem 14.14 The position of a 50 g oscillating mass is given by , where is in s. If necessary, round your answers to three significant figures. Determine: Part A The amplitude. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct g cm s 3.00 Nm x(t) = (2.0 cm)cos(10t − /4) t 2.00 cm Part B The period. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part C The spring constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part D The phase constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct 0.628 s 5.00 Nm -0.785 rad Part E The initial coordinate of the mass. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part F The initial velocity. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part G The maximum speed. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct 1.41 cm 14.1 cms 20.0 cms Part H The total energy. Express your answer to one decimal place and include the appropriate units. ANSWER: Correct Part I The velocity at . Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Enhanced EOC: Problem 14.17 A spring with spring constant 16 hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 4.0 and released. The ball makes 35 oscillations in 18 seconds. You may want to review ( pages 389 – 391) . For help with math skills, you may want to review: Differentiation of Trigonometric Functions Part A What is its the mass of the ball? 1.0 mJ t = 0.40 s 1.46 cms N/m cm s Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the period of oscillation? What is the angular frequency of the oscillations? How is the angular frequency related to the mass and spring constant? What is the mass? ANSWER: Correct Part B What is its maximum speed? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the amplitude of the oscillations? How is the maximum speed related to the amplitude of the oscillations and the angular frequency? ANSWER: Correct Changing the Period of a Pendulum m = 110 g vmax = 49 cms A simple pendulum consisting of a bob of mass attached to a string of length swings with a period . Part A If the bob’s mass is doubled, approximately what will the pendulum’s new period be? Hint 1. Period of a simple pendulum The period of a simple pendulum of length is given by , where is the acceleration due to gravity. ANSWER: Correct Part B If the pendulum is brought on the moon where the gravitational acceleration is about , approximately what will its period now be? Hint 1. How to approach the problem Recall the formula of the period of a simple pendulum. Since the gravitational acceleration appears in the denominator, the period must increase when the gravitational acceleration decreases. m L T T L T = 2 Lg −−  g T/2 T ‘2T 2T g/6 ANSWER: Correct Part C If the pendulum is taken into the orbiting space station what will happen to the bob? Hint 1. How to approach the problem Recall that the oscillations of a simple pendulum occur when a pendulum bob is raised above its equilibrium position and let go, causing the pendulum bob to fall. The gravitational force acts to bring the bob back to its equilibrium position. In the space station, the earth’s gravity acts on both the station and everything inside it, giving them the same acceleration. These objects are said to be in free fall. ANSWER: Correct In the space station, where all objects undergo the same acceleration due to the earth’s gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. T/6 T/’6 ‘6T 6T It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. It will oscillate much faster with a period that approaches zero. Problem 14.20 A 175 ball is tied to a string. It is pulled to an angle of 8.0 and released to swing as a pendulum. A student with a stopwatch finds that 15 oscillations take 13 . Part A How long is the string? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.22 Part A What is the length of a pendulum whose period on the moon matches the period of a 2.1- -long pendulum on the earth? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.42 An ultrasonic transducer, of the type used in medical ultrasound imaging, is a very thin disk ( = 0.17 ) driven back and forth in SHM at by an electromagnetic coil. g % s L = 19 cm m lmoon = 0.35 m m g 1.0 MHz Part A The maximum restoring force that can be applied to the disk without breaking it is 4.4×104 . What is the maximum oscillation amplitude that won’t rupture the disk? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part B What is the disk’s maximum speed at this amplitude? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 94.2%. You received 135.71 out of a possible total of 144 points. N amax = 6.6 μm vmax = 41 ms

please email info@checkyourstudy.com
Assignment 11 Due: 11:59pm on Wednesday, April 30, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 13.2 The gravitational force of a star on orbiting planet 1 is . Planet 2, which is twice as massive as planet 1 and orbits at twice the distance from the star, experiences gravitational force . Part A What is the ratio ? ANSWER: Correct Conceptual Question 13.3 A 1500 satellite and a 2200 satellite follow exactly the same orbit around the earth. Part A What is the ratio of the force on the first satellite to that on the second satellite? ANSWER: Correct F1 F2 F1 F2 = 2 F1 F2 kg kg F1 F2 = 0.682 F1 F2 Part B What is the ratio of the acceleration of the first satellite to that of the second satellite? ANSWER: Correct Problem 13.2 The centers of a 15.0 lead ball and a 90.0 lead ball are separated by 9.00 . Part A What gravitational force does each exert on the other? Express your answer with the appropriate units. ANSWER: Correct Part B What is the ratio of this gravitational force to the weight of the 90.0 ball? ANSWER: a1 a2 = 1 a1 a2 kg g cm 1.11×10−8 N g 1.26×10−8 Typesetting math: 100% Correct Problem 13.6 The space shuttle orbits 310 above the surface of the earth. Part A What is the gravitational force on a 7.5 sphere inside the space shuttle? Express your answer with the appropriate units. ANSWER: Correct ± A Satellite in Orbit A satellite used in a cellular telephone network has a mass of 2310 and is in a circular orbit at a height of 650 above the surface of the earth. Part A What is the gravitational force on the satellite? Take the gravitational constant to be = 6.67×10−11 , the mass of the earth to be = 5.97×1024 , and the radius of the Earth to be = 6.38×106 . Express your answer in newtons. Hint 1. How to approach the problem Use the equation for the law of gravitation to calculate the force on the satellite. Be careful about the units when performing the calculations. km kg Fe on s = 67.0 N kg km Fgrav G N m2/kg2 me kg re m Typesetting math: 100% Hint 2. Law of gravitation According to Newton’s law of gravitation, , where is the gravitational constant, and are the masses of the two objects, and is the distance between the centers of mass of the two objects. Hint 3. Calculate the distance between the centers of mass What is the distance from the center of mass of the satellite to the center of mass of the earth? Express your answer in meters. ANSWER: ANSWER: Correct Part B What fraction is this of the satellite’s weight at the surface of the earth? Take the free-fall acceleration at the surface of the earth to be = 9.80 . Hint 1. How to approach the problem All you need to do is to take the ratio of the gravitational force on the satellite to the weight of the satellite at ground level. There are two ways to do this, depending on how you define the force of gravity at the surface of the earth. ANSWER: F = Gm1m2/r2 G m1 m2 r r = 7.03×10r 6 m = 1.86×10Fgrav 4 N g m/s2 0.824 Typesetting math: 100% Correct Although it is easy to find the weight of the satellite using the constant acceleration due to gravity, it is instructional to consider the weight calculated using the law of gravitation: . Dividing the gravitational force on the satellite by , we find that the ratio of the forces due to the earth’s gravity is simply the square of the ratio of the earth’s radius to the sum of the earth’s radius and the height of the orbit of the satellite above the earth, . This will also be the fraction of the weight of, say, an astronaut in an orbit at the same altitude. Notice that an astronaut’s weight is never zero. When people speak of “weightlessness” in space, what they really mean is “free fall.” Problem 13.8 Part A What is the free-fall acceleration at the surface of the moon? Express your answer with the appropriate units. ANSWER: Correct Part B What is the free-fall acceleration at the surface of the Jupiter? Express your answer with the appropriate units. ANSWER: Correct w = G m/ me r2e Fgrav = Gmem/(re + h)2 w [re/(re + h)]2 gmoon = 1.62 m s2 gJupiter = 25.9 m s2 Typesetting math: 100% Enhanced EOC: Problem 13.14 A rocket is launched straight up from the earth’s surface at a speed of 1.90×104 . You may want to review ( pages 362 – 365) . For help with math skills, you may want to review: Mathematical Expressions Involving Squares Part A What is its speed when it is very far away from the earth? Express your answer with the appropriate units. Hint 1. How to approach the problem What is conserved in this problem? What is the rocket’s initial kinetic energy in terms of its unknown mass, ? What is the rocket’s initial gravitational potential energy in terms of its unknown mass, ? When the rocket is very far away from the Earth, what is its gravitational potential energy? Using conservation of energy, what is the rocket’s kinetic energy when it is very far away from the Earth? Therefore, what is the rocket’s velocity when it is very far away from the Earth? ANSWER: Correct Problem 13.13 Part A m/s m m 1.54×104 ms Typesetting math: 100% What is the escape speed from Venus? Express your answer with the appropriate units. ANSWER: Correct Problem 13.17 The asteroid belt circles the sun between the orbits of Mars and Jupiter. One asteroid has a period of 4.2 earth years. Part A What is the asteroid’s orbital radius? Express your answer with the appropriate units. ANSWER: Correct Part B What is the asteroid’s orbital speed? Express your answer with the appropriate units. ANSWER: vescape = 10.4 km s = 3.89×1011 R m = 1.85×104 v ms Typesetting math: 100% Correct Problem 13.32 Part A At what height above the earth is the acceleration due to gravity 15.0% of its value at the surface? Express your answer with the appropriate units. ANSWER: Correct Part B What is the speed of a satellite orbiting at that height? Express your answer with the appropriate units. ANSWER: Correct Problem 13.36 Two meteoroids are heading for earth. Their speeds as they cross the moon’s orbit are 2 . 1.01×107 m 4920 ms km/s Typesetting math: 100% Part A The first meteoroid is heading straight for earth. What is its speed of impact? Express your answer with the appropriate units. ANSWER: Correct Part B The second misses the earth by 5500 . What is its speed at its closest point? Express your answer with the appropriate units. ANSWER: Incorrect; Try Again Problem 14.2 An air-track glider attached to a spring oscillates between the 11.0 mark and the 67.0 mark on the track. The glider completes 11.0 oscillations in 32.0 . Part A What is the period of the oscillations? Express your answer with the appropriate units. v1 = 11.3 km s km v2 = cm cm s Typesetting math: 100% ANSWER: Correct Part B What is the frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part C What is the angular frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part D What is the amplitude? Express your answer with the appropriate units. 2.91 s 0.344 Hz 2.16 rad s Typesetting math: 100% ANSWER: Correct Part E What is the maximum speed of the glider? Express your answer with the appropriate units. ANSWER: Correct Good Vibes: Introduction to Oscillations Learning Goal: To learn the basic terminology and relationships among the main characteristics of simple harmonic motion. Motion that repeats itself over and over is called periodic motion. There are many examples of periodic motion: the earth revolving around the sun, an elastic ball bouncing up and down, or a block attached to a spring oscillating back and forth. The last example differs from the first two, in that it represents a special kind of periodic motion called simple harmonic motion. The conditions that lead to simple harmonic motion are as follows: There must be a position of stable equilibrium. There must be a restoring force acting on the oscillating object. The direction of this force must always point toward the equilibrium, and its magnitude must be directly proportional to the magnitude of the object’s displacement from its equilibrium position. Mathematically, the restoring force is given by , where is the displacement from equilibrium and is a constant that depends on the properties of the oscillating system. The resistive forces in the system must be reasonably small. In this problem, we will introduce some of the basic quantities that describe oscillations and the relationships among them. Consider a block of mass attached to a spring with force constant , as shown in the figure. The spring can be either stretched or compressed. The block slides on a frictionless horizontal surface, as shown. When the spring is relaxed, the block is located at . If the 28.0 cm 60.5 cms F  F = −kx x k m k x = 0 Typesetting math: 100% block is pulled to the right a distance and then released, will be the amplitude of the resulting oscillations. Assume that the mechanical energy of the block-spring system remains unchanged in the subsequent motion of the block. Part A After the block is released from , it will ANSWER: Correct As the block begins its motion to the left, it accelerates. Although the restoring force decreases as the block approaches equilibrium, it still pulls the block to the left, so by the time the equilibrium position is reached, the block has gained some speed. It will, therefore, pass the equilibrium position and keep moving, compressing the spring. The spring will now be pushing the block to the right, and the block will slow down, temporarily coming to rest at . After is reached, the block will begin its motion to the right, pushed by the spring. The block will pass the equilibrium position and continue until it reaches , completing one cycle of motion. The motion will then repeat; if, as we’ve assumed, there is no friction, the motion will repeat indefinitely. The time it takes the block to complete one cycle is called the period. Usually, the period is denoted and is measured in seconds. The frequency, denoted , is the number of cycles that are completed per unit of time: . In SI units, is measured in inverse seconds, or hertz ( ). A A x = A remain at rest. move to the left until it reaches equilibrium and stop there. move to the left until it reaches and stop there. move to the left until it reaches and then begin to move to the right. x = −A x = −A x = −A x = −A x = A T f f = 1/T f Hz Typesetting math: 100% Part B If the period is doubled, the frequency is ANSWER: Correct Part C An oscillating object takes 0.10 to complete one cycle; that is, its period is 0.10 . What is its frequency ? Express your answer in hertz. ANSWER: Correct unchanged. doubled. halved. s s f f = 10 Hz Typesetting math: 100% Part D If the frequency is 40 , what is the period ? Express your answer in seconds. ANSWER: Correct The following questions refer to the figure that graphically depicts the oscillations of the block on the spring. Note that the vertical axis represents the x coordinate of the oscillating object, and the horizontal axis represents time. Part E Which points on the x axis are located a distance from the equilibrium position? ANSWER: Hz T T = 0.025 s A Typesetting math: 100% Correct Part F Suppose that the period is . Which of the following points on the t axis are separated by the time interval ? ANSWER: Correct Now assume for the remaining Parts G – J, that the x coordinate of point R is 0.12 and the t coordinate of point K is 0.0050 . Part G What is the period ? Express your answer in seconds. Hint 1. How to approach the problem In moving from the point to the point K, what fraction of a full wavelength is covered? Call that fraction . Then you can set . Dividing by the fraction will give the R only Q only both R and Q T T K and L K and M K and P L and N M and P m s T t = 0 a aT = 0.005 s a Typesetting math: 100% period . ANSWER: Correct Part H How much time does the block take to travel from the point of maximum displacement to the opposite point of maximum displacement? Express your answer in seconds. ANSWER: Correct Part I What distance does the object cover during one period of oscillation? Express your answer in meters. ANSWER: Correct Part J What distance does the object cover between the moments labeled K and N on the graph? T T = 0.02 s t t = 0.01 s d d = 0.48 m d Typesetting math: 100% Express your answer in meters. ANSWER: Correct Problem 14.4 Part A What is the amplitude of the oscillation shown in the figure? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct d = 0.36 m A = 20.0 cm Typesetting math: 100% Part B What is the frequency of this oscillation? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the phase constant? Express your answer to two significant figures and include the appropriate units. ANSWER: Incorrect; Try Again Problem 14.10 An air-track glider attached to a spring oscillates with a period of 1.50 . At the glider is 4.60 left of the equilibrium position and moving to the right at 33.4 . Part A What is the phase constant? Express your answer to three significant figures and include the appropriate units. ANSWER: f = 0.25 Hz 0 = s t = 0 s cm cm/s Typesetting math: 100% Incorrect; Try Again Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Problem 14.12 A 140 air-track glider is attached to a spring. The glider is pushed in 12.2 and released. A student with a stopwatch finds that 14.0 oscillations take 19.0 . Part A What is the spring constant? Express your answer with the appropriate units. ANSWER: 0 = g cm s Typesetting math: 100% Correct Problem 14.14 The position of a 50 g oscillating mass is given by , where is in s. If necessary, round your answers to three significant figures. Determine: Part A The amplitude. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part B The period. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part C 3.00 Nm x(t) = (2.0 cm)cos(10t − /4) t 2.00 cm 0.628 s Typesetting math: 100% The spring constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Part D The phase constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Incorrect; Try Again Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G Typesetting math: 100% This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). Part I This question will be shown after you complete previous question(s). Enhanced EOC: Problem 14.17 A spring with spring constant 16 hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 4.0 and released. The ball makes 35 oscillations in 18 seconds. You may want to review ( pages 389 – 391) . For help with math skills, you may want to review: Differentiation of Trigonometric Functions Part A What is its the mass of the ball? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the period of oscillation? What is the angular frequency of the oscillations? How is the angular frequency related to the mass and spring constant? What is the mass? N/m cm s Typesetting math: 100% ANSWER: Correct Part B What is its maximum speed? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the amplitude of the oscillations? How is the maximum speed related to the amplitude of the oscillations and the angular frequency? ANSWER: Correct Changing the Period of a Pendulum A simple pendulum consisting of a bob of mass attached to a string of length swings with a period . Part A If the bob’s mass is doubled, approximately what will the pendulum’s new period be? Hint 1. Period of a simple pendulum The period of a simple pendulum of length is given by m = 110 g vmax = 49 cms m L T Typesetting math: 10T0% L , where is the acceleration due to gravity. ANSWER: Correct Part B If the pendulum is brought on the moon where the gravitational acceleration is about , approximately what will its period now be? Hint 1. How to approach the problem Recall the formula of the period of a simple pendulum. Since the gravitational acceleration appears in the denominator, the period must increase when the gravitational acceleration decreases. ANSWER: T = 2 Lg −−  g T/2 T &2T 2T g/6 T/6 T/&6 &6T 6T Typesetting math: 100% Correct Part C If the pendulum is taken into the orbiting space station what will happen to the bob? Hint 1. How to approach the problem Recall that the oscillations of a simple pendulum occur when a pendulum bob is raised above its equilibrium position and let go, causing the pendulum bob to fall. The gravitational force acts to bring the bob back to its equilibrium position. In the space station, the earth’s gravity acts on both the station and everything inside it, giving them the same acceleration. These objects are said to be in free fall. ANSWER: Correct In the space station, where all objects undergo the same acceleration due to the earth’s gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. Problem 14.20 A 175 ball is tied to a string. It is pulled to an angle of 8.0 and released to swing as a pendulum. A student with a stopwatch finds that 15 oscillations take 13 . Part A How long is the string? Express your answer to two significant figures and include the appropriate units. It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. It will oscillate much faster with a period that approaches zero. g ( s Typesetting math: 100% ANSWER: Correct Problem 14.22 Part A What is the length of a pendulum whose period on the moon matches the period of a 2.1- -long pendulum on the earth? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.42 An ultrasonic transducer, of the type used in medical ultrasound imaging, is a very thin disk ( = 0.17 ) driven back and forth in SHM at by an electromagnetic coil. Part A The maximum restoring force that can be applied to the disk without breaking it is 4.4×104 . What is the maximum oscillation amplitude that won’t rupture the disk? Express your answer to two significant figures and include the appropriate units. ANSWER: L = 19 cm m lmoon = 0.35 m m g 1.0 MHz N amax = 6.6 μm Typesetting math: 100% Correct Part B What is the disk’s maximum speed at this amplitude? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 81.4%. You received 117.25 out of a possible total of 144 points. vmax = 41 ms

Assignment 11 Due: 11:59pm on Wednesday, April 30, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Conceptual Question 13.2 The gravitational force of a star on orbiting planet 1 is . Planet 2, which is twice as massive as planet 1 and orbits at twice the distance from the star, experiences gravitational force . Part A What is the ratio ? ANSWER: Correct Conceptual Question 13.3 A 1500 satellite and a 2200 satellite follow exactly the same orbit around the earth. Part A What is the ratio of the force on the first satellite to that on the second satellite? ANSWER: Correct F1 F2 F1 F2 = 2 F1 F2 kg kg F1 F2 = 0.682 F1 F2 Part B What is the ratio of the acceleration of the first satellite to that of the second satellite? ANSWER: Correct Problem 13.2 The centers of a 15.0 lead ball and a 90.0 lead ball are separated by 9.00 . Part A What gravitational force does each exert on the other? Express your answer with the appropriate units. ANSWER: Correct Part B What is the ratio of this gravitational force to the weight of the 90.0 ball? ANSWER: a1 a2 = 1 a1 a2 kg g cm 1.11×10−8 N g 1.26×10−8 Typesetting math: 100% Correct Problem 13.6 The space shuttle orbits 310 above the surface of the earth. Part A What is the gravitational force on a 7.5 sphere inside the space shuttle? Express your answer with the appropriate units. ANSWER: Correct ± A Satellite in Orbit A satellite used in a cellular telephone network has a mass of 2310 and is in a circular orbit at a height of 650 above the surface of the earth. Part A What is the gravitational force on the satellite? Take the gravitational constant to be = 6.67×10−11 , the mass of the earth to be = 5.97×1024 , and the radius of the Earth to be = 6.38×106 . Express your answer in newtons. Hint 1. How to approach the problem Use the equation for the law of gravitation to calculate the force on the satellite. Be careful about the units when performing the calculations. km kg Fe on s = 67.0 N kg km Fgrav G N m2/kg2 me kg re m Typesetting math: 100% Hint 2. Law of gravitation According to Newton’s law of gravitation, , where is the gravitational constant, and are the masses of the two objects, and is the distance between the centers of mass of the two objects. Hint 3. Calculate the distance between the centers of mass What is the distance from the center of mass of the satellite to the center of mass of the earth? Express your answer in meters. ANSWER: ANSWER: Correct Part B What fraction is this of the satellite’s weight at the surface of the earth? Take the free-fall acceleration at the surface of the earth to be = 9.80 . Hint 1. How to approach the problem All you need to do is to take the ratio of the gravitational force on the satellite to the weight of the satellite at ground level. There are two ways to do this, depending on how you define the force of gravity at the surface of the earth. ANSWER: F = Gm1m2/r2 G m1 m2 r r = 7.03×10r 6 m = 1.86×10Fgrav 4 N g m/s2 0.824 Typesetting math: 100% Correct Although it is easy to find the weight of the satellite using the constant acceleration due to gravity, it is instructional to consider the weight calculated using the law of gravitation: . Dividing the gravitational force on the satellite by , we find that the ratio of the forces due to the earth’s gravity is simply the square of the ratio of the earth’s radius to the sum of the earth’s radius and the height of the orbit of the satellite above the earth, . This will also be the fraction of the weight of, say, an astronaut in an orbit at the same altitude. Notice that an astronaut’s weight is never zero. When people speak of “weightlessness” in space, what they really mean is “free fall.” Problem 13.8 Part A What is the free-fall acceleration at the surface of the moon? Express your answer with the appropriate units. ANSWER: Correct Part B What is the free-fall acceleration at the surface of the Jupiter? Express your answer with the appropriate units. ANSWER: Correct w = G m/ me r2e Fgrav = Gmem/(re + h)2 w [re/(re + h)]2 gmoon = 1.62 m s2 gJupiter = 25.9 m s2 Typesetting math: 100% Enhanced EOC: Problem 13.14 A rocket is launched straight up from the earth’s surface at a speed of 1.90×104 . You may want to review ( pages 362 – 365) . For help with math skills, you may want to review: Mathematical Expressions Involving Squares Part A What is its speed when it is very far away from the earth? Express your answer with the appropriate units. Hint 1. How to approach the problem What is conserved in this problem? What is the rocket’s initial kinetic energy in terms of its unknown mass, ? What is the rocket’s initial gravitational potential energy in terms of its unknown mass, ? When the rocket is very far away from the Earth, what is its gravitational potential energy? Using conservation of energy, what is the rocket’s kinetic energy when it is very far away from the Earth? Therefore, what is the rocket’s velocity when it is very far away from the Earth? ANSWER: Correct Problem 13.13 Part A m/s m m 1.54×104 ms Typesetting math: 100% What is the escape speed from Venus? Express your answer with the appropriate units. ANSWER: Correct Problem 13.17 The asteroid belt circles the sun between the orbits of Mars and Jupiter. One asteroid has a period of 4.2 earth years. Part A What is the asteroid’s orbital radius? Express your answer with the appropriate units. ANSWER: Correct Part B What is the asteroid’s orbital speed? Express your answer with the appropriate units. ANSWER: vescape = 10.4 km s = 3.89×1011 R m = 1.85×104 v ms Typesetting math: 100% Correct Problem 13.32 Part A At what height above the earth is the acceleration due to gravity 15.0% of its value at the surface? Express your answer with the appropriate units. ANSWER: Correct Part B What is the speed of a satellite orbiting at that height? Express your answer with the appropriate units. ANSWER: Correct Problem 13.36 Two meteoroids are heading for earth. Their speeds as they cross the moon’s orbit are 2 . 1.01×107 m 4920 ms km/s Typesetting math: 100% Part A The first meteoroid is heading straight for earth. What is its speed of impact? Express your answer with the appropriate units. ANSWER: Correct Part B The second misses the earth by 5500 . What is its speed at its closest point? Express your answer with the appropriate units. ANSWER: Incorrect; Try Again Problem 14.2 An air-track glider attached to a spring oscillates between the 11.0 mark and the 67.0 mark on the track. The glider completes 11.0 oscillations in 32.0 . Part A What is the period of the oscillations? Express your answer with the appropriate units. v1 = 11.3 km s km v2 = cm cm s Typesetting math: 100% ANSWER: Correct Part B What is the frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part C What is the angular frequency of the oscillations? Express your answer with the appropriate units. ANSWER: Correct Part D What is the amplitude? Express your answer with the appropriate units. 2.91 s 0.344 Hz 2.16 rad s Typesetting math: 100% ANSWER: Correct Part E What is the maximum speed of the glider? Express your answer with the appropriate units. ANSWER: Correct Good Vibes: Introduction to Oscillations Learning Goal: To learn the basic terminology and relationships among the main characteristics of simple harmonic motion. Motion that repeats itself over and over is called periodic motion. There are many examples of periodic motion: the earth revolving around the sun, an elastic ball bouncing up and down, or a block attached to a spring oscillating back and forth. The last example differs from the first two, in that it represents a special kind of periodic motion called simple harmonic motion. The conditions that lead to simple harmonic motion are as follows: There must be a position of stable equilibrium. There must be a restoring force acting on the oscillating object. The direction of this force must always point toward the equilibrium, and its magnitude must be directly proportional to the magnitude of the object’s displacement from its equilibrium position. Mathematically, the restoring force is given by , where is the displacement from equilibrium and is a constant that depends on the properties of the oscillating system. The resistive forces in the system must be reasonably small. In this problem, we will introduce some of the basic quantities that describe oscillations and the relationships among them. Consider a block of mass attached to a spring with force constant , as shown in the figure. The spring can be either stretched or compressed. The block slides on a frictionless horizontal surface, as shown. When the spring is relaxed, the block is located at . If the 28.0 cm 60.5 cms F  F = −kx x k m k x = 0 Typesetting math: 100% block is pulled to the right a distance and then released, will be the amplitude of the resulting oscillations. Assume that the mechanical energy of the block-spring system remains unchanged in the subsequent motion of the block. Part A After the block is released from , it will ANSWER: Correct As the block begins its motion to the left, it accelerates. Although the restoring force decreases as the block approaches equilibrium, it still pulls the block to the left, so by the time the equilibrium position is reached, the block has gained some speed. It will, therefore, pass the equilibrium position and keep moving, compressing the spring. The spring will now be pushing the block to the right, and the block will slow down, temporarily coming to rest at . After is reached, the block will begin its motion to the right, pushed by the spring. The block will pass the equilibrium position and continue until it reaches , completing one cycle of motion. The motion will then repeat; if, as we’ve assumed, there is no friction, the motion will repeat indefinitely. The time it takes the block to complete one cycle is called the period. Usually, the period is denoted and is measured in seconds. The frequency, denoted , is the number of cycles that are completed per unit of time: . In SI units, is measured in inverse seconds, or hertz ( ). A A x = A remain at rest. move to the left until it reaches equilibrium and stop there. move to the left until it reaches and stop there. move to the left until it reaches and then begin to move to the right. x = −A x = −A x = −A x = −A x = A T f f = 1/T f Hz Typesetting math: 100% Part B If the period is doubled, the frequency is ANSWER: Correct Part C An oscillating object takes 0.10 to complete one cycle; that is, its period is 0.10 . What is its frequency ? Express your answer in hertz. ANSWER: Correct unchanged. doubled. halved. s s f f = 10 Hz Typesetting math: 100% Part D If the frequency is 40 , what is the period ? Express your answer in seconds. ANSWER: Correct The following questions refer to the figure that graphically depicts the oscillations of the block on the spring. Note that the vertical axis represents the x coordinate of the oscillating object, and the horizontal axis represents time. Part E Which points on the x axis are located a distance from the equilibrium position? ANSWER: Hz T T = 0.025 s A Typesetting math: 100% Correct Part F Suppose that the period is . Which of the following points on the t axis are separated by the time interval ? ANSWER: Correct Now assume for the remaining Parts G – J, that the x coordinate of point R is 0.12 and the t coordinate of point K is 0.0050 . Part G What is the period ? Express your answer in seconds. Hint 1. How to approach the problem In moving from the point to the point K, what fraction of a full wavelength is covered? Call that fraction . Then you can set . Dividing by the fraction will give the R only Q only both R and Q T T K and L K and M K and P L and N M and P m s T t = 0 a aT = 0.005 s a Typesetting math: 100% period . ANSWER: Correct Part H How much time does the block take to travel from the point of maximum displacement to the opposite point of maximum displacement? Express your answer in seconds. ANSWER: Correct Part I What distance does the object cover during one period of oscillation? Express your answer in meters. ANSWER: Correct Part J What distance does the object cover between the moments labeled K and N on the graph? T T = 0.02 s t t = 0.01 s d d = 0.48 m d Typesetting math: 100% Express your answer in meters. ANSWER: Correct Problem 14.4 Part A What is the amplitude of the oscillation shown in the figure? Express your answer to three significant figures and include the appropriate units. ANSWER: Correct d = 0.36 m A = 20.0 cm Typesetting math: 100% Part B What is the frequency of this oscillation? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Part C What is the phase constant? Express your answer to two significant figures and include the appropriate units. ANSWER: Incorrect; Try Again Problem 14.10 An air-track glider attached to a spring oscillates with a period of 1.50 . At the glider is 4.60 left of the equilibrium position and moving to the right at 33.4 . Part A What is the phase constant? Express your answer to three significant figures and include the appropriate units. ANSWER: f = 0.25 Hz 0 = s t = 0 s cm cm/s Typesetting math: 100% Incorrect; Try Again Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Problem 14.12 A 140 air-track glider is attached to a spring. The glider is pushed in 12.2 and released. A student with a stopwatch finds that 14.0 oscillations take 19.0 . Part A What is the spring constant? Express your answer with the appropriate units. ANSWER: 0 = g cm s Typesetting math: 100% Correct Problem 14.14 The position of a 50 g oscillating mass is given by , where is in s. If necessary, round your answers to three significant figures. Determine: Part A The amplitude. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part B The period. Express your answer to three significant figures and include the appropriate units. ANSWER: Correct Part C 3.00 Nm x(t) = (2.0 cm)cos(10t − /4) t 2.00 cm 0.628 s Typesetting math: 100% The spring constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Part D The phase constant. Express your answer to three significant figures and include the appropriate units. ANSWER: Incorrect; Try Again Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Part G Typesetting math: 100% This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). Part I This question will be shown after you complete previous question(s). Enhanced EOC: Problem 14.17 A spring with spring constant 16 hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 4.0 and released. The ball makes 35 oscillations in 18 seconds. You may want to review ( pages 389 – 391) . For help with math skills, you may want to review: Differentiation of Trigonometric Functions Part A What is its the mass of the ball? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the period of oscillation? What is the angular frequency of the oscillations? How is the angular frequency related to the mass and spring constant? What is the mass? N/m cm s Typesetting math: 100% ANSWER: Correct Part B What is its maximum speed? Express your answer to two significant figures and include the appropriate units. Hint 1. How to approach the problem What is the amplitude of the oscillations? How is the maximum speed related to the amplitude of the oscillations and the angular frequency? ANSWER: Correct Changing the Period of a Pendulum A simple pendulum consisting of a bob of mass attached to a string of length swings with a period . Part A If the bob’s mass is doubled, approximately what will the pendulum’s new period be? Hint 1. Period of a simple pendulum The period of a simple pendulum of length is given by m = 110 g vmax = 49 cms m L T Typesetting math: 10T0% L , where is the acceleration due to gravity. ANSWER: Correct Part B If the pendulum is brought on the moon where the gravitational acceleration is about , approximately what will its period now be? Hint 1. How to approach the problem Recall the formula of the period of a simple pendulum. Since the gravitational acceleration appears in the denominator, the period must increase when the gravitational acceleration decreases. ANSWER: T = 2 Lg −−  g T/2 T &2T 2T g/6 T/6 T/&6 &6T 6T Typesetting math: 100% Correct Part C If the pendulum is taken into the orbiting space station what will happen to the bob? Hint 1. How to approach the problem Recall that the oscillations of a simple pendulum occur when a pendulum bob is raised above its equilibrium position and let go, causing the pendulum bob to fall. The gravitational force acts to bring the bob back to its equilibrium position. In the space station, the earth’s gravity acts on both the station and everything inside it, giving them the same acceleration. These objects are said to be in free fall. ANSWER: Correct In the space station, where all objects undergo the same acceleration due to the earth’s gravity, the tension in the string is zero and the bob does not fall relative to the point to which the string is attached. Problem 14.20 A 175 ball is tied to a string. It is pulled to an angle of 8.0 and released to swing as a pendulum. A student with a stopwatch finds that 15 oscillations take 13 . Part A How long is the string? Express your answer to two significant figures and include the appropriate units. It will continue to oscillate in a vertical plane with the same period. It will no longer oscillate because there is no gravity in space. It will no longer oscillate because both the pendulum and the point to which it is attached are in free fall. It will oscillate much faster with a period that approaches zero. g ( s Typesetting math: 100% ANSWER: Correct Problem 14.22 Part A What is the length of a pendulum whose period on the moon matches the period of a 2.1- -long pendulum on the earth? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Problem 14.42 An ultrasonic transducer, of the type used in medical ultrasound imaging, is a very thin disk ( = 0.17 ) driven back and forth in SHM at by an electromagnetic coil. Part A The maximum restoring force that can be applied to the disk without breaking it is 4.4×104 . What is the maximum oscillation amplitude that won’t rupture the disk? Express your answer to two significant figures and include the appropriate units. ANSWER: L = 19 cm m lmoon = 0.35 m m g 1.0 MHz N amax = 6.6 μm Typesetting math: 100% Correct Part B What is the disk’s maximum speed at this amplitude? Express your answer to two significant figures and include the appropriate units. ANSWER: Correct Score Summary: Your score on this assignment is 81.4%. You received 117.25 out of a possible total of 144 points. vmax = 41 ms

info@checkyourstudy.com
Chapter 04 Homework Due: 11:59pm on Friday, May 23, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Activity: Investigating Survivorship Curves Click here to complete this activity. Then answer the questions. Part A Which of these species typically has a mortality rate that remains fairly constant over an individual’s life span? ANSWER: Correct The mortality rate of robins remains relatively constant throughout their life span. Part B Oyster populations are primarily, if not exclusively, composed of _____. ANSWER: Correct Young oysters have a very high mortality rate; older oysters have a much lower mortality rate. Thus, most oyster populations consist primarily of older individuals. Part C Which of these organisms has a survivorship curve similar to that of oysters? ANSWER: grasses oysters elephants robins humans juveniles adults prereproductive oysters larval and juvenile oysters larvae Chapter 04 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 1 of 13 5/21/2014 7:59 PM Correct Grasses, like oysters, have a relatively high mortality rate early in their life span, after which the mortality rate decreases. Part D Which of these organisms has a survivorship curve similar to that of humans? ANSWER: Correct The mortality rate of elephants, like that of humans, remains relatively low for much of their life span and then dramatically increases for older individuals. BioFlix Quiz: Population Ecology Watch the animation at left before answering the questions below. cats robins elephants grasses humans cats oysters grasses robins elephants Chapter 04 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 2 of 13 5/21/2014 7:59 PM Part A An ideal habitat with unlimited resources is associated with Hint 1. Review the animation or your Study Sheet for Population Ecology ANSWER: Correct Populations grow exponentially with unlimited resources. Part B The maximum population a habitat can support is its Hint 1. Review the animation or your Study Sheet for Population Ecology ANSWER: Correct Part C Logistic growth involves Hint 1. Review the animation or your Study Sheet for Population Ecology ANSWER: Both exponential growth and logistic growth. Population crashes. Exponential growth. Logistic growth. Neither exponential growth nor logistic growth. Logistic growth. Death rate. Birth rate. Carrying capacity. Exponential growth. A population crash. Population growth continuing forever. Population growth reaching carrying capacity and then speeding up. Population size decreasing to zero. Population growth slowing down as the population approaches carrying capacity. Chapter 04 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 3 of 13 5/21/2014 7:59 PM Correct Part D In exponential growth Hint 1. Review the animation or your Study Sheet for Population Ecology ANSWER: Correct Part E Which of the following would NOT cause population size to decrease? Hint 1. Review the animation. ANSWER: Correct An increased birth rate would cause population size to increase. BioFlix Activity: Photosynthesis — Inputs and Outputs Can you fill in the photosynthesis equation? To review photosynthesis, watch this BioFlix animation: Photosynthesis. Part A – Photosynthesis equation Drag the labels onto the equation to identify the inputs and outputs of photosynthesis. ANSWER: Population size grows more and more slowly as the population gets bigger. Population size grows faster and faster as the population gets bigger. Population size stays constant. Population growth slows as the population gets close to its carrying capacity. None of these are correct. Increased death rate A exponentially growing population outgrowing its food supply and crashing Poor weather, resulting in less food being available Increase in the number of predators Increased birth rate Chapter 04 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 4 of 13 5/21/2014 7:59 PM BioFlix Activity: Cellular Respiration and Photosynthesis — Energy Flow Can you identify how energy flows through an ecosystem? To review energy flow in cellular respiration and photosynthesis, watch these BioFlix animations: Cellular Respiration and Photosynthesis. Part A – Energy flow through an ecosystem Drag the labels onto the diagram to identify how energy flows through an ecosystem. ANSWER: BioFlix Activity: Cellular Respiration and Photosynthesis — Chemical Cycling Chapter 04 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 5 of 13 5/21/2014 7:59 PM Can you identify how chemicals cycle in an ecosystem? To review the chemical inputs and outputs of cellular respiration and photosynthesis, watch these BioFlix animations: Cellular Respiration and Photosynthesis. Part A – Chemical cycling in an ecosystem Drag the labels onto the diagram to identify how chemicals cycle in an ecosystem. ANSWER: BioFlix Activity: Cellular Respiration — Inputs and Outputs Can you fill in the cellular respiration equation? To review cellular respiration, watch this BioFlix animation: Cellular Respiration. Part A – Cellular respiration equation Drag the labels onto the equation to identify the inputs and outputs of cellular respiration. ANSWER: Chapter 04 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 6 of 13 5/21/2014 7:59 PM BioFlix Activity: Population Ecology — Types of Population Growth Can you identify the different ways in which populations grow? To review types of population growth, watch this BioFlix animation: Population Ecology. Part A – Types of population growth Drag the correct label under each graph to identify the type of population growth shown. ANSWER: Concept Review: Calculating Doubling Time Chapter 04 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 7 of 13 5/21/2014 7:59 PM Can you calculate doubling times and growth rates for exponentially growing populations? Remember that the doubling time (in years) for an exponentially growing population is estimated by dividing 70 by the growth rate of the population (as a percentage): Doubling time (in years) = 70 / annual growth rate (%) Part A Drag the values on the left to the appropriate blanks on the right to complete the sentences. Not all values will be used. ANSWER: Concept Review: Calculating Population Growth Rates Populations grow larger from births and immigration and grow smaller from deaths and emigration. The growth rate for a population is determined by adding the birth rate and the immigration rate, and then subtracting the death rate and the emigration rate (all rates expressed as the number per 1,000 individuals per year): (birth rate + immigration rate) (death rate + emigration rate) = growth rate Positive population growth rates lead to population increases, and negative population growth rates lead to population declines. Part A Suppose you are studying a population with the following characteristics: Birth rate = 14 per 1,000/year Death rate = 6 per 1,000/year Immigration rate = 5 per 1,000/year Emigration rate = 1 per 1,000/year What is the growth rate for this population? ANSWER: Part B Suppose you are studying a population with the following characteristics: 4 per 1,000/year 12 per 1,000/year 14 per 1,000/year 26 per 1,000/year Chapter 04 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 8 of 13 5/21/2014 7:59 PM Birth rate = 11 per 1,000/year Death rate = 10 per 1,000/year Immigration rate = 4 per 1,000/year Emigration rate = 3 per 1,000/year What is the growth rate for this population? ANSWER: Part C Suppose you are studying a population with the following characteristics: Birth rate = 10 per 1,000/year Death rate = 12 per 1,000/year Immigration rate = 2 per 1,000/year Emigration rate = 3 per 1,000/year What is the growth rate for this population? ANSWER: Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Concept Review: Levels of Ecological Organization Can you identify the example that corresponds to each level of ecological organization? Part A Drag the labels to the appropriate targets in the table. ANSWER: 0 per 1,000/year 2 per 1,000/year 14 per 1,000/year 28 per 1,000/year 3 per 1,000/year 1 per 1,000/year 17 per 1,000/year 27 per 1,000/year Chapter 04 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 9 of 13 5/21/2014 7:59 PM BioFlix Activity: Mechanisms of Evolution — Natural Selection: Pesticides Can you identify the process by which natural selection acts on an insect population exposed to pesticides? To review the process of natural selection, watch this BioFlix animation: Mechanisms of Evolution: Natural Selection. Part A – Natural selection: Pesticides Drag the labels onto the flowchart to place them in the correct sequence. ANSWER: Chapter 04 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 10 of 13 5/21/2014 7:59 PM ABC News Video: Protecting the Galapagos Islands Watch the ABC News video (2:07 minutes). Then answer the questions below. Part A Where are the Galapagos Islands located? ANSWER: Part B Which of the following sets of animals are likely to be found on the Galapagos Islands? ANSWER: near the tip of South Africa northeast of Australia along the Great Barrier Reef 600 miles west of Ecuador, near the equator in the Mediterranean Sea, as part of the Greek Islands frogs, lungfish, mountain goats tortoises, finches, blue-footed boobies ostriches, cougars, porcupines beaver, snakes, armadillos Chapter 04 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 11 of 13 5/21/2014 7:59 PM Part C Which species is threatening the natural wildlife on the Galapagos Islands? ANSWER: Part D The Galapagos Islands were the first place on Earth to _____. ANSWER: Part E Tourism on the Galapagos Islands is being restricted by requiring tourists to _____. ANSWER: Current Events: A Surplus Washington Could Do Without: A Capital Park’s Rapacious Deer (New York Times, 2/28/2012) Read this New York Times article and then answer the questions. A Surplus Washington Could Do Without: A Capital Park’s Rapacious Deer (2/28/2012) Registration with The New York Times provides instant access to breaking news on NYTimes.com. To register, go to http://www.nytimes.com/register. Visit http://www.nytimes.com/content/help/rights/terms/terms-of-service.html to review the current NYT Terms of Service. Part A Which of the following is true? ANSWER: Part B What predator currently feeds on deer in Rock Creek Park? humans zebra mussels Asian carp mountain lions suffer the complete extinction of all native species be declared off-limits to all humans be declared a world heritage site be invaded by human-introduced species visit each island in groups of only ten individuals at a time view the islands only from the water be escorted by trained guides at all times stay at least 100 feet away from all animals on the islands Deer have always been a problem in Rock Creek Park. Deer are not a problem in Rock Creek Park. Deer are not native to Rock Creek Park, and have been a problem since they were introduced in 1952. Deer were once absent from Rock Creek Park, and have only become a problem in the last 20 years. Chapter 04 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 12 of 13 5/21/2014 7:59 PM ANSWER: Part C Why isn’t the deer population controlled by hunting in Rock Creek Park? ANSWER: Part D It is hoped that the deer herd can be reduced by how much? ANSWER: Part E Which of the following is true? ANSWER: Part F Because the park is changing in response to the increasing deer population, this is an example of ______________. ANSWER: Score Summary: Your score on this assignment is 21.2%. You received 9.1 out of a possible total of 43 points. There are no predators of deer in Rock Creek Park. mountain lion coyote wolf Hunting has been attempted in the park, but the trees are too thick. Hunting is prohibited in the park. There is no public interest in hunting in the park. Deer are a protected species. one-quarter one-half three-quarters the entire herd Animals cannot be killed on federally managed public lands. Only Congress can decide to have animals killed on federally managed public lands. The federal agency in charge of management of the land in question decides if animals should be killed. Only the National Park Service can decide to have animals killed on federally managed public lands. succession artificial selection recession progression Chapter 04 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 13 of 13 5/21/2014 7:59 PM

Chapter 04 Homework Due: 11:59pm on Friday, May 23, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Activity: Investigating Survivorship Curves Click here to complete this activity. Then answer the questions. Part A Which of these species typically has a mortality rate that remains fairly constant over an individual’s life span? ANSWER: Correct The mortality rate of robins remains relatively constant throughout their life span. Part B Oyster populations are primarily, if not exclusively, composed of _____. ANSWER: Correct Young oysters have a very high mortality rate; older oysters have a much lower mortality rate. Thus, most oyster populations consist primarily of older individuals. Part C Which of these organisms has a survivorship curve similar to that of oysters? ANSWER: grasses oysters elephants robins humans juveniles adults prereproductive oysters larval and juvenile oysters larvae Chapter 04 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 1 of 13 5/21/2014 7:59 PM Correct Grasses, like oysters, have a relatively high mortality rate early in their life span, after which the mortality rate decreases. Part D Which of these organisms has a survivorship curve similar to that of humans? ANSWER: Correct The mortality rate of elephants, like that of humans, remains relatively low for much of their life span and then dramatically increases for older individuals. BioFlix Quiz: Population Ecology Watch the animation at left before answering the questions below. cats robins elephants grasses humans cats oysters grasses robins elephants Chapter 04 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 2 of 13 5/21/2014 7:59 PM Part A An ideal habitat with unlimited resources is associated with Hint 1. Review the animation or your Study Sheet for Population Ecology ANSWER: Correct Populations grow exponentially with unlimited resources. Part B The maximum population a habitat can support is its Hint 1. Review the animation or your Study Sheet for Population Ecology ANSWER: Correct Part C Logistic growth involves Hint 1. Review the animation or your Study Sheet for Population Ecology ANSWER: Both exponential growth and logistic growth. Population crashes. Exponential growth. Logistic growth. Neither exponential growth nor logistic growth. Logistic growth. Death rate. Birth rate. Carrying capacity. Exponential growth. A population crash. Population growth continuing forever. Population growth reaching carrying capacity and then speeding up. Population size decreasing to zero. Population growth slowing down as the population approaches carrying capacity. Chapter 04 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 3 of 13 5/21/2014 7:59 PM Correct Part D In exponential growth Hint 1. Review the animation or your Study Sheet for Population Ecology ANSWER: Correct Part E Which of the following would NOT cause population size to decrease? Hint 1. Review the animation. ANSWER: Correct An increased birth rate would cause population size to increase. BioFlix Activity: Photosynthesis — Inputs and Outputs Can you fill in the photosynthesis equation? To review photosynthesis, watch this BioFlix animation: Photosynthesis. Part A – Photosynthesis equation Drag the labels onto the equation to identify the inputs and outputs of photosynthesis. ANSWER: Population size grows more and more slowly as the population gets bigger. Population size grows faster and faster as the population gets bigger. Population size stays constant. Population growth slows as the population gets close to its carrying capacity. None of these are correct. Increased death rate A exponentially growing population outgrowing its food supply and crashing Poor weather, resulting in less food being available Increase in the number of predators Increased birth rate Chapter 04 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 4 of 13 5/21/2014 7:59 PM BioFlix Activity: Cellular Respiration and Photosynthesis — Energy Flow Can you identify how energy flows through an ecosystem? To review energy flow in cellular respiration and photosynthesis, watch these BioFlix animations: Cellular Respiration and Photosynthesis. Part A – Energy flow through an ecosystem Drag the labels onto the diagram to identify how energy flows through an ecosystem. ANSWER: BioFlix Activity: Cellular Respiration and Photosynthesis — Chemical Cycling Chapter 04 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 5 of 13 5/21/2014 7:59 PM Can you identify how chemicals cycle in an ecosystem? To review the chemical inputs and outputs of cellular respiration and photosynthesis, watch these BioFlix animations: Cellular Respiration and Photosynthesis. Part A – Chemical cycling in an ecosystem Drag the labels onto the diagram to identify how chemicals cycle in an ecosystem. ANSWER: BioFlix Activity: Cellular Respiration — Inputs and Outputs Can you fill in the cellular respiration equation? To review cellular respiration, watch this BioFlix animation: Cellular Respiration. Part A – Cellular respiration equation Drag the labels onto the equation to identify the inputs and outputs of cellular respiration. ANSWER: Chapter 04 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 6 of 13 5/21/2014 7:59 PM BioFlix Activity: Population Ecology — Types of Population Growth Can you identify the different ways in which populations grow? To review types of population growth, watch this BioFlix animation: Population Ecology. Part A – Types of population growth Drag the correct label under each graph to identify the type of population growth shown. ANSWER: Concept Review: Calculating Doubling Time Chapter 04 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 7 of 13 5/21/2014 7:59 PM Can you calculate doubling times and growth rates for exponentially growing populations? Remember that the doubling time (in years) for an exponentially growing population is estimated by dividing 70 by the growth rate of the population (as a percentage): Doubling time (in years) = 70 / annual growth rate (%) Part A Drag the values on the left to the appropriate blanks on the right to complete the sentences. Not all values will be used. ANSWER: Concept Review: Calculating Population Growth Rates Populations grow larger from births and immigration and grow smaller from deaths and emigration. The growth rate for a population is determined by adding the birth rate and the immigration rate, and then subtracting the death rate and the emigration rate (all rates expressed as the number per 1,000 individuals per year): (birth rate + immigration rate) (death rate + emigration rate) = growth rate Positive population growth rates lead to population increases, and negative population growth rates lead to population declines. Part A Suppose you are studying a population with the following characteristics: Birth rate = 14 per 1,000/year Death rate = 6 per 1,000/year Immigration rate = 5 per 1,000/year Emigration rate = 1 per 1,000/year What is the growth rate for this population? ANSWER: Part B Suppose you are studying a population with the following characteristics: 4 per 1,000/year 12 per 1,000/year 14 per 1,000/year 26 per 1,000/year Chapter 04 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 8 of 13 5/21/2014 7:59 PM Birth rate = 11 per 1,000/year Death rate = 10 per 1,000/year Immigration rate = 4 per 1,000/year Emigration rate = 3 per 1,000/year What is the growth rate for this population? ANSWER: Part C Suppose you are studying a population with the following characteristics: Birth rate = 10 per 1,000/year Death rate = 12 per 1,000/year Immigration rate = 2 per 1,000/year Emigration rate = 3 per 1,000/year What is the growth rate for this population? ANSWER: Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). Concept Review: Levels of Ecological Organization Can you identify the example that corresponds to each level of ecological organization? Part A Drag the labels to the appropriate targets in the table. ANSWER: 0 per 1,000/year 2 per 1,000/year 14 per 1,000/year 28 per 1,000/year 3 per 1,000/year 1 per 1,000/year 17 per 1,000/year 27 per 1,000/year Chapter 04 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 9 of 13 5/21/2014 7:59 PM BioFlix Activity: Mechanisms of Evolution — Natural Selection: Pesticides Can you identify the process by which natural selection acts on an insect population exposed to pesticides? To review the process of natural selection, watch this BioFlix animation: Mechanisms of Evolution: Natural Selection. Part A – Natural selection: Pesticides Drag the labels onto the flowchart to place them in the correct sequence. ANSWER: Chapter 04 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 10 of 13 5/21/2014 7:59 PM ABC News Video: Protecting the Galapagos Islands Watch the ABC News video (2:07 minutes). Then answer the questions below. Part A Where are the Galapagos Islands located? ANSWER: Part B Which of the following sets of animals are likely to be found on the Galapagos Islands? ANSWER: near the tip of South Africa northeast of Australia along the Great Barrier Reef 600 miles west of Ecuador, near the equator in the Mediterranean Sea, as part of the Greek Islands frogs, lungfish, mountain goats tortoises, finches, blue-footed boobies ostriches, cougars, porcupines beaver, snakes, armadillos Chapter 04 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 11 of 13 5/21/2014 7:59 PM Part C Which species is threatening the natural wildlife on the Galapagos Islands? ANSWER: Part D The Galapagos Islands were the first place on Earth to _____. ANSWER: Part E Tourism on the Galapagos Islands is being restricted by requiring tourists to _____. ANSWER: Current Events: A Surplus Washington Could Do Without: A Capital Park’s Rapacious Deer (New York Times, 2/28/2012) Read this New York Times article and then answer the questions. A Surplus Washington Could Do Without: A Capital Park’s Rapacious Deer (2/28/2012) Registration with The New York Times provides instant access to breaking news on NYTimes.com. To register, go to http://www.nytimes.com/register. Visit http://www.nytimes.com/content/help/rights/terms/terms-of-service.html to review the current NYT Terms of Service. Part A Which of the following is true? ANSWER: Part B What predator currently feeds on deer in Rock Creek Park? humans zebra mussels Asian carp mountain lions suffer the complete extinction of all native species be declared off-limits to all humans be declared a world heritage site be invaded by human-introduced species visit each island in groups of only ten individuals at a time view the islands only from the water be escorted by trained guides at all times stay at least 100 feet away from all animals on the islands Deer have always been a problem in Rock Creek Park. Deer are not a problem in Rock Creek Park. Deer are not native to Rock Creek Park, and have been a problem since they were introduced in 1952. Deer were once absent from Rock Creek Park, and have only become a problem in the last 20 years. Chapter 04 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 12 of 13 5/21/2014 7:59 PM ANSWER: Part C Why isn’t the deer population controlled by hunting in Rock Creek Park? ANSWER: Part D It is hoped that the deer herd can be reduced by how much? ANSWER: Part E Which of the following is true? ANSWER: Part F Because the park is changing in response to the increasing deer population, this is an example of ______________. ANSWER: Score Summary: Your score on this assignment is 21.2%. You received 9.1 out of a possible total of 43 points. There are no predators of deer in Rock Creek Park. mountain lion coyote wolf Hunting has been attempted in the park, but the trees are too thick. Hunting is prohibited in the park. There is no public interest in hunting in the park. Deer are a protected species. one-quarter one-half three-quarters the entire herd Animals cannot be killed on federally managed public lands. Only Congress can decide to have animals killed on federally managed public lands. The federal agency in charge of management of the land in question decides if animals should be killed. Only the National Park Service can decide to have animals killed on federally managed public lands. succession artificial selection recession progression Chapter 04 Homework http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 13 of 13 5/21/2014 7:59 PM

info@checkyourstudy.com
Chapter 05 Reading Questions Due: 11:59pm on Friday, May 23, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Chapter 5 Reading Quiz Question 1 Part A In the second stage of the demographic transition, called the mortality transition, the death rate _____ while the birth rate _____. ANSWER: Chapter 5 Reading Quiz Question 2 Part A About a century ago, the population in Latin America moved from an agricultural to an urban-industrial base. During this period birth rates _____, death rates _____, and the overall population _____. ANSWER: Chapter 5 Reading Quiz Question 16 Part A Over the course of human history, the greatest increases in human populations have been due to_____. ANSWER: increases, decreases decreases, decreases decreases, remains high or increases increases, remains high or increases stayed about the same, decreased, and the population grew even faster increased greatly, increased, declined decreased dramatically, decreased, declined stayed about the same, increased, increased Chapter 05 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 1 of 6 5/21/2014 8:00 PM Chapter 5 Reading Quiz Question 4 Part A Compared to women in the United States, women in poor countries such as Ethiopia typically have _____ children at _____ age. ANSWER: Chapter 5 Reading Quiz Question 18 Part A Women in two developed countries have similar total fertility rates of 3.5. However, women in country A typically have their children about 2 years earlier than women in country B. How will the populations of the two countries compare? ANSWER: Chapter 5 Reading Quiz Question 19 Part A Overall population growth rates are most likely to be highest when the median age of a population is _____ and a country is in stage _____ of the demographic transition. ANSWER: improved medicine improved water supplies discovery of new land increased food production fewer, an older more, a younger more, an older fewer, a younger The population of country B will increase faster than country A. The population of country A will increase but the population of country B will decline. The population of country A will increase faster than country B. The populations of both countries will be stable, with similar totals and little increase or decrease. Chapter 05 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 2 of 6 5/21/2014 8:00 PM Chapter 5 Reading Quiz Question 20 Part A An age-structure diagram of a poor country in stage 1 of the demographic transition will be closest to the shape of _____. ANSWER: Chapter 5 Reading Quiz Question 8 Part A Predictions about global growth rates have been difficult because of changes in human values and behavior largely based upon _____. ANSWER: Chapter 5 Reading Quiz Question 9 Part A Because human suffering _____ as the human population approaches its carrying capacity, sustainability of the global human population must be _____ the carrying capacity of the Earth. ANSWER: older, 1 younger, 4 older, 3 younger, 2 the letter O, widest in the middle a pyramid, with a broad base and narrow top the letter V, widest at the top column, with even width from top to bottom shifting weather patterns increasing abilities to travel between countries the spread of infectious disease economic development Chapter 05 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 3 of 6 5/21/2014 8:00 PM Chapter 5 Reading Quiz Question 10 Part A The IPAT formula is used to estimate the _____. ANSWER: Chapter 5 Reading Quiz Question 12 Part A If everyone in the world had the ecological footprint of people currently living in the United States and Canada, the world would _____. ANSWER: Chapter 5 Reading Quiz Question 22 Part A If the population of the United States continues to grow and consumption levels also increase, we expect that the _____. ANSWER: increases, below decreases, above increases, above decreases, below birth rate of a population shift from one stage to another in the demographic transition age structure of a population ecological footprint of a society have just enough biocapacity without any additional population growth exceed its biocapacity by 40% still have enough biocapacity for 20% more humans exceed its biocapacity by five times over Chapter 05 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 4 of 6 5/21/2014 8:00 PM Chapter 5 Reading Quiz Question 24 Part A Given the increasing global population and increased rates of consumption in developing countries, the most likely avenue to sustainability is _____. ANSWER: Chapter 5 Reading Quiz Question 13 Part A Which one of the following typically contributes to population growth? ANSWER: Chapter 5 Reading Quiz Question 14 Part A Members of the neo-Malthusian movement advocated for _____. ANSWER: ecological footprint will eventually exceed the biocapacity of the environment biocapacity will eventually exceed the ecological footprint of the environment United States will eventually become an ecological debtor ecological debt of the United States will continue to increase more efficient use of natural resources the discovery of ways to dramatically increase the global biocapacity to have developed countries use more natural resources from developing countries increase our reliance upon fossil fuels better education empowerment of women high infant mortality economic development Chapter 05 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 5 of 6 5/21/2014 8:00 PM Chapter 5 Reading Quiz Question 15 Part A China, Mexico, and India have all made progress in reducing the population growth rates in their countries by adopting policies that encourage _____. ANSWER: Chapter 5 Reading Quiz Question 7 Part A Malthus found that populations in the American colonies were increasing _____ than populations on the European continent due to _____. ANSWER: Score Summary: Your score on this assignment is 0.0%. You received 0 out of a possible total of 17 points. increasing population size to support greater economic development birth control to limit population growth greater use of natural resources to increase the biocapacity of Earth to support a growing human population greater conservation of natural resources to limit the environmental impact of a growing human population limits on family size women to work only inside of their homes women to start having children at a younger age couples to marry earlier faster, no political conflicts or wars faster, greater resources were available in the American colonies slower, fewer resources were available in the American colonies slower, greater disease in the American colonies Chapter 05 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 6 of 6 5/21/2014 8:00 PM

Chapter 05 Reading Questions Due: 11:59pm on Friday, May 23, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy Chapter 5 Reading Quiz Question 1 Part A In the second stage of the demographic transition, called the mortality transition, the death rate _____ while the birth rate _____. ANSWER: Chapter 5 Reading Quiz Question 2 Part A About a century ago, the population in Latin America moved from an agricultural to an urban-industrial base. During this period birth rates _____, death rates _____, and the overall population _____. ANSWER: Chapter 5 Reading Quiz Question 16 Part A Over the course of human history, the greatest increases in human populations have been due to_____. ANSWER: increases, decreases decreases, decreases decreases, remains high or increases increases, remains high or increases stayed about the same, decreased, and the population grew even faster increased greatly, increased, declined decreased dramatically, decreased, declined stayed about the same, increased, increased Chapter 05 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 1 of 6 5/21/2014 8:00 PM Chapter 5 Reading Quiz Question 4 Part A Compared to women in the United States, women in poor countries such as Ethiopia typically have _____ children at _____ age. ANSWER: Chapter 5 Reading Quiz Question 18 Part A Women in two developed countries have similar total fertility rates of 3.5. However, women in country A typically have their children about 2 years earlier than women in country B. How will the populations of the two countries compare? ANSWER: Chapter 5 Reading Quiz Question 19 Part A Overall population growth rates are most likely to be highest when the median age of a population is _____ and a country is in stage _____ of the demographic transition. ANSWER: improved medicine improved water supplies discovery of new land increased food production fewer, an older more, a younger more, an older fewer, a younger The population of country B will increase faster than country A. The population of country A will increase but the population of country B will decline. The population of country A will increase faster than country B. The populations of both countries will be stable, with similar totals and little increase or decrease. Chapter 05 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 2 of 6 5/21/2014 8:00 PM Chapter 5 Reading Quiz Question 20 Part A An age-structure diagram of a poor country in stage 1 of the demographic transition will be closest to the shape of _____. ANSWER: Chapter 5 Reading Quiz Question 8 Part A Predictions about global growth rates have been difficult because of changes in human values and behavior largely based upon _____. ANSWER: Chapter 5 Reading Quiz Question 9 Part A Because human suffering _____ as the human population approaches its carrying capacity, sustainability of the global human population must be _____ the carrying capacity of the Earth. ANSWER: older, 1 younger, 4 older, 3 younger, 2 the letter O, widest in the middle a pyramid, with a broad base and narrow top the letter V, widest at the top column, with even width from top to bottom shifting weather patterns increasing abilities to travel between countries the spread of infectious disease economic development Chapter 05 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 3 of 6 5/21/2014 8:00 PM Chapter 5 Reading Quiz Question 10 Part A The IPAT formula is used to estimate the _____. ANSWER: Chapter 5 Reading Quiz Question 12 Part A If everyone in the world had the ecological footprint of people currently living in the United States and Canada, the world would _____. ANSWER: Chapter 5 Reading Quiz Question 22 Part A If the population of the United States continues to grow and consumption levels also increase, we expect that the _____. ANSWER: increases, below decreases, above increases, above decreases, below birth rate of a population shift from one stage to another in the demographic transition age structure of a population ecological footprint of a society have just enough biocapacity without any additional population growth exceed its biocapacity by 40% still have enough biocapacity for 20% more humans exceed its biocapacity by five times over Chapter 05 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 4 of 6 5/21/2014 8:00 PM Chapter 5 Reading Quiz Question 24 Part A Given the increasing global population and increased rates of consumption in developing countries, the most likely avenue to sustainability is _____. ANSWER: Chapter 5 Reading Quiz Question 13 Part A Which one of the following typically contributes to population growth? ANSWER: Chapter 5 Reading Quiz Question 14 Part A Members of the neo-Malthusian movement advocated for _____. ANSWER: ecological footprint will eventually exceed the biocapacity of the environment biocapacity will eventually exceed the ecological footprint of the environment United States will eventually become an ecological debtor ecological debt of the United States will continue to increase more efficient use of natural resources the discovery of ways to dramatically increase the global biocapacity to have developed countries use more natural resources from developing countries increase our reliance upon fossil fuels better education empowerment of women high infant mortality economic development Chapter 05 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 5 of 6 5/21/2014 8:00 PM Chapter 5 Reading Quiz Question 15 Part A China, Mexico, and India have all made progress in reducing the population growth rates in their countries by adopting policies that encourage _____. ANSWER: Chapter 5 Reading Quiz Question 7 Part A Malthus found that populations in the American colonies were increasing _____ than populations on the European continent due to _____. ANSWER: Score Summary: Your score on this assignment is 0.0%. You received 0 out of a possible total of 17 points. increasing population size to support greater economic development birth control to limit population growth greater use of natural resources to increase the biocapacity of Earth to support a growing human population greater conservation of natural resources to limit the environmental impact of a growing human population limits on family size women to work only inside of their homes women to start having children at a younger age couples to marry earlier faster, no political conflicts or wars faster, greater resources were available in the American colonies slower, fewer resources were available in the American colonies slower, greater disease in the American colonies Chapter 05 Reading Questions http://session.masteringenvironmentalscience.com/myct/assignmentPrintV… 6 of 6 5/21/2014 8:00 PM

info@checkyourstudy.com
Doppler Shift 73 Because of the Doppler Effect, light emitted by an object can appear to change wavelength due to its motion toward or away from an observer. When the observer and the source of light are moving toward each other, the light is shifted to shorter wavelengths (blueshifted). When the observer and the source of light are moving away from each other, the light is shifted to longer wavelengths (redshifted). Part I: Motion of Source Star is not . rnovrng r ABCD 1) Consider the situations shown (A—D). a) In which situation will the observer receive light that is shifted to shorter wavelengths? b) Will this light be blueshifted or redshifted for this case? c) What direction is the star moving relative to the observer for this case? 2) Consider the situations shown (A—D). a) In which situation will the observer receive light that is shifted to longer wavelengths? b) Will this light be blueshifted or redshifted for this case? c) What direction is the star moving relative to the observer for this case? . 74 Doppler Shift 3) In which of the srtuations shown (A—D) will theobserver receive light that Is not Doppler Shifted at all? Explain your reasoning. – 4) Imagine our solar system Is moving In the Milky Way toward a group of three stars. Star A is a blue star that is slightly closer to us than the other two. Star B is a red star that is farthest away from us. Star C is a yellow star that is halfway between Stars A end B. a) Which of these three stars, if any, will give off light that appears to be blueshifted? Explain your reasoning. . / b) Which of these three stars, if any, will give off light that appears to be redshifted? Explain your reasoning. c) Which of these three stars, if any, will give off light that appears to have no shift? Explain your reasoning. — 5) You overhear two students discussing the topic of Doppler Shift. Student 1: Since Betelgeuse is a red star, it must be going away from us, and since Rigel is a blue star it must be coming toward us. Student 2: 1 disagree, the color of the star does not tell you if it is moving. You have to look at the shift in wavelength of the lines in the star’s absorption spectrum to determine whether it’s moving toward or away from you. Do you agree or disagree with either or both of the students? Explain your reasoning. 5 Part II: Shift in Absorption Spectra When we study an astronomical object like a star or galaxy, we examine the spectrum of light it gives off. Since the lines of a spectrum occur at specific wavelengths we can determine that an object is moving when we see that the lines have been shifted to either longer or shorter wavelengths. For the absorption line spectra shown on the next page, short-wavelength light (the blue end of the spectrum) is shown on the left-hand side and long-wavelength light (the red end of the spectrum) is shown on the right-hand side. Doppler Shift 75 For the three absorption line spectra shown below (A, B, and C), one of the spectra corresponds to a star that is not moving relative to you, one of the spectra is from a star that is moving toward you, and one of the spectra is from a star that is moving away from you. A B Blue J___ ..‘ C 6) Which of the three spectra above corresponds with the star moving toward you? Explain your reasoning. If two sources of llght are moving relative to an observer, the light from the star that is moving faster will appear to undergo a greater Doppler Consider the four spectra at the right. The spectrum labeled F is an absorption line spectrum from a star that is at rest. Again, note that short-wavelength (blue) light is shown on the left-hand side of each spectrum and long-wavelength (red) light is shown on the right-hand side of each spectrum. 7) Which of the three spectra corresponds with the star moving away from you? Explain your reasoning. Part 111: Size of Shift and Speed Blue Red . – 76 Doppler Shift 8) Which of the four spectra would be from the star that is moving the fastest? Would this star be moving toward or away from the observer? 9) Of the stars that are moving, which spectra would be from the star that is moving the slowest? Describe the motion of this star, – (fJ 1O)An Important line In the absorption spectrum of stars occurs at a wavelength of 656 nm for stars at rest. Irna me that you observe five stars (H—L) from Earth and discover that this Important absorption line Is measured at the wavelength shown in the table below for each of the five stars, Star Wavelength of Absorption Line H 649nm I 660 nm J 656nrn K 658nrn L 647nm a) Which of the stars are gMng off light that appears blueshifted? Explain your reasoning. b) Which of the stars are gMng off light that appears redshifted? Explain your reasoning. d) Which star is moving the fastest? Is it moving toward or away from the observer? Explain your reasoning. , . . c) Which star is giving off light that appears shifted by the greatest amount? Is this light shifted to longer or shorter wavelengths? Explain your reasoning. a) Which planets will receive a radio signal that Is redshifted? Explain your reasoning. b) Which planets wfll receive a radio signal that is shifted to shorter wavelengths? Explain your reasoning. a a . ii) The figure at right shows a spaceprobe and five planets. The motion of the spaceprobe is indicated by the arrow. The spaceprobe is continuously broadcasting a radio signal in all directions. 4 C E not to scale c) Will all the planets receive radio signals from the spaceprobe that are Doppler shifted? Explain your reasoning. d) How will the size of the Doppler Shift in the radio signals detected at Planets A and B compare? Explain your reasoning. Cats r , ‘, e) How Will the slz of 1h Dupler Shift in the radio signals deteed °lane E and B compare? Explain your reasoning. ‘

Doppler Shift 73 Because of the Doppler Effect, light emitted by an object can appear to change wavelength due to its motion toward or away from an observer. When the observer and the source of light are moving toward each other, the light is shifted to shorter wavelengths (blueshifted). When the observer and the source of light are moving away from each other, the light is shifted to longer wavelengths (redshifted). Part I: Motion of Source Star is not . rnovrng r ABCD 1) Consider the situations shown (A—D). a) In which situation will the observer receive light that is shifted to shorter wavelengths? b) Will this light be blueshifted or redshifted for this case? c) What direction is the star moving relative to the observer for this case? 2) Consider the situations shown (A—D). a) In which situation will the observer receive light that is shifted to longer wavelengths? b) Will this light be blueshifted or redshifted for this case? c) What direction is the star moving relative to the observer for this case? . 74 Doppler Shift 3) In which of the srtuations shown (A—D) will theobserver receive light that Is not Doppler Shifted at all? Explain your reasoning. – 4) Imagine our solar system Is moving In the Milky Way toward a group of three stars. Star A is a blue star that is slightly closer to us than the other two. Star B is a red star that is farthest away from us. Star C is a yellow star that is halfway between Stars A end B. a) Which of these three stars, if any, will give off light that appears to be blueshifted? Explain your reasoning. . / b) Which of these three stars, if any, will give off light that appears to be redshifted? Explain your reasoning. c) Which of these three stars, if any, will give off light that appears to have no shift? Explain your reasoning. — 5) You overhear two students discussing the topic of Doppler Shift. Student 1: Since Betelgeuse is a red star, it must be going away from us, and since Rigel is a blue star it must be coming toward us. Student 2: 1 disagree, the color of the star does not tell you if it is moving. You have to look at the shift in wavelength of the lines in the star’s absorption spectrum to determine whether it’s moving toward or away from you. Do you agree or disagree with either or both of the students? Explain your reasoning. 5 Part II: Shift in Absorption Spectra When we study an astronomical object like a star or galaxy, we examine the spectrum of light it gives off. Since the lines of a spectrum occur at specific wavelengths we can determine that an object is moving when we see that the lines have been shifted to either longer or shorter wavelengths. For the absorption line spectra shown on the next page, short-wavelength light (the blue end of the spectrum) is shown on the left-hand side and long-wavelength light (the red end of the spectrum) is shown on the right-hand side. Doppler Shift 75 For the three absorption line spectra shown below (A, B, and C), one of the spectra corresponds to a star that is not moving relative to you, one of the spectra is from a star that is moving toward you, and one of the spectra is from a star that is moving away from you. A B Blue J___ ..‘ C 6) Which of the three spectra above corresponds with the star moving toward you? Explain your reasoning. If two sources of llght are moving relative to an observer, the light from the star that is moving faster will appear to undergo a greater Doppler Consider the four spectra at the right. The spectrum labeled F is an absorption line spectrum from a star that is at rest. Again, note that short-wavelength (blue) light is shown on the left-hand side of each spectrum and long-wavelength (red) light is shown on the right-hand side of each spectrum. 7) Which of the three spectra corresponds with the star moving away from you? Explain your reasoning. Part 111: Size of Shift and Speed Blue Red . – 76 Doppler Shift 8) Which of the four spectra would be from the star that is moving the fastest? Would this star be moving toward or away from the observer? 9) Of the stars that are moving, which spectra would be from the star that is moving the slowest? Describe the motion of this star, – (fJ 1O)An Important line In the absorption spectrum of stars occurs at a wavelength of 656 nm for stars at rest. Irna me that you observe five stars (H—L) from Earth and discover that this Important absorption line Is measured at the wavelength shown in the table below for each of the five stars, Star Wavelength of Absorption Line H 649nm I 660 nm J 656nrn K 658nrn L 647nm a) Which of the stars are gMng off light that appears blueshifted? Explain your reasoning. b) Which of the stars are gMng off light that appears redshifted? Explain your reasoning. d) Which star is moving the fastest? Is it moving toward or away from the observer? Explain your reasoning. , . . c) Which star is giving off light that appears shifted by the greatest amount? Is this light shifted to longer or shorter wavelengths? Explain your reasoning. a) Which planets will receive a radio signal that Is redshifted? Explain your reasoning. b) Which planets wfll receive a radio signal that is shifted to shorter wavelengths? Explain your reasoning. a a . ii) The figure at right shows a spaceprobe and five planets. The motion of the spaceprobe is indicated by the arrow. The spaceprobe is continuously broadcasting a radio signal in all directions. 4 C E not to scale c) Will all the planets receive radio signals from the spaceprobe that are Doppler shifted? Explain your reasoning. d) How will the size of the Doppler Shift in the radio signals detected at Planets A and B compare? Explain your reasoning. Cats r , ‘, e) How Will the slz of 1h Dupler Shift in the radio signals deteed °lane E and B compare? Explain your reasoning. ‘

  ANSWERS Part 1 1 C is the answer because … Read More...