1 CE 321 PRINCIPLES ENVIRONMENTAL ENGINEERING LAB WORKSHEET No. 1 Due: One (1) Week After Each Lab Section, respectively MICROBIOLOGY Environmental engineers employ microbiology in a variety of applications. Testing for coliform bacteria is used to assess whether pathogens may be present in a water or wastewater sample. Coliforms are a type of bacteria that live in the intestines of warm blooded mammals, such as humans and cattle. They are not pathogens, but if they are present in a sample, it is taken as an indication that fecal material from humans or cattle has contacted the water. If fecal material is present, pathogens may be present, too. In water treatment, coliform counts must average less than one colony per 100 milliliters of sample tested. In wastewater treatment, typical acceptable levels might be 200-colonies/100 mL. There are two standard ways to test for coliforms, the Most Probable Number test, MPN (also called the multiple tube fermentation technique, MTF) and the membrane filter test, MF. Several companies market testing systems that are somewhat simpler, but these cannot be used by treatment plants until they receive EPA approval. Two recently accepted methods are the Minimal Media Test (Colilert system), and the Presence-Absence coliform test (P-A test). Wastewater treatment plant operators study the microorganism composition of the activated sludge units in order to assess and predict the performance of the biological floc. A sample of mixed liquor from the aeration basin is examined under the microscope, and based on the relative predominance of a variety of organisms that might be present; the operator can tell if the BOD application rates and wasting rates are as they should be. For your worksheet, please submit the items requested below (10 pts. each): 1. Examine a sample of activated sludge under the microscope (To be done together in class). Use the Atlas, Standard Methods, or other references to identify at least 5 different organisms you observed. List them and sketch them neatly on unlined paper. Describe their motility and any other distinctive characteristics as you observed it. 2. Explain what types of organisms you might expect to find in sludge with a high mean cell residence time (MCRT), and explain why these would predominate over the other types. 3. How can the predominance of a certain kind of microorganism in activated sludge affect the settling characteristics of the sludge? Give several examples. 2 4. Explain why coliforms are used as “indicator organisms” for water and wastewater testing. Name two pathogenic bacteria, two pathogenic viruses, and one pathogenic protozoan sometimes found in water supplies. 5. There is also a test for fecal coliforms. Use your class notes and outside references to explain the distinctions between the tests for total and fecal coliforms. Explain why one would use the fecal coliform test instead of the test for total coliforms. 6. Using outside references, indicate typical coliform limits for surface waters used for swimming and fishing; potable water; and wastewater treatment plant effluent. 7). In the recent past, EPA instituted regulations designed to insure that Giardia are removed from the water. Using your text or other references, explain what kind of organism this is, and explain the way in which EPA has set standards to insure they are removed during water treatment. 8. What is meant by “population dynamics”? What two factors usually control the population dynamics of a mixed culture? 9. Use the MPN test data from the samples prepared for class prior to determine the number of coliforms present in the wastewater samples. Please show your work and explain your reasoning. Total Coliforms Raw Intermediate Effluent Sample Volume No. Positive No. Positive No. Positive 10 5 5 4 1 5 5 2 0.1 5 3 1 0.01 5 1 0 0.001 2 1 —- 0.0001 1 —- —- FecalColiforms Raw Intermediate Effluent Sample Volume No. Positive No. Positive No. Positive 10 5 5 2 1 5 4 0 0.1 5 2 1 0.01 1 0 0 0.001 0 0 —– 0.0001 2 —– —– 3 10. Use the membrane filter test data given in class to determine the number of total coliforms and fecal coliforms present in the sample. Please show your work and explain your reasoning. Total Coliforms Fecal Coliforms Dilution Colonies Dilution Colonies Raw Influent 0.1 mL/100 mL 58 1 mL/100 mL 47 Intermediate 1 mL/100 mL 13 10 mL/100 mL 28 Wetland Effluent 10 mL/100 mL 10 100 mL/100 mL 15

1 CE 321 PRINCIPLES ENVIRONMENTAL ENGINEERING LAB WORKSHEET No. 1 Due: One (1) Week After Each Lab Section, respectively MICROBIOLOGY Environmental engineers employ microbiology in a variety of applications. Testing for coliform bacteria is used to assess whether pathogens may be present in a water or wastewater sample. Coliforms are a type of bacteria that live in the intestines of warm blooded mammals, such as humans and cattle. They are not pathogens, but if they are present in a sample, it is taken as an indication that fecal material from humans or cattle has contacted the water. If fecal material is present, pathogens may be present, too. In water treatment, coliform counts must average less than one colony per 100 milliliters of sample tested. In wastewater treatment, typical acceptable levels might be 200-colonies/100 mL. There are two standard ways to test for coliforms, the Most Probable Number test, MPN (also called the multiple tube fermentation technique, MTF) and the membrane filter test, MF. Several companies market testing systems that are somewhat simpler, but these cannot be used by treatment plants until they receive EPA approval. Two recently accepted methods are the Minimal Media Test (Colilert system), and the Presence-Absence coliform test (P-A test). Wastewater treatment plant operators study the microorganism composition of the activated sludge units in order to assess and predict the performance of the biological floc. A sample of mixed liquor from the aeration basin is examined under the microscope, and based on the relative predominance of a variety of organisms that might be present; the operator can tell if the BOD application rates and wasting rates are as they should be. For your worksheet, please submit the items requested below (10 pts. each): 1. Examine a sample of activated sludge under the microscope (To be done together in class). Use the Atlas, Standard Methods, or other references to identify at least 5 different organisms you observed. List them and sketch them neatly on unlined paper. Describe their motility and any other distinctive characteristics as you observed it. 2. Explain what types of organisms you might expect to find in sludge with a high mean cell residence time (MCRT), and explain why these would predominate over the other types. 3. How can the predominance of a certain kind of microorganism in activated sludge affect the settling characteristics of the sludge? Give several examples. 2 4. Explain why coliforms are used as “indicator organisms” for water and wastewater testing. Name two pathogenic bacteria, two pathogenic viruses, and one pathogenic protozoan sometimes found in water supplies. 5. There is also a test for fecal coliforms. Use your class notes and outside references to explain the distinctions between the tests for total and fecal coliforms. Explain why one would use the fecal coliform test instead of the test for total coliforms. 6. Using outside references, indicate typical coliform limits for surface waters used for swimming and fishing; potable water; and wastewater treatment plant effluent. 7). In the recent past, EPA instituted regulations designed to insure that Giardia are removed from the water. Using your text or other references, explain what kind of organism this is, and explain the way in which EPA has set standards to insure they are removed during water treatment. 8. What is meant by “population dynamics”? What two factors usually control the population dynamics of a mixed culture? 9. Use the MPN test data from the samples prepared for class prior to determine the number of coliforms present in the wastewater samples. Please show your work and explain your reasoning. Total Coliforms Raw Intermediate Effluent Sample Volume No. Positive No. Positive No. Positive 10 5 5 4 1 5 5 2 0.1 5 3 1 0.01 5 1 0 0.001 2 1 —- 0.0001 1 —- —- FecalColiforms Raw Intermediate Effluent Sample Volume No. Positive No. Positive No. Positive 10 5 5 2 1 5 4 0 0.1 5 2 1 0.01 1 0 0 0.001 0 0 —– 0.0001 2 —– —– 3 10. Use the membrane filter test data given in class to determine the number of total coliforms and fecal coliforms present in the sample. Please show your work and explain your reasoning. Total Coliforms Fecal Coliforms Dilution Colonies Dilution Colonies Raw Influent 0.1 mL/100 mL 58 1 mL/100 mL 47 Intermediate 1 mL/100 mL 13 10 mL/100 mL 28 Wetland Effluent 10 mL/100 mL 10 100 mL/100 mL 15

info@checkyourstudy.com Whatsapp +919911743277
MIS 3000 – Introduction to Management Information Systems Excel Tutorial #5 (Spring 2014) Healthy Cooking Grading Criteria Do “Case Problem 3” on pages EX 322-323 of your Excel book. See details below. When you are done, turn in your Excel spreadsheet: Item Points Download the Cooking workbook (available on Pilot). Save your Workbook as HealthyCookingXXX (where XXX are your initials). Complete the Documentation Sheet: 1 – Fill in the Documentation Sheet, as directed Correct the Order Amount Filter Worksheet: ……..………………………………………………………………………….. 2 – Correct the errors in the filter (Step 3) Create the Sort Worksheet: 3 – Create a custom sort on the specified criteria – Use conditional formatting as directed in Step 8 Correct the Customer Type Subtotal Worksheet: 5 – Correct the Customer Type Subtotal Worksheet (step 11) – Complete step 12 to insert a count of orders for customer type Create the Pivot Table per Step 13: 4 – Use a slicer to filter the Pivot Table per Step 14 – Format the slicer to match the Pivot Table style Create the Pivot Chart as directed in Step 16: ……..…………………………………………………………………………..4 – Move the Pivot Chart to row 3 – Change the Chart Title as directed – Change the axis and fill colors as directed

MIS 3000 – Introduction to Management Information Systems Excel Tutorial #5 (Spring 2014) Healthy Cooking Grading Criteria Do “Case Problem 3” on pages EX 322-323 of your Excel book. See details below. When you are done, turn in your Excel spreadsheet: Item Points Download the Cooking workbook (available on Pilot). Save your Workbook as HealthyCookingXXX (where XXX are your initials). Complete the Documentation Sheet: 1 – Fill in the Documentation Sheet, as directed Correct the Order Amount Filter Worksheet: ……..………………………………………………………………………….. 2 – Correct the errors in the filter (Step 3) Create the Sort Worksheet: 3 – Create a custom sort on the specified criteria – Use conditional formatting as directed in Step 8 Correct the Customer Type Subtotal Worksheet: 5 – Correct the Customer Type Subtotal Worksheet (step 11) – Complete step 12 to insert a count of orders for customer type Create the Pivot Table per Step 13: 4 – Use a slicer to filter the Pivot Table per Step 14 – Format the slicer to match the Pivot Table style Create the Pivot Chart as directed in Step 16: ……..…………………………………………………………………………..4 – Move the Pivot Chart to row 3 – Change the Chart Title as directed – Change the axis and fill colors as directed

info@checkyourstudy.com
Project 1: Particle Trajectory in Pleated Filters Due: 12:30 pm, Dec. 1, 2015, submission through blackboard Course: Numerical Methods Instructor: Dr. Hooman V. Tafreshi Most aerosol filters are made of pleated fibrous media. This is to accommodate as much filtration media as possible in a limited space available to an air filtration unit (e.g., the engine of a car). A variety of parameters contribute to the performance of a pleated filter. These parameters include, but are not limited to, geometry of the pleat (e.g., pleat height, width, and count), microscale properties of the fibrous media (e.g., fiber diameters, fiber orientation, and solid volume fraction), aerodynamic and thermal conditions of the flow (e.g., flow velocity, temperature, and operating pressure), and particle properties (e.g., diameter, density, and shape). Figure 1: Examples of pleated air filters [1‐2]. In this project you are asked to calculate the trajectory of aerosol particles as they travel inside a rectangular pleat channel. Due to the symmetry of the pleat geometry, you only need to simulate one half of the channel (see Figure 2). Figure 2: The simulation domain and boundary conditions (the figure’s aspect ratio is altered for illustration purposes). Trajectory of the aerosol particles can be calculated in a 2‐D domain by solving the Newton’s 2nd law written for the particles in the x‐ and y‐directions, v(h) inlet velocity fibrous media v(y) y tm l h x Ui u(l) u(x) 2 2 p 1 p 1 ( , ) d x dx u x y dt  dt    2 2 p 1 p 1 ( , ) d y dy v x y dt  dt    where 2 1/18 p p   d    is the particle relaxation time, 10 μm p d  is the particle diameter, 1000 kg/m3 p   is the particle density, and   1.85105 Pa.s is the air viscosity. Also, u(x, y) and v(x, y) represent the components of the air velocity in the x and y directions inside the pleat channel, respectively. The x and y positions of the particles are denoted by xp and yp, respectively. You may use the following expressions for u(x, y) and v(x, y) .     2 3 1 2 u x, y u x y h                  sin 2 v x,y v h π y h        where   i 1 u x U x l h          is the average air velocity inside the pleat channel in the x‐direction and Ui is the velocity at the pleat entrance (assume 1 m/s for this project). l = 0.0275 m and h =0.0011 m are the pleat length and height, respectively. Writing the conservation of mass for the air flowing into the channel, you can also obtain that   i v h U h l h         . These 2nd order ODEs can easily be solved using a 4th order Rung‐Kutta method. In order to obtain realistic particle trajectories, you also need to consider proper initial conditions for the velocity of the particles: x(t  0)  0 , ( 0) i p p y t   y , p ( 0) cos i i dx t U dt    , p ( 0) sin i i dy t U dt     . where i  is the angle with respect to the axial direction by which a particle enters the pleat channel (see Figure 3). The inlet angle can be obtained from the following equation: 2 75 0.78 +0.16 1.61St i i p p i y y e h h                    where   2 St 18 2 ρPdPUi μ h  is the particles Stokes number. Figure 3: An illustration of the required particle trajectory calculation inside a rectangular pleated filter. You are asked to calculate and plot the trajectories of particles released from the vertical positions of ?? ? ? 0.05?, ?? ? ? 0.25?, ?? ? ? 0.5?, ?? ? ? 0.75? , and ?? ? ? 0.95? in one single figure. To do so, you need to track the trajectories until they reach one of the channel walls (i.e., stop when xp  l or p y  h ). Use a time step of 0.00001 sec. For more information see Ref. [3]. For additional background information see Ref. [4] and references there. In submitting your project please stick to following guidelines: 1‐ In blackboard, submit all the Matlab files and report in one single zip file. For naming your zip file, adhere to the format as: Lastname_firstname_project1.zip For instance: Einstein_albert_project1.zip 2‐ The report should be in pdf format only with the name as Project1.pdf (NO word documents .docx or .doc will be graded). 3‐ Your zip file can contain as many Matlab files as you want to submit. Also please submit the main code which TA’s should run with the name as: Project1.m (You can name the function files as you desire). Summary of what you should submit: 1‐ Runge–Kutta 4th order implementation in MATLAB. 2‐ Plot 5 particle trajectories in one graph. 3‐ Report your output (the x‐y positions of the five particles at each time step) in the form of a table with 11 columns (one for time and two for the x and y of each particle). Make sure the units are second for time and meter for the x and y. 4‐ Write a short, but yet clean and professional report describing your work. Up to 25% of your grade will be based solely on the style and formatting of your report. Use proper heading for each section of your report. Be consistent in your font size. Use Times New Roman only. Make sure that figures have proper self‐explanatory captions and are cited in the body of the report. Make sure that your figures have legends as well as x and y labels with proper and consistent fonts. Don’t forget that any number presented in the report or on the figures has to have a proper unit. Equations and pages in your report should be numbered. Embed your figures in the text. Make sure they do not have unnecessary frames around them or are not plotted on a grey background (default setting of some software programs!). inlet angle Particle trajectory i p y i 0 p x  Important Note: It is possible to solve the above ODEs using built‐in solvers such as ode45 in MATLAB, and you are encouraged to consider that for validating your MATLAB program. However, the results that you submit for this project MUST be obtained from your own implementation of the 4th order Runge‐Kutta method. You will not receive full credit if your MATALB program does not work, even if your results are absolutely correct! References: 1. http://www.airexco.net/custom‐manufacturedbr12‐inch‐pleated‐filter‐c‐108_113_114/custommadebr12‐ inch‐pleated‐filter‐p‐786.html 2. http://www.ebay.com/itm/Air‐Compressor‐Air‐Filter‐Element‐CFE‐275‐Round‐Pleated‐Filter‐ /251081172328 3. A.M. Saleh and H.V. Tafreshi, A Simple Semi‐Analytical Model for Designing Pleated Air Filters under Loading, Separation and Purification Technology 137, 94 (2014) 4. A.M. Saleh, S. Fotovati, H.V. Tafreshi, and B. Pourdeyhimi, Modeling Service Life of Pleated Filters Exposed to Poly‐Dispersed Aerosols, Powder Technology 266, 79 (2014)

Project 1: Particle Trajectory in Pleated Filters Due: 12:30 pm, Dec. 1, 2015, submission through blackboard Course: Numerical Methods Instructor: Dr. Hooman V. Tafreshi Most aerosol filters are made of pleated fibrous media. This is to accommodate as much filtration media as possible in a limited space available to an air filtration unit (e.g., the engine of a car). A variety of parameters contribute to the performance of a pleated filter. These parameters include, but are not limited to, geometry of the pleat (e.g., pleat height, width, and count), microscale properties of the fibrous media (e.g., fiber diameters, fiber orientation, and solid volume fraction), aerodynamic and thermal conditions of the flow (e.g., flow velocity, temperature, and operating pressure), and particle properties (e.g., diameter, density, and shape). Figure 1: Examples of pleated air filters [1‐2]. In this project you are asked to calculate the trajectory of aerosol particles as they travel inside a rectangular pleat channel. Due to the symmetry of the pleat geometry, you only need to simulate one half of the channel (see Figure 2). Figure 2: The simulation domain and boundary conditions (the figure’s aspect ratio is altered for illustration purposes). Trajectory of the aerosol particles can be calculated in a 2‐D domain by solving the Newton’s 2nd law written for the particles in the x‐ and y‐directions, v(h) inlet velocity fibrous media v(y) y tm l h x Ui u(l) u(x) 2 2 p 1 p 1 ( , ) d x dx u x y dt  dt    2 2 p 1 p 1 ( , ) d y dy v x y dt  dt    where 2 1/18 p p   d    is the particle relaxation time, 10 μm p d  is the particle diameter, 1000 kg/m3 p   is the particle density, and   1.85105 Pa.s is the air viscosity. Also, u(x, y) and v(x, y) represent the components of the air velocity in the x and y directions inside the pleat channel, respectively. The x and y positions of the particles are denoted by xp and yp, respectively. You may use the following expressions for u(x, y) and v(x, y) .     2 3 1 2 u x, y u x y h                  sin 2 v x,y v h π y h        where   i 1 u x U x l h          is the average air velocity inside the pleat channel in the x‐direction and Ui is the velocity at the pleat entrance (assume 1 m/s for this project). l = 0.0275 m and h =0.0011 m are the pleat length and height, respectively. Writing the conservation of mass for the air flowing into the channel, you can also obtain that   i v h U h l h         . These 2nd order ODEs can easily be solved using a 4th order Rung‐Kutta method. In order to obtain realistic particle trajectories, you also need to consider proper initial conditions for the velocity of the particles: x(t  0)  0 , ( 0) i p p y t   y , p ( 0) cos i i dx t U dt    , p ( 0) sin i i dy t U dt     . where i  is the angle with respect to the axial direction by which a particle enters the pleat channel (see Figure 3). The inlet angle can be obtained from the following equation: 2 75 0.78 +0.16 1.61St i i p p i y y e h h                    where   2 St 18 2 ρPdPUi μ h  is the particles Stokes number. Figure 3: An illustration of the required particle trajectory calculation inside a rectangular pleated filter. You are asked to calculate and plot the trajectories of particles released from the vertical positions of ?? ? ? 0.05?, ?? ? ? 0.25?, ?? ? ? 0.5?, ?? ? ? 0.75? , and ?? ? ? 0.95? in one single figure. To do so, you need to track the trajectories until they reach one of the channel walls (i.e., stop when xp  l or p y  h ). Use a time step of 0.00001 sec. For more information see Ref. [3]. For additional background information see Ref. [4] and references there. In submitting your project please stick to following guidelines: 1‐ In blackboard, submit all the Matlab files and report in one single zip file. For naming your zip file, adhere to the format as: Lastname_firstname_project1.zip For instance: Einstein_albert_project1.zip 2‐ The report should be in pdf format only with the name as Project1.pdf (NO word documents .docx or .doc will be graded). 3‐ Your zip file can contain as many Matlab files as you want to submit. Also please submit the main code which TA’s should run with the name as: Project1.m (You can name the function files as you desire). Summary of what you should submit: 1‐ Runge–Kutta 4th order implementation in MATLAB. 2‐ Plot 5 particle trajectories in one graph. 3‐ Report your output (the x‐y positions of the five particles at each time step) in the form of a table with 11 columns (one for time and two for the x and y of each particle). Make sure the units are second for time and meter for the x and y. 4‐ Write a short, but yet clean and professional report describing your work. Up to 25% of your grade will be based solely on the style and formatting of your report. Use proper heading for each section of your report. Be consistent in your font size. Use Times New Roman only. Make sure that figures have proper self‐explanatory captions and are cited in the body of the report. Make sure that your figures have legends as well as x and y labels with proper and consistent fonts. Don’t forget that any number presented in the report or on the figures has to have a proper unit. Equations and pages in your report should be numbered. Embed your figures in the text. Make sure they do not have unnecessary frames around them or are not plotted on a grey background (default setting of some software programs!). inlet angle Particle trajectory i p y i 0 p x  Important Note: It is possible to solve the above ODEs using built‐in solvers such as ode45 in MATLAB, and you are encouraged to consider that for validating your MATLAB program. However, the results that you submit for this project MUST be obtained from your own implementation of the 4th order Runge‐Kutta method. You will not receive full credit if your MATALB program does not work, even if your results are absolutely correct! References: 1. http://www.airexco.net/custom‐manufacturedbr12‐inch‐pleated‐filter‐c‐108_113_114/custommadebr12‐ inch‐pleated‐filter‐p‐786.html 2. http://www.ebay.com/itm/Air‐Compressor‐Air‐Filter‐Element‐CFE‐275‐Round‐Pleated‐Filter‐ /251081172328 3. A.M. Saleh and H.V. Tafreshi, A Simple Semi‐Analytical Model for Designing Pleated Air Filters under Loading, Separation and Purification Technology 137, 94 (2014) 4. A.M. Saleh, S. Fotovati, H.V. Tafreshi, and B. Pourdeyhimi, Modeling Service Life of Pleated Filters Exposed to Poly‐Dispersed Aerosols, Powder Technology 266, 79 (2014)

No expert has answered this question yet. You can browse … Read More...
Your text describes encryption as: Answers: The transmission of data through telecommunications lines in “scrambled” form The act of ensuring the accuracy, integrity and safety of all E-business processes and resources A “gatekeeper” system that protects a company’s intranets and other computer networks from intrusion by providing a filter and safe transfer point for access to and from the Internet and other networks None of the choices are correct

Your text describes encryption as: Answers: The transmission of data through telecommunications lines in “scrambled” form The act of ensuring the accuracy, integrity and safety of all E-business processes and resources A “gatekeeper” system that protects a company’s intranets and other computer networks from intrusion by providing a filter and safe transfer point for access to and from the Internet and other networks None of the choices are correct

Your text describes encryption as: Answers: The transmission of data … Read More...
Design of Electrical Systems Name: ______________________________ Note: All problems weighted equally. Show your work on all problems to receive partial credit. Resources: a) The Fundamental Logic Gate Family, Author Unknown b) Electric Devices and Circuit Theory 7th Edition, Boylestad c) Introductory Circuit Analysis 10th Edition, Boylestad d) Power Supplies (Voltage Regulators) Chapter 19, Boylestad e) Electronic Devices and Circuit Theory Chapter 5, Boylestad f) Operational Amplifiers Handout, Self g) Switch Mode Power Supplies, Philips Semiconductor h) NI Tutorial 13714-en October 6, 2013 i) NI Tutorial 13714-en V2.0 October 6, 2013 j) National Instruments Circuit Design Applications http://www.ni.com/multisim/applications/pro/ k) ENERGY STAR https://www.energystar.gov/index.cfm?c=most_efficient.me_comp_monitor_under_23_inches l) Manufactures Device Data Sheets 1) For the VDB shown below, please find the following quantities and plot the load line (Saturation / Cutoff), Q pt (Quiescent Point) and sketch input waveform and output wave form. Remember to test for Exact vs. Approximate Method. Given Bdc = hfe = 150 and RL of 10KΩ. Efficiency _ Class _____ Degrees ___ VR2_______ VE_______ VC _______ VCE ______ IC _______ IE _______ IB _______ PD _______ re’ _______ Av _______ mpp ______ Vout______ What is the effect of reducing RL to 500Ω ________________________________ What is the effect of reducing the Source Frequency to 50 Hz ________________ | | | | | | |____________________________________________ 2) For the following Networks, please complete the Truth Tables, Logic Gate Type, provide the Boolean Logic Expression. A | Vout 0 | 1 | Logic Gate Type _______ Boolean Logic Expression _________ A B| Vout 0 0| 0 1| 1 0| 1 1| Logic Gate Type _______ Boolean Logic Expression _________ A B C| Vout 0 0 0| 0 0 1| 0 1 0| 0 1 1| 1 0 0| 1 0 1| 1 1 0| 1 1 1| Logic Gate Type _______ Boolean Logic Expression _________ Operation of Transistors ____________ 3) For the Network shown below, please refer to Electronic Devices and Circuit Theory Chapter 5, Boylestad to solve for the following values: Given: Bdc1 = hfe1 = 55 Bdc2 = hfe2 = 70 Bdc Total ______ IB1 _________ IB2 _________ VC1 __________ VC2 __________ VE1 __________ VE2 __________ What is this Transistor Configuration? _______________________ What are the advantages of this Transistor Configuration? _________________________________________ _________________________________________ _________________________________________ _________________________________________ 4) Design a Four (4) output Power Supply with the following Specifications, Provide a clean schematic sketch of circuit (Please provide the schematic sketch on a separate piece of graph paper). Use a straight edge and label everything. Refer to Data Sheets as necessary. Specifications: 120 VAC rms 60 Hz Source Positive + 15 VDC Driving a 15Ω 20 Watt Resistive Load Positive +8 VDC Driving a 10Ω 2 Watt Resistive Load Negative – 12 VDC Driving a 10Ω 2 Watt Resistive Load Negative – 5 VDC Driving a 4Ω 2 Watt Resistive Load Parts available (Must use parts): 1x 120 VAC 40 Volt 3.5 Amp Center Tap Transformer 1x Fuse 1x Bridge Rectifier 12 Amp 1x LM7808 1x LM7815 1x LM7905 1x LM7912 Psource _____________ Fuse size with 25% Service Factor, 1-10 Amps increments of 1A, 10 – 50 Amps increments of 5 Amps ______ Are we exceeding Power Dissipation of any components? If so please identify and provide a brief explanation: _________________________________________________________________ _________________________________________________________________ 5) For the circuit shown below please calculate the following quantities, and Plot the Trans-Conductance Curve (Transfer Curve), (Please provide the plot on a separate piece of graph paper): You will need to refer to the 2N3819 N-Channel JFET ON Semiconductor Data Sheet Posted on Bb. VDS _________ VP ___________ VGS(off) ______ VS __________ VD __________ VG __________ PDD _________ PSource ______ VGSQ ________ IDQ __________ 6) Determine both the Upper and Lower Cutoff frequencies. Sketch Bode plot and label everything including dB Role-Off. Construct Network in Multisim and perform AC Analysis verifying frequency response and Upper and Lower Cutoff Frequencies in support of your calculations. Attach Screen shot of your Multisim Model and AC Analysis. Repeat the above for a 2nd Order Active BP Filter. You will need to research this configuration. Make sure that you use the same values for R and C. Upper and Lower Cutoff Frequencies are determined by for the 2nd Order Active BP Filter fc = 1/(2(3.14)SQRT(R1R2C1C2)). Demonstrate a change in Roll-Off from 1st Order to 2nd Order. First Order: Lower Cutoff Frequency ________ Upper Cutoff Frequency ________ Roll-Off ______________________ | | | | | | | |_____________________________________________________________ Second Order: Lower Cutoff Frequency ________ Upper Cutoff Frequency ________ Roll-Off ______________________ | | | | | | |_____________________________________________________________ 7) The following questions relate to LED Backlight LCD Monitors. (Please feel free to use more paper if need be). See Resources. Please explain the differences between LED Backlight LCD Monitor, LCD and CCFL Monitors (Cold Cathode Fluorescent Lamp) Monitors. What are some advantages of LED Backlight LCD Monitors when compared with LCD and CCFL Monitors? What color LEDs are used in the creation of an LED Backlight LCD Monitor? Does a Black Background use less energy than a White Background? If you can believe the hype, how and why are LED Backlight LCD Monitors among the most energy efficient, higher than heirs apparent? 8) In this problem the goal is to verify the Transfer Characteristics of the 2N7000G Enhancement Mode N-Channel MOSFET against the manufactures Data Sheets. Please create in Multisim a Model as exampled below. First Plot by hand on Graph Paper various VGS Voltages vs ID. Second simulate using the DC Sweep Analysis. From these results verify against the 2N7000G ON Semiconductor Data Sheet Posted on Bb, remembering that the 2N7000G ON Semiconductor Data Sheet includes both Tabulated Data and Figure 2. Transfer Characteristics. Attach all results, screen shots and write a brief description of your work. • I estimate that my mark for this exam will be: ________ % • Time spent on this exam: __________ Hours • Average of time spent per week on work for EGR-330 (outside class sessions): ______________ Hours

Design of Electrical Systems Name: ______________________________ Note: All problems weighted equally. Show your work on all problems to receive partial credit. Resources: a) The Fundamental Logic Gate Family, Author Unknown b) Electric Devices and Circuit Theory 7th Edition, Boylestad c) Introductory Circuit Analysis 10th Edition, Boylestad d) Power Supplies (Voltage Regulators) Chapter 19, Boylestad e) Electronic Devices and Circuit Theory Chapter 5, Boylestad f) Operational Amplifiers Handout, Self g) Switch Mode Power Supplies, Philips Semiconductor h) NI Tutorial 13714-en October 6, 2013 i) NI Tutorial 13714-en V2.0 October 6, 2013 j) National Instruments Circuit Design Applications http://www.ni.com/multisim/applications/pro/ k) ENERGY STAR https://www.energystar.gov/index.cfm?c=most_efficient.me_comp_monitor_under_23_inches l) Manufactures Device Data Sheets 1) For the VDB shown below, please find the following quantities and plot the load line (Saturation / Cutoff), Q pt (Quiescent Point) and sketch input waveform and output wave form. Remember to test for Exact vs. Approximate Method. Given Bdc = hfe = 150 and RL of 10KΩ. Efficiency _ Class _____ Degrees ___ VR2_______ VE_______ VC _______ VCE ______ IC _______ IE _______ IB _______ PD _______ re’ _______ Av _______ mpp ______ Vout______ What is the effect of reducing RL to 500Ω ________________________________ What is the effect of reducing the Source Frequency to 50 Hz ________________ | | | | | | |____________________________________________ 2) For the following Networks, please complete the Truth Tables, Logic Gate Type, provide the Boolean Logic Expression. A | Vout 0 | 1 | Logic Gate Type _______ Boolean Logic Expression _________ A B| Vout 0 0| 0 1| 1 0| 1 1| Logic Gate Type _______ Boolean Logic Expression _________ A B C| Vout 0 0 0| 0 0 1| 0 1 0| 0 1 1| 1 0 0| 1 0 1| 1 1 0| 1 1 1| Logic Gate Type _______ Boolean Logic Expression _________ Operation of Transistors ____________ 3) For the Network shown below, please refer to Electronic Devices and Circuit Theory Chapter 5, Boylestad to solve for the following values: Given: Bdc1 = hfe1 = 55 Bdc2 = hfe2 = 70 Bdc Total ______ IB1 _________ IB2 _________ VC1 __________ VC2 __________ VE1 __________ VE2 __________ What is this Transistor Configuration? _______________________ What are the advantages of this Transistor Configuration? _________________________________________ _________________________________________ _________________________________________ _________________________________________ 4) Design a Four (4) output Power Supply with the following Specifications, Provide a clean schematic sketch of circuit (Please provide the schematic sketch on a separate piece of graph paper). Use a straight edge and label everything. Refer to Data Sheets as necessary. Specifications: 120 VAC rms 60 Hz Source Positive + 15 VDC Driving a 15Ω 20 Watt Resistive Load Positive +8 VDC Driving a 10Ω 2 Watt Resistive Load Negative – 12 VDC Driving a 10Ω 2 Watt Resistive Load Negative – 5 VDC Driving a 4Ω 2 Watt Resistive Load Parts available (Must use parts): 1x 120 VAC 40 Volt 3.5 Amp Center Tap Transformer 1x Fuse 1x Bridge Rectifier 12 Amp 1x LM7808 1x LM7815 1x LM7905 1x LM7912 Psource _____________ Fuse size with 25% Service Factor, 1-10 Amps increments of 1A, 10 – 50 Amps increments of 5 Amps ______ Are we exceeding Power Dissipation of any components? If so please identify and provide a brief explanation: _________________________________________________________________ _________________________________________________________________ 5) For the circuit shown below please calculate the following quantities, and Plot the Trans-Conductance Curve (Transfer Curve), (Please provide the plot on a separate piece of graph paper): You will need to refer to the 2N3819 N-Channel JFET ON Semiconductor Data Sheet Posted on Bb. VDS _________ VP ___________ VGS(off) ______ VS __________ VD __________ VG __________ PDD _________ PSource ______ VGSQ ________ IDQ __________ 6) Determine both the Upper and Lower Cutoff frequencies. Sketch Bode plot and label everything including dB Role-Off. Construct Network in Multisim and perform AC Analysis verifying frequency response and Upper and Lower Cutoff Frequencies in support of your calculations. Attach Screen shot of your Multisim Model and AC Analysis. Repeat the above for a 2nd Order Active BP Filter. You will need to research this configuration. Make sure that you use the same values for R and C. Upper and Lower Cutoff Frequencies are determined by for the 2nd Order Active BP Filter fc = 1/(2(3.14)SQRT(R1R2C1C2)). Demonstrate a change in Roll-Off from 1st Order to 2nd Order. First Order: Lower Cutoff Frequency ________ Upper Cutoff Frequency ________ Roll-Off ______________________ | | | | | | | |_____________________________________________________________ Second Order: Lower Cutoff Frequency ________ Upper Cutoff Frequency ________ Roll-Off ______________________ | | | | | | |_____________________________________________________________ 7) The following questions relate to LED Backlight LCD Monitors. (Please feel free to use more paper if need be). See Resources. Please explain the differences between LED Backlight LCD Monitor, LCD and CCFL Monitors (Cold Cathode Fluorescent Lamp) Monitors. What are some advantages of LED Backlight LCD Monitors when compared with LCD and CCFL Monitors? What color LEDs are used in the creation of an LED Backlight LCD Monitor? Does a Black Background use less energy than a White Background? If you can believe the hype, how and why are LED Backlight LCD Monitors among the most energy efficient, higher than heirs apparent? 8) In this problem the goal is to verify the Transfer Characteristics of the 2N7000G Enhancement Mode N-Channel MOSFET against the manufactures Data Sheets. Please create in Multisim a Model as exampled below. First Plot by hand on Graph Paper various VGS Voltages vs ID. Second simulate using the DC Sweep Analysis. From these results verify against the 2N7000G ON Semiconductor Data Sheet Posted on Bb, remembering that the 2N7000G ON Semiconductor Data Sheet includes both Tabulated Data and Figure 2. Transfer Characteristics. Attach all results, screen shots and write a brief description of your work. • I estimate that my mark for this exam will be: ________ % • Time spent on this exam: __________ Hours • Average of time spent per week on work for EGR-330 (outside class sessions): ______________ Hours

info@checkyourstudy.com Operations Team Whatsapp( +91 9911743277)
Biomedical Signal and Image Processing (4800_420_001) Assigned on September 12th, 2017 Assignment 4 – Noise and Correlation 1. If a signal is measured as 2.5 V and the noise is 28 mV (28 × 10−3 V), what is the SNR in dB? 2. A single sinusoidal signal is found with some noise. If the RMS value of the noise is 0.5 V and the SNR is 10 dB, what is the RMS amplitude of the sinusoid? 3. The file signal_noise.mat contains a variable x that consists of a 1.0-V peak sinusoidal signal buried in noise. What is the SNR for this signal and noise? Assume that the noise RMS is much greater than the signal RMS. Note: “signal_noise.mat” and other files used in these assignments can be downloaded from the content area of Brightspace, within the “Data Files for Exercises” folder. These files can be opened in Matlab by copying into the active folder and double-clicking on the file or using the Matlab load command using the format: load(‘signal_noise.mat’). To discover the variables within the files use the Matlab who command. 4. An 8-bit ADC converter that has an input range of ±5 V is used to convert a signal that ranges between ±2 V. What is the SNR of the input if the input noise equals the quantization noise of the converter? Hint: Refer to Equation below to find the quantization noise: 5. The file filter1.mat contains the spectrum of a fourth-order lowpass filter as variable x in dB. The file also contains the corresponding frequencies of x in variable freq. Plot the spectrum of this filter both as dB versus log frequency and as linear amplitude versus linear frequency. The frequency axis should range between 10 and 400 Hz in both plots. Hint: Use Equation below to convert: Biomedical Signal and Image Processing (4800_420_001) Assigned on September 12th, 2017 6. Generate one cycle of the square wave similar to the one shown below in a 500-point MATLAB array. Determine the RMS value of this waveform. [Hint: When you take the square of the data array, be sure to use a period before the up arrow so that MATLAB does the squaring point-by-point (i.e., x.^2).]. 7. A resistor produces 10 μV noise (i.e., 10 × 10−6 V noise) when the room temperature is 310 K and the bandwidth is 1 kHz (i.e., 1000 Hz). What current noise would be produced by this resistor? 8. A 3-ma current flows through both a diode (i.e., a semiconductor) and a 20,000-Ω (i.e., 20-kΩ) resistor. What is the net current noise, in? Assume a bandwidth of 1 kHz (i.e., 1 × 103 Hz). Which of the two components is responsible for producing the most noise? 9. Determine if the two signals, x and y, in file correl1.mat are correlated by checking the angle between them. 10. Modify the approach used in Practice Problem 3 to find the angle between short signals: Do not attempt to plot these vectors as it would require a 6-dimensional plot!

Biomedical Signal and Image Processing (4800_420_001) Assigned on September 12th, 2017 Assignment 4 – Noise and Correlation 1. If a signal is measured as 2.5 V and the noise is 28 mV (28 × 10−3 V), what is the SNR in dB? 2. A single sinusoidal signal is found with some noise. If the RMS value of the noise is 0.5 V and the SNR is 10 dB, what is the RMS amplitude of the sinusoid? 3. The file signal_noise.mat contains a variable x that consists of a 1.0-V peak sinusoidal signal buried in noise. What is the SNR for this signal and noise? Assume that the noise RMS is much greater than the signal RMS. Note: “signal_noise.mat” and other files used in these assignments can be downloaded from the content area of Brightspace, within the “Data Files for Exercises” folder. These files can be opened in Matlab by copying into the active folder and double-clicking on the file or using the Matlab load command using the format: load(‘signal_noise.mat’). To discover the variables within the files use the Matlab who command. 4. An 8-bit ADC converter that has an input range of ±5 V is used to convert a signal that ranges between ±2 V. What is the SNR of the input if the input noise equals the quantization noise of the converter? Hint: Refer to Equation below to find the quantization noise: 5. The file filter1.mat contains the spectrum of a fourth-order lowpass filter as variable x in dB. The file also contains the corresponding frequencies of x in variable freq. Plot the spectrum of this filter both as dB versus log frequency and as linear amplitude versus linear frequency. The frequency axis should range between 10 and 400 Hz in both plots. Hint: Use Equation below to convert: Biomedical Signal and Image Processing (4800_420_001) Assigned on September 12th, 2017 6. Generate one cycle of the square wave similar to the one shown below in a 500-point MATLAB array. Determine the RMS value of this waveform. [Hint: When you take the square of the data array, be sure to use a period before the up arrow so that MATLAB does the squaring point-by-point (i.e., x.^2).]. 7. A resistor produces 10 μV noise (i.e., 10 × 10−6 V noise) when the room temperature is 310 K and the bandwidth is 1 kHz (i.e., 1000 Hz). What current noise would be produced by this resistor? 8. A 3-ma current flows through both a diode (i.e., a semiconductor) and a 20,000-Ω (i.e., 20-kΩ) resistor. What is the net current noise, in? Assume a bandwidth of 1 kHz (i.e., 1 × 103 Hz). Which of the two components is responsible for producing the most noise? 9. Determine if the two signals, x and y, in file correl1.mat are correlated by checking the angle between them. 10. Modify the approach used in Practice Problem 3 to find the angle between short signals: Do not attempt to plot these vectors as it would require a 6-dimensional plot!

Whatsapp +919911743277  
Que 1: true of false a) Both silicon and germanium atoms have four valances electrons b) When forward-biased , a diode has a very high resistance c) A zener diode is designed to operate in the forward-bias region and has higher reverse breakdown voltage level than regular diode Write the word or phrase that best completes each statement or answers the questions: d) In semiconductor, in addition to the electron flow, there is also another kind of charge flow referred as………………. e) A silicon diode in placed in series with 2kΩresistor and a 14 V dc power supply. The current ID is: i) 6.65 mA ii) 2.2 mA iii)7.5 mA iv) 14 mA f) The series resistor that limits the forward current length through a silicon diode to 8 mA if the power supply voltage is 9.5V is : i) 1.1 kΩ ii) 2.2 kΩ iii) 9.5 mA iv) 4.7 mA FIGURE g) Determine the diode current IZ for the circuit of figure 1-2: assume VZ = 3.9 V i) 8.1 mA ii) 3.55 mA iii) 24.5 mA iv) 13.64 mA h) Determine the current through a 20 mA yellow LED when the power supply voltage is 15 V the series resistor is 2k ohm and the diode is put in backward. Assume VLED = 2V i) 20 mA ii) 0 mA iii) 10 mA iv) 6.5 mA Write the word or phrase that best completes each statement or answers the questions: i) Zener diode is a p-n junction diode that is desgined for specifc…………………voltage j) ………………………….is the process by which impurity atoms are introduced to the instrisic semiconductor in order to alter the balance between holes and electrons. 1) The average value of s full-wave rectifier with a peak vaue of 17V ia 108V 2) If the frequency of input signal of the full wave reflector is 60Hz, the output frequency is 120Hz 3) The cathode of a zener diode, when conducting is:y i) at 0.7V ii) more positive than anode iii) more negative than anode iv) -0.7V 4) A given transformer with turn ratio 12:1has an input of 115V at 60Hzthe paek output voltage v0 (p) is i) 9.58 V ii) 6.78V iii) 11.5 V iv) 13.55 V FIGURE 2-1 5) The output voltage of V0(DC)for the full wave rectifier of figure 2-1 is i) 18.07 V ii) 12.78 V iii) 8.3 V iv) 5.74 V FIGURE 2-2 6) The voltage V2(P) for the full-wavr bridge rectifier of figure 2-2 is i) 17.37 V ii)1 6.67 V iii) 12.78 V iv) 18.07 V 7) Assume the current I0(DC) in figure is 100mA and C= 2400µF .the ripple voltage vr (p-p) i) 694mV ii) 424 mV iii) 121 V iv) 347 V Use figure 2-3 for questions below: Assume that RS = 75, RL = 160 FIGURE 2-3 8) The output voltage V0 is i) 7.5 V ii) 10 V iii) 8.5 V iv) 12 V Write the word or phrase that best completes each statement or answers the questions: 9) The magnitude of the peak-to-peak ripple voltage vr (p-p) is directly proportional to the output …………………. 10) The ripple voltage at the filter section vr (p-p) can be reduced by increasing the value

Que 1: true of false a) Both silicon and germanium atoms have four valances electrons b) When forward-biased , a diode has a very high resistance c) A zener diode is designed to operate in the forward-bias region and has higher reverse breakdown voltage level than regular diode Write the word or phrase that best completes each statement or answers the questions: d) In semiconductor, in addition to the electron flow, there is also another kind of charge flow referred as………………. e) A silicon diode in placed in series with 2kΩresistor and a 14 V dc power supply. The current ID is: i) 6.65 mA ii) 2.2 mA iii)7.5 mA iv) 14 mA f) The series resistor that limits the forward current length through a silicon diode to 8 mA if the power supply voltage is 9.5V is : i) 1.1 kΩ ii) 2.2 kΩ iii) 9.5 mA iv) 4.7 mA FIGURE g) Determine the diode current IZ for the circuit of figure 1-2: assume VZ = 3.9 V i) 8.1 mA ii) 3.55 mA iii) 24.5 mA iv) 13.64 mA h) Determine the current through a 20 mA yellow LED when the power supply voltage is 15 V the series resistor is 2k ohm and the diode is put in backward. Assume VLED = 2V i) 20 mA ii) 0 mA iii) 10 mA iv) 6.5 mA Write the word or phrase that best completes each statement or answers the questions: i) Zener diode is a p-n junction diode that is desgined for specifc…………………voltage j) ………………………….is the process by which impurity atoms are introduced to the instrisic semiconductor in order to alter the balance between holes and electrons. 1) The average value of s full-wave rectifier with a peak vaue of 17V ia 108V 2) If the frequency of input signal of the full wave reflector is 60Hz, the output frequency is 120Hz 3) The cathode of a zener diode, when conducting is:y i) at 0.7V ii) more positive than anode iii) more negative than anode iv) -0.7V 4) A given transformer with turn ratio 12:1has an input of 115V at 60Hzthe paek output voltage v0 (p) is i) 9.58 V ii) 6.78V iii) 11.5 V iv) 13.55 V FIGURE 2-1 5) The output voltage of V0(DC)for the full wave rectifier of figure 2-1 is i) 18.07 V ii) 12.78 V iii) 8.3 V iv) 5.74 V FIGURE 2-2 6) The voltage V2(P) for the full-wavr bridge rectifier of figure 2-2 is i) 17.37 V ii)1 6.67 V iii) 12.78 V iv) 18.07 V 7) Assume the current I0(DC) in figure is 100mA and C= 2400µF .the ripple voltage vr (p-p) i) 694mV ii) 424 mV iii) 121 V iv) 347 V Use figure 2-3 for questions below: Assume that RS = 75, RL = 160 FIGURE 2-3 8) The output voltage V0 is i) 7.5 V ii) 10 V iii) 8.5 V iv) 12 V Write the word or phrase that best completes each statement or answers the questions: 9) The magnitude of the peak-to-peak ripple voltage vr (p-p) is directly proportional to the output …………………. 10) The ripple voltage at the filter section vr (p-p) can be reduced by increasing the value