1) During the late 19th century, the nature of work changed for Americans and has never been the same since. Facets of work which we take for granted today such as working long hours and working by the clock, working with machines, and feeling like a very small part of a very large company or corporation, were alien to workers of the late 19th century. Scholars have long debated this transition in the workplace, and have attempted to assess whether the change was beneficial or not for the worker. Using your own personal experience if you wish, but also using specific historical examples discussed in the text and lesson, do you feel the changes the American worker experienced in the 19th century were beneficial or not? Would you rather work in a pre-industrial workplace, not governed by the clock, or has the advent of machines and machinery allowed American workers more freedom? Or has it made them robots? Also, why do you think we don’t have violent labor conflicts in this country like there were in the 19th century? Are workers happier? Or just used to a system now that they have no choice but to accept?

1) During the late 19th century, the nature of work changed for Americans and has never been the same since. Facets of work which we take for granted today such as working long hours and working by the clock, working with machines, and feeling like a very small part of a very large company or corporation, were alien to workers of the late 19th century. Scholars have long debated this transition in the workplace, and have attempted to assess whether the change was beneficial or not for the worker. Using your own personal experience if you wish, but also using specific historical examples discussed in the text and lesson, do you feel the changes the American worker experienced in the 19th century were beneficial or not? Would you rather work in a pre-industrial workplace, not governed by the clock, or has the advent of machines and machinery allowed American workers more freedom? Or has it made them robots? Also, why do you think we don’t have violent labor conflicts in this country like there were in the 19th century? Are workers happier? Or just used to a system now that they have no choice but to accept?

Planned labor has always been of paramount importance as supporting … Read More...
500 words essay responding to a poem needed in 12 hours from now. it is one page poem that I will provide you with. The essay details are below: Essay #1- Poetry Length: 500 words (~2 pages) MLA Format Write a formal academic essay responding to a poem we have discussed in class. Pick ONE poem on the reading schedule and discuss how the poem’s literary devices and formal elements contribute to its larger thematic concerns. Two pages is not a lot of space, so focus on the most important elements, rather than trying to include everything. Some things to think about: Figurative language: Note the images the poem describes. Does the poem seem to be literally describing things, or does the poet employ figurative language? Are there any metaphors or conceits? How does the poet move from one image to the next? Does there seem to be any theme tying the images together? Form: Look at the way the poem appears on the page. Do you notice any patterns? Is the poem written in stanzas? Does the poem employ a specific meter (iambic pentameter)? Is the poem a fixed form (sonnet)? Does the poet employ punctuation? Does the poem appear neat or chaotic? How do any of these elements relate to what the poem describes? Sound: Read the poem out loud. Do the sounds roll off your tongue, or does it feel like a tongue-twister? Is the language clunky or smooth? Does the poem use alliteration, assonance, or repetition? If the poem rhymes, are they perfect rhymes or near rhymes? Do the rhymes appear at the end of the line or in the middle? Does the way the poem sounds bring out the feeling of what it is describing? Speaker: Who is the speaker (age/gender/role)? Who are they speaking to? Is it first person, third-person, written in a persona? Is the tone formal or conversational? Is the diction simple, or does the speaker use words you have to look up in a dictionary? What might this tell us? Theme: Are there any specific ideas the poem seems to be addressing? How do the poem’s formal concerns (how it appears on the page) emphasize, challenge, or undercut these ideas? Some themes we might focus on include: identity, place, defamiliarization, freedom and constraint, violence and language, racial injustice. (You may focus on one of these or come up with your own.) Make sure this is a formal academic essay. Format your page to include page numbers, double-spacing, and 1” margins. Use Times New Roman font. Include a Works Cited page. Using any source that is not the primary text will result in a 25% penalty.

500 words essay responding to a poem needed in 12 hours from now. it is one page poem that I will provide you with. The essay details are below: Essay #1- Poetry Length: 500 words (~2 pages) MLA Format Write a formal academic essay responding to a poem we have discussed in class. Pick ONE poem on the reading schedule and discuss how the poem’s literary devices and formal elements contribute to its larger thematic concerns. Two pages is not a lot of space, so focus on the most important elements, rather than trying to include everything. Some things to think about: Figurative language: Note the images the poem describes. Does the poem seem to be literally describing things, or does the poet employ figurative language? Are there any metaphors or conceits? How does the poet move from one image to the next? Does there seem to be any theme tying the images together? Form: Look at the way the poem appears on the page. Do you notice any patterns? Is the poem written in stanzas? Does the poem employ a specific meter (iambic pentameter)? Is the poem a fixed form (sonnet)? Does the poet employ punctuation? Does the poem appear neat or chaotic? How do any of these elements relate to what the poem describes? Sound: Read the poem out loud. Do the sounds roll off your tongue, or does it feel like a tongue-twister? Is the language clunky or smooth? Does the poem use alliteration, assonance, or repetition? If the poem rhymes, are they perfect rhymes or near rhymes? Do the rhymes appear at the end of the line or in the middle? Does the way the poem sounds bring out the feeling of what it is describing? Speaker: Who is the speaker (age/gender/role)? Who are they speaking to? Is it first person, third-person, written in a persona? Is the tone formal or conversational? Is the diction simple, or does the speaker use words you have to look up in a dictionary? What might this tell us? Theme: Are there any specific ideas the poem seems to be addressing? How do the poem’s formal concerns (how it appears on the page) emphasize, challenge, or undercut these ideas? Some themes we might focus on include: identity, place, defamiliarization, freedom and constraint, violence and language, racial injustice. (You may focus on one of these or come up with your own.) Make sure this is a formal academic essay. Format your page to include page numbers, double-spacing, and 1” margins. Use Times New Roman font. Include a Works Cited page. Using any source that is not the primary text will result in a 25% penalty.

What is likely to happen if every morning a person low in self-esteem repeats self-affirmations such as “Every day, in every way, I am getting better and better”? The individual will start to report feeling worse. The individual will start to report increased self-esteem. Nothing will happen, as these interventions do little to change self-esteem. The individual will become slightly more aggressive.

What is likely to happen if every morning a person low in self-esteem repeats self-affirmations such as “Every day, in every way, I am getting better and better”? The individual will start to report feeling worse. The individual will start to report increased self-esteem. Nothing will happen, as these interventions do little to change self-esteem. The individual will become slightly more aggressive.

What is likely to happen if every morning a person … Read More...
Chapter 13 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, May 16, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy A Matter of Some Gravity Learning Goal: To understand Newton’s law of gravitation and the distinction between inertial and gravitational masses. In this problem, you will practice using Newton’s law of gravitation. According to that law, the magnitude of the gravitational force between two small particles of masses and , separated by a distance , is given by , where is the universal gravitational constant, whose numerical value (in SI units) is . This formula applies not only to small particles, but also to spherical objects. In fact, the gravitational force between two uniform spheres is the same as if we concentrated all the mass of each sphere at its center. Thus, by modeling the Earth and the Moon as uniform spheres, you can use the particle approximation when calculating the force of gravity between them. Be careful in using Newton’s law to choose the correct value for . To calculate the force of gravitational attraction between two uniform spheres, the distance in the equation for Newton’s law of gravitation is the distance between the centers of the spheres. For instance, if a small object such as an elephant is located on the surface of the Earth, the radius of the Earth would be used in the equation. Note that the force of gravity acting on an object located near the surface of a planet is often called weight. Also note that in situations involving satellites, you are often given the altitude of the satellite, that is, the distance from the satellite to the surface of the planet; this is not the distance to be used in the formula for the law of gravitation. There is a potentially confusing issue involving mass. Mass is defined as a measure of an object’s inertia, that is, its ability to resist acceleration. Newton’s second law demonstrates the relationship between mass, acceleration, and the net force acting on an object: . We can now refer to this measure of inertia more precisely as the inertial mass. On the other hand, the masses of the particles that appear in the expression for the law of gravity seem to have nothing to do with inertia: Rather, they serve as a measure of the strength of gravitational interactions. It would be reasonable to call such a property gravitational mass. Does this mean that every object has two different masses? Generally speaking, yes. However, the good news is that according to the latest, highly precise, measurements, the inertial and the gravitational mass of an object are, in fact, equal to each other; it is an established consensus among physicists that there is only one mass after all, which is a measure of both the object’s inertia and its ability to engage in gravitational interactions. Note that this consensus, like everything else in science, is open to possible amendments in the future. In this problem, you will answer several questions that require the use of Newton’s law of gravitation. Part A Two particles are separated by a certain distance. The force of gravitational interaction between them is . Now the separation between the particles is tripled. Find the new force of gravitational Fg m1 m2 r Fg = G m1m2 r2 G 6.67 × 10−11 N m2 kg2 r r rEarth F  = m net a F0 interaction . Express your answer in terms of . ANSWER: Part B A satellite revolves around a planet at an altitude equal to the radius of the planet. The force of gravitational interaction between the satellite and the planet is . Then the satellite moves to a different orbit, so that its altitude is tripled. Find the new force of gravitational interaction . Express your answer in terms of . You did not open hints for this part. ANSWER: Part C A satellite revolves around a planet at an altitude equal to the radius of the planet. The force of gravitational interaction between the satellite and the planet is . Then the satellite is brought back to the surface of the planet. Find the new force of gravitational interaction . Express your answer in terms of . ANSWER: F1 F0 F1 = F0 F2 F0 F2 = F0 F4 F0 Typesetting math: 81% Part D Two satellites revolve around the Earth. Satellite A has mass and has an orbit of radius . Satellite B has mass and an orbit of unknown radius . The forces of gravitational attraction between each satellite and the Earth is the same. Find . Express your answer in terms of . ANSWER: Part E An adult elephant has a mass of about 5.0 tons. An adult elephant shrew has a mass of about 50 grams. How far from the center of the Earth should an elephant be placed so that its weight equals that of the elephant shrew on the surface of the Earth? The radius of the Earth is 6400 . ( .) Express your answer in kilometers. ANSWER: The table below gives the masses of the Earth, the Moon, and the Sun. Name Mass (kg) Earth Moon Sun F4 = m r 6m rb rb r rb = r km 1 ton = 103 kg r = km 5.97 × 1024 7.35 × 1022 1.99 × 1030 Typesetting math: 81% The average distance between the Earth and the Moon is . The average distance between the Earth and the Sun is . Use this information to answer the following questions. Part F Find the net gravitational force acting on the Earth in the Sun-Earth-Moon system during the new moon (when the moon is located directly between the Earth and the Sun). Express your answer in newtons to three significant figures. You did not open hints for this part. ANSWER: Part G Find the net gravitational force acting on the Earth in the Sun-Earth-Moon system during the full moon (when the Earth is located directly between the moon and the sun). Express your answer in newtons to three significant figures. ANSWER: ± Understanding Newton’s Law of Universal Gravitation Learning Goal: To understand Newton’s law of universal gravitation and be able to apply it in two-object situations and (collinear) three-object situations; to distinguish between the use of and . 3.84 × 108 m 1.50 × 1011 m Fnet Fnet = N Fnet Fnet = N Typesetting math: 81% G g In the late 1600s, Isaac Newton proposed a rule to quantify the attractive force known as gravity between objects that have mass, such as those shown in the figure. Newton’s law of universal gravitation describes the magnitude of the attractive gravitational force between two objects with masses and as , where is the distance between the centers of the two objects and is the gravitational constant. The gravitational force is attractive, so in the figure it pulls to the right on (toward ) and toward the left on (toward ). The gravitational force acting on is equal in size to, but exactly opposite in direction from, the gravitational force acting on , as required by Newton’s third law. The magnitude of both forces is calculated with the equation given above. The gravitational constant has the value and should not be confused with the magnitude of the gravitational free-fall acceleration constant, denoted by , which equals 9.80 near the surface of the earth. The size of in SI units is tiny. This means that gravitational forces are sizeable only in the vicinity of very massive objects, such as the earth. You are in fact gravitationally attracted toward all the objects around you, such as the computer you are using, but the size of that force is too small to be noticed without extremely sensitive equipment. Consider the earth following its nearly circular orbit (dashed curve) about the sun. The earth has mass and the sun has mass . They are separated, center to center, by . Part A What is the size of the gravitational force acting on the earth due to the sun? Express your answer in newtons. F  g m1 m2 Fg = G( ) m1m2 r2 r G m1 m2 m2 m1 m1 m2 G G = 6.67 × 10−11 N m2/kg2 g m/s2 G mearth = 5.98 × 1024 kg msun = 1.99 × 1030 kg r = 93 million miles = 150 million km Typesetting math: 81% You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F N Typesetting math: 81% This question will be shown after you complete previous question(s). Understanding Mass and Weight Learning Goal: To understand the distinction between mass and weight and to be able to calculate the weight of an object from its mass and Newton’s law of gravitation. The concepts of mass and weight are often confused. In fact, in everyday conversations, the word “weight” often replaces “mass,” as in “My weight is seventy-five kilograms” or “I need to lose some weight.” Of course, mass and weight are related; however, they are also very different. Mass, as you recall, is a measure of an object’s inertia (ability to resist acceleration). Newton’s 2nd law demonstrates the relationship among an object’s mass, its acceleration, and the net force acting on it: . Mass is an intrinsic property of an object and is independent of the object’s location. Weight, in contrast, is defined as the force due to gravity acting on the object. That force depends on the strength of the gravitational field of the planet: , where is the weight of an object, is the mass of that object, and is the local acceleration due to gravity (in other words, the strength of the gravitational field at the location of the object). Weight, unlike mass, is not an intrinsic property of the object; it is determined by both the object and its location. Part A Which of the following quantities represent mass? Check all that apply. ANSWER: Fnet = ma w = mg w m g 12.0 lbs 0.34 g 120 kg 1600 kN 0.34 m 411 cm 899 MN Typesetting math: 81% Part B This question will be shown after you complete previous question(s). Using the universal law of gravity, we can find the weight of an object feeling the gravitational pull of a nearby planet. We can write an expression , where is the weight of the object, is the gravitational constant, is the mass of that object, is mass of the planet, and is the distance from the center of the planet to the object. If the object is on the surface of the planet, is simply the radius of the planet. Part C The gravitational field on the surface of the earth is stronger than that on the surface of the moon. If a rock is transported from the moon to the earth, which properties of the rock change? ANSWER: Part D This question will be shown after you complete previous question(s). Part E If acceleration due to gravity on the earth is , which formula gives the acceleration due to gravity on Loput? You did not open hints for this part. ANSWER: w = GmM/r2 w G m M r r mass only weight only both mass and weight neither mass nor weight g Typesetting math: 81% Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). ± Weight on a Neutron Star Neutron stars, such as the one at the center of the Crab Nebula, have about the same mass as our sun but a much smaller diameter. g 1.7 5.6 g 1.72 5.6 g 1.72 5.62 g 5.6 1.7 g 5.62 1.72 g 5.6 1.72 Typesetting math: 81% Part A If you weigh 655 on the earth, what would be your weight on the surface of a neutron star that has the same mass as our sun and a diameter of 19.0 ? Take the mass of the sun to be = 1.99×1030 , the gravitational constant to be = 6.67×10−11 , and the acceleration due to gravity at the earth’s surface to be = 9.810 . Express your weight in newtons. You did not open hints for this part. ANSWER: ± Escape Velocity Learning Goal: To introduce you to the concept of escape velocity for a rocket. The escape velocity is defined to be the minimum speed with which an object of mass must move to escape from the gravitational attraction of a much larger body, such as a planet of total mass . The escape velocity is a function of the distance of the object from the center of the planet , but unless otherwise specified this distance is taken to be the radius of the planet because it addresses the question “How fast does my rocket have to go to escape from the surface of the planet?” Part A The key to making a concise mathematical definition of escape velocity is to consider the energy. If an object is launched at its escape velocity, what is the total mechanical energy of the object at a very large (i.e., infinite) distance from the planet? Follow the usual convention and take the gravitational potential energy to be zero at very large distances. You did not open hints for this part. ANSWER: N km ms kg G N m2/kg2 g m/s2 wstar wstar = N m M R Etotal Typesetting math: 81% Consider the motion of an object between a point close to the planet and a point very very far from the planet. Indicate whether the following statements are true or false. Part B Angular momentum about the center of the planet is conserved. ANSWER: Part C Total mechanical energy is conserved. ANSWER: Part D Kinetic energy is conserved. ANSWER: Etotal = true false true false Typesetting math: 81% Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). A Satellite in a Circular Orbit Consider a satellite of mass that orbits a planet of mass in a circle a distance from the center of the planet. The satellite’s mass is negligible compared with that of the planet. Indicate whether each of the statements in this problem is true or false. Part A The information given is sufficient to uniquely specify the speed, potential energy, and angular momentum of the satellite. You did not open hints for this part. ANSWER: true false m1 m2 r true false Typesetting math: 81% Part B The total mechanical energy of the satellite is conserved. You did not open hints for this part. ANSWER: Part C The linear momentum vector of the satellite is conserved. You did not open hints for this part. ANSWER: Part D The angular momentum of the satellite about the center of the planet is conserved. You did not open hints for this part. ANSWER: true false true false Typesetting math: 81% Part E The equations that express the conservation laws of total mechanical energy and linear momentum are sufficient to solve for the speed necessary to maintain a circular orbit at without using . You did not open hints for this part. ANSWER: At the Galaxy’s Core Astronomers have observed a small, massive object at the center of our Milky Way galaxy. A ring of material orbits this massive object; the ring has a diameter of about 15 light years and an orbital speed of about 200 . Part A Determine the mass of the massive object at the center of the Milky Way galaxy. Take the distance of one light year to be . Express your answer in kilograms. You did not open hints for this part. true false R F = ma true false km/s M 9.461 × 1015 m Typesetting math: 81% ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Properties of Circular Orbits Learning Goal: To teach you how to find the parameters characterizing an object in a circular orbit around a much heavier body like the earth. M = kg Typesetting math: 81% The motivation for Isaac Newton to discover his laws of motion was to explain the properties of planetary orbits that were observed by Tycho Brahe and analyzed by Johannes Kepler. A good starting point for understanding this (as well as the speed of the space shuttle and the height of geostationary satellites) is the simplest orbit–a circular one. This problem concerns the properties of circular orbits for a satellite orbiting a planet of mass . For all parts of this problem, where appropriate, use for the universal gravitational constant. Part A Find the orbital speed for a satellite in a circular orbit of radius . Express the orbital speed in terms of , , and . You did not open hints for this part. ANSWER: Part B Find the kinetic energy of a satellite with mass in a circular orbit with radius . Express your answer in terms of \texttip{m}{m}, \texttip{M}{M}, \texttip{G}{G}, and \texttip{R}{R}. ANSWER: Part C M G v R G M R v = K m R \texttip{K}{K} = Typesetting math: 81% This question will be shown after you complete previous question(s). Part D Find the orbital period \texttip{T}{T}. Express your answer in terms of \texttip{G}{G}, \texttip{M}{M}, \texttip{R}{R}, and \texttip{\pi }{pi}. You did not open hints for this part. ANSWER: Part E This question will be shown after you complete previous question(s). Part F Find \texttip{L}{L}, the magnitude of the angular momentum of the satellite with respect to the center of the planet. Express your answer in terms of \texttip{m}{m}, \texttip{M}{M}, \texttip{G}{G}, and \texttip{R}{R}. You did not open hints for this part. ANSWER: \texttip{T}{T} = Typesetting math: 81% Part G The quantities \texttip{v}{v}, \texttip{K}{K}, \texttip{U}{U}, and \texttip{L}{L} all represent physical quantities characterizing the orbit that depend on radius \texttip{R}{R}. Indicate the exponent (power) of the radial dependence of the absolute value of each. Express your answer as a comma-separated list of exponents corresponding to \texttip{v}{v}, \texttip{K}{K}, \texttip{U}{U}, and \texttip{L}{L}, in that order. For example, -1,-1/2,-0.5,-3/2 would mean v \propto R^{-1}, K \propto R^{-1/2}, and so forth. You did not open hints for this part. ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. \texttip{L}{L} = Typesetting math: 81%

Chapter 13 Practice Problems (Practice – no credit) Due: 11:59pm on Friday, May 16, 2014 You will receive no credit for items you complete after the assignment is due. Grading Policy A Matter of Some Gravity Learning Goal: To understand Newton’s law of gravitation and the distinction between inertial and gravitational masses. In this problem, you will practice using Newton’s law of gravitation. According to that law, the magnitude of the gravitational force between two small particles of masses and , separated by a distance , is given by , where is the universal gravitational constant, whose numerical value (in SI units) is . This formula applies not only to small particles, but also to spherical objects. In fact, the gravitational force between two uniform spheres is the same as if we concentrated all the mass of each sphere at its center. Thus, by modeling the Earth and the Moon as uniform spheres, you can use the particle approximation when calculating the force of gravity between them. Be careful in using Newton’s law to choose the correct value for . To calculate the force of gravitational attraction between two uniform spheres, the distance in the equation for Newton’s law of gravitation is the distance between the centers of the spheres. For instance, if a small object such as an elephant is located on the surface of the Earth, the radius of the Earth would be used in the equation. Note that the force of gravity acting on an object located near the surface of a planet is often called weight. Also note that in situations involving satellites, you are often given the altitude of the satellite, that is, the distance from the satellite to the surface of the planet; this is not the distance to be used in the formula for the law of gravitation. There is a potentially confusing issue involving mass. Mass is defined as a measure of an object’s inertia, that is, its ability to resist acceleration. Newton’s second law demonstrates the relationship between mass, acceleration, and the net force acting on an object: . We can now refer to this measure of inertia more precisely as the inertial mass. On the other hand, the masses of the particles that appear in the expression for the law of gravity seem to have nothing to do with inertia: Rather, they serve as a measure of the strength of gravitational interactions. It would be reasonable to call such a property gravitational mass. Does this mean that every object has two different masses? Generally speaking, yes. However, the good news is that according to the latest, highly precise, measurements, the inertial and the gravitational mass of an object are, in fact, equal to each other; it is an established consensus among physicists that there is only one mass after all, which is a measure of both the object’s inertia and its ability to engage in gravitational interactions. Note that this consensus, like everything else in science, is open to possible amendments in the future. In this problem, you will answer several questions that require the use of Newton’s law of gravitation. Part A Two particles are separated by a certain distance. The force of gravitational interaction between them is . Now the separation between the particles is tripled. Find the new force of gravitational Fg m1 m2 r Fg = G m1m2 r2 G 6.67 × 10−11 N m2 kg2 r r rEarth F  = m net a F0 interaction . Express your answer in terms of . ANSWER: Part B A satellite revolves around a planet at an altitude equal to the radius of the planet. The force of gravitational interaction between the satellite and the planet is . Then the satellite moves to a different orbit, so that its altitude is tripled. Find the new force of gravitational interaction . Express your answer in terms of . You did not open hints for this part. ANSWER: Part C A satellite revolves around a planet at an altitude equal to the radius of the planet. The force of gravitational interaction between the satellite and the planet is . Then the satellite is brought back to the surface of the planet. Find the new force of gravitational interaction . Express your answer in terms of . ANSWER: F1 F0 F1 = F0 F2 F0 F2 = F0 F4 F0 Typesetting math: 81% Part D Two satellites revolve around the Earth. Satellite A has mass and has an orbit of radius . Satellite B has mass and an orbit of unknown radius . The forces of gravitational attraction between each satellite and the Earth is the same. Find . Express your answer in terms of . ANSWER: Part E An adult elephant has a mass of about 5.0 tons. An adult elephant shrew has a mass of about 50 grams. How far from the center of the Earth should an elephant be placed so that its weight equals that of the elephant shrew on the surface of the Earth? The radius of the Earth is 6400 . ( .) Express your answer in kilometers. ANSWER: The table below gives the masses of the Earth, the Moon, and the Sun. Name Mass (kg) Earth Moon Sun F4 = m r 6m rb rb r rb = r km 1 ton = 103 kg r = km 5.97 × 1024 7.35 × 1022 1.99 × 1030 Typesetting math: 81% The average distance between the Earth and the Moon is . The average distance between the Earth and the Sun is . Use this information to answer the following questions. Part F Find the net gravitational force acting on the Earth in the Sun-Earth-Moon system during the new moon (when the moon is located directly between the Earth and the Sun). Express your answer in newtons to three significant figures. You did not open hints for this part. ANSWER: Part G Find the net gravitational force acting on the Earth in the Sun-Earth-Moon system during the full moon (when the Earth is located directly between the moon and the sun). Express your answer in newtons to three significant figures. ANSWER: ± Understanding Newton’s Law of Universal Gravitation Learning Goal: To understand Newton’s law of universal gravitation and be able to apply it in two-object situations and (collinear) three-object situations; to distinguish between the use of and . 3.84 × 108 m 1.50 × 1011 m Fnet Fnet = N Fnet Fnet = N Typesetting math: 81% G g In the late 1600s, Isaac Newton proposed a rule to quantify the attractive force known as gravity between objects that have mass, such as those shown in the figure. Newton’s law of universal gravitation describes the magnitude of the attractive gravitational force between two objects with masses and as , where is the distance between the centers of the two objects and is the gravitational constant. The gravitational force is attractive, so in the figure it pulls to the right on (toward ) and toward the left on (toward ). The gravitational force acting on is equal in size to, but exactly opposite in direction from, the gravitational force acting on , as required by Newton’s third law. The magnitude of both forces is calculated with the equation given above. The gravitational constant has the value and should not be confused with the magnitude of the gravitational free-fall acceleration constant, denoted by , which equals 9.80 near the surface of the earth. The size of in SI units is tiny. This means that gravitational forces are sizeable only in the vicinity of very massive objects, such as the earth. You are in fact gravitationally attracted toward all the objects around you, such as the computer you are using, but the size of that force is too small to be noticed without extremely sensitive equipment. Consider the earth following its nearly circular orbit (dashed curve) about the sun. The earth has mass and the sun has mass . They are separated, center to center, by . Part A What is the size of the gravitational force acting on the earth due to the sun? Express your answer in newtons. F  g m1 m2 Fg = G( ) m1m2 r2 r G m1 m2 m2 m1 m1 m2 G G = 6.67 × 10−11 N m2/kg2 g m/s2 G mearth = 5.98 × 1024 kg msun = 1.99 × 1030 kg r = 93 million miles = 150 million km Typesetting math: 81% You did not open hints for this part. ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Part F N Typesetting math: 81% This question will be shown after you complete previous question(s). Understanding Mass and Weight Learning Goal: To understand the distinction between mass and weight and to be able to calculate the weight of an object from its mass and Newton’s law of gravitation. The concepts of mass and weight are often confused. In fact, in everyday conversations, the word “weight” often replaces “mass,” as in “My weight is seventy-five kilograms” or “I need to lose some weight.” Of course, mass and weight are related; however, they are also very different. Mass, as you recall, is a measure of an object’s inertia (ability to resist acceleration). Newton’s 2nd law demonstrates the relationship among an object’s mass, its acceleration, and the net force acting on it: . Mass is an intrinsic property of an object and is independent of the object’s location. Weight, in contrast, is defined as the force due to gravity acting on the object. That force depends on the strength of the gravitational field of the planet: , where is the weight of an object, is the mass of that object, and is the local acceleration due to gravity (in other words, the strength of the gravitational field at the location of the object). Weight, unlike mass, is not an intrinsic property of the object; it is determined by both the object and its location. Part A Which of the following quantities represent mass? Check all that apply. ANSWER: Fnet = ma w = mg w m g 12.0 lbs 0.34 g 120 kg 1600 kN 0.34 m 411 cm 899 MN Typesetting math: 81% Part B This question will be shown after you complete previous question(s). Using the universal law of gravity, we can find the weight of an object feeling the gravitational pull of a nearby planet. We can write an expression , where is the weight of the object, is the gravitational constant, is the mass of that object, is mass of the planet, and is the distance from the center of the planet to the object. If the object is on the surface of the planet, is simply the radius of the planet. Part C The gravitational field on the surface of the earth is stronger than that on the surface of the moon. If a rock is transported from the moon to the earth, which properties of the rock change? ANSWER: Part D This question will be shown after you complete previous question(s). Part E If acceleration due to gravity on the earth is , which formula gives the acceleration due to gravity on Loput? You did not open hints for this part. ANSWER: w = GmM/r2 w G m M r r mass only weight only both mass and weight neither mass nor weight g Typesetting math: 81% Part F This question will be shown after you complete previous question(s). Part G This question will be shown after you complete previous question(s). Part H This question will be shown after you complete previous question(s). ± Weight on a Neutron Star Neutron stars, such as the one at the center of the Crab Nebula, have about the same mass as our sun but a much smaller diameter. g 1.7 5.6 g 1.72 5.6 g 1.72 5.62 g 5.6 1.7 g 5.62 1.72 g 5.6 1.72 Typesetting math: 81% Part A If you weigh 655 on the earth, what would be your weight on the surface of a neutron star that has the same mass as our sun and a diameter of 19.0 ? Take the mass of the sun to be = 1.99×1030 , the gravitational constant to be = 6.67×10−11 , and the acceleration due to gravity at the earth’s surface to be = 9.810 . Express your weight in newtons. You did not open hints for this part. ANSWER: ± Escape Velocity Learning Goal: To introduce you to the concept of escape velocity for a rocket. The escape velocity is defined to be the minimum speed with which an object of mass must move to escape from the gravitational attraction of a much larger body, such as a planet of total mass . The escape velocity is a function of the distance of the object from the center of the planet , but unless otherwise specified this distance is taken to be the radius of the planet because it addresses the question “How fast does my rocket have to go to escape from the surface of the planet?” Part A The key to making a concise mathematical definition of escape velocity is to consider the energy. If an object is launched at its escape velocity, what is the total mechanical energy of the object at a very large (i.e., infinite) distance from the planet? Follow the usual convention and take the gravitational potential energy to be zero at very large distances. You did not open hints for this part. ANSWER: N km ms kg G N m2/kg2 g m/s2 wstar wstar = N m M R Etotal Typesetting math: 81% Consider the motion of an object between a point close to the planet and a point very very far from the planet. Indicate whether the following statements are true or false. Part B Angular momentum about the center of the planet is conserved. ANSWER: Part C Total mechanical energy is conserved. ANSWER: Part D Kinetic energy is conserved. ANSWER: Etotal = true false true false Typesetting math: 81% Part E This question will be shown after you complete previous question(s). Part F This question will be shown after you complete previous question(s). A Satellite in a Circular Orbit Consider a satellite of mass that orbits a planet of mass in a circle a distance from the center of the planet. The satellite’s mass is negligible compared with that of the planet. Indicate whether each of the statements in this problem is true or false. Part A The information given is sufficient to uniquely specify the speed, potential energy, and angular momentum of the satellite. You did not open hints for this part. ANSWER: true false m1 m2 r true false Typesetting math: 81% Part B The total mechanical energy of the satellite is conserved. You did not open hints for this part. ANSWER: Part C The linear momentum vector of the satellite is conserved. You did not open hints for this part. ANSWER: Part D The angular momentum of the satellite about the center of the planet is conserved. You did not open hints for this part. ANSWER: true false true false Typesetting math: 81% Part E The equations that express the conservation laws of total mechanical energy and linear momentum are sufficient to solve for the speed necessary to maintain a circular orbit at without using . You did not open hints for this part. ANSWER: At the Galaxy’s Core Astronomers have observed a small, massive object at the center of our Milky Way galaxy. A ring of material orbits this massive object; the ring has a diameter of about 15 light years and an orbital speed of about 200 . Part A Determine the mass of the massive object at the center of the Milky Way galaxy. Take the distance of one light year to be . Express your answer in kilograms. You did not open hints for this part. true false R F = ma true false km/s M 9.461 × 1015 m Typesetting math: 81% ANSWER: Part B This question will be shown after you complete previous question(s). Part C This question will be shown after you complete previous question(s). Part D This question will be shown after you complete previous question(s). Part E This question will be shown after you complete previous question(s). Properties of Circular Orbits Learning Goal: To teach you how to find the parameters characterizing an object in a circular orbit around a much heavier body like the earth. M = kg Typesetting math: 81% The motivation for Isaac Newton to discover his laws of motion was to explain the properties of planetary orbits that were observed by Tycho Brahe and analyzed by Johannes Kepler. A good starting point for understanding this (as well as the speed of the space shuttle and the height of geostationary satellites) is the simplest orbit–a circular one. This problem concerns the properties of circular orbits for a satellite orbiting a planet of mass . For all parts of this problem, where appropriate, use for the universal gravitational constant. Part A Find the orbital speed for a satellite in a circular orbit of radius . Express the orbital speed in terms of , , and . You did not open hints for this part. ANSWER: Part B Find the kinetic energy of a satellite with mass in a circular orbit with radius . Express your answer in terms of \texttip{m}{m}, \texttip{M}{M}, \texttip{G}{G}, and \texttip{R}{R}. ANSWER: Part C M G v R G M R v = K m R \texttip{K}{K} = Typesetting math: 81% This question will be shown after you complete previous question(s). Part D Find the orbital period \texttip{T}{T}. Express your answer in terms of \texttip{G}{G}, \texttip{M}{M}, \texttip{R}{R}, and \texttip{\pi }{pi}. You did not open hints for this part. ANSWER: Part E This question will be shown after you complete previous question(s). Part F Find \texttip{L}{L}, the magnitude of the angular momentum of the satellite with respect to the center of the planet. Express your answer in terms of \texttip{m}{m}, \texttip{M}{M}, \texttip{G}{G}, and \texttip{R}{R}. You did not open hints for this part. ANSWER: \texttip{T}{T} = Typesetting math: 81% Part G The quantities \texttip{v}{v}, \texttip{K}{K}, \texttip{U}{U}, and \texttip{L}{L} all represent physical quantities characterizing the orbit that depend on radius \texttip{R}{R}. Indicate the exponent (power) of the radial dependence of the absolute value of each. Express your answer as a comma-separated list of exponents corresponding to \texttip{v}{v}, \texttip{K}{K}, \texttip{U}{U}, and \texttip{L}{L}, in that order. For example, -1,-1/2,-0.5,-3/2 would mean v \propto R^{-1}, K \propto R^{-1/2}, and so forth. You did not open hints for this part. ANSWER: Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. \texttip{L}{L} = Typesetting math: 81%

please email info@checkyourstudy.com
According to the text, how can reward be used to prevent somebody from doing something? Reward a response that is incompatible with the undesired response. Reward the undesired response randomly. Reward the undesired response to secure a feeling of trust and compassion. Reward any response, regardless of its desirability.

According to the text, how can reward be used to prevent somebody from doing something? Reward a response that is incompatible with the undesired response. Reward the undesired response randomly. Reward the undesired response to secure a feeling of trust and compassion. Reward any response, regardless of its desirability.

According to the text, how can reward be used to … Read More...
Question 1 1. When the rules of perspective are applied in order to represent unusual points of view, we call this ________. a. foreshortening b. chiaroscuro c. convergence d. highlight e. overlapping 10 points Question 2 1. A flat work of art has two dimensions: ________ and width. a. breadth b. depth c. size d. mass e. height 10 points Question 3 1. Méret Oppenheim was part of an art movement that rejected rational, conscious thought. Her fur-lined teacup and saucer, Object, conjures an unexpected and illogical sensation for the viewer by using ________ texture. a. smooth b. familiar c. expected d. subversive e. silky 10 points Question 4 1. In James Allen’s etching The Connectors, an image of workers erecting the Empire State Building, the artist created a feeling of great height by using ________ line to lead the viewer’s eye diagonally downward. a. horizontal b. communicative c. regular d. directional e. implied 10 points Question 5 1. Because it is three-dimensional, a form has these three spatial measurements: height, width, and ________. a. mass b. length c. size d. depth e. strength 10 points Question 6 1. The ancient Egyptian depiction of the journey of the Sun god Re (0.1) was painted on ________. a. stone b. a coffin c. the wall of a tomb d. copper e. a vase 10 points Question 7 1. The area covered by a pattern is called the ________. a. field b. motif c. background d. size e. foreground 10 points Question 8 1. ________ balance is achieved when two halves of a composition are not mirror images of each other. a. unified b. radial c. varied d. asymmetrical e. symmetrical 10 points Question 9 1. In Audrey Flack’s Marilyn Monroe, the burning candle, the flower, and the hourglass are typical of a kind of symbolism in art that reminds us of death. This kind of symbolism is known as ________. a. vanitas b. feminism c. abstract d. eternal e. none of the other answers 10 points Question 10 1. Tibetan Buddhist monks create colored sand images with a radial design. This representation of the universe is called a ________. a. prayer wheel b. rotunda c. mandala d. prayer flag e. lotus 10 points Question 11 1. In The School of Athens, Raphael focused our attention on two Greek philosophers positioned in the center of the work. They are ________ and ________. a. Plato . . . Aristotle b. Aristotle . . . Socrates c. Diogenes . . . Socrates d. Diogenes . . . Aristotle e. Socrates . . . Plato 10 points Question 12 1. In his Obey campaign poster Shepard Fairey used a striking contrast between positive and ________ shapes to attract the attention of the public. a. figure–ground reversal b. implied c. geometric d. organic e. negative 10 points Question 13 1. The Italian architect Andrea Palladio created a radial design in his plan for the Villa Capra. This building is also called the ________. a. Colosseum b. Pantheon c. Villa Rotonda d. Villa Caprese e. Parthenon 10 points Question 14 1. The French artist Georges Seurat employed a new technique to create a jewel-like diffusion of light and vibration of color in his work The Circus. This type of painting, made up of small dots of color, is known as ________. a. Fauvism b. Luminism c. pointillism d. Pop art e. Impressionism 10 points Question 15 1. The rarity of an artwork, and its value, are often closely related. True False 10 points Question 16 1. By orienting lines so that they attract attention to a specific area of a work of art the artist is using ________. a. actual line b. implied line c. directional line d. measured line e. chaotic line 10 points Question 17 1. Kindred Spirits by Asher Brown Durand uses the effects of ________ to give a sense of the vastness of the American landscape. a. pencil drawing b. geometry c. atmospheric perspective d. foreshortening e. color 10 points Question 18 1. The opposite of emphasis is ________. a. subordination b. tone c. focal point d. color e. proportion 10 points Question 19 1. Gustav Klimt’s portrait of Adele Bloch-Bauer was typical of his portraits of the wives and sisters of ________. a. foreign tourists b. Nazi rulers c. German scientists d. Austrian businessmen e. important politicians 10 points Question 20 1. The combination of jarring vertical and diagonal lines in Vincent van Gogh’s The Bedroom creates an atmosphere of ________. a. happiness b. rest c. anxiety d. expectation e. calm 10 points Question 21 1. If the clothing of the saint was the only light area in The Funeral of St. Bonaventure, the viewer’s eye would not be easily drawn to any other areas of the composition. True False 10 points Question 22 1. Miriam Schapiro’s collage Baby Blocks combines two different kinds of shape. ________ is the term used to describe a shape that suggests the natural world, while the term geometric suggests mathematical regularity. a. conceptual b. implied c. organic d. regular e. artificial 10 points Question 23 1. Any of the ________ of art can help focus our interest on specific areas of a work of art. a. styles b. elements c. periods d. tones e. themes 10 points Question 24 1. An artwork can be described as non-objective if its subject matter is ________. a. three-dimensional b. difficult c. unrecognizable d. recognizable e. animals 10 points Question 25 1. Match the methodological approach with its definition: biographical analysis feminist analysis formal analysis contextual analysis 2. iconographical analysis a. analyzes the use of formal elements in a work. b. considers the role of women in an artwork c. interprets objects and figures in the artwork as symbols d. considers the artist’s personal experiences e. considers the religious, political, and social environment in which the artwork was made and viewed 10 points Question 26 1. Alexander Calder invented the ________, a type of suspended, balanced sculpture that uses air currents to power its movement. a. mime b. relief c. mobile d. stabile e. zoetrope 10 points Question 27 1. Louise Nevelson’s work White Vertical Water is a realistic depiction of fish in a river. True False 10 points Question 28 1. William G. Wall’s Fort Edward was published as a ________. a. print b. watercolor c. photograph d. oil painting e. newspaper article 10 points Question 29 1. Artemisia Gentileschi worked during this stylistic and historical period. a. Surrealism b. Impressionism c. Baroque d. Renaissance e. Pop art 10 points Question 30 1. The process of using a series of parallel lines set close to one another to differentiate planes of value in a work of art is called ________. a. highlight b. core shadow c. perspective d. hatching e. palette 10 points Question 31 1. The artist Canaletto, in his drawing of the Ducal Palace in Venice, created an impression of three dimensions by using line to show the division between ________. a. planes b. two figures c. colors d. time periods e. mountains 10 points Question 32 1. Marisol’s work Father Damien was created to memorialize the heroism of a priest who lost his life helping the victims of leprosy. This sculpture stands in front of the State Capitol Building in the U.S. State of ________. a. Arizona b. Pennsylvania c. Utah d. Tennessee e. Hawaii 10 points Question 33 1. The medium of Marc Quinn’s Self is: a. clay b. the artist’s toenail clippings c. wood d. real human hair e. the artist’s own blood 10 points Question 34 1. The work now known as the Watts Towers was in fact given a different title by its creator. That title was ________. a. Nuestro Pueblo b. LA Towers c. Found Objects d. it had no title originally e. Skyscrapers 1 and 2 10 points Question 35 1. Why do we presume that the head of a woman from Benin (0.18) was made for someone wealthy? a. because it was made to be shown in a museum b. because it strongly resembles the Queen c. because it has a price carved on the back d. because it was made from rare ivory e. it was definitely not made for anyone wealthy 10 points Question 36 1. Shahzia Sikander’s art is best described as Abstract Expressionism Naturalist sculpture Pop Art Miniature Painting 10 points Question 37 1. A sunset is a work of art. True False 10 points Question 38 1. A mens’ urinal became a well known artwork in the 20th century. True False 10 points Question 39 1. Which artist has torn out people’s lawns to design and build edible gardens across the country? Andrea Zittel Fritz Haeg Ruben Ortiz Torres Mark Newport

Question 1 1. When the rules of perspective are applied in order to represent unusual points of view, we call this ________. a. foreshortening b. chiaroscuro c. convergence d. highlight e. overlapping 10 points Question 2 1. A flat work of art has two dimensions: ________ and width. a. breadth b. depth c. size d. mass e. height 10 points Question 3 1. Méret Oppenheim was part of an art movement that rejected rational, conscious thought. Her fur-lined teacup and saucer, Object, conjures an unexpected and illogical sensation for the viewer by using ________ texture. a. smooth b. familiar c. expected d. subversive e. silky 10 points Question 4 1. In James Allen’s etching The Connectors, an image of workers erecting the Empire State Building, the artist created a feeling of great height by using ________ line to lead the viewer’s eye diagonally downward. a. horizontal b. communicative c. regular d. directional e. implied 10 points Question 5 1. Because it is three-dimensional, a form has these three spatial measurements: height, width, and ________. a. mass b. length c. size d. depth e. strength 10 points Question 6 1. The ancient Egyptian depiction of the journey of the Sun god Re (0.1) was painted on ________. a. stone b. a coffin c. the wall of a tomb d. copper e. a vase 10 points Question 7 1. The area covered by a pattern is called the ________. a. field b. motif c. background d. size e. foreground 10 points Question 8 1. ________ balance is achieved when two halves of a composition are not mirror images of each other. a. unified b. radial c. varied d. asymmetrical e. symmetrical 10 points Question 9 1. In Audrey Flack’s Marilyn Monroe, the burning candle, the flower, and the hourglass are typical of a kind of symbolism in art that reminds us of death. This kind of symbolism is known as ________. a. vanitas b. feminism c. abstract d. eternal e. none of the other answers 10 points Question 10 1. Tibetan Buddhist monks create colored sand images with a radial design. This representation of the universe is called a ________. a. prayer wheel b. rotunda c. mandala d. prayer flag e. lotus 10 points Question 11 1. In The School of Athens, Raphael focused our attention on two Greek philosophers positioned in the center of the work. They are ________ and ________. a. Plato . . . Aristotle b. Aristotle . . . Socrates c. Diogenes . . . Socrates d. Diogenes . . . Aristotle e. Socrates . . . Plato 10 points Question 12 1. In his Obey campaign poster Shepard Fairey used a striking contrast between positive and ________ shapes to attract the attention of the public. a. figure–ground reversal b. implied c. geometric d. organic e. negative 10 points Question 13 1. The Italian architect Andrea Palladio created a radial design in his plan for the Villa Capra. This building is also called the ________. a. Colosseum b. Pantheon c. Villa Rotonda d. Villa Caprese e. Parthenon 10 points Question 14 1. The French artist Georges Seurat employed a new technique to create a jewel-like diffusion of light and vibration of color in his work The Circus. This type of painting, made up of small dots of color, is known as ________. a. Fauvism b. Luminism c. pointillism d. Pop art e. Impressionism 10 points Question 15 1. The rarity of an artwork, and its value, are often closely related. True False 10 points Question 16 1. By orienting lines so that they attract attention to a specific area of a work of art the artist is using ________. a. actual line b. implied line c. directional line d. measured line e. chaotic line 10 points Question 17 1. Kindred Spirits by Asher Brown Durand uses the effects of ________ to give a sense of the vastness of the American landscape. a. pencil drawing b. geometry c. atmospheric perspective d. foreshortening e. color 10 points Question 18 1. The opposite of emphasis is ________. a. subordination b. tone c. focal point d. color e. proportion 10 points Question 19 1. Gustav Klimt’s portrait of Adele Bloch-Bauer was typical of his portraits of the wives and sisters of ________. a. foreign tourists b. Nazi rulers c. German scientists d. Austrian businessmen e. important politicians 10 points Question 20 1. The combination of jarring vertical and diagonal lines in Vincent van Gogh’s The Bedroom creates an atmosphere of ________. a. happiness b. rest c. anxiety d. expectation e. calm 10 points Question 21 1. If the clothing of the saint was the only light area in The Funeral of St. Bonaventure, the viewer’s eye would not be easily drawn to any other areas of the composition. True False 10 points Question 22 1. Miriam Schapiro’s collage Baby Blocks combines two different kinds of shape. ________ is the term used to describe a shape that suggests the natural world, while the term geometric suggests mathematical regularity. a. conceptual b. implied c. organic d. regular e. artificial 10 points Question 23 1. Any of the ________ of art can help focus our interest on specific areas of a work of art. a. styles b. elements c. periods d. tones e. themes 10 points Question 24 1. An artwork can be described as non-objective if its subject matter is ________. a. three-dimensional b. difficult c. unrecognizable d. recognizable e. animals 10 points Question 25 1. Match the methodological approach with its definition: biographical analysis feminist analysis formal analysis contextual analysis 2. iconographical analysis a. analyzes the use of formal elements in a work. b. considers the role of women in an artwork c. interprets objects and figures in the artwork as symbols d. considers the artist’s personal experiences e. considers the religious, political, and social environment in which the artwork was made and viewed 10 points Question 26 1. Alexander Calder invented the ________, a type of suspended, balanced sculpture that uses air currents to power its movement. a. mime b. relief c. mobile d. stabile e. zoetrope 10 points Question 27 1. Louise Nevelson’s work White Vertical Water is a realistic depiction of fish in a river. True False 10 points Question 28 1. William G. Wall’s Fort Edward was published as a ________. a. print b. watercolor c. photograph d. oil painting e. newspaper article 10 points Question 29 1. Artemisia Gentileschi worked during this stylistic and historical period. a. Surrealism b. Impressionism c. Baroque d. Renaissance e. Pop art 10 points Question 30 1. The process of using a series of parallel lines set close to one another to differentiate planes of value in a work of art is called ________. a. highlight b. core shadow c. perspective d. hatching e. palette 10 points Question 31 1. The artist Canaletto, in his drawing of the Ducal Palace in Venice, created an impression of three dimensions by using line to show the division between ________. a. planes b. two figures c. colors d. time periods e. mountains 10 points Question 32 1. Marisol’s work Father Damien was created to memorialize the heroism of a priest who lost his life helping the victims of leprosy. This sculpture stands in front of the State Capitol Building in the U.S. State of ________. a. Arizona b. Pennsylvania c. Utah d. Tennessee e. Hawaii 10 points Question 33 1. The medium of Marc Quinn’s Self is: a. clay b. the artist’s toenail clippings c. wood d. real human hair e. the artist’s own blood 10 points Question 34 1. The work now known as the Watts Towers was in fact given a different title by its creator. That title was ________. a. Nuestro Pueblo b. LA Towers c. Found Objects d. it had no title originally e. Skyscrapers 1 and 2 10 points Question 35 1. Why do we presume that the head of a woman from Benin (0.18) was made for someone wealthy? a. because it was made to be shown in a museum b. because it strongly resembles the Queen c. because it has a price carved on the back d. because it was made from rare ivory e. it was definitely not made for anyone wealthy 10 points Question 36 1. Shahzia Sikander’s art is best described as Abstract Expressionism Naturalist sculpture Pop Art Miniature Painting 10 points Question 37 1. A sunset is a work of art. True False 10 points Question 38 1. A mens’ urinal became a well known artwork in the 20th century. True False 10 points Question 39 1. Which artist has torn out people’s lawns to design and build edible gardens across the country? Andrea Zittel Fritz Haeg Ruben Ortiz Torres Mark Newport

This content is for CheckYourstudy.com Members members only.Kindly register or … Read More...
Define: 41 Things Philosophy is: 1. Ignorant 2. Selfish 3. Ironic 4. Plain 5. Misunderstood 6. A failure 7. Poor 8. Unscientific 9. Unteachable 10. Foolish 11. Abnormal 12. Divine trickery 13. Egalitarian 14. A divine calling 15. Laborious 16. Countercultural 17. Uncomfortable 18. Virtuous 19. Dangerous 20. Simplistic<br />21. Polemical 22. Therapeutic 23. “conformist” 24. Embarrassi ng 25. Invulnerable 26. Annoying 27. Pneumatic 28. Apolitic al 29. Docile/teachable 30. Messianic 31. Pious 32. Impract ical 33. Happy 34. Necessary 35. Death-defying 36. Fallible 37. Immortal 38. Confident 39. Painful 40. agnostic</br

Define: 41 Things Philosophy is: 1. Ignorant 2. Selfish 3. Ironic 4. Plain 5. Misunderstood 6. A failure 7. Poor 8. Unscientific 9. Unteachable 10. Foolish 11. Abnormal 12. Divine trickery 13. Egalitarian 14. A divine calling 15. Laborious 16. Countercultural 17. Uncomfortable 18. Virtuous 19. Dangerous 20. Simplistic
21. Polemical 22. Therapeutic 23. “conformist” 24. Embarrassi ng 25. Invulnerable 26. Annoying 27. Pneumatic 28. Apolitic al 29. Docile/teachable 30. Messianic 31. Pious 32. Impract ical 33. Happy 34. Necessary 35. Death-defying 36. Fallible 37. Immortal 38. Confident 39. Painful 40. agnostic

Ignorant- A person is said to be ignorant if he … Read More...
Sex, Gender, and Popular Culture Spring 2015 Look through popular magazines, and see if you can find advertisements that objectify women in order to sell a product. Alternately, you may use an advertisement on television (but make sure to provide a link to the ad so I can see it!). Study these images then write a paper about objectification that deals with all or some of the following: • What effect(s), if any, do you think the objectification of women’s bodies has on our culture? • Jean Kilbourne states “turning a human being into a thing is almost always the first step toward justifying violence against that person.” What do you think she means by this? Do you agree with her reasoning? Why or why not? • Some people would argue that depicting a woman’s body as an object is a form of art. What is your opinion of this point of view? Explain your reasoning. • Why do you think that women are objectified more often than men are? • How does sexualization and objectification play out differently across racial lines? • Kilbourne explains that the consequences of being objectified are different – and more serious – for women than for men. Do you agree? How is the world different for women than it is for men? How do objectified images of women interact with those in our culture differently from the way images of men do? Why is it important to look at images in the context of the culture? • What is the difference between sexual objectification and sexual subjectification? (Ros Gill ) • How do ads construct violent white masculinity and how does that vision of masculinity hurt both men and women? Throughout your written analysis, be sure to make clear and specific reference to the images you selected, and please submit these images with your paper. Make sure you engage with and reference to at least 4 of the following authors: Kilbourne, Bordo, Hunter & Soto, Rose, Durham, Gill, Katz, Schuchardt, Ono and Buescher. Guidelines:  Keep your content focused on structural, systemic, institutional factors rather than the individual: BE ANALYTICAL NOT ANECDOTAL.  Avoid using the first person or including personal stories/reactions. You must make sure to actively engage with your readings: these essays need to be informed and framed by the theoretical material you have been reading this semester.  Keep within the 4-6 page limit; use 12-point font, double spacing and 1-inch margins.  Use formal writing conventions (introduction/thesis statement, body, conclusion) and correct grammar. Resources may be cited within the text of your paper, i.e. (Walters, 2013).

Sex, Gender, and Popular Culture Spring 2015 Look through popular magazines, and see if you can find advertisements that objectify women in order to sell a product. Alternately, you may use an advertisement on television (but make sure to provide a link to the ad so I can see it!). Study these images then write a paper about objectification that deals with all or some of the following: • What effect(s), if any, do you think the objectification of women’s bodies has on our culture? • Jean Kilbourne states “turning a human being into a thing is almost always the first step toward justifying violence against that person.” What do you think she means by this? Do you agree with her reasoning? Why or why not? • Some people would argue that depicting a woman’s body as an object is a form of art. What is your opinion of this point of view? Explain your reasoning. • Why do you think that women are objectified more often than men are? • How does sexualization and objectification play out differently across racial lines? • Kilbourne explains that the consequences of being objectified are different – and more serious – for women than for men. Do you agree? How is the world different for women than it is for men? How do objectified images of women interact with those in our culture differently from the way images of men do? Why is it important to look at images in the context of the culture? • What is the difference between sexual objectification and sexual subjectification? (Ros Gill ) • How do ads construct violent white masculinity and how does that vision of masculinity hurt both men and women? Throughout your written analysis, be sure to make clear and specific reference to the images you selected, and please submit these images with your paper. Make sure you engage with and reference to at least 4 of the following authors: Kilbourne, Bordo, Hunter & Soto, Rose, Durham, Gill, Katz, Schuchardt, Ono and Buescher. Guidelines:  Keep your content focused on structural, systemic, institutional factors rather than the individual: BE ANALYTICAL NOT ANECDOTAL.  Avoid using the first person or including personal stories/reactions. You must make sure to actively engage with your readings: these essays need to be informed and framed by the theoretical material you have been reading this semester.  Keep within the 4-6 page limit; use 12-point font, double spacing and 1-inch margins.  Use formal writing conventions (introduction/thesis statement, body, conclusion) and correct grammar. Resources may be cited within the text of your paper, i.e. (Walters, 2013).

The objectification of women has been a very controversial topic … Read More...
Essay list

Essay list

      Some students have a background or story … Read More...
You have had the unique opportunity to develop a career plan in this academic program. By determining career goals and objectives, you should have become insightful and capable of assessing your current skills and abilities and their respective usefulness in attaining that ideal position. According to your plan, what training and education may be required before advancement is possible with respect to your future plans? What is the biggest obstacle you face in search of success?

You have had the unique opportunity to develop a career plan in this academic program. By determining career goals and objectives, you should have become insightful and capable of assessing your current skills and abilities and their respective usefulness in attaining that ideal position. According to your plan, what training and education may be required before advancement is possible with respect to your future plans? What is the biggest obstacle you face in search of success?

We can’t escape from the reality that if we wish … Read More...